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ABSTRACT

Deep Policy Gradient algorithms employ value networks to drive the learning of
parameterized policies and reduce the variance of the gradient estimates. How-
ever, value function approximation gets stuck in local optima and struggles to fit
the actual return, limiting the variance reduction efficacy and leading policies to
sub-optimal performance. In this paper, we focus on improving value approxima-
tion and analyzing the effects on Deep Policy Gradient primitives such as value
prediction, variance reduction, and correlation of gradient estimates with the true
gradient. To this end, we introduce a Value Function Search that employs a pop-
ulation of perturbed value networks to search for a better approximation. Our
framework does not require additional environment interactions, gradient compu-
tations, or ensembles, providing a computationally inexpensive approach to en-
hance the supervised learning task on which value networks train. Crucially, we
show that improving Deep Policy Gradient primitives results in improved sample
efficiency and policies with higher returns using standard policy gradient methods
on common continuous control benchmark domains.

1 INTRODUCTION

Deep Policy Gradient (PG) methods achieved impressive results in numerous control tasks (Schul-
man et al.,|2017; [Haarnoja et al.,|2018}; |Fujimoto et al.,[2018)). However, such methods deviate from
the underlying theoretical framework to compute gradients tractably. Hence, the promising perfor-
mance of Deep PG algorithms suggests a lack of rigorous analysis to motivate such results. In this
direction, |Ilyas et al.[ (2020) empirically investigated the phenomena arising in practical Deep PG
implementations by taking a closer look at key PG primitives such as gradient estimates and value
predictions. Interestingly, the learned value networks used for predictions (critics) poorly fit the
actual return. As a result, the local optima where critics get stuck limits their efficacy in the gradient
estimates, driving policies (actors) toward sub-optimal performance.

Despite the lack of empirical investigations to understand Deep PG’s results, several approaches
have been proposed to improve these methods over the years. Ensemble learning (Wiering & van
Hasselt, [2008; |Lee et al.|[2021;|He et al., 2022)), for example, combines multiple learning actors’ (or
critics’) predictions to address overestimation and foster diversity. As such, these methods gener-
ate different solutions that improve exploration and stabilize the training, leading to higher returns.
However, the number of models used at training and inference time poses significant challenges
that we discuss in Section 5] Nonetheless, popular Deep Reinforcement Learning (RL) algorithms
(e.g., Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018)) leverage two
value networks, leveraging the benefits of ensemble approaches while limiting their complexity. To
address the issues of ensembles, gradient-free population-based approaches have been recently pro-
posed (Khadka & Tumer, |2018; Marchesini et al.| [2021; Sigaud, |2022). The idea is to complement
Deep PG algorithms with a periodical policy search mechanism that relies on a population of per-
turbed policies to improve exploration and to find policy parameters that lead to higher payoffs (i.e.,
better policies). In contrast to ensemble methods that employ multiple actors and critics, gradient-
free population searches typically focus on the actors, disregarding the value network component of
Deep PG. Section[5]discusses the limitations of such policy search methods in detail.

However, in a PG context, critics have a pivotal role in driving the policy learning process as



Under review as a conference paper at ICLR 2023

poor value predictions lead to sub-optimal perfor-

mance, and higher variance in gradient estimates|(Sut-

ton & Bartg,[2018). Such issues are further exac-

erbated in state-of-the-art Deep PG methods as they

struggle to learn good value function estimation, as de-

tailed by|llyas et al.[(2020). For this reason, we pro-

pose a novel gradient-free population-based approach

for critics called Value Function Search (VFS), de-

picted in Figurg [Ll. We aim to improve Deep PG al-

gorithms by enhancing value networks to achieve (i) a Figure 1: Overview of VFS.

better t of the actual return, (ii) a higher correlation

of the gradients estimate with the (approximate) true gradient, and (iii) reduced variance. In detail,
given a Deep PG agent characterized by actor and critic networks, VFS periodically instantiates a
population of perturbed critics using a two-scale perturbation noise designed to improve value pre-
dictions. Small-scale perturbations expléweal value predictions that only slightly modify those

of the original critic (similarly to gradient-based perturbatigns (Lehman et al.,| 2018; Martin H. &
de Lopé| 2009)). Big-scale perturbations search for parameters that allow escaping from local op-
tima where value networks get stuck. In contrast to previous search methods, evaluating perturbed
value networks require computing standard value error measures using samples from the agent's
buffer. Hence, the Deep PG agent uses the parameters with the lowest error until the next periodical
search. Crucially, VFS's critics-based design addresses the issues of prior methods as it does not
require a simulator, hand-designed environment interactions, or weighted optimizations. Moreover,
our population's goal is to nd the weights that minimize the same objective of the Deep PG critic.

