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ABSTRACT

Deep Policy Gradient (PG) algorithms employ value networks to drive the learn-
ing of parameterized policies and reduce the variance of the gradient estimates.
However, value function approximation gets stuck in local optima and struggles
to fit the actual return, limiting the variance reduction efficacy and leading policies
to sub-optimal performance. This paper focuses on improving value approxima-
tion and analyzing the effects on Deep PG primitives such as value prediction,
variance reduction, and correlation of gradient estimates with the true gradient.
To this end, we introduce a Value Function Search that employs a population of
perturbed value networks to search for a better approximation. Our framework
does not require additional environment interactions, gradient computations, or
ensembles, providing a computationally inexpensive approach to enhance the su-
pervised learning task on which value networks train. Crucially, we show that
improving Deep PG primitives results in improved sample efficiency and policies
with higher returns using common continuous control benchmark domains.

1 INTRODUCTION

Deep Policy Gradient (PG) methods achieved impressive results in numerous control tasks (Haarnoja
et al.,2018)). However, these methods deviate from the underlying theoretical framework to compute
gradients tractably. Hence, the promising performance of Deep PG algorithms suggests a lack of
rigorous analysis to motivate such results. [Ilyas et al.| (2020) investigated the phenomena arising
in practical implementations by taking a closer look at key PG primitives (e.g., gradient estimates,
value predictions). Interestingly, the learned value networks used for predictions (critics) poorly fit
the actual return. As a result, the local optima where critics get stuck limits their efficacy in the
gradient estimates, driving policies (actors) toward sub-optimal performance.

Despite the lack of investigations to understand Deep PG’s results, several approaches have been
proposed to improve these methods. Ensemble learning (Lee et al., 2021} He et al., 2022)), for
example, combines multiple learning actors’ (or critics’) predictions to address overestimation and
foster diversity. These methods generate different solutions that improve exploration and stabilize
the training, leading to higher returns. However, the models used at training and inference time
pose significant challenges that we discuss in Section [5] Nonetheless, popular Deep Reinforcement
Learning (RL) algorithms (e.g., TD3 (Fujimoto et al.l[2018)) use two value networks, leveraging the
benefits of ensemble approaches while limiting their complexity. To address the issues of ensembles,
gradient-free methods have been recently proposed (Khadka & Tumer, 2018;|Marchesini & Farinelli,
2020; |Sigaud, 2022)). The idea is to complement Deep PG algorithms with a search mechanism that
uses a population of perturbed policies to improve exploration and to find policy parameters with
higher payoffs. In contrast to ensemble methods that employ multiple actors and critics, gradient-
free population searches typically focus on the actors, disregarding the value network component of
Deep PG. Section [5]discusses the limitations of policy search methods in detail. However, in a PG
context, critics have a pivotal role in driving the policy learning process as poor value predictions
lead to sub-optimal performance and higher variance in gradient estimates (Sutton & Barto, [2018).
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Such issues are further exacerbated in state-of-the-art "1, biicy Gradion: | Store
Deep PG methods as they struggle to learn good value !
function estimation |[lyas et al.|(2020). For this reason, we :
propose a novel gradient-free population-based approach \vée&b;één;l ””” " Update
for critics called Value Function Search (VES), depicted

in Figure [II We aim to improve Deep PG algorithms by Value Functions
enhancing value networks to achieve (i) a better fit of the Population Evaluation
actual return, (ii) a higher correlation of the gradients es-
timate with the (approximate) true gradient, and (iii) re-
duced variance. In detail, given a Deep PG agent charac-
terized by actor and critic networks, VFS periodically instantiates a population of perturbed critics
using a two-scale perturbation noise designed to improve value predictions. Small-scale perturba-
tions explore local value predictions that only slightly modify those of the original critic (similarly
to gradient-based perturbations (Lehman et al., 2018; Martin H. & de Lope, |2009; Marchesini &
Amato, 2022)). Big-scale perturbations search for parameters that allow escaping from local op-
tima where value networks get stuck. In contrast to previous search methods, evaluating perturbed
value networks require computing standard value error measures using samples from the agent’s
buffer. Hence, the Deep PG agent uses the parameters with the lowest error until the next periodical
search. Crucially, VFS’s critics-based design addresses the issues of prior methods as it does not
require a simulator, hand-designed environment interactions, or weighted optimizations. Moreover,
our population’s goal is to find the weights that minimize the same objective of the Deep PG critic.
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Figure 1: Overview of VFS.

