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Abstract

This paper introduces a novel diffusion-based method for learning representations from
categorical data. Conditional diffusion models have demonstrated their potential to extract
meaningful representations from input samples. However, they often struggle to yield
versatile, general-purpose information, limiting their adaptability to unforeseen tasks. To
address this, we propose a cycle conditioning approach for diffusion models, designed to
capture expressive information from conditioning samples. However, cycle conditioning
alone can be insufficient. Diffusion models may ignore conditioning samples that vary across
training iterations, an issue that occurs within cycle conditioning. To counter this limitation,
we introduce additional "spelling" information to guide the conditioning process, ensuring
that the conditioning sample remains influential during denoising. While this supervision
enhances the generalizability of extracted representations, it is constrained by the sparse
nature of spelling information in categorical data, leading to sparse latent conditions. This
sparsity reduces the robustness of the extracted representations for downstream tasks or
as effective guidance in the diffusion process. To overcome this challenge, we propose a
linear navigation strategy within the latent space of conditioning samples, allowing dense
representations to be extracted even with sparse supervision. Our experiments demonstrate
that our method achieves at least a 1.42% improvement in AUROC and a 4.12% improvement
in AUCPR over the best results from existing state-of-the-art methods.

1 Introduction

A categorical time series is a sequence of observations where each observation corresponds to a specific
category rather than a numerical value. Healthcare trajectories are a prominent example, often consisting
of large categorical time series with observations representing medical activities. Effectively utilizing such
sequences requires creating compact and meaningful representations of these tokens through a process called
representation learning. This step is crucial for improving the accuracy and computational efficiency of
downstream tasks. While unsupervised representation learning has proven effective for continuous data
Le-Khac et al. (2020); Poudel et al. (2024); Jang & Wang (2023); Izacard et al. (2021); Caron et al. (2020),
the need for various augmentations has made it difficult to benefit from this unsupervised strategy in learning
representation for categorical sequences. For categorical data, augmentation is mostly limited to token
masking, which helps with missing tokens but fails to capture any complex relationships between the tokens.
This limitation reduces the effectiveness of unsupervised representation learning for categorical sequences.

Utilizing representations learned within the latent space of generative models offers a promising alternative
that eliminates the need for data augmentation in representation learning tasks Afkanpour et al. (2024). In
this approach, a generative model is first trained to accurately capture the underlying distribution of the
data. The representation of input samples is then derived from their projection onto the bottleneck layer of
the generative model Abdal et al. (2019); Radford et al. (2015); Zhang et al. (2022a). Recently, diffusion
models have demonstrated significant effectiveness in achieving high-quality fits to data distributions, which
has led researchers to investigate their potential in representation learning Yang et al. (2024); Hudson et al.
(2024); Preechakul et al. (2022). However, as these models do not include a bottleneck layer, attention has
shifted to conditional diffusion models Yue et al. (2024). These models allow for projecting a conditioning
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sample into a latent space, which can then be used to guide the denoising process of the diffusion model.
While conditioning effectively directs the generative process toward specific classes of samples, it does not
inherently guarantee the extraction of versatile information from the conditioning samples. Consequently, the
model may overlook essential, general-purpose information within the conditioning samples that is necessary
for good performance of these representations in an unforeseen downstream task.

In addition, these methods have primarily been developed for continuous visual data, which aligns with the
continuous nature of diffusion models . The forward process of diffusion models operates on the assumption
that adding Gaussian noise to a noisy sample produces a result that can be sampled from a Gaussian
distribution. This implies that operations in the latent space of diffusion models occur within a continuous
framework. As a result, these methods cannot be directly applied to representation learning from categorical
datasets. Although there have been attempts to adapt diffusion processes for discrete data distributions
Hoogeboom et al. (2021); Austin et al. (2021), extending these methods to incorporate a conditioning
sample remains challenging, particularly when the condition is derived from the output layer of an encoder,
which is inherently continuous. This difficulty limits the applicability of these approaches in tasks such as
representation learning.

In this paper, we show that cycle conditioning in diffusion models can effectively extract general-purpose
representations from categorical time series. To address the mismatch between categorical data and continuous
diffusion models, we propose a learnable linear transformation that converts each categorical series into a
continuous representation. This transformation does not require feedback from the representation learning
task, allowing it to be pretrained independently before the initiation of the representation learning process.
We also introduce a new strategy to encode the order of numbers and letters in each token of a time series,
called spelling structure. This spelling structure is used to supervised the learned representations that are
further used as conditions for a diffusion model. This supervision ensures that diffusion process does not
overlook its condition that due to the cycle conditioning changes in its training iteration. Therefore, the
network learn to effectively include the representation of conditioning samples in the reconstruction task of
the diffusion model. Our strategy ensures that both the order of letters and the contextual relationships
between tokens are effectively used in the representation learning process through self-supervised learning.
As a result, the learned representations are general-purpose, making them applicable to any downstream task
without concern that they are biased toward specific labels or annotations used during training.

While supervising the latent condition with spelling information aids in creating a general-purpose representa-
tion, it has significant limitations due to the inherent sparsity of spelling information in categorical data. Each
token’s spelling is represented by an index, and the spelling information for an entire time series is encoded as
a multi-hot vector with a dimensionality of On, where O is the number of possible characters in the dataset,
and n is the length of the longest token. This results in a highly sparse representation. Consequently, using
such a sparse vector to supervise the latent condition often produces a sparse latent representation, which
is not ideal for capturing general-purpose features and lacks the expressiveness needed to provide robust
guidance for the diffusion process. To mitigate this issue, we propose to achieve this supervision through a
learnable set of latent codes, where each code represents an initial direction toward a specific element of the
spelling vector. This setup enables the network to transfer its latent representation along On meaningful
directions before supervising it with the sparse spelling vector. Since these initial directions are learnable and
shared across all training samples, the network learns to explore meaningful semantic paths in the latent space,
grouping time series that share token spelling similarities. For instance, two series x = {’A01’, ’B01’} and
y = {’B01’, ’A02’} will be closer to each other than x = {’A01’, ’B01’} and y = {’A01’, ’B03’}, despite
the latter pair having more similarity in token order. This method is crucial for analyzing similarities between
irregular time series, where data collection timelines are inconsistent, which is a common scenario in medical
applications.

We focus on applying our method to ICD codes that represent medical trajectories and evaluate its performance
on the widely recognized MIMIC-III and MIMIC-IV databases. This evaluation highlights the potential of
our approach in advancing the understanding of medical data and its applications in clinical practice.
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2 Related work

Categorical data representation Early research primarily focused on using metric learning to embed
categorical data into a low-dimensional space Jian et al. (2018); Li et al. (2023); Zhu et al. (2018); Jia et al.
(2015). While demonstrating reasonable performance with a restricted and balanced number of tokens, their
effectiveness diminishes in scenarios when there is a wide variation and imbalanced distribution of tokens.
Following the successful introduction of mask modeling by BERT Devlin et al. (2018), several algorithms Yin
et al. (2023); Majmundar et al. (2022); Du et al. (2023); Yan et al. (2024); Xie et al. (2024) have emerged
aiming to take advantage of this model for representation learning of categorical data. While these methods
perform well at capturing meaningful information, they often struggle with handling multidimensional time
series data. In another line of research, authors proposed to utilize Graph Neural Networks for categorical
representation learning Liao & Li (2023); You et al. (2020); Chen et al. (2024a) and demonstrated their
effectiveness in capturing intricate dependencies of data. However, the computational expense of these
networks hinders their scalability to large-scale datasets. Contrastive learning between different subsets
of categories is another line of research that is considered for categorical data representation Ucar et al.
(2021). However, the performance of this method heavily depends on the split of the subsets, which is a
hyperparameter, requiring additional effort for tuning.

Diffusion models for categorical data There are two approaches for adapting diffusion models to handle
categorical data. In the first approach Dieleman et al. (2022); Lin et al. (2023); Gao et al. (2022), input data
is first converted into a continuous domain, and then a continuous diffusion model is employed to generate
the data from a Gaussian distribution. These methods typically involve training a learnable embedding layer
alongside the diffusion model. However, this setup leads to mutual dependence between the diffusion process
and the embedding operation, leading to a suboptimal solution for both of the networks. Another direction
of research explores a discrete diffusion process built on categorical distributions, thereby enabling their
applicability for modeling inputs with binary elementsHoogeboom et al. (2021); Austin et al. (2021); Savinov
et al. (2021); Reid et al. (2022); Inoue et al. (2023). However, these methods have significant difficulties when
employed in a conditional mode. This is because the condition, typically provided through a conditioning
encoder, is continuous, whereas the diffusion process is discrete.