We show the effectiveness of VFS on different Deep PG baselines: (i) Proximal Policy Optimization
(PPO) [(Schulman et a/., 2017), (ii) Deep Deterministic Policy Gradient (DDPG) (Lillicrap|et al.,
2016), and (iii) TD3 on a range of common continuous control benchmark {fasks (Brockman et al.,
2016;| Todorov et &l!, 2012). We compare over such baselines, an ensembled Deep RL method,
SUNRISE |(Lee et dl}, 2021), and the policy search Supe-RL (Marchesiniet al|, 2021). In addition,
we analyze key Deep PG primitives (i.e., value prediction errors, gradient estimate, and variance) to
motivate the performance improvement of VFS-based algorithms. Our evaluation con rms that VFS
leads to better gradient estimates with a lower variance that signi cantly improve sample ef ciency
and lead to policies with higher returns. Our analysis highlights a fundamental issue with current
state-of-the-art Deep PG methods, opening the door for future research in this area.

2 BACKGROUND

PG methods parameterize a policy with a parameters vector (typically the weights of a Deep
Neural Network (DNN) in a Deep PG context), and a;js;) models the probability to take action

a; in a states; at stept in the environment. These approaches aim to ledollowing the gradient

of an objective over such parameters (Sutton & Baito, 2018). Formally, the primitive gradient
estimate on which modern Deep PG algorithms build has the following form (Suttoh et al., 1999):

r = Escane [r log (ajst)Q (st;a)] 1)

where(s; ay) 2 are states and actions that form the trajectories sampled from the distribu-
tion induced by , andQ (s;;a;) is the expected return after takiagin s;. However, Equation
1 suffers from high-variance expectation, and different baselines have been used to margin the issue.
In particular, given a discount value2 [0; 1), the state-value functio¥ (s) is an ideal baseline
as it leaves the expectation unchanged while reducing variance (Williams, 1992):
" #
R
V ()= E G;:= resrjst = s )
t

whereG; is the sum of future discounted rewardst(rn). Despite building on the theoretical

framework of PG, Deep PG algorithms rely on several assumptions and approximations for design-
ing feasible updates for the policy parameters. In more detail, these methods typically build on
surrogate objective functions that are easier to optimize. A leading example is TRPO (Schulman
et al., 2015), which ensures that a surrogate objective updates the policy locally by imposing a trust
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region. Formally, TRPO imposes a constraint on the Kullback—Leibler diverge (KL) on successive

policies ; o, resulting in the following optimization problem:
(ajst) s .
max E ————FA (S;a) s.t.D S S 3
sy (o) ke (- (is)i o(js)) ®)

where is a hand-tuned divergence threshold, &d; a) = Q(s;a) V(s) is the advantage func-
tion. In practical implementations, Equation 3 is tractably optimized with additional tricks: (i) a
second-order approximation of the objective, (ii) a mean KL of the current trajectory instead of the
actual KL divergence. Given TRPO's computational demands, Schulman et al. (2017) further "re-
laxes” the optimization landscape by replacing the constraint with the following clipped objective,
providing a signi cantly faster (i.e., less demanding) yet better-performing alternative over TRPO:
max E  min (aitj_st)A(st ;a);clip (aitj_st);
o(ajst) o(ajst)
On asimilar trend, Lillicrap et al. (2016) leverages the deterministic PG theorem (Silver et al., 2014)
for learning deterministic policies (s). In more detail, DDPG and further optimizations (e.g.,
TD3) are tightly related to standard Q-learning (Watkins & Dayan, 1992) and assume having a differ-
entiable action-value function over actions. Deterministic PG algorithms learn the value parameters
as in standard Double DQN, while policy parameters are learned undeatheE  [Q (s; (9))]
optimization problem, where are the parameters of the critic. Moreover, TD3 addresses the overes-
timation of DDPG with additional tricks, e.g., learning two value functions, being pessimistic about
the action value to use for the target computation, and delaying the policy updates.

1 1+ A(sya) 4)

In summary, Deep PG algorithms build their success on learning value functions for driving the
learning of the policy parameters However, signi cant research efforts have been devoted to
improving policies, while the attention to improving critics appears marginal. Hence, to our knowl-
edge, VFS is the rst gradient-free population-based approach that works on top of Deep PG to
improve critics without facing the complexities of learning ensembles or policy searches.

2.1 GRADIENT-INFORMED PERTURBATIONS

Previous policy search approaches generate a population of perturbed versions of the agent's pol-
icy to explore variations with higher returns (Khadka & Tumer, 2018; Marchesini et al., 2021;
Khadka et al., 2019; Colas et al., 2018; Sigaud, 2022). To this end, gradient-informed perturbations
(or variations) have been employed for limiting detrimental effects qrexploring small changes

in the population's action sampling process (Lehman et al., 2018; Marchesini et al., 2021). In more
detail, prior methods express the average divergence of a policy at stede a perturbatioh as:

di ;1)=k (js)  +i(isk, ®)
and use the gradient of such divergence to approximate the sensitivityvef the policy decisions,
which is used to normalize Gaussian-based perturbations. Formally, following Lehman et al. (2018):

ro.dC ;') r d(C ;0)+H (d( ;0)! (6)

whereH is the Hessian of divergence with respect to Although simpler rst-order approxi-
mations achieve comparable results, gradient-based perturbations add signi cant overhead to the
training process. Prior work introduced gradient-based variations because it is hard to evaluate the
population against detrimental changes. As such, the quality of perturbed policies is assessed over
many trajectories to ensure that they effectively achieve higher returns over arbitrary initializations
(Marchesini et al., 2021). In contrast, we focus on a critics-based search where high-scale pertur-
bations may help the learning process to escape from local optima, achieving better predictions.
Hence, VFS relies on a two-scale perturbation approach to maintain similar value predictions to the
original value function while also exploring diverse parameters to escape from local optima.

3 VALUE FUNCTION SEARCH

We introduce a gradient-free population-based search with a two-scale perturbations to enhance
critics employed in Deep PG. Ultimately, we aim to show that value functions with better predictions
improve Deep PG primitives, leading to better sample ef ciency and policies with higher returns.

We do not consider the unconstrained penalty-based PPO due to the better performance of the clipped one.
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Algorithm 1 shows the general ow of the proposed Value Function Search framework. During
a standard training procedure of a Deep PG agent, VFS periodically generates a pofulation
perturbed value networks, starting from the agent's current critic parametrizedWg rst instan-
tiaten copies of and two Gaussian noise distributioBsin :max With min:max Standard deviation
for the two-scale variations (lines 3-4). Hence, we sample from the two distributions to apply each
perturbation to half of the population (lines 5-6). In contrast to single-scale or gradient-based pertur-
bations of prior work (Khadka & Tumer, 2018; Marchesini et al., 2021; Sigaud, 2022), the two scales
approach for value networks has the following advant&g@sGnn maintains similar predictions
to those of the unperturbed critic, similarly to gradient-based variations. Samplind\Nf@m min )
translates into small changes in the value prediction process to nd a better set of parameters within
a local search fashion. (ifhhax is @ Gaussian with a greater standard deviabloi®; max) used
to explore diverse value predictions, to escape from local optima. (iii) Gaussian-based perturbations
do not introduce signi cant overhead as gradient-based variations. After generating the population,
VFS samples a batdhof trajectories from the agent's buff&. There are different strategies for
sampling the required experiences from the agent's memory based on the nature of the Deep PG al-
gorithm. When using an on-policy agent (e.g., TRPO, PPO), we apply VFS after updating the policy
and value networks. In this way, we reuse the same on-policy data to evaluate whether a perturbed
set of weights has better value prediction (i.e., lower error). Off-policy agents (e.g., DDPG, TD3)
could also follow a similar strategy. Still, the reduced size of the mini-batches typically employed
by off-policy updates would result in noisy evaluations. For this reason, we sample a larger batch
of experiences to provide a more robust evaluation. In practice, to compute the prediction errors for
each value network in the population (line 7), we use the typical objective used to train PG critics,
the Mean Squared Error (MSE) (Sutton & Barto, 2018), whose general formulation is:

1 X [P

mse ()= = V() V(9 7)

J s2b
whereV (s) is the true value function. However, it is typically unfeasible to have access to the true
V (s) and, as in standard training procedures of Deep PG algorithms, we rely on noisy samples of
V (s) or bootstrapped approximations. In more detail, on-policy updates are particularly interest-
ing, as Deep PG algorithms typically learn critics with Monte-Carlo methods without bootstrapping
the target value. Hence, performing a supervised learning procedui® ;@) pairs, where the
returnG; is an unbiased, noisy sample\éf(s) that replaces the expectation of Equation 2 with an
empirical average. We then refer to a perturbed critic @&al improvement of the original unper-
turbed one when it achieves a lower errortoin our context, given a value network parametrized
by , abatch of visited trajectorids and a perturbatioh, we de ne the value network parametrized
by +! tobe alocalimprovement ofwhenmse ., () mse (b). Moreover, in the limit where
bsamples all the trajectorie§;  V (st), andmse ,, (b) mse (b) meansthat +! is a better
or equal t of the true value function with respect to the original Crucially, Monte-Carlo value
approximation converges to a local optimum even when using non-linear approximation (Sutton &
Barto, 2018). Hence, on-policy VFS potentially maintains the same convergence guarantees of the
baselin€ To this end, it would be possible to anneal the perturbation scales (similar to the ones

Algorithm 1 Value Function Search
1: Given: (i) a Deep PG agent with a value network parametrized k& training epocte; (ii)
a bufferB of visited trajectories; (iii) periodicityes for VFS and population size; (iv) scale
min :max TOr the two-scale Gaussian noi€e

2: if e% es =0 then
3: P f ;i1 ngcopies of
4 Guin:max N O; min ;max)
5 111 i + Gmin Pin i * Gnax
6: b Sample abatch of trajectories frdBn
7 msep EvaluateP overbas Equation 7
8 min (msep )

i2P
9: end if

2\We support claims on our perturbation approach with additional experiments in Section 4.
3Due to bootstrapping, the same result generally does not apply to temporal difference targets.



Under review as a conference paper at ICLR 2023

used for learning rates) to zero out the impact of VFS over the training phase. Hence, providing
the diversity bene ts of VFS early in the training while maintaining the convergence guarantee of
the baseline algorithm within the limit. Nonetheless, as discussed in llyas et al. (2020), practical
Deep PG algorithms deviate from the underlying theoretical framework, and we performed addi-
tional experiments in Section 4 to show that maintaining VFS through the entire learning process
typically results in better performance over zeroing out the perturbations. In addition, in a worst-
case scenario where the population search never improves the value prediction locally, VFS matches
the same local optima of the original approach. However, following the insights of Fujimoto et al.
(2018), practical Deep PG algorithms can not theoretically guarantee to reduce estimation errors or
improve predictions outside the batch used for computing the update.

VFS addresses most limitations of previous policy search approaches and minimizes the same ob-
jective of the Deep PG critics, leading to the following crucial advantages:

» VFS does not require additional environment interactions or hand-designed evaluations for
selecting the best set of parameters in the population.

» MSE is a widely adopted objective for learning value networks, providing an established
evaluation strategy. Moreover, batch computations and parallelization make this process
particularly ef cient. Nonetheless, VFS is not speci cally designed for MSE, and it is
straightforward to extend it to different error measures.

« At the cost of adding overhead, the population evaluation may scale to an arbitrarily large
number of samples to improve robustness.

Finally, the parameters with the lowest error replace the current agent's critic until the next popula-
tion search (line 8). We note that many Deep RL algorithms employ target networks parametrized by

tg to reduce overestimation. In this scenario, we also update the target weights toward the new ones
by using standard Polyak averaging with a@ (0; 1) weight transfer value:ig =  +(1 ) .

3.1 LIMITATIONS

Here we highlight the limitations of VFS: (i) batched computations and parallelization do not avoid

a marginal overhead induced by the population search. (ii) In an off-policy setting, VFS requires
tuning the batch size for the error computation to balance the trade-off between computational de-
mands and the quality of the evaluation. (iii) There are no guarantees that small-scale perturbations
produce a local variation to the original predictions. However, they have been previously shown
effective in doing so (Martin H. & de Lope, 2009), and we con rm this result in Section 4.