We show the effectiveness of VFES on different Deep PG baselines: (i) Proximal Policy Optimization
(PPO) (Schulman et al., |2017), (ii) Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016), and (iii) TD3 on a range of continuous control benchmark tasks (Brockman et al., 2016
Todorov et al., [2012)). We compare over such baselines, an ensembled Deep RL method, SUNRISE
(Lee et al.,|2021)), and the policy search Supe-RL (Marchesini et al.,[2021a). In addition, we analyze
key Deep PG primitives (i.e., value prediction errors, gradient estimate, and variance) to motivate
the performance improvement of VFS-based algorithms. Our evaluation confirms that VFS leads to
better gradient estimates with a lower variance that significantly improve sample efficiency and lead
to policies with higher returns. Our analysis highlights a fundamental issue with current state-of-
the-art Deep PG methods, opening the door for future research.

2 BACKGROUND

PG methods parameterize a policy 7y with a parameters vector 6 (typically the weights of a Deep
Neural Network (DNN) in a Deep PG context), and mg(a+|s:) models the probability to take action
as in a state s; at step t in the environment. These approaches aim to learn 6 following the gradient
of an objective 7y over such parameters (Sutton & Barto, 2018)). Formally, the primitive gradient
estimate on which modern Deep PG algorithms build has the following form (Sutton et al.l [1999):

V779 = E(st,at)ETNﬂ'e [VQIOgﬂg (at‘st)Qﬂg (Sta at)] (1)
where (s, a;) € T ~ g are states and actions that form the trajectories sampled from the distribu-
tion induced by g, and Q, (s¢, a;) is the expected return after taking a; in s;. However, Equation
suffers from high-variance expectation, and different baselines have been used to margin the issue.

In particular, given a discount value v € [0, 1), the state-value function V., (s) is an ideal baseline
as it leaves the expectation unchanged while reducing variance (Williams| |1992):

G = Z’ytrt+1|5t = s] 2)
t

where G is the sum of future discounted rewards (refurn). Despite building on the theoretical
framework of PG, Deep PG algorithms rely on several assumptions and approximations for design-
ing feasible updates for the policy parameters. In more detail, these methods typically build on
surrogate objective functions that are easier to optimize. A leading example is TRPO (Schulman
et al.l 2015)), which ensures that a surrogate objective updates the policy locally by imposing a trust
region. Formally, TRPO imposes a constraint on the Kullback-Leibler diverge (KL) on successive
policies 7y, Ty, resulting in the following optimization problem:

mAm (st;ae) | s.t. Dip(mo(-s)l[mo (+]s)) < 0 ®)

Vi (5) =Er,

max E,
6
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where J is a hand-tuned divergence threshold, and A(s, a) = Q(s, a) — V(s) is the advantage func-
tion. In practical implementations, Equation [3]is tractably optimized with additional tricks: (i) a
second-order approximation of the objective, (ii) a mean KL of the current trajectory instead of the
actual KL divergence. Given TRPO’s computational demands, |Schulman et al.|(2017) further “re-
laxes” the optimization landscape by replacing the constraint with the following clipped objective,
providing a significantly faster (i.e., less demanding) yet better-performing alternative over TRPO

max E., {min <7T9(atlst)A(st, a),clip <7r6(at8t), 1—¢€1+ e) A(sy, aﬂ)] 4)

o (at|st) mor (at|st)

Similarly, [Lillicrap et al.| (2016)) uses the deterministic PG theorem (Silver et al., |2014)) for learn-
ing deterministic policies pg(s). DDPG and further optimizations (e.g., TD3) are tightly related
to standard Q-learning (Watkins & Dayanl [1992) and assume having a differentiable action-value
function over actions. Deterministic PG algorithms learn the value parameters as in standard Double
DQN. In contrast, policy parameters are learned under the maxy Er, [Q4(s, po(s))] optimization
problem, where ¢ are the parameters of the critic. Moreover, TD3 addresses the overestimation of
DDPG with additional tricks, e.g., learning two value functions, being pessimistic about the action
value to use for the target computation, and delaying the policy updates.

In summary, Deep PG algorithms build their success on learning value functions for driving the
learning of the policy parameters §. However, significant research efforts have been devoted to
improving policies, while the attention to improving critics appears marginal. Hence, to our knowl-
edge, VES is the first gradient-free population-based approach that works on top of Deep PG to
improve critics without facing the complexities of learning ensembles or policy searches.