Representation learning based on diffusion models Learning representations through generative models
has become a prominent focus in machine learning research. Much of this research revolves around Generative
Adversarial Networks (GANs), Radford et al. (2015); Chen et al. (2016) and Variational Autoencoders (VAEs)
Wang et al. (2023a), both of which benefit from a bottleneck that can be used as a representation layer.
Recently, conditional diffusion models have demonstrated significant potential in discovering rich semantic
information from visual data Mittal et al. (2023); Preechakul et al. (2022); Zhang et al. (2022b); Yang &
Wang (2023); Wang et al. (2023b); Yue et al. (2024). Our work build on this recent advances in diffusion
models for representation learning, notably extending this framework to handle categorical data. However,
these methods commonly suffer from a significant drawback: they lack the ability to differentiate between
the context that is intended to be contributed by noise and the one that needs to be contributed by the
conditioning sample. Consequently, there is limited control over the meaning of the information captured
by the representation layer. In contrast, our approach employs a self-supervised strategy that enables us to
enrich the representation with both contextual and semantic information of tokens, thereby enhancing the
overall quality and interpretability of the learned representations.

3 Background

The fundamental concept of the Denoising Diffusion Model is to gradually introduce small amounts of noise
to a clean input sample S, transforming it into a representation, ST , that can be sampled from a Gaussian
distribution. This transformation follows an incremental progression: S0 → S1 → · · · → ST . The original
data point S0 is drawn from the data distribution S0 ∼ q(S), while the conditional distribution q(St | St−1)
is assumed to be Gaussian. Each noisy sample at time step t is generated using the formula

St =
√

βtSt−1 +
√

1 − βtϵt−1,
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where βt represents the noise schedule, and ϵt−1 is sampled from a Gaussian distribution. By employing the
notation αt = 1 − βt and ᾱt =

∏t
i=1 αi, St can be sampled in closed form as

St =
√

ᾱtS0 +
√

1 − ᾱtϵ.

This way, the true posterior of the sample at time step t − 1 can be represented as q(St−1 | St, S) =
N (St−1, µ̂t, σ̂tI), where µ̂t and σ̂t are calculated by the following formula:

µ̂t−1 =
√

ᾱt−1βt

1 − ᾱt
S +

√
ᾱt(1 − ᾱt−1)

1 − ᾱt
St, σ̂t = 1 − ᾱt−1

1 − ᾱt
βt (1)

Now, when provided with a noisy sample at time step t, denoising process of the diffusion model learns to
predict the mean of the posterior distribution at time step t − 1 as:

µt−1
θ = 1

√
αt

(
St − βt√

1 − ᾱt
gθ(St, t)

)
(2)

where gθ(St, t) is a neural network that estimates the noise given the current state of the sample and the time
step t. Learning is driven by the estimation of variational lower bounds, presenting the following minimization
problem:

L =
T∑

t=1
E∥µt−1

θ − µ̂t−1∥ (3)

It is important to note that the term "time step" is used in two distinct contexts in this work: in the definition
of a categorical time series and in the operation of diffusion models. In the context of a time series, a "time
step" refers to the specific time point at which each observation in the series is collected. In contrast, within
diffusion models, a "time step" denotes a stage in the iterative process of adding noise to the input embedding.
The number of time steps in a diffusion model controls the smoothness of the diffusion process, determining
how progressively an input is transformed into its corresponding noise representation.

4 The Proposed Model

Given a time series comprising r individual time steps, denoted as w = {wT
1 , wT

2 , . . . , wT
r }T , where each time

step includes a vector wi ∈ R1×qi , our method learns to convert this series into a meaningful embedding
representation. Each wi contains a set of qi categorical values. Our approach consists of two main components:
a data transformation module and a diffusion-based representation learning module. The data transformation
serves as a learnable preprocessing step, performed independently before the initiation of the representation
learning process.

4.1 Data transformation

The embedding layer is a fundamental component in neural language modeling Raffel et al. (2020); Liu et al.
(2019); Devlin et al. (2018); Brown et al. (2020), functioning as a lookup table with learnable parameters. It
associates each token within a text with a continuous representation, effectively converting each token into a
fixed-size vector. However, this approach has limitations when dealing with categorical time series, where
the number of tokens per time step varies and is not predefined. This variability can make it difficult to
create consistent fixed-size vectors for different time steps. Furthermore, utilizing an embedding layer before
a continuous diffusion model requires the network to optimize for two distinct, interdependent tasks. In this
scenario, the diffusion model receives an input that changes with each training iteration because the input
of the diffusion model is derived from the output of the embedding layer, which is itself optimized during
training. As a result, noise in the diffusion process is added to an input that varies throughout the training
process. Consequently, the network may not simulate a stable forward path during its denoising backward
process, potentially leading to slow or even a lack of convergence.

To address this challenge, we propose an approach that learns to generate a fixed-size continuous representation
"for each step" of a time series, irrespective of the number of tokens in each step. Similar to the embedding
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Figure 1: General pipeline of our method. The main objective is to extract a meaningful representation, zsem,
from a categorical time series w. The training process consists of two steps: first, transforming the categorical
series into a continuous representation S0 = wAtr, where w is a multihor representation of w and Atr is a
linear transformation; second, projecting it into a latent space, zsem, and utilizing it to guide a conditional
diffusion model. zsem is supervised through Latent Space Navigation which allows this guidance to be dense
enough while being supervised by a sparse vector. The sparse vector is provided by the Spelling information
of the tokens in w which is constructed using the methodology illustrated in Figure 12 (Appendix).

layers, we begin by establishing a vocabulary comprising all unique tokens in our dataset, assigning an index
to each token. We then construct a binary vector for each time step of the series, where each element is set
to one if there is a token in that time step whose vocabulary index matches the index of that element. This
method allows us to create a multi-hot representation of the tokens present at each step of the time series.
In contrast to traditional embedding layers, which typically position tokens close together based on their
contextual co-occurrences, our approach emphasizes mapping one set of tokens close to another set when
they differ by fewer than f tokens1. Each set represents all the tokens present in a single time step of a series.
To facilitate this, we initialize a transformation function, Ainit

tr designed to map each multi-hot vector to a
continuous code. One straightforward method to implement this transformation is by using a matrix that
performs a linear projection on the input sample.

si = wiAtr (4)

where wi is the multihot representation of wi ∈ R1×qi : wi = Multihot(wi). For simplicity, we omit the explicit
mention of subject indices in the notation of wi. A subject index indicates the subject from which the i-th
time step is selected. Atr is the transformation matrix which is initialized by random values Ainit

tr ∈ RW×m,
wi ∈ R1×W , si ∈ R1×m, W is the number of unique tokens in the vocabulary, and m is the size of the
continuous embedding vector. We normalize wi to have a unit l2-norm before incorporating it into this
equation, aiming to mitigate the influence of the number of tokens on the performance of our algorithm.

To ensure that contextually similar sets of tokens are mapped to nearby points, we first need to construct
pairs of token sets that are contextually similar. For this purpose, we propose to initially introduce a set of
minor alterations to wi, by randomly changing some of its binary elements from ones to zeroes and vice versa.
This approach ensures that the resulting set of tokens remains contextually similar to the original set, as
most of the tokens are preserved. This resulting vector is denoted as wnew

i . Subsequently, we aim to find
a new Atr that can map wnew

i close to si, which has already been calculated as the embedding of wi. To
achieve this, we seek an Anew

tr that satisfies the following equation.

y = wnew
i Anew

tr , s.t. ∥Anew
tr ∥2 = 1 (5)

The constraint ∥Anew
tr ∥2 = 1 is employed to normalize the transformation matrix, which prevents it from

becoming too large or too small, thereby stabilizing the learning process. We define y = si

∥si∥ . This
1In this work, f is empirically set to 5
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normalization facilitates the mapping of wnew
i Anew

tr and si close to each other, while simultaneously avoiding
a trivial solution for Anew

tr that would transform all wi from different subjects to a fixed si, irrespective of
their actual values.

To express this in matrix form, we concatenate all wnew
i vertically to create a matrix: W new =[

(wnew
1 )T , (wnew

2 )T , . . . , (wnew
K )T

]T , and similarly concatenate the different si values to form S =[
sT

1 , sT
2 , . . . , sT

K
]T . Then, Anew

tr can be determined using the following equation:

Anew
tr =

(
(W new)T W new + µI

)−1 (W new)T S, (6)

where K is the number of different wi considered for training Atr. This approach results in a new transformation
matrix Anew

tr that learns to position contextually similar sets of tokens close to each other in the embedding
space.

To further the training process, we utilize Anew
tr to map the wi values into the embedding space, thereby

achieving the corresponding si values. Subsequently, we modify the wi values again and resolve equation
(6) to obtain a new Anew

tr , repeating this process for a specified number of epochs. Algorithm 1 provides a
summary of this training process for our data transformation strategy.

The algorithm is designed to take a single multi-hot vector, wi, as input. Instead of using real data to create
this vector, we can generate it efficiently by randomly placing ones in an all-zero vector. The number of
ones corresponds to the average number of tokens that typically appear at each time step in our dataset.
This approach allows us to simulate all possible token combinations without the need for additional data
collection, making it a cost-effective way to cover a wide range of scenarios.

Algorithm 1: Transforming categorical data to continuous for time series analysis with multiple tokens
per time step
Input: Multi-hot representation of tokens at each single time step, wi, i = 1, ..., K, Max epoch Q
Output: The projection matrix Atr which transfers each wi to a continuous embedding vector si

1. Randomly initialize Atr

2. wl2
i = wi

∥wi∥2
, ∀i ∈ [1, K]⇒ W → W l2

for i ∈ [0, Q] do
3. Slight modification of wi, ∀i ∈ [1, K]⇒ W → W new

4. wnew
i = wnew

i

∥wnew
i

∥2
, ∀i ∈ [1, K]

5. y = W l2Atr

6. yi = yi

∥yi∥2
, ∀i ∈ [1, K]

7. Anew
tr =

(
(W new)T W new + µI

)−1(W new)T y
8. Atr = Anew

tr

end

4.2 Diffusion based representation learning

The main objective of this module is to project a time series, represented in continuous form as S0 ∈ Rr×m,
into an embedding space to obtain a compact representation, zsem = Eθ(S0) ∈ Rmz . To achieve this, we
employ a conditional diffusion model trained in a self-supervised manner, where the condition and the
target sample that the diffusion model learns to reconstruct are identical. However, the diffusion network is
conditioned only on a compact representation of S0, rather than on the entire time series. This encourages
the network to capture as much relevant information as possible within this compact representation to enable
accurate reconstruction of S0. For simplicity in notation, we denote the learned representation as zsem which
is then used as a condition for the diffusion model.

In practice, we sample a noisy version of the time series S0 at a random time step t as follows: St =√
ᾱtS0 +

√
1 − ᾱtϵ. From Equation (1), the mean of this noisy sequence can be directly calculated at any

time step including at time step t − 1, µ̂t−1
θ . We subsequently employ a denoising network, gθ, to provide an
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estimation of the noise in the noisy sample of St. With this value of noise, gθ provides an estimation for the
mean value of the noisy sample at time step t − 1:

µt−1
θ = 1

√
αt

(
St − βt√

1 − ᾱt
gθ(St, t, zsem)

)
(7)

Therefore, minimizing the difference between µt−1
θ and µ̂t−1

θ leads to parameter optimization for Eθ as
zsem = Eθ(S0), enabling the diffusion process to help in extracting meaningful information from S0, as these
features are essential for guiding the diffusion process towards differentiating between the noise and the main
content of a noisy sample.

4.2.1 Cycle conditioning

In this section, we introduce the concept of cycle conditioned diffusion, which aims to encourage our diffusion
model to extract a general-purpose representation from its conditioning samples. In traditional conditioning,
diffusion models receive a clean version of a conditioning sample and use it to guide the denoising process
toward the primary content of the conditioning sample. However, this method lacks a mechanism to ensure
that the same latent representations are consistently extracted from contextually similar conditions that vary
in fine details. As a result, conventional conditioning does not guarantee that the extracted representations
focus exclusively on the main content of the conditioning samples and not on extraneous details.

To address this limitation, we propose incorporating cycle consistency in the feature extraction process from
conditioning samples. By enforcing consistency in feature extraction, this approach ensures that the diffusion
model learns to produce a general-purpose representation from the conditioning samples. This method not
only guides the diffusion process using the features of a clean condition but also applies the same guidance
when the generated denoised sample is used as the condition for subsequent denoising steps. Consequently,
we can predict an additional estimate for the mean of the noisy sample at time step t − 1.

µcycle
t−1
θ = 1

√
αt

(
St − βt√

1 − ᾱt
gθ(St, t, Eθ( 1√

βt

St −
√

1 − βt√
βt

ϵt−1))
)

(8)

where ϵt−1 = gθ(St, t, Eθ(S0)). By enforcing this cycle constraint, the model learns to capture the same
content from both the clean and the noisy samples. This prevents the model from simply distorting the latent
condition to match the dimensions of St−1 and then using St to add noise to this distorted sample. Instead,
the model learns to perform the same guiding with different variations of the conditioning sample.

4.2.2 Spelling supervision

One main disadvantage of cycle conditioning in diffusion models is the neglect of conditioning information.
This occurs because the condition of each sample changes with every training iteration. As a result, the
network cannot consistently use the conditioning information as guidance to reconstruct the sample. To
prevent this issue, we propose supervising both the condition and the denoising process with additional
information extracted from the tokens of the original time series before converting them to continuous form.
This approach empowers the diffusion model to differentiate between the contributions of its conditioning
information and that of the noisy sample, thereby preventing a blind fusion of these inputs, which could lead
to an inaccurate feature representation of the conditioning sample.

To do so, we begin by constructing a spelling vector for each time series, which quantifies the spelling
patterns of its tokens. Initially, we assign a numeric value, greater than 9, to each character in our database,
i.e. assigning one number to each of the 26 letters in the English alphabet. Numeric values less than 10
are preserved to represent real numbers, enabling the encoding of tokens that contain both numerical and
alphabetic characters. Each token is then represented as a numerical code by sequentially concatenating
the assigned values for its characters, starting from the left. Zero-padding is applied if a token has fewer
characters than the maximum length of tokens in our database. Subsequently, we create a zero-vector whose
length matches the maximum possible numeric code in our dataset. Entries in this vector are set to one if
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there are tokens whose numeric code matches the corresponding index. This resulting vector is referred to as
the spelling vector. This process is graphically depicted in the right panel of Figure 1.

For this supervision, we consider a function that receives the latent condition zsem = Eθ(S0) and learns to
predict the elements of the spelling vector. Let ρ = Mθ(zsem) denote the predicted values of the spelling
vector. The objective of the supervision is to minimize the cross-entropy error between the elements of the
spelling vector u and the predictions ρ.

Lspl = −
∑

x

uxlog(ρx) (9)

where ux is the x-th element of the spelling vector. To avoid the network from overlooking the con-
dition, these spelling elements are additionally predicted when cycle conditioning the process, ϖi =
Mθ(Eθ(St, t, Eθ( 1√

βt

St −
√

1−βt√
βt

ϵt−1))).

Lcycle−spl = −
∑

x

uxlog(ϖx) (10)

4.2.3 Latent Space Navigation

While spelling supervision prevents a denoising network from overlooking its condition, the effectiveness of
this supervision is mostly hindered by the sparsity of information in the spelling vectors. Supervising the
latent condition zsem = Eθ(S0) with a sparse vector yields a sparse latent condition, consequently reducing
its effectiveness as a general-purpose representation (Figure 2, right panel).
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Figure 2: Direct supervision of the latent condition with spelling information from time series leads to a
sparse latent space. This sparsity hinders its ability to serve as an effective vector for guiding the diffusion
model or as a compact, general-purpose representation (right panel). In contrast, Latent Space Navigation
individually guides each component of the latent space by navigating it in a specific direction. This approach
allows for a denser latent code, while supervised by the sparse spelling information from the time series (right
panel).

To avoid this issue, we propose to perform this supervision after navigating each latent condition in a
set of meaningful directions (Figure 2, left panel). Our method involves learning a set of latent codes
dxθ

∈ Rm, x ∈ {1, ..., v}2, each representing an initial direction towards one of the elements in the spelling
vector, ux. Consequently, zsem = Eθ(S0) is mapped to an individual target point in the latent space, zsem→ux

,
before being employed to predict the x-th element of the spelling vector, ux:

zsem→ux = zsem + dxθ
(11)

This approach allows the network to avoid directly learning both the direction and magnitude of all ux values
on the latent condition Eθ(S0). Instead, the network learns the magnitude of each ux after traversing in the

2v = On where O is the number of possible characters (letters or numbers) in the dataset, and n is the length of the longest
token

8



Under review as submission to TMLR

corresponding direction. This strategy facilitates the supervision of zsem = Eθ(S0) using a sparse spelling
vector while ensuring sufficient density to function as an effective general-purpose representation. The same
navigational strategy is employed prior to predicting each spelling element ux from the cycle-conditioned
model:

zcsem→ux
= Eθ(St, t, Eθ( 1√

βt

St −
√

1 − βt√
βt

ϵt−1)) + dxθ
(12)

where ϵt−1 = gθ(St, t, Eθ(S0)). Considering this navigation, the supervision terms in Equations (8) and (9)
are reformulated as follows:

Lspl = −
∑

x

uxlog(Mθ(zsem→ux))

Lcycle−spl = −
∑

x

uxlog(Mθ(zcsem→ux))
(13)

Detailed configurations of our method including the configuration of Eθ and Mθ are provided in Appendix 1.

4.2.4 Learning

We train our model in a self supervised manner, which means the condition and the input to the forward
path of the diffusion model are exactly the same. The overall loss function is considered to minimize the l2
loss between the predicted and the true noise, considering both the base and the cycle conditioning of the
denoising network. Additionally, it includes the prediction loss for the spelling error of these two conditioning
mechanisms.

Ltotal = E
[ T∑

t=1
∥µt−1

θ − µ̄t−1∥ +
T∑

t=1
∥µcycle

t−1
θ − µ̄t−1∥ + Lspl + Lcycle−spl

]
(14)

where Lspl and Lcycle−spl are calculated as in Equation (12). In practice, we first train our model in a non
conditional form using the first term of the loss function, then fine tune it using the whole terms of the loss
function.

4.2.5 Inference

Inference strategies may differ depending on the downstream task. When a substantial amount of training
data with corresponding labels is available, we can directly extract the representations from the latent space
of conditioning encoder Eθ(S0). These representations are enough for effectively training a downstream
classifier. Conversely, in scenarios where there is a limited number of training samples, it is advantageous
to benefit from the generative advantage of our method. In this case, representations are derived from
Eθ(St, t, Eθ( 1√

βt

St −
√

1−βt√
βt

ϵt−1)), where St =
√

ᾱtS0 +
√

1 − ᾱtϵ and ϵ is randomly sampled from a Gaussian
distribution.

5 Experiments

Our experiments are conducted using two well-known databases, MIMIC III Johnson et al. (2016) and MIMIC
IV Johnson et al. (2023), each containing records of medical activities from various patient visits to a hospital.
We construct a time series for each patient in these databases. These series are built from the diagnosis codes
of the patients, as they have minimal missing values compared to other activity records in these databases.
The diagnosis codes collected during each patient’s visit, form a feature vector, representing one step of a
time series. Each feature vector is truncated to a length of 13, enhancing the computational efficiency of our
analysis. We only consider the first four visits of each patient. While MIMIC IV contains both ICD-9 and
ICD-10 codes, MIMIC III only includes ICD-9 codes. To ensure consistency, we truncate the codes to their
first three characters and prefix them with either ’9’ or ’10’ to denote their coding system. This ensures the
maintenance of relevant information while excluding unnecessary details from our analysis.

9
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Data split: Most of our experiments are conducted on MIMIC IV, where we randomly select 126,736 time
series for training our representation learning method. The evaluation sets for different tasks are composed
of another 31,684 randomly selected samples, which are used to evaluate the performance of the learned
representations on various downstream tasks. For each task, positive cases include patients diagnosed with a
specific disease, while negative samples are randomly selected from the remaining patients, ensuring an equal
number to the positive cases. Therefore, not all samples are used for training the downstream classifiers. For
MIMIC III, all samples serve as training data for the representation learning model. The training and the
evaluation of the downstream task are then conducted using the same split of the MIMIC IV.

Preparing data for the downstream task: After training our diffusion model, the training and test
samples are separately projected into the embedding layer of this representation learning framework. The
representations of the training samples are then utilized to train a downstream classifier. This classifier learns
to predict a specific disease within a time window of 4 months before it is diagnosed by physicians in the real
world. Patients who are diagnosed with the disease before this specified time window are excluded from the
training process of the downstream classifier. For the downstream classifier, we employed Support Vector
Machines Cortes & Vapnik (1995), Gaussian Process Williams & Rasmussen (2006), Random Forest Breiman
(2001), Adaboost Freund et al. (1999), and Gaussian Naive Bayes (GaussianNB), which are selected based on
their proven performance in similar tasks.

Evaluation metrics For evaluation, we use the following metrics: AUROC: This measures the ability of a
classifier to distinguish between positive and negative classes across different threshold values. AUPRC: This
represents the trade-off between Precision and Recall of a classifier, indicating its ability to correctly classify
positive samples as positive. Cohen’s Kappa: This measures how often classifiers correctly classify positive
cases, while also considering that some correct predictions might occur by chance. Macro-average F1-score:
This is an average F1 score for each of the positive and negative classes, treating them equally regardless of
the number of positive and negative cases among the evaluation samples.

Heart failure prediction
Our method SwitchTab ReconTab SCARF Em-MLM OutBERT-MLM Em-AuCon

Wu et al. (2024) Chen et al. (2023) Bahri et al. (2021) Devlin et al. (2018)Devlin et al. (2018)Chen et al. (2024b)
AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR

Support Vector 91.81±0.61 12.49±5% 90.39±0.76 09.57±6% 61.79±0.49 02.54±5% 66.39±0.85 06.48±7% 66.49±0.44 03.15±4% 74.34±0.52 04.46±8% 77.00±0.84 05.11±9%
Gaussian Process 90.96±0.62 13.70±5% 90.23±0.47 10.09±4% 87.57±0.68 09.86±6% 79.85±0.36 06.13±4% 64.10±0.45 02.86±4% 76.63±0.56 05.01±5% 76.22±0.69 07.69±7%
Random Forest 89.48±0.37 14.21±5% 86.12±0.38 07.47±4% 84.04±0.62 06.72±5% 80.87±0.67 06.46±5% 67.63±0.44 03.31±4% 68.69±0.62 03.48±6% 77.33±0.74 05.26±5%
Ada Boost 85.12±0.73 08.62±6% 80.53±0.66 05.54±6% 65.87±0.37 03.04±4% 78.04±0.41 05.56±5% 64.28±0.47 02.88±6% 66.62±0.65 03.17±6% 71.21±0.40 03.87±5%
GaussianNB 89.20±0.76 08.41±7% 80.16±0.63 05.28±5% 64.13±0.55 02.79±4% 77.93±0.62 05.46±5% 60.58±0.68 02.54±6% 70.04±0.74 03.63±5% 74.95±0.63 04.67±7%

Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1
18.84±0.69 52.26±0.73 17.09±0.48 50.42±0.64 12.72±1.14 43.15±0.59 16.04±0.77 49.41±0.48 14.22±0.67 45.13±0.83 15.74±0.54 48.11±0.83 16.09±0.82 48.92±0.74

Lung cancer prediction
Support Vector 90.51±0.64 0.54±9% 87.98±0.56 0.42±8% 60.25±0.72 0.15±8% 86.75±0.54 0.46±12% 83.47±0.77 0.34±9% 82.61±0.44 0.42±6% 80.44±0.58 0.30±8%
Gaussian Process 88.79±0.86 0.56±8% 86.26±0.74 0.43±9% 63.71±0.72 0.18±7% 85.18±0.61 0.38±6% 80.14±0.37 0.31±4% 82.94±0.67 0.37±7% 80.01±0.39 0.31±6%
Random Forest 91.35±0.48 0.59±5% 85.91±0.63 0.36±5% 87.39±0.56 0.34±5% 82.82±0.39 0.37±4% 84.19±0.61 0.38±6% 80.14±0.44 0.33±5% 82.19±0.83 0.35±12%
Ada Boost 86.60±0.57 0.49±6% 82.12±0.49 0.31±4% 59.49±0.73 0.13±8% 85.57±0.76 0.36±7% 81.25±0.43 0.24±4% 83.81±0.62 0.31±5% 77.19±0.60 0.22±7%
GaussianNB 84.39±0.77 0.43±6% 88.32±0.45 0.44±5% 62.35±0.65 0.14±8% 84.33±0.67 0.33±5% 82.12±0.38 0.29±4% 80.14±0.73 0.24±6% 81.17±0.52 0.36±4%

Av.Kappa Av.BF1 Av.BF1 Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1
0.94±9% 45.87±0.73 0.85±0.8% 43.33±0.64 0.33±14% 41.59±0.78 0.70±7% 49.41±0.48 0.23±13% 40.66±0.72 0.77±8% 43.44±0.67 0.64±0.66 44.19±9%

Table 1: Performance comparison between our method and the state-of-the-art on heart failure and lung
cancer prediction

5.1 Performance Evaluation in Healthcare Applications

In this section, we evaluate the performance of our diffusion-based method in learning representations
that are effective in various downstream tasks. Specifically, we consider heart failure and lung cancer as
two distinct tasks that are completely unrelated and need highly expressive representations for accurate
identification. Therefore, demonstrating the capability of a single representation in predicting both of these
tasks can prove the general purpose utility of that representation. Our evaluation includes comparisons with
the state-of-the-art methods in representation learning from categorical data: SwitchTabWu et al. (2024),
ReConTab Chen et al. (2023), and SCARF Bahri et al. (2021).
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Additionally, we compare our results with the representations learned by the embedding layer and one layer
before the last of the BERT model Devlin et al. (2018), pretrained using Mask Modeling. These methods
are respectively denoted as Em-MLM and OutBERT-MLM. Furthermore, we compare our method with the
same BERT structure, trained using the self-supervised learning strategy proposed by Chen et al. Chen et al.
(2024b), referred to as Em-AuCon. For each method, we consider a four-month window preceding disease
diagnosis, providing an optimal timeframe for initiating medication upon correct disease prediction, thus
reducing the risk of fatality associated with these diseases. The representation dimension of our method,
along with the models that utilize BERT as their backbone architecture, are set to 400. For SwitchTabWu
et al. (2024), ReConTab Chen et al. (2023), and SCARF Bahri et al. (2021), we follow the same protocol as
described in their original papers, resulting in representation dimensions of 52, 256, and 256, respectively.

As can be observed, our method outperforms all other strategies across all the metrics. For instance, in heart
failure prediction, it surpasses SwitchTab’s best results by 1.42%, which itself is the leading performance
among the competing strategies. Even the lowest performance of our method, achieved by Adaboost, is
94.13% of the best results achieved by other competitors, demonstrating consistent performance of our method
despite using different classifiers for the downstream task. In the case of the lung cancer prediction, our best
result outperforms the best results of the other competitors by 3.3%, while the lowest performance of our
method still achieves 95.57% of this best result.

5.2 Probabilistic representation learning

In this section, we demonstrate the effectiveness of our method in generating different meaningful represen-
tations for a single input sample. This capability is particularly valuable in applications where there is a
limited number of labeled samples to train a downstream classifier.

In this case, instead of directly obtaining representations from Eθ(S0), we acquire the representations from
Eθ( 1√

βt

St −
√

1−βt√
βt

ϵt−1), where ϵt−1 is the estimated noise of the noisy sample St, estimated by gθ(.). For

this, we consider B random St with βt value between 1e−4 and 0.5e−2 for each positive patient to generate
various representations of the disease. Notably, only one forward pass is needed to compute each et−1 from St

with no iterative process involved, making our method exceptionally fast in generating novel representations
of samples. By employing this simple strategy, we ensure there is enough number of training samples for the
downstream classifiers, which is B =15 or 30 times more training samples compared to our baseline model.

Our method (Prob. #15) Our method (Prob. #30)
AUROC AUCPR AUROC AUCPR

Support Vector 92.38±0.63 16.92±5% 93.80±0.53 19.14±5%
Gaussian Process 92.03±0.46 17.00±4% 92.96±0.37 17.93±4%
Random Forest 91.84±0.54 16.14±6% 92.33±0.65 16.32±5%

Ada Boost 87.91±0.73 11.53±6% 88.76±0.55 11.96±5%
GaussianNB 89.87±0.64 12.75±6% 90.32±0.53 14.17±4%

Table 2: Probabilistic representation learning using our
method for heart failure prediction. The number of syn-
thesized samples for each real patient is 15 and 30, respec-
tively.

Our method (Prob. #30) Our method (Prob. #60)
AUROC AUCPR AUROC AUCPR

Support Vector 93.17±0.43 0.74±4% 93.73±0.63 0.81±4%
Gaussian Process 90.82±0.57 0.55±5% 90.94±0.35 0.56±5%
Random Forest 92.68±0.72 0.70±7% 92.85±0.62 0.71±5%–

Ada Boost 89.95±0.44 0.51±4% 90.35±0.47 0.53±4%
GaussianNB 89.83±0.51 0.50±5% 90.10±0.63 0.51±6%

Table 3: Probabilistic representation learning using our
method for lung cancer prediction. The number of synthe-
sized samples for each real patient is 15 and 30, respec-
tively.

Results: As demonstrated in Tables 2 and 3, our strategy clearly outperforms the baseline model in both the
downstream tasks. For instance, we observe an overall increase in AUROC for both the tasks. Specifically,
the performance of our method improves from 91.81% to 92.38% for heart failure prediction and from 91.35%
to 93.17% for lung cancer prediction, with just 15 additional representations for each positive sample. In
contrast, achieving AUROC scores of 93.80% and 93.73% for these tasks requires 30 times more training
samples for the downstream classifier.

5.3 Our data transformation strategy vs Embedding layers

In this section, we evaluate the ability of Algorithm 1 to capture meaningful information from a sequence of
categorical tokens, comparing its performance to that of the BERT embedding layer. Following strategies
from prior works Kennard et al. (2016); Bojanowski et al. (2017); Pennington et al. (2014), which propose to
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evaluate the embedding layers based on their capacity to preserve word similarities in the embedding space,
we examine how effectively each embedding layer maintains sentence-level similarity within its embedding
layer. This property is especially relevant when outputs of the embedding layers are further used as inputs to
diffusion models, where each sample is treated as a distinct point in a high-dimensional space rather than as
a composite of multiple subspaces.

To evaluate this capability, we first concatenate the textual descriptions of all ICD codes associated with
each visit in every time series within our database. We then randomly select two visits from different series
and use a pre-trained large language model to obtain embeddings for these concatenated descriptions. By
calculating a cosine similarity score between these embeddings, we measure the ability of each embedding
layer to capture the semantic similarity between two distinct sets of ICD codes. For evaluation, we transform
each set of ICD codes (corresponding to individual patient visits) into a continuous representation using both
our method and the BERT embedding layer. We then calculate a cosine similarity score for each embedding,
which enables us to assess how effective each method correlates with the similarity scores derived from the
ICD code descriptions. We adopt two distinct strategies for learning parameters in a BERT embedding layer.
The first approach is through Masked Language Modeling (MLM), a conventional method commonly utilized
for self-supervised training of the embedding layers in large language models.

Additionally, we explore an extension of the method proposed by Chen et al. (2024b), which is a general-
purpose strategy for self-supervised representation learning from images. However, we adapted this strategy
for categorical data to enable the capture of relationships between different tokens in the immediate output
of the embedding layer. In the case of masked modeling, we extract the embedding data from two different
layers: one from the conventional embedding layer and another from the layer preceding the softmax operation
at the end of the network. This is because masked modeling does not inherently encourage the embedding
layer to accumulate the contextual relationships between different words in each embedded token. Instead, it
captures these relationships at the end of the network, after the transformers of BERT, where it needs to
estimate a masked token from a set of surrounding tokens, and therefore needs to accumulate this surrounding
information for each token.

Table 4 presents a comparison between these four strategies using Spearman correlation. Our method shows
a high positive correlation across different embedding dimensions, suggesting a strong association between its
similarity scores and the ground truth similarities. In contrast, the BERT embedding layer trained by MLM
returns the lowest correlation, aligning with our premise that masked modeling does not inherently capture
the contextual relationship between different tokens.

Dimensionality
40 100 200 300 400 700 1000 1500

Em-MLM 0.14±0.11 0.17±0.06 0.18±0.13 0.18±0.07 0.15±0.07 0.17±0.06 0.19±0.04 0.20±0.08
Out-MLM 0.33±0.08 0.34±0.08 0.34±0,.08 0.36±0.10 0.36±0.08 0.37±0.05 0.38±0.07 0.39±0.07
Em-ConAu 0.18±0.07 0.21±0.12 0.22±0.12 0.23±0.05 0.24±0.10 0.27±0.03 0.28±0.06 0.29±0.06
Out-ConAu 0.38±0.12 0.39±0.11 0.39±0.09 0.41±0.08 0.42±0.09 0.44±0.08 0.46±0.09 0.45±0.05
Algorithm 1 0.42±0.11 0.43±0.07 0.44±0.09 0.45±0.06 0.45±0.07 0.49±0.08 0.51±0.06 0.51±0.07

Table 4: Performance comparison between our method and the BERT embedding layer on the MIMIC−IV
dataset based on Spearman correlation over 20 runs.

5.4 Ablation study

We also conducted an ablation analysis focused on answering the following key questions:

1. Does cycle conditioning aid in extracting more general-purpose representations? To
investigate this, we trained two different versions of our method: one incorporating cycle conditioning
loss and the other without it, while preserving the spelling loss functions in both versions. This
design allows us to evaluate the specific contribution of the cycle conditioning loss to the overall
performance of our method. As shown in Table 5, the network without cycle conditioning achieves
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significantly lower accuracy in the heart failure prediction task, demonstrating the effectiveness of
this loss function in enhancing the performance of our method.

2. Is spelling supervision necessary? The conditioning loss function may encourage the network
to extract the same representation from both a clear conditioning sample and its noisy version,
suggesting it could be sufficient for effective representation learning. To explore this, we trained
our model using the cycle conditioning loss but without the spelling loss functions. To prevent the
network from extracting identical representations from all conditioning samples, we normalized this
layer to have the same standard deviation as the input conditioning sample. The results of this
comparison are also presented in Table 5. As observed, without the spelling loss function, our model
struggles to capture meaningful representations from the conditioning sample, which hinders its
ability to effectively estimate heart failure as the downstream task.

Full model w/o cycle conditioning w/o spelling supervision
AUROC AUCPR AUROC AUCPR AUROC AUCPR

Support Vector 91.81±0.61 12.49±5% 89.47±0.44 12.23±7% 63.21±0.71 02.78±9%
Gaussian Process 90.96±0.62 13.70±5% 87.93±0.72 09.02±9% 62.16±0.54 02.14±9%
Random Forest 89.48±0.37 14.21±5% 88.51±0.61 12.61±7% 64.21±0.47 02.84±5%

Ada Boost 85.12±0.73 08.62±6% 83.77±0.67 07.99±6% 58.12±0.43 02.11±11%
GaussianNB 89.20±0.76 08.41±7% 87.23±0.58 08.09±4% 58.69±0.84 02.26±8%

Table 5: Ablation study on our proposed method where the effectiveness of its two main components, cycle
conditioning and spelling supervision are evaluated

6 Conclusion

In conclusion, we introduced a novel diffusion-based method for representation learning in categorical data.
We proposed that cycle conditioning of diffusion models can effectively extract meaningful and versatile
information from the conditioning samples. Additionally, we introduced a novel strategy to supervise the
conditioning process with extra information about the spelling of tokens, thus preventing the overlooking
of the conditioning samples in the denoising process. To enhance the robustness of the representations,
we proposed supervising the latent condition through linear navigation in its latent space. We conducted
a comprehensive set of experiments to demonstrate the effectiveness of our diffusion model in extracting
meaningful representations from categorical data. However, as with any approach, this method presents
certain limitations, including significant computational demands inherent to diffusion-based models. Future
research may focus on improving computational efficiency, potentially by integrating faster generative modeling
techniques for representation learning tasks. Furthermore, evaluating the model’s performance on a wider
range of databases would offer valuable insights into its robustness and adaptability. Specifically, exploring its
sensitivity to diverse categorical datasets, beyond the medical domain, could provide a deeper understanding
of its capability to learn representations in different contexts and inform its application to medical time series
representation learning..
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A Implementation details of the BERT embedding layers

In our study, we utilize BERT as the foundational architecture to evaluate the performance of embedding
layers. BERT’s embedding layer is initially designed for general language modeling, which typically requires a
large token vocabulary. To adapt it for our medical application, which has a smaller vocabulary, we introduce
a fully connected layer before the embedding layer. This modification allows us to control the size of the
embedding space and identify the most suitable dimensions for our application. Additionally, we add a linear
layer at the end of the network to generate a logits vector for each index in the output sequence. The length
of this logits vector corresponds to the total number of tokens in our medical vocabulary. We follow the
standard masked modeling procedure by randomly masking 15% of the ICD codes, where 80% of the masked
codes are replaced with a predefined token, 10% are substituted with other ICD codes, and 10

We use the same training dataset as for our representation learning model. The learning rate is set to 1e-5,
we employ the AdamW optimizer, and use cross-entropy loss to assess the estimated indices for the masked
tokens.

B Our method vs other diffusion based strategies

We conduct an additional experiment to evaluate the effectiveness of our method in comparison to other
strategies that utilize diffusion modeling for representation learning. Specifically, we compare our approach
with those presented in Mittal et al. (2023); Preechakul et al. (2022); Wang et al. (2023b). It is important
to note that we do not include comparisons with Zhang et al. (2022b); Yang & Wang (2023), as their
methods focus on extracting representations from a pre-trained diffusion model without using a conditioning
mechanism.

Fair comparison: To ensure a fair comparison, we use the same structure for the conditioning encoder and
denoising components in all the diffusion models. The only variations are in the transformation of categorical
features to continuous ones and in the formulation of loss functions, where different supervision methods are
applied to the embedding layers. A detailed description of the configurations and associated loss functions
can be found in Figures 3-11. Here, we denote the conditioning sample as C and the input sample at time
step t as St to distinguish between them.

Results: As shown in Table 6, our method outperforms all competing strategies. It is important to note
that none of these methods were originally designed for learning representations from categorical samples,
necessitating the inclusion of additional strategies to adapt them for categorical data. We employed the
approach outlined in Lin et al. (2023); Dieleman et al. (2022), which involves making an extra prediction on
the embedding layer before it is fed into the diffusion model.

Additionally, we conducted an experiment where the same embedding input is used at the end of the
network to maintain consistency in the intermediate representations, as illustrated in Figure 9. However,
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Figure 3: Implementation details of our method: For simplicity, we avoid illustrating the cycle conditioning
part, which necessitates reusing St−1 as the conditioning sample instead of C.

Heart failure prediction
2*Our method RCondSE RCondIE DiffAESE DiffAEIE InfoDiffusionSE InfoDiffusionIE

Mittal et al. (2023)Mittal et al. (2023) Bahri et al. (2021) Devlin et al. (2018)Devlin et al. (2018)Chen et al. (2024b)
AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR AUROC AUCPR

Support Vector 93.80±0.43 19.14±5% 91.56±0.76 14.78±6% 89.75±0.49 13.34±5% 90.42±0.85 14.41±7% 90.62±0.44 14.93±4% 90.10±0.52 14.51±8% 91.73±0.84 15.82±9%
Gaussian Process 92.96±0.66 17.93±5% 91.16±0.46 16.33±5% 91.97±0.35 17.57±4% 89.48±0.37 13.86±4% 91.17±0.74 15.07±6% 89.04±63 13.18±5% 91.07±0.63 15.81±6%
Random Forest 90.26±0.54 13.24±4% 88.31±0.66 11.71±5% 89.41±0.54 13.06±6% 90.85±0.63 14.98±6% 91.47±0.75 16.84±7% 91.70±0.85 16.41±7% 90.64±0.72 14.44±6%
Ada Boost 88.76±0.71 11.96±6% 87.11±0.64 10.59±6% 86.21±0.54 09.66±5% 86.46±0.57 09.97±4% 85.09±0.38 08.96±5% 87.41±0.62 17.72±5% 86.10±0.41 09.39±6%
GaussianNB 90.32±0.57 14.17±6% 88.21±0.74 11.26±6% 87.93±0.36 11.34±4% 87.45±0.44 11.221±4% 87.37±0.54 10.59±5% 85.68±0.66 09.62±7% 88.49±0.82 11.60±11%

Av.Kappa Av.BF1 Av.BF1 Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1
0.882±9% 0.897 0.862±9% 0.873±9% 0.831±9% 0.849±9% 0.756±9% 0.784±9% 0.857±9% 0.741 0.793 0.802±9% 0.896±9% 0.773

Lung cancer prediction
Support Vector 93.73±0.46 0.81±6% 90.49±0.53 0.53±4% 89.70±0.52 0.50±6% 90.07±0.77 0.51±6% 89.32±0.49 0.48±4% 89.68±0.63 0.49±5% 88.82±0.64 0.46±6%
Gaussian Process 90.94±0.69 0.56±5% 87.57±0.44 0.41±5% 87.81±0.47 0.42±4% 87.84±0.51 0.42±6% 88.27±0.37 0.43±4% 88.31±0.78 0.44±6% 87.67±0.66 0.41±5%
Random Forest 92.85±0.34 0.71±5% 88.35±0.65 0.44±6% 88.78±0.40 0.45±4% 89.62±0.59 0.49±6% 90.20±0.43 0.52±5% 89.04±0.78 0.47±6% 89.38±0.62 0.48±6%
Ada Boost 90.35±0.67 0.53±5% 85.65±0.69 0.36±11% 85.91±0.52 0.36±6% 87.05±0.38 0.40±4% 87.43±0.39 0.41±5% 88.14±0.64 0.43±4% 88.46±0.62 0.44±6%
GaussianNB 90.10±0.50 0.51±6% 88.15±0.47 0.43±4% 88.43±0.43 0.44±5% 85.74±0.78 0.36±6% 86.52±0.66 0.38±6% 87.52±0.61 0.41±6% 88.25±0.54 0.43±5%

Av.Kappa Av.BF1 Av.BF1 Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1 Av.Kappa Av.BF1
1.40±7% 47.44±0.68 1.01±8% 46.03±0.82 0.74±11% 44.42±9% 0.79±6% 44.82±0.74 0.72±7% 44.25±0.42 0.51±6% 0.802±9% 0.68±11% 43.92±0.71

Table 6: Performance comparison of our method with diffusion-based representation learning methods

our experiments revealed that this approach encounters significant convergence issues, primarily due to the
mutual dependence between the embedding layer and the diffusion model.

For each method, we examine two different configurations, denoted by the suffixes IE and SE in Table 6. The
suffix SE refers to a shared embedding layer that learns to encode both the condition and the input sample,
while IE indicates the use of separate embedding layers for each sample. One of the main advantages of an
end-to-end embedding layer is the ability to learn distinct embeddings for different input samples, which can
be achieved with two individual embedding layers Devlin et al. (2018). In this configuration, the network can
automatically learn the same embedding for samples that exhibit a high correlation. Our goal is to assess
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Figure 4: Implementation details of our method when cycle conditioning is replaced with the disentangled
guidance strategy proposed by Bhunia et al. (2023).

whether this type of embedding can improve the performance of our competing strategies, which already
benefit from end-to-end learning of the embedding layers.

As shown in Table 6, our method achieves improvements of 2.24%, 1.83%, 2.95%, 2.33%, 2.10%, and 2.07%
in AUROC compared to the best results of RCondSE, RCondIE, DiffAESE, DiffAEIE, InfoDiffusionSE, and
InfoDiffusionIE for the heart failure prediction task. For lung cancer prediction, our method outperforms the
best results of the competing algorithms by 3.24%, 4.03%, 3.66%, 3.53%, 4.05%, and 4.35%. The improvement
in lung cancer prediction is notably greater than that in the heart failure prediction, likely because the number
of patients with lung cancer in our database is significantly smaller than that for heart failure. Consequently,
the benefits of the probabilistic representation enabled by cycle conditioning are more pronounced in lung
cancer prediction.

In contrast, the competing strategies exhibited similar performance, which may be attributed to our use
of the same configuration for most of their components. This suggests that the regularization techniques
introduced in Mittal et al. (2023); Preechakul et al. (2022); Wang et al. (2023b) have a limited impact on the
representations learned by the conditioning encoder. It is possible that different architectures would enhance
their effectiveness when applied in their original form, which is specifically designed for image-related tasks.
Additionally, their lower performance on categorical data may stem from the lack of a specialized design to
extract versatile information from the conditioning encoder.
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categorical data. The embedding layer is supervised with the strategy proposed in Lin et al. (2023;?), we do
not consider the cycle embedding for the entail of this model.

C Cycle consistency vs disentangled guidance

We propose our cycle conditioning strategy as a method to enhance the representations learned by diffusion
models. Additionally, we suggested that this cycle conditioning can prevent the diffusion process from
overlooking the condition when the hidden condition is supervised by extra spelling information of the
original time series. Another strategy to address this issue is disentangled guidance, adapted from the work
of Bhunia et al. (2023). In this approach, the condition is preserved by replacing St with an all-zero tensor
and supervising the network to reconstruct the condition from this all-zero tensor combined with the latent
condition. This reconstruction is facilitated by the combination modules in the denoising network and is used
in conjunction with the conventional loss functions of diffusion models. The strategy and the definition of the
combination module are illustrated in Figure 4.

Tables 7 and 8 compare the performance of our method with the alternative strategy of disentangled guidance.
As shown, using a supervised cycle conditioned network, we achieved 3.53% and 3.00% higher AUROC
compared to the best results obtained with disentangled guidance on the two downstream tasks, respectively.
Furthermore, the mean AUROC of our method across different downstream classifiers is 2.96% higher than
that of the disentangled conditioning.

This improvement may be attributed to the fact that, in disentangled guidance, the condition is processed
differently when provided without the noisy sample compared to when it is combined with the noisy sample.
In contrast, our method employs a supervision approach where both the input and the denoised sample follow
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Figure 6: Implementation details for extending the strategy proposed in ReCondIE Mittal et al. (2023) for
categorical data

the same pathway within the network. This design helps avoid conflicts between the learned representations
in the input of the denoising model and those maintained in its output.

Additionally, disentangled conditioning does not allow for generating multiple representations from a single
conditioning sample. Our method addresses this limitation by producing diverse representations from a single
sample. This capability is especially advantageous when there are not enough labeled samples to adequately
train a downstream classifier.

Moreover, disentangled conditioning introduces extra supervision on an intermediate layer. This supervision
involves estimating the elements of the spelling vector from an intermediate layer following the combination
modules. Such supervision can lead to sparsity in that intermediate layer. Since this layer is located close to
the model’s output, it may negatively impact the performance of the denoising model in estimating the noise
in its input sample.

Cycle conditioning Disentangled guidance
AUROC AUCPR AUROC AUCPR

Support Vector 91.81±0.61 12.49±5% 87.57±0.52 09.23±6%
Gaussian Process 90.96±0.62 13.70±5% 86.14±0.72 08.16±8%
Random Forest 89.48±0.37 14.21±5% 88.28±0.69 13.61±5%

Ada Boost 85.12±0.73 08.62±6% 84.01±0.43 08.16±4%
GaussianNB 89.20±0.76 08.41±7% 85.73±0.82 08.19±7%

Table 7: Comparing cycle conditioning and disentangled
guidance for heart failure prediction

Cycle conditioning Disentangled guidance
AUROC AUCPR AUROC AUCPR

Support Vector 90.51±0.64 0.54±9% 86.19±0.55 0.41±6%
Gaussian Process 88.79±0.86 0.56±8% 87.86±0.63 0.52±4%
Random Forest 91.35±0.48 0.59±5% 88.35±0.77 0.48±4%

Ada Boost 86.60±0.57 0.49±6% 86.92±0.85 0.51±6%
GaussianNB 84.39±0.77 0.43±6% 85.62±0.61 0.46±5%

Table 8: Comparing cycle conditioning and disentangled
guidance for lung cancer prediction
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Figure 7: Implementation details for extending the strategy proposed in DiffAEIE Preechakul et al. (2022)
for categorical data. The embedding layer is supervised with the strategy proposed in Lin et al. (2023)

D Class-inspired representation learning meets the cycle conditioning

In this section, we propose an end-to-end class-inspired representation learning method that utilizes class
labels from a subset of samples to develop robust representations for all samples in the database. This
approach is particularly valuable for applications where the number of training samples with specific labels is
very limited. Unlike general-purpose representation learning, the representations learned by this model focus
on the characteristics most relevant to predicting a particular label.

While this method can eliminate the need for a downstream classifier by integrating the classifier into
the representation learning framework, we found that training an additional classifier on the class-specific
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Figure 8: Implementation details for extending the strategy proposed in DiffAESE Preechakul et al. (2022)
for categorical data. The embedding layer is supervised with the strategy proposed in Lin et al. (2023), we
do not consider the cycle embedding for the entail of this model.

representations generated by this model is significantly more effective than relying on the model’s internal
classifier.

For this modeling, we first consider a lower bound estimation of our previously proposed method for a batch
of data that includes at least one sample diagnosed with a specific disease of interest. This can be any kind
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Figure 9: Cycle embedding of diffusion model, according to our experiments this structure has significant
difficulty with convergence.
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]

of disease including heart failure or lung cancer that we already considered as downstream tasks of our model.
In this case, the variational bound of our model can be written as follows: [!t] pθ(ST , y) = p(ST )pθ(y) as ST

and y are independent and the distribution of ST is already known and therefore is not dependent on θ.
This equation measures an accumulated reconstruction loss over time steps of the denoising process and
therefore can be approximated as follows:

log pθ(S, y) ≈
∑
t≥1

DKL(q(St−1|St, y, S0)∥pθ(St−1|St, y))))

=
∑
t≥1

Lt(S, y)
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[
− 1

T
log p(ST ) − 1

T
log pθ(y)

− log pθ(St−1|St, y) + log
(
q(y, St)q(St|St−1, y)

)]]

=
∑
t≥1

Eq(y|St−1)

[
Eq(St|y,St−1)

[
− 1

T
log p(ST ) − 1

T
log pθ(y)

− log pθ(St−1|St, y) + log q(y|St−1) + log q(St|St−1, y)
]]

log pθ(S) =
∑
t≥1

∑
y

q(y|St−1)
(

− Eq(St|y,St−1)

[
− log p(ST ) − log pθ(y)

− log pθ(St−1|St, y) + log q(y|St−1) + log q(St|St−1, y)
])

=
∑
t≥1

∑
y

q(y|St−1)
(

− Lt(S, y) + Eq(St|y,St−1)
[
q(y|St−1)

])

For data batches where none of the training samples are diagnosed with the intended disease that we aim for
the representation to learn, the information from the labels is treated as a latent variable. This approach
allows us to estimate the lower bound for these samples using the following formula: [!t] Using the chain rule,
we have q(y, St|St−1) = q(y|St−1)q(St|y, St−1). Therefore, this equation can be reformulated as follows: [!t]

Therefore, the equation can be reformulated as: [!t] Where
∑

y q(y|St−1)
(
Eq(St|y,St−1)

[
q(y|St−1)

])
is the

entropy of q(y|St−1) and therefore measures how spread out the probabilities are in this specific distribution.
From this equation, the distribution q(y|St−1) can formulated as a discriminative classifier, however similar
to our cycle conditioned strategy it has to implemented in a cycle conditioned manner as it depends to
the output of the denoising model. Therefore, it is beneficial to reimplement both the cycle and the label
conditioning elements with a simple shared common encoder with different heads. In practice we estimate
the label y by applying two fully connected layers after Eθ(.), with 30 unites per each layer.
Our experiments show that the class-inspired cycle conditioning achieves an AUROC of 94.18% on the heart
failure prediction task when using Support Vector Machines as the downstream classifier. This represents
an improvement of 1.01% over the maximum AUROC value obtained with the vanilla version of our cycle
conditioning method. Additionally, a similar experiment was conducted to predict heart failure within a
four-month time window, using the same data split as described in the main paper.
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E Exploring Data Size Variance

In this section, we evaluate how the size of the training data impacts the expressiveness of the representations
learned by our diffusion model. We consider heart failure prediction as the downstream task for this
experiment. To this end, we utilize two distinct training sets: one from the MIMIC IV database and another
from the MIMIC III database, both of which are used to train our representation learning model. After
training, we employ these pre-trained models to project both the training and test samples into an embedding
space. The test set is selected from the MIMIC IV database, and the data split follows the same procedure
outlined in the main paper.

Our training sets from MIMIC-III exclusively contain ICD-9 codes, while our test samples from MIMIC-IV
comprise both ICD-9 and ICD-10 codes. To align with the vocabulary of our MIMIC-IV database, we index
the tokens from MIMIC-III based on their first three characters, matching them with the corresponding
tokens in the vocabulary of the MIMIC-IV database.

We compared the performance of our method with SwitchTab Wu et al. (2024) using the two databases. The
results, presented in Table 9, demonstrate that our method outperforms this competing strategy, even when
the number of training samples is significantly reduced. Notably, when trained on only 5% of the training
data, our method achieved an accuracy comparable to many competing strategies that were trained on the
entire training set of the MIMIC IV database (see Table 7).

MIMIC IV MIMIC III
AUROC AUCPR AUROC AUCPR

Our method 91.81±0.61 12.49±5% 81.72±0.52 05.23±6%
SwichTab 90.39±0.76 09.57±6% 65.88±0.96 02.93±11%

Table 9: Performance comparison of our method on two databases with varying sizes: We employ MIMIC III and
MIMIC IV for training our diffusion-based representation learning method.

F Notations

In Table 4, Em-MLM denotes continuous data from the embedding layer trained using mask modeling,
OutBERT-MLM represents continuous data from one layer before the output of the BERT model trained
using mask modeling, and EM-ConAu signifies continuous data from the embedding layer of the BERT model
trained using the method proposed in Chen et al. (2024b).

G Our data transformation strategy versus BERT embedding layer for downstream
tasks

In this section, we compare the performance of our proposed data transformation module with that of the
BERT embedding layer, which was trained using masked language modeling, on two downstream tasks:
heart failure prediction and lung cancer prediction3. As shown in Tables 10 and 11, our method consistently
outperforms the BERT embedding layer across different classifiers. However, the extent of this improvement
varies by task, with the performance gain being smaller for lung cancer prediction compared to hear failure
prediction. We attribute this difference to the fact that masked language modeling does not capture time-
specific nuances in the embedding layer, which may limit its performance, especially in tasks that rely more
on time-specific features. When comparing the performance of our embedding layer with that of our model
without spelling supervision, we observe that the performance of the diffusion model with cycle conditioning
alone is even worse than that of the input to our diffusion model. This is because cycle conditioning without
external supervision causes the diffusion model to forget much of the conditioned information, as many of
these details change in each iteration of training.

3Detailed results for the BERT embedding layer, along with comparisons to other classification models, are presented in
Table 1.
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Figure 10: Implementation details for extending the strategy proposed in InfoDiffusionSE Wang et al. (2023b)
for categorical data.

BERT embedding layer Our DT strategy
AUROC AUCPR AUROC AUCPR

Support Vector 66.49±0.44 03.15±4% 76.21±0.36 04.29±6%
Gaussian Process 64.10±0.45 02.86±4% 77.33±0.66 06.37±5%
Random Forest 67.63±0.44 03.31±4% 78.04±0.63 05.28±6%

Ada Boost 64.28±0.47 02.88±6% 74.34±0.51 06.72±5%
GaussianNB 60.58±0.68 02.54±6% 70.04±0.64 06.14±5%

Table 10: Our data transformation strategy versus BERT
embedding layer for heart failure prediction. DT refers to
Data Transformation

BERT embedding layer Our DT strategy
AUROC AUCPR AUROC AUCPR

Support Vector 83.47±0.77 0.34±9% 84.13±0.66 0.38±5%
Gaussian Process 80.14±0.37 0.31±4% 85.47±0.81 0.27±7%
Random Forest 84.19±0.61 0.38±6% 85.73±0.66 0.32±7%

Ada Boost 81.25±0.43 0.24±4% 82.28±0.72 0.37±5%
GaussianNB 82.12±0.38 0.29±4% 83.71±0.33 0.30±6%

Table 11: Our data transformation strategy versus BERT
embedding layer for lung cancer prediction. DT refers to
Data Transformation.

H Computational Complexity

In this section, we provide an analysis of the computational complexity of our method compared to its
competing strategies. Our method consists of two primary components. The first part is a data transformation
strategy that takes an input sample in the form of a one-hot vector of size 1 × W, where W represents the
total number of unique tokens in the vocabulary, and transforms it into a continuous hidden representation
of size 1 × m, where m is the size of the embedding layer. The core of this transformation is a matrix of size
W × m. Therefore, the total number of scalar operations required for multiplying this matrix with the input
sample is O(W × m). For a time series with r time steps, the overall complexity becomes O(r × W × m). In
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Figure 11: Implementation details for extending the strategy proposed in InfoDiffusionIE Wang et al. (2023b)
for categorical data.

contrast, the BERT embedding layer is a lookup table with learnable parameters, where the lookup operation
takes O(1) time to retrieve the learned embedding for each token in the input sequence. For a time series
of r individual time steps, the computational complexity of BERT’s embedding is O(r × q), where q is the
number of tokens in each of the r time steps. Since W ≫ q, the computational cost of our method is higher
than that of the BERT embedding layer, and this cost scales with the size of the vocabulary. However, this
comparison assumes that the concatenation of feature embeddings for the entire sequence of tokens in BERT
is not prohibitively large and can be directly used as the embedding representation. In cases where the size of
the embedding layer for each token needs to be large enough to capture the necessary contextual information,
we must introduce an additional linear layer to project the embeddings into a lower-dimensional space. This
transformation involves multiplying the embeddings with a weight matrix, which results in an additional
computational cost of O(r × q × mH × m), where mH is the dimension of each embedding before the linear
projection, and m is the size of the output embedding space after projection.

The second part of our method is a conditional diffusion model, where the representation learned from the
conditioning sample is utilized as the final representation of the input sample. Therefore, the computational
cost of this part depends heavily on the computational cost of the conditioning encoder. Central to our
conditioning encoder is a FastFormer module Wu et al. (2021), which leverages the additive attention
mechanism to reduce the quadratic complexity of Transformers to linear complexity. In Transformers, a
sequence of length m requires m × m pairwise computations to account for all combinations of queries,
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Figure 12: The vector used to supervise the latent code of the conditioning sample is derived from the spelling
of the tokens in w. This spelling information is represented by the methodology illustrated in this figure.
The initial direction towards each spelling index (e.g., 1773) is learned by an element of the dictionary (dx),
where x represents the index.

keys, and values. Hence, it has O(m2) computational complexity. In contrast, FastFormer avoids the
pairwise computation by utilizing additive operations to aggregate attention. As a result, the computational
complexity required for computing attention is reduced to O(m). This represents a significant advantage in
the computational efficiency of our method compared to standard Transformer-based models like SwitchTab
2024, especially when the size of the embedding layer scales up.
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