4 EXPERIMENTS

The proposed experiments aim at answering the following questions: (i) How do VFS components
affect the training phase. In particular, we investigate when the perturbations are most effective
during the training. (ii) How these components impact the performance and sample ef ciency of
VFS-based algorithms. (iii) How VFS in uences Deep PG primitives, such as gradient estimates,
their variance, and value predictions, to motivate the performance improvement.

We investigate the performance of VFS on the on-policy PPO, the off-policy DDPG, and TD3 al-
gorithms. We compare over the baseline DDPG, PPO, TD3, SUNRISE (Lee et al., 2021) (a recent
ensemble approach), and Supe-RL (Marchesini et al., 2021) (a recent policy search approach). We
conduct our experiments on ve common challenging continuous control tasks based on MuJoCo
(Brockman et al., 2016) (in their v4 version), which are widely used for comparing Deep PG, en-
sembles, and policy search approach (Schulman et al., 2017; Lillicrap et al., 2016; Lee et al., 2021;
Fujimoto et al., 2018; Marchesini et al., 2021).

Data are collected on nodes equipped with Xeon E5-2650 CPUs and 64GB of RAM, using the hyper-
parameters reported in Appendix E. Considering reproducibility discussions and the importance of
having statistically signi cant results (Colas et al., 2019; Henderson et al., 2018), we report the av-
erage performance of 25 runs per method, with shaded regions representing the standard error. Such
a high number of experiments motivates slightly different results over the original implementations

of DDPG, TD3, and PPO.
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Table 1: Performance at 1M steps for Hopper, Walker, Swimmer, and 2M steps for HalfCheetah,
and Antin PPO, DDPG, TD3 experiments. We show the average return and standard deviation over
the 25 runs and the percentage of steps required by VFS methods to reach the peak performance of
the corresponding baseline. We report the best number for the ensemble SUNRISHE @ steps

(Lee et al., 2021), comparing over a SAC implementation of VFS and the policy search Supe-RL.

4.1 ANALYZING VFS COMPONENTS

The following analysis considers data collected in the Hopper environment and VFS-PPO, as
we achieved comparable results in the other tasks and algorithms. Given the intuitions of
Section 3, the two-scale perturbation approach has different effects on the Deep PG critic.
We expect perturbation with i, to result in networks with similar predictions (i.e., values).

In contrast, max should generate networks with more di-

versi ed predictions to escape local optima. Appendix A

shows the average difference between values predicted by

the original critic of the baseline algorithms and its two

perturbations (min on the left, nax on the right), con-

rming the intuitive role of the two perturbations.

Moreover, we expect nax variations to be rarely bet-
ter than i, variations and the original critic, as dras-
tic changes in the value predictions serve to escape from
local optima. To con rm this, Figure 2 shows the aver-
age cumulative number of times on whichi, (blue) or

max (Orange) critics' error is the lowest in the population
compared to the original critic (y-axis), over the periodFigure 2: Average cumulative number
cal searches (x-axis). The linear growth of thg, bars oftimeswhen i, or max variations
indicates that such perturbations generally produce bettaprove the error of the Deep PG critic
variations over max and the original critic through theand the other perturbation.
training. In contrast, max perturbed networks have more
impact in the early stages of the training (where the critics' predictions are seldom accurate) and
occasionally achieve lower error in later stages of the training, highlighting their role in VFS.

4.2 BMPIRICAL EVALUATION

Here we discuss the performance and sample ef ciency improvement of VFS-based algorithms.
In particular, we discuss: (i) the average return at convergence and (ii) the percentage of samples
required by VFS implementations to achieve the peak performance of the Deep PG baselines. Table
1 shows the results for PPO, VFS-PPO, DDPG, VFS-DDPG, TD3, and VFS-TD3 (the VFS-TD3
algorithm applies the value function search to both the critics employed by TD3). In each table, we
highlight the highest average return in bold and refer to Appendix B for an exhaustive overview of the
training curves and an additional evaluation on the more challenging Humanoid domain. Generally,
VFS-based algorithms achieve a signi cant performance improvement in average return and sample
ef ciency, con rming the bene ts of improving critics during Deep PG training procedures. On
average, VFS-PPO achieves a 26% return improvement and uses 33% fewer samples to reach the
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