2.1 GRADIENT-INFORMED PERTURBATIONS

Policy search approaches generate a population of perturbed versions of the agent’s policy 7y to ex-
plore variations with higher returns (Khadka & Tumer, 2018} [Marchesini & Farinelli, [2022; March-
esini et al., [2021b; |Colas et al.| 2018 |Sigaud, [2022)). To this end, gradient-informed perturbations
(or variations) have been employed for limiting detrimental effects on 7y, exploring small changes
in the population’s action sampling process (Lehman et al.,[2018; Marchesini et al.,2022)). In more
detail, prior methods express the average divergence of a policy at state s over a perturbation w as:

d(mg, w) = [Imo(-]5) = To1w([9)ll, (5)

and use the gradient of such divergence to approximate the sensitivity of 6 over the policy decisions,
which is used to normalize Gaussian-based perturbations. Formally, following|L.ehman et al.|(2018):

Vo, d(mg,w) = Vod(mg,0) + Hg(d(me,0))w (6)

where Hy is the Hessian of divergence with respect to 6. Although simpler first-order approxi-
mations achieve comparable results, gradient-based perturbations add significant overhead to the
training process. Prior work introduced gradient-based variations because evaluating the popula-
tion against detrimental changes is hard. As such, the quality of perturbed policies is assessed over
many trajectories to ensure that they effectively achieve higher returns over arbitrary initializations
(Marchesini et al., |2021a). In contrast, we focus on a critics-based search where high-scale per-
turbations may help the learning process to escape from local optima, achieving better predictions.
Hence, VFS relies on a two-scale perturbation approach to maintain similar value predictions to the
original value function while exploring diverse parameters to escape from local optima.

3 VALUE FUNCTION SEARCH

We introduce a gradient-free population-based search with two-scale perturbations to enhance critics
employed in Deep PG. Ultimately, we aim to show that value functions with better predictions
improve Deep PG primitives, leading to better sample efficiency and policies with higher returns.

Algorithm [T] shows the general flow of the proposed Value Function Search framework. During a
standard training procedure of a Deep PG agent, VFS periodically generates a population P of per-
turbed value networks, starting from the agent’s current critic parametrized by ¢. We first instantiate

"We do not consider the unconstrained penalty-based PPO due to the better performance of the clipped one.
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n copies of ¢ and two Gaussian noise distributions Gpin,max With 0min max standard deviation for
the two-scale variations (lines 3-4). Hence, we sample from the two distributions to apply each per-
turbation to half of the population (lines 5-6). In contrast to single-scale or gradient-based perturba-
tions of prior work (Khadka & Tumer; 2018};[Marchesini et al.|[2021a;|Sigaud, [2022)), the two scales
approach for value networks has the following advantages (1) Gmin maintains similar predictions
to those of the unperturbed critic, similarly to gradient-based variations. Sampling from N (0, onin)
translates into small changes in the value prediction process to find a better set of parameters within
a local search fashion. (ii) Giax is @ Gaussian with a greater standard deviation N (0, oax ) used
to explore diverse value predictions to escape from local optima. (iii) Gaussian-based perturbations
do not introduce significant overhead as gradient-based variations. After generating the population,
VES samples a batch b of trajectories from the agent’s buffer B. There are different strategies for
sampling the required experiences from the agent’s memory based on the nature of the Deep PG al-
gorithm. When using an on-policy agent (e.g., TRPO, PPO), we apply VFS after updating the policy
and value networks. In this way, we reuse the same on-policy data to evaluate whether a perturbed
set of weights has better value prediction (i.e., lower error). Off-policy agents (e.g., DDPG, TD3)
could follow a similar strategy. Still, the reduced size of the mini-batches typically employed by
off-policy updates would result in noisy evaluations. For this reason, we sample a larger batch of
experiences to provide a more robust evaluation. In practice, to compute the prediction errors for
each value network in the population (line 7), we use the typical objective used to train PG critics,
the Mean Squared Error (MSE) (Sutton & Barto, [2018)), whose general formulation is:

1 2
mses, () = 0 % [Vils) = Vi, (5)] %)

where V. (s) is the true value function. However, it is typically unfeasible to access the true V. (s)
and, as in standard training procedures of Deep PG algorithms, we rely on noisy samples of V() or
bootstrapped approximations. In more detail, on-policy updates are particularly interesting, as Deep
PG algorithms typically learn critics with Monte-Carlo methods without bootstrapping the target
value. Hence, performing a supervised learning procedure on (s;, G) pairs, where the return G, is
an unbiased, noisy sample of V. (s) that replaces the expectation of Equation [2| with an empirical
average. We then refer to a perturbed critic as a local improvement of the original unperturbed one
when it achieves a lower error on b. In our context, given a value network parametrized by ¢, a
batch of visited trajectories b, and a perturbation w, we define the value network parametrized by
¢ + w to be a local improvement of ¢ when mse gy, (b) < mseg(b). Moreover, in the limit where
b samples all the trajectories, Gy = Vx(s;), and mseyy.,(b) < msey(b) means that ¢ + w is a
better or equal fit of the actual value function with respect to the original ¢. Crucially, Monte-Carlo
value approximation converges to a local optimum even when using non-linear approximation (Sut-
ton & Barto) [2018). Hence, on-policy VFS potentially maintains the same convergence guarantees
of the baseline To this end, it would be possible to anneal the perturbation scales to zero out the
impact of VES over the training phase. Hence, providing the diversity benefits of VFS early in
the training while maintaining the convergence guarantee of the baseline algorithm within the limit.

Algorithm 1 Value Function Search
1: Given: (i) a Deep PG agent with a value network parametrized by ¢ at training epoch e; (ii)
a buffer B of visited trajectories; (iii) periodicity es for VES and population size n; (iv) scale
Omin,max for the two-scale Gaussian noise G.

2: if e % e; = O then

3 P+ {do,...,¢n} copies of ¢

4: gmin,max — N(Oa Umin,max)

5 (bl:@ — (bz + gmin (ZS@:” <~ (bz + gmax
6: b < Sample a batch of trajectories from B
7. msep < Evaluate P over b as Equation
8 P« (glé%(msep)

9: end if

2We support claims on our perturbation approach with additional experiments in Section
Due to bootstrapping, the same result generally does not apply to temporal difference targets.
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Nonetheless, as discussed in |Ilyas et al.| (2020), Deep PG algorithms deviate from the underlying
theoretical framework. We performed additional experiments in Section |4 to show that maintaining
VES through the entire learning process results in better performance over zeroing out the pertur-
bations. Moreover, in a worst-case scenario where the population search never improves the value
prediction locally, VFS matches the same local optima of the original approach. However, following
the insights of |Fujimoto et al.|(2018)), practical Deep PG algorithms can not theoretically guarantee
to reduce estimation errors or improve predictions outside the batch used for computing the update.

VES addresses most limitations of previous policy search approaches and minimizes the same ob-
jective of the Deep PG critics, leading to the following crucial advantages:

* VES does not require additional environment interactions or hand-designed evaluations for
selecting the best set of parameters in the population.

* MSE is a widely adopted objective for learning value networks, providing an established
evaluation strategy. Moreover, batch computations and parallelization make this process
particularly efficient. Nonetheless, VES is not explicitly designed for MSE, and extending
it to different error measures is straightforward.

* At the cost of adding overhead, the population evaluation may scale to an arbitrarily large
number of samples to improve robustness.

Finally, the parameters with the lowest error replace the current agent’s critic until the next popu-
lation search (line 8). Many Deep RL algorithms employ target networks parametrized by ¢, to
reduce overestimation. In this scenario, we also update the target weights toward the new ones by
using standard Polyak averaging with an @ € (0, 1) weight transfer value: ¢y = a¢ + (1 — @) yg.

Limitations. Here we highlight the limitations of VFS: (i) batched computations and parallelization
do not avoid a marginal overhead induced by the population search. (ii) In an off-policy setting,
VES requires tuning the batch size for the error computation to balance the trade-off between com-
putational demands and the evaluation quality. (iii) There are no guarantees that small-scale pertur-
bations produce a local variation to the original predictions. However, they have been previously
shown effective in doing so (Martin H. & de Lope} |2009), and we confirm this result in SectionE}

4 EXPERIMENTS

The proposed experiments aim at answering the following questions: (i) How do VFS components
affect the training phase. In particular, we investigate when the perturbations are most effective
during the training. (ii) How these components impact the performance and sample efficiency of
VES-based algorithms. (iii) How VFS influences Deep PG primitives, such as gradient estimates,
their variance, and value predictions, to motivate performance improvement.

We investigate the performance of VFS on the on-policy PPO, the off-policy DDPG, and TD3 al-
gorithms. We compare over the baseline DDPG, PPO, TD3, SUNRISE (Lee et al., 2021) (a recent
ensemble approach), and Supe-RL (Marchesini et al.,2021a)) (a recent policy search approach). We
conduct our experiments on five continuous control tasks based on MuJoCo (Brockman et al.|[2016)
(in their v4 version), which are widely used for comparing Deep PG, ensembles, and policy search
approach (Schulman et al., 2017; Lillicrap et al., 2016; Lee et al., {2021} |Fujimoto et al., 2018).

Data are collected on nodes equipped with Xeon E5-2650 CPUs and 64GB of RAM, using the hyper-
parameters of Appendix E. Considering the importance of having statistically significant results
(Colas et al., 2019)), we report the average performance of 25 runs per method, with shaded regions
representing the standard error. Such a high number of experiments motivates slightly different
results over the original implementations of DDPG, TD3, and PPO.

4.1 ANALYZING VFS COMPONENTS

This analysis considers data collected in the Hopper task with VFS-PPO, as we achieved comparable
results in the other setups. Given our intuitions, the two-scale perturbations have different effects on
the critic. We expect o, perturbation to result in networks with similar predictions. In contrast,
omax should generate networks with more diversified values to escape local optima. Appendix A
shows the average difference between values predicted by the original critic of the baselines and
their variations, confirming the role of the two perturbations.
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Table 1: Performance at 1M steps for Hopper, Walker, Swimmer, and 2M steps for HalfCheetah,
and Ant in PPO, DDPG, TD3 experiments. We show the average return and standard deviation over
the 25 runs and the percentage of steps required by VFS methods to reach the peak performance of
the corresponding baseline. We report the best number for the ensemble SUNRISE at 2 x 10° steps
(Lee et al., 2021)), comparing over a SAC implementation of VFS and the policy search Supe-RL.

PPO VFS-PPO DDPG VFS-DDPG
Avg. Return Steps % Avg. Return Steps %
Hopper 2287 £ 805 2878 + 695 -48.5 Hopper 1734 £ 810 2397 + 637 -34.9
Walker 2384 £ 1074 2905 + 932 -12.4 Walker 1753 + 858 2492 + 755 -38.2
Swimmer 80 £+ 26 86 + 22 -38.6 Swimmer 46 +£2 49 +1 -36.1
HalfCheetah 2560 & 767 3471 + 252 -38.8 HalfCheetah 7948 + 2702 9208 + 711 -45.4
Ant 4333 £ 677 5403 £ 120 -27.1 Ant 1060 + 938 2060 + 446 -24.4
TD3 VFS-TD3 VFS-SAC _Supe-RL (SAC) SUNRISE
Avg. Return Steps % Avg. Return
Hopper 255841029 31854 398 -44.8 Hopper 2573 + 420 992 + 360 2643 + 472
Walker 3773 £ 1052 4185+ 860 -58.36
Swimmer 123 427 B4l 340, Walker 2101 + 798 1932 + 842 1236 + 1123
HalfChcetal 10732 4 1201 12430 & 551 583 HalfCheetah 7145 + 822 7177 + 1226 4501 -+ 443
‘ Ant 1667 + 481 1398 + 676 1502 + 483

Ant 4003 £727 4669 + 382 -20.4

Moreover, we expect omax variations to be rarely bet-
ter than o,,;, variations and the original critic, as dras-
tic changes in the value predictions serve to escape from
local optima. To confirm this, Figure [2] shows the aver-
age cumulative number of times on which o, (blue) or
Omax (Orange) critics’ error is the lowest in the population
compared to the original critic (y-axis), over the periodi-
cal searches (x-axis). The linear growth of the oy,;, bars 1001
indicates that such perturbations produce better variations
OvVer omax and the original critic through the training. In
contrast, oyax perturbed networks have more impact in
the early stages of the training (where the critics’ predic-
tions are seldom accurate) and occasionally achieve lower
error in later stages of the training.
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Figure 2: Cumulative number of times
when a 0min,max variation improve the
critic and the other perturbation.

4.2 EMPIRICAL EVALUATION

Here we discuss the performance and sample efficiency improvement of VFS-based algorithms. In
particular, we show: (i) the average return at convergence and (ii) the percentage of samples required
by VFS implementations to achieve the peak performance of the Deep PG baselines. Table [T]shows
the results for PPO, VFS-PPO, DDPG, VES-DDPG, TD3, and VFS-TD3 (the VFS-TD3 algorithm
applies the search to both critics). In each table, we highlight the highest average return in bold
and refer to Appendix B for an exhaustive overview of the training curves. Generally, VFS-based
algorithms significantly improve average return and sample efficiency, confirming the benefits of
enhancing critics during Deep PG training procedures. On average, VFS-PPO achