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ABSTRACT
This paper introduces a novel objective function for quality mean

opinion score (MOS) prediction of unseen speech synthesis systems.
The proposed function measures the similarity of relative positions
of predicted MOS values, in a mini-batch, rather than the actual
MOS values. That is the partial rank similarity is measured (PRS)
rather than the individual MOS values as with the L1 loss. Our ex-
periments on out-of-domain speech synthesis systems demonstrate
that the PRS outperforms L1 loss in zero-shot and semi-supervised
settings, exhibiting stronger correlation with ground truth. These
findings highlight the importance of considering rank order, as done
by PRS, when training MOS prediction models. We also argue that
mean squared error and linear correlation coefficient metrics may
be unreliable for evaluating MOS prediction models. In conclusion,
PRS-trained models provide a robust framework for evaluating
speech quality and offer insights for developing high-quality speech
synthesis systems. Code and models are available at github.
com/nii-yamagishilab/partial_rank_similarity/

Index Terms— MOS, automatic MOS prediction, Rank order,
Naturalness, Quality, L1, Text-to-speech, Voice conversion

1. INTRODUCTION

Recent advances in machine learning have significantly improved
synthesized speech, which consequently has become more integrated
into our daily lives. Unlike machine translation, which uses BLEU
score [1] for algorithmic evaluation, text-to-speech (TTS) synthesis
and voice conversion (VC) heavily rely on human ratings from lis-
tening tests. Crowdsourcing [2] and web-based tests have expanded
participant pools and accelerated experimentation; however, these
are still more costly and time-consuming than automated evaluation
metrics. Thus, there is increasing interest in developing reliable ob-
jective quality measures for synthesized speech.

Mean opinion score (MOS) serves as an attractive evaluation
methodology for researchers due to its ability to provide a single,
easily comparable numerical result. In a MOS test, listeners evalu-
ate synthesized samples one by one and assign them an integer rating
on a scale (e.g., 1-5) on the basis of some criteria such as naturalness.
All ratings per system are averaged together to obtain a final mean
score. With the recent advances in machine learning, attention has
turned to data-driven synthesized speech quality prediction – in par-
ticular, automatic MOS prediction. Early works on neural network-
based data-driven MOS prediction [3, 4, 5] found that although MOS
ratings from the same listening test as the training data could be well-
predicted, these models do not generalize well to data from other lis-
tening tests due to differences in the listener pool, testing interface,

∗The work was performed while at National Institute of Informatics (NII), Tokyo,
Japan.

Fig. 1. A typical MOS prediction pipeline. It consists of a func-
tion approximator ψ to predict the MOS scores, given an audio file.
Standard practice is to calculate the L1 loss using the predictions and
ground-truth MOS values. In this work, we apply a partial ranking
function PR and then apply the p-norm loss over the output matri-
ces of prediction and ground-truth MOS values.

systems under consideration, and many other factors outlined by [6].
The authors of [7, 8] showed that finetuning self-supervised learn-
ing (SSL) based models for speech, such as Wav2Vec2 [9], could
increase the generalization ability of automatic MOS predictors on
out-of-domain (OOD) datasets. To mitigate the domain mismatch
between pretrained SSL models, which have only seen examples of
natural speech, and the MOS prediction task for synthesized speech,
[10] conducted domain-adaptive pretraining [11]. They show im-
provements on an OOD dataset, most notably in the zero-shot and
few-shot settings. However, predicting unseen systems from OOD
listening tests remains challenging. In fact, this is a crucial scenario
for researchers and engineers utilizing automatic quality predictors.
They often develop and assess new, unseen systems, including those
for different languages, including low-resource languages.

It was noted in [7] that in the zero-shot prediction scenario,
where the model has not been finetuned on any labeled data from
the target listening test, that mean squared error (MSE) can be very
high even when the correlations with true MOS values are reason-
able. We hypothesize that, indeed, predicting the correct ordering
of synthesis systems with respect to their naturalness is more mean-
ingful than predicting the absolute MOS values. As an example,
if we use a rating scale from 1-5 and keep the rank order of MOS
ratings for the audio samples the same but shift and skew the overall
distribution of their scores towards either end of the scale to sim-
ulate listener and other contextual biases, then MSE will increase
substantially, although ranking-based correlations will remain high.
Using metrics such as MSE and linear correlation coefficient (LCC),
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which are dependent on the absolute MOS values, can be misleading
in evaluating different MOS predictors, especially in the zero-shot
OOD setting.

In the same spirit, the authors of UTMOS [12] proposed a loss
that enforces correct rank order, obtaining conclusive improvement
on an OOD dataset and supporting our hypothesis. However, the au-
thors of UTMOS in their paper did not discuss why the rank order is
important nor did they investigate the performance of their loss func-
tion in zero-shot or semi-supervised settings. In contrast, we justify
our loss function using the partial rank order within a mini-batch and
show that MSE and LCC are unreliable metrics for evaluating MOS
prediction systems. The core idea of our method is most similar to
UTMOS [12]. The most notable difference is in the loss formula-
tion. Their loss contains a margin term to avoid penalizing small
errors, but which has the consequence that the loss could be zero
even if the rank order is incorrect. This is an undesirable behavior
when predicting MOS values. Lastly, different from prior work, we
also study the effect of extending the total number of comparisons
beyond the current batch size. The differences between UTMOS and
the proposed method will be described in more detail in Section 2.

In this paper, we propose a method that addresses the challeng-
ing case of zero-shot and few-shot quality MOS prediction for un-
seen, OOD speech synthesis systems. Rather than focusing on ab-
solute measures, we aim to measure similarity of partial rank order
matrices obtained from MOS values for multiple (but not necessarily
all) samples and systems, particularly in terms of naturalness. Our
contributions are as follows:

1. We explain why relative position in the rank order is important
to consider when solving the MOS prediction task.

2. We formulate a loss function on the basis of the relative posi-
tion in the rank order that covers parts of systems to be evalu-
ated and call it Partial Rank Similarity (PRS) loss.

3. We introduce a BAlanced pseudo MOS (BApMOS) selection
approach for choosing unlabeled audio samples for use in
semi-supervised training.

4. We empirically demonstrate the effectiveness of the proposed
loss function to make quality predictions on unseen OOD
speech synthesis systems in zero-shot, few-shot, and semi-
supervised settings.

2. METHODOLOGY

In this section, we present the proposed PRS criterion. The method
is motivated by the idea that the relative position of an audio sample
in the ranking based on a partial list of training samples, which are
ordered by their relative quality, is an important aspect of solving
the MOS prediction task as opposed to only considering the absolute
MOS value as in [7]. Therefore, before delving into the specifics of
the PRS criterion, the concept of relative position in the ranking
and partial rank matrix needs to be explored in greater detail.

2.1. Relative position in the ranking and partial rank matrix

Let us consider a list l = (l1, l2, l3) = (1, 3, 2) where each element
represents an absolute MOS value assigned to a different system.
The list may not contain samples from all speech synthesis systems
but a subset of them. Although the original ratings are ordinal values,

we treat the MOS values as continuous for simplicity. To represent
the relative position of each value with respect to all other values
in the list, we define a matrix called the partial rank matrix. This
matrix stores the position of each value in the list relative to every
other value and also to itself. For example, the elements of the first
row of the matrix are l1 − l1 = 0, l1 − l2 = −2, and, l1 − l3 = −1,
respectively. By extending this idea to all rows, we can construct the
partial rank matrix for all values in l, as shown in Equation 1.

PR(l) =

 0 l1 − l2 l1 − l3
l2 − l1 0 l2 − l3
l3 − l1 l3 − l2 0

 =

0 −2 −1
2 0 1
1 −1 0

 (1)

A visual representation of the partial rank operation to the predicted
and ground-truth MOS values is shown in Figure 1.

Matrix PR(l) captures two fundamental pieces of information:
directionality and magnitude. The sign in the matrix indicates the
directionality, allowing us to determine whether the reference value
is ranked higher or lower than all other indices. The magnitude sim-
ply represents the rank order difference, indicating how much higher
or lower each value is than the reference value. Having established a
solid foundation in understanding relative position in the rank, now
we discuss the key aspects of the proposed PRS loss and its vari-
ants.

2.2. The PRS loss function

During the training process, let us consider a batch of size n contain-
ing n input audio samples, denoted as X = (x1, x2, . . . , xn), and
their corresponding MOS values. Our goal is to learn a prediction
function that can closely estimate the MOS scores given the input
audio signals. To achieve this, we assume the existence of a non-
linear function Ψ that approximates the MOS value on the basis of
the provided audio, such that ŷi = Ψ(xi). We propose an objective
function that minimizes the total losses with respect to the training
data. The objective function is defined in Equation 2:

LPRS =

(
n∑

i=1

n∑
j=1

λ ∗ |PRij(Ŷ ) − PRij(Y )|p
)1/p

(2)

Where:

Ŷ = (ŷ1, ŷ2, . . . , ŷn), (3)

ŷi = Ψ(xi), (4)

λ =

{
1 if {PRij(Ŷ ) · PRij(Y )} ≤ 0,

λc <= 1 otherwise,
(5)

and λc is a hyper-parameter. In Equation 2, the loss represents a
measure of the difference between ij-th elements of the predicted
PRij(Ŷ ) and the ground-truth matrices PRij(Y ), by utilizing a
p-norm. Additionally, the weight factor λ allows us to control the
contribution of each index pair (i,j) in the total loss calculation. In
one possible use case, if the two values (PRij(Ŷ ) and PRij(Y ))
have the same sign (either both positive or both negative) in Eq. (2),
they are penalized less (λ = λc < 1) than in cases where they have
opposite signs. In other words, if the MOS prediction model mis-
classifies the relative order of the i-th and j-th samples, we penalize
more.

One benefit of using the loss in Eq. (2) over the loss used by [7]
(which we call L1) is that the minimization takes into consideration
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other values and not just an individual value by incorporating the
notion of relative positions in the ranking into the learning process.
The model is explicitly encouraged to learn the correct rank order
of the samples, whereas L1 regression does not consider the interac-
tion between the samples. Furthermore, the number of comparisons
(column) for each audio sample (row), in the PRS matrix is not
restricted by the current batch size and can be easily extended by
maintaining a cache of previous MOS values. We save the output of
previous batches in a dictionary to be used for comparisons with the
audio samples in the current batch. This is done because of the GPU
memory limit. We call this variant “Extended PRS,-” (E-PRS for
short). The proposed PRS loss is a new approach for predicting
the MOS of audio signals, is easy to implement, and can be used
with any neural network architecture. Lastly, we also investigate the
combined E-PRS and L1 loss as shown in Eq. (6).

L = α ∗ LE−PRS + β ∗

(
n∑

i=1

|ŷi − yi|p
)1/p

(6)

Similar to PRS, max(0, |PRij(Ŷ ) − PRij(Y )| − γ) is the
loss used by the authors of UTMOS [12]. One major drawback is
that their loss function does not always enforce correct rank order;
i.e., even if the rank order is incorrect, the loss may be zero – that
is, all values less than γ will be neglected. In contrast, the PRS
loss uses λc to penalize less if the MOS prediction model orders
the ranks of the i-th and j-th samples correctly. Lastly, if the MOS
values of very similar systems are not reliable (assumption), then
having a margin to ignore very small values is a good choice. This
can be used as a regularizer in Equation 2.

2.3. Pseudo MOS values selection algorithm for semi-supervised
training

Assume we possess n audio samples, each associated with their re-
spective MOS values (labeled), and m audio samples without the
MOS values (unlabeled). In the semi-supervised setting, we initially
train the model using the labeled samples through supervised learn-
ing. Subsequently, using the trained model, we estimate the MOS
values for the unlabeled samples, which are referred to as pseudo
MOS values. In the following phase, we merge the labeled and (se-
lected) unlabeled samples and repeat the supervised learning as in
the initial step. We iterate this procedure until a predefined stop-
ping criterion is met. A straightforward selection algorithm would
be to choose all unlabeled samples. One drawback is that not all the
pseudo MOS values are accurate, which could destabilize the subse-
quent training phase. Therefore, a need arises for a better selection
algorithm to pick pseudo MOS values that are likely to be correct.

In this work, we propose a simple yet effective selection algo-
rithm. Since it is challenging to define what is correct, we pro-
pose to simply balance the pseudo MOS values and call our method
BAlanced pseudo MOS (BApMOS) selection. Given m unlabeled
audio samples and their corresponding pseudo MOS values Ŷ =
(ŷ1, ŷ2, . . . , ŷm), our method operates as follows: (i) We construct
a histogram with b bins (hyperparameter), each containing a count
specified by C = (c1, c2, . . . , cb). If the resulting distribution is
imbalanced, the method is prone to over-classify the majority group
due to its higher prior probability. To address this issue, (ii) we ran-
domly sample the minimum count, min(C), pseudo MOS values
from each bin and discard the remaining values. The total number of

Table 1. Summary of the different datasets used in this work.

Dataset Lang # Samples # ratings
per sampleTrain Dev Test

Stage 1
BVCC [7] en 4,974 1,066 1,066 8

ASV2019 [7] en - - 6,026 1-26
BC2019 [7] ch - - 450 10-17

COM2018 [7] ja - - 1,586 1-9
Stage 2

BC2019 [8] ch Labeled: 136
Unlabeled: 540

136 540 10-17

[13] Gitksan - - 25 12

selected pseudo MOS values for the iterative training is b ∗min(C).
This simply ensures a balanced distribution of selected pseudo MOS
values or uniform prior probability of the histogram.

3. EXPERIMENTS

3.1. Experimental Design

Two types of experiments are conducted in this paper: in Stage 1,
an SSL model is first finetuned with the proposed criterion on the
basis of the labeled training data. The evaluation is then performed
on held-out data in the same domain as the training data. Zero-shot
evaluations are also performed on three OOD sets that are not in-
cluded in the training data.

In the Stage 2 experiments, we show and discuss the results of
training a MOS prediction model with the proposed criterion on an
OOD set, either by zero-shot, few-shot, or semi-supervised learning,
and we also investigate the use of the BApMOS selection approach
in the semi-supervised setting.

3.2. Experimental Conditions

Pretrained Model: Our approach utilizes the pretrained w2v small
model [9], which has 95 million parameters and generates 768-
dimensional output embeddings from an input audio sample. This
model was trained on the standard Librispeech dataset [14], which
comprises 960 hours of speech data.

Loss Function: We use our proposed PRS loss as described in Eq.
(6). We perform all the experiments with p = 1 and squared p = 2
norm. Similar to [7], we have found that the p = 1 almost always
gives slightly better results. Therefore, we only report results with
p = 1. Furthermore, the values of λc , α and, β are set to 1.0, 1.0
and, 0.0 in Eqs. (5) and (6) respectively, unless mentioned other-
wise. Lastly, in the case of E-PRS, the contribution of the extended
columns to the loss is scaled by 1/10.

Finetuning For Stage 1, we finetune the Wav2Vec2.0 model on the
BVCC [15] training set using the PRS loss unless mentioned oth-
erwise. Similarly to [7], we average the frame-level features of the
last Wav2Vec2.0 layer and apply a linear regressor on top of it. The
entire resulting model is then finetuned to solve the MOS prediction
task using the BVCC training dataset.

We also further finetune the Stage 1 model, best weights, on dif-
ferent OOD datasets for Stage 2 experiments. Three different sets
of finetuning loss function configurations are used: PRS / PRS,
L1 / L1 and, PRS / L1. Stage 2 finetuning consists of one of three
setups: zero-shot, few-shot, or a semi-supervised scenario. In the
zero-shot scenario, no finetuning is done i.e., 0 labeled and 0 unla-
beled samples. In the few-shot scenario, small numbers of labeled
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Table 2. Comparison of Stage 1 finetuned models, including prior work on the in-domain dataset.

Methods Utterance System
MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE ↓ LCC ↑ SRCC ↑ KTAU ↑

L1 [7] 0.227 0.868 0.866 0.690 0.121 0.938 0.942 0.790
UTMOS [12] 5.870 0.869 0.866 0.687 4.810 0.948 0.951 0.806
LPRS , λc = 1.0 10.670 0.879 0.878 0.704 8.800 0.951 0.951 0.811
LE−PRS , λc = 1.0 12.320 0.881 0.881 0.707 10.120 0.947 0.949 0.805
LE−PRS , λc = 0.1 7.240 0.872 0.869 0.692 6.260 0.944 0.941 0.800
LE−PRS , λc = 0.0 3.490 0.602 0.862 0.684 2.320 0.643 0.920 0.760
L, λc = 1.0, β = 0.01 0.307 0.883 0.881 0.710 0.229 0.953 0.952 0.813
L, λc = 0.1, β = 0.01 0.490 0.874 0.871 0.700 0.490 0.937 0.938 0.790
L, λc = 0.0, β = 0.01 0.300 0.820 0.880 0.700 0.200 0.874 0.940 0.792

Table 3. Comparison of zero-shot capabilities of PRS Stage 1 finetuned Wav2Vec2.0 model, its variants, and results from prior work on
three out-of-domain datasets.

Methods
Utterance

ASV2019 BC2019 COM2018
MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE LCC SRCC Ktau MSE LCC SRCC KTAU

L1 [7] 1.498 0.470 0.491 0.352 3.672 0.553 0.559 0.409 1.200 0.476 0.423 0.297
UTMOS [12] 4.610 0.462 0.479 0.342 26.990 0.658 0.684 0.489 14.750 0.463 0.431 0.307
LPRS , λc = 1.0 8.430 0.464 0.475 0.339 45.250 0.649 0.681 0.493 25.520 0.466 0.436 0.309
LE−PRS , λc = 1.0 9.010 0.464 0.479 0.342 51.800 0.635 0.654 0.464 29.090 0.502 0.463 0.331
LE−PRS , λc = 0.1 2.750 0.470 0.499 0.357 19.510 0.637 0.686 0.500 6.34 0.515 0.490 0.350
LE−PRS , λc = 0.0 4.500 0.253 0.480 0.342 38.100 0.604 0.651 0.467 2.64 0.401 0.443 0.315
L, λc = 1.0, β = 0.01 1.800 0.471 0.486 0.347 2.820 0.646 0.663 0.472 0.81 0.467 0.431 0.306
L, λc = 0.1 , β = 0.01 2.280 0.448 0.463 0.329 3.28 0.643 0.673 0.484 0.810 0.437 0.421 0.297
L, λc = 0.0 , β = 0.01 1.660 0.413 0.467 0.333 2.650 0.669 0.664 0.480 0.740 0.442 0.416 0.295

samples are used for finetuning. In the semi-supervised setting, we
generate predicted pseudo MOS values on the available unlabeled
samples either using the Stage 1 or Stage 2 finetuned models. Then,
we use these pseudo MOS values combined with the real scores to
finetune the model further. During Stage 2 finetuning, we evaluate
the model after each epoch, and if and only if the Spearman rank
correlation coefficient (SRCC) metric improves on the development
set, we regenerate the pseudo MOS values and continue finetuning.

Dataset for Stage 1: We evaluate the performance of our approach
trained using the BVCC dataset, which was derived from a com-
prehensive listening test conducted by [15]. The dataset consists
of 7,106 audio samples from 187 systems, including text-to-speech
synthesis, voice conversion, and natural speech. Each sample has
eight ratings, which are averaged to obtain a MOS label for that
sample. Listeners rated samples on a discrete scale from 1 (very
bad) to 5 (very good) in terms of naturalness. We use the same train-
ing, development, and test sets as [7], preserving a distribution of
70%/15%/15%(4, 974/1, 066/1, 066). To assess the generaliza-
tion ability of our approach, similar to [7], we also tested the BVCC-
trained models on three OOD listening test datasets: ASV2019 [16]
(English), BC2019 [17] (Mandarin Chinese), and COM2018 [18]
(Japanese). Testing was conducted in a zero-shot manner; i.e., with-
out any further finetuning on these three OOD datasets. This evalua-
tion protocol allows us to examine how well the model performs on
unseen OOD data that is different from the training domain.

Dataset for Stage 2: For the Stage 2 finetuning experiments, we
adopt the OOD track dataset from the Interspeech 2022 VoiceMOS
challenge [8], which is the same original data as BC2019 except
with different splits: there are 136 labeled training samples and 540
audio-only unlabeled training samples for use in semi-supervised
training, including an “unlabeled training” set. We also use a dataset

from [13], consisting of five samples from each of four TTS systems
and natural reference speech in the Gitksan language, an Indigenous
language of Canada, for testing our approach on a real low-resource
language. Table 1 shows the statistics of all the datasets used in this
work.

Metrics: Similar to [7, 8], to evaluate MOS prediction models, we
employ four widely used metrics: mean squared error (MSE), lin-
ear correlation coefficient (LCC), Spearman rank correlation coef-
ficient (SRCC), and Kendall’s Tau rank correlation (KTAU). The
LCC, SRCC, and KTAU values range from -1 to 1, with values closer
to 1 indicating a better correlation between predicted and ground-
truth values. Among them, SRCC and KTAU are more useful met-
rics for our proposed loss function since MSE and LCC are depen-
dent on absolute MOS values.

3.3. Stage 1 experiment: in-domain vs. out-of-domain

Table 2 shows comparison results of the Stage 1 models on the in-
domain BVCC test dataset. First, we can confirm that since the pre-
dictive models using the proposed PRS loss and its variant (LPRS

and LE−PRS) do not take into account the absolute MOS values
during the learning process, they naturally result in larger MSEs,
but this outcome is expected. Next, comparing the values of LCC,
KTAU, and SRCC, we can confirm that the correlation coefficients
of the proposed methods (LPRS , LE−PRS , and L) are comparable
to or even slightly higher than those of L1 and UTMOS when appro-
priate λc values are utilized. Finally, the results of using a loss L that
also takes L1 into account at the same time naturally confirms that
the MSE is also reduced. In summary, if one wants to know only the
rank ordering, the proposed loss function is sufficient; if one wants
to approximate the MOS values as well, L1 is necessary.
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Table 4. Testing the PRS method in zero-shot, few-shot and, semi-supervised settings on a dataset [8]. E-PRS with λc = 0.1 configuration
is used for Stage 1 and Stage 2 finetuning. The results are averaged over three runs with random seeds. The row marked with * model is
trained with the pseudo MOS values generated only once at the starting.

Number of
labeled
samples

Number of
unlabeled
samples

1st finetuning loss / 2nd finetuning loss
PRS / PRS L1 / L1 PRS / L1

MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE LCC SRCC KTAU MSE LCC SRCC KTAU
Zero-shot setting

0 0 16.350 0.617 0.651 0.457 3.150 0.532 0.538 0.387 16.350 0.617 0.651 0.457
Few-shot setting

10 0 13.160 0.657 0.690 0.486 0.980 0.715 0.708 0.509 0.640 0.701 0.744 0.542
136 0 6.960 0.873 0.842 0.652 0.660 0.845 0.825 0.632 0.750 0.865 0.843 0.652

Semi-supervised setting
0* 136* 12.414 0.651 0.686 0.484 - - - - - - - -
0 136 4.000 0.807 0.778 0.580 13.050 0.721 0.744 0.550 9.910 0.720 0.773 0.572
0 676 1.980 0.768 0.778 0.582 11.190 0.701 0.747 0.551 23.920 0.623 0.751 0.553
10 126 0.750 0.783 0.786 0.582 2.750 0.703 0.686 0.493 2.900 0.675 0.705 0.509
10 666 1.160 0.770 0.782 0.583 8.790 0.663 0.696 0.503 11.910 0.606 0.672 0.483

136 540 0.650 0.858 0.839 0.646 0.660 0.845 0.825 0.632 1.330 0.860 0.840 0.650

Table 5. Testing the PRS method on Gitksan language [13], similar to Table 4. Readers must keep in mind that because only 25 samples
were available, we discard the MOS values and treat them as unlabeled samples in the semi-supervised setting. However, for development
and testing purposes, we use the ground-truth MOS values for comparison.

Number of
labeled
samples

Number of
unlabeled
samples

1st finetuning loss / 2nd finetuning loss
PRS / PRS L1 / L1 PRS / L1

MSE ↓ LCC ↑ SRCC ↑ KTAU ↑ MSE LCC SRCC KTAU MSE LCC SRCC KTAU
Zero-shot setting

0 0 6.210 0.810 0.790 0.640 0.940 0.760 0.690 0.530 6.210 0.810 0.790 0.640
Semi-supervised setting

0 25 5.440 0.835 0.851 0.696 4.400 0.717 0.763 0.608 1.200 0.791 0.848 0.680

Table 3 shows zero-shot comparison results of the Stage 1 mod-
els on the three OOD test datasets. First, this evaluation is done in
a zero-shot manner, so naturally, the overall correlation coefficients
are lower, and the MSEs are larger. We then see that the models
trained with the proposed loss function have a similar level of corre-
lation coefficients to the case trained with L1 evaluated on the OOD
test sets. Some minor but consistent improvement is also observed.
For instance, a system using the LE−PRS with λc = 0.1 has con-
sistently better rank correlations (SRCC and KTAU) than L1 and
UTMOS on three out of three OOD datasets. The improvement is
more evident in unseen languages, that is, BC2019 and COM2018.

Finally, regarding the combined PRS and L1 loss, we see a
small amount of degradation concerning the rank correlations. This
suggests that the two losses are not working in tandem and that min-
imizing the absolute values is not a good strategy for solving the
MOS prediction task in the OOD setting. To summarize, E-PRS
with λc = 0.1 has the best generalization ability given its perfor-
mance gains on unseen languages.

3.4. Stage 2 experiment: a comparison of zero-shot, few-shot,
and semi-supervised settings

In the Stage 2 experiment, we analyze the performance of MOS pre-
dictors in zero-shot, few-shot, and semi-supervised settings. As ex-
plained in Section 3.2, we finetune the Stage 1 model using small
amounts of labeled samples for the few-shot setting, whereas we
generate pseudo MOS labels for unlabeled training audio samples
and finetune a model by mixing the labeled samples and pseudo la-

beled ones for the semi-supervised setting.
Table 4 shows results on the BC2019 dataset [8]. First, we see

that both few-shot and semi-supervised learning improved correla-
tion coefficients. This is true even for semi-supervised cases where
no labeled samples are used. As for the combinations of the losses
used for the first and second finetuning, we see that the models us-
ing the PRS loss for the first finetuning generally resulted in higher
rank correlation coefficients after the second finetuning. This trend
can be clearly seen from the SRCC values in the table. This demon-
strates the generalization ability of the PRS loss. Interestingly, the
semi-supervised setting with the PRS / PRS condition has smaller
MSE values as well. The next observation is that increasing the unla-
beled data for semi-supervised learning (136 to 676 samples and 126
to 666 samples) does not result in any performance gains. This could
be attributed to using all unlabeled samples with their pseudo MOS
values during finetuning. Lastly, the empirical results show that iter-
atively regenerating the pseudo MOS values is necessary and is more
accurate than if the pseudo MOS values are generated only once at
the starting as shown in Table 4, in the row marked with *.

Semi-supervised learning is particularly helpful for low-resource
language scenarios since it is not straightforward to find native lis-
teners. We therefore additionally analyzed the performance of MOS
predictors in zero-shot and semi-supervised settings on a MOS
dataset in the Gitksan language [13]. Table 5 shows results of the
zero-shot and semi-supervised inference on the MOS dataset for the
Gitksan language. We can see the same trend – the semi-supervised
learning without using any labeled samples improved the prediction
performance, and the PRS / PRS condition resulted in the highest
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Table 6. Testing the BApMOS selection algorithm for PRS/PRS
configurations, similar to Table 4. Here the SRCC metric was used
to compare the performance.

Number of
labeled
samples

Number of
unlabeled
samples

Number of bins for a histogram

5 10 20 30
Few-shot setting

136 0 0.842 - - - -
Semi-supervised setting

0 136 0.778 - - - -
0 676 0.778 - - - -

Semi-supervised setting + BApMOS selection
0 136 0.804 0.800 0.800 -
0 676 0.780 0.797 0.809 0.799

rank correlation coefficients.

3.5. Stage 2 experiment: a comparison of semi-supervised
learning using the BApMOS selection strategy

Next, we compare semi-supervised learning with and without the
proposed BApMOS selection algorithm on the BC2019 dataset as
shown in Table 6. We only report the SRCC values.

First, by comparing the results of semi-supervised learning on
136 samples with and without the BApMOS selection algorithm, we
can see that the proposed BApMOS selection algorithm works ef-
fectively. It considerably boosts the performance over simply using
all of the pseudo labels. As expected, it is not as good as few-shot
learning which uses the ground-truth labels. Furthermore, increasing
the number of unlabeled samples from 136 to 676 results in a slight
performance gain, which was not the case earlier. This again proves
the importance of a selection algorithm rather than just using all the
unlabeled samples.

Furthermore, we make two observations: (i) diversity of selected
pseudo-MOS values is detrimental to the performance of the PRS
method. When using 676 unlabeled samples, increasing the number
of bins boosts the performance significantly. (ii) The total number
of selected samples is more important than diversity if there are very
few selected samples, as in the case of 30 and 20 bins in 676 and 136
unlabeled samples, respectively. Since this is a promising result, we
hope that using better selection methods will result in additional per-
formance gains, as shown by the success of semi-supervised learning
methods in the past [19]. We leave this for future work.

4. DISCUSSION

The MOS test is affected by not only the quality of the speech, but
also by the various contexts during the listening test, which cause
MOS values to fluctuate. The need to model the influence of this
context is an important decision regarding automatic MOS predic-
tion.

If we believe that the variation in MOS values also needs to be
modeled in the current target context, then we will need to use the
MOS values as supervised labels for training. However, since this
policy learns a context-dependent model, it is not expected to gener-
alize to test sets in different contexts.

On the other hand, we found that the MOS prediction model
generalizes better to the OOD test set when the learning criterion is

based on the rank order of the systems, rather than using context-
dependent MOS values directly as the learning target. Although the
context of that OOD test set cannot be properly considered in a zero-
shot manner, we show that some context information can be captured
by semi-supervised learning if unlabeled speech data is available.

The semi-supervised learning proposed in this paper has room
for improvement. Specifically, the proposed semi-supervised learn-
ing used unlabeled speech data for training, but the development set
still contains labeled speech. By using unlabeled speech data even
in the development set, the semi-supervised learning of the MOS
prediction model will be more useful. Lastly, as of now, we have
not selected the samples based on any criterion other than simply
making the prior of the histogram uniform. We randomly select the
samples from the bin, but if instead a heuristic is used, that could
lead to further improvements. One possible heuristic is to drop any
sample whose relative pseudo MOS value is higher than the natural
speech. There could be more ways to do selection but we leave this
for future work.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced the PRS method for predicting Mean Opin-
ion Score (MOS) values given an audio sample. By considering the
relative position in the ranking of MOS values within each training
batch, PRS provides a novel approach to capture ranking informa-
tion. In this study, we also present E-PRS, an extension of PRS to
incorporate samples for comparison beyond the current batch size for
better generalization. Comparative evaluations with existing meth-
ods demonstrated comparable performance on in-domain and supe-
rior performance on OOD datasets. The experimental results high-
light the generalization ability of PRS in MOS prediction tasks.
Contrary to popular belief, we posit that MSE and LCC are unreli-
able evaluation metrics for comparing MOS prediction systems. We
also demonstrated that performance can be further improved if a bet-
ter selection method is used in the semi-supervised finetuning stage,
similar to [19].

Our future work includes the following ideas. Instead of aver-
aging the features from the last layer of Wav2Vec2.0, using a re-
current neural network (RNN) as the last layer during finetuning
as proposed by [12] may also improve the performance. We will
also consider investigating the use of attention to average the frame-
level features. Furthermore, similar to [10], additional unsupervised
domain-adaptive pre-training of the Wav2Vec2.0 model to learn bet-
ter features may result in performance improvements in the zero-shot
and few-shot settings. Lastly, a better selection algorithm to sample
the pseudo MOS values in the semi-supervised setting on the ba-
sis of some heuristics could lead to improvements as well. We also
intend to explore whether employing an ensemble of MOS models
enhances the reliability of predictions, resembling the MOS test con-
ducted with multiple human annotators.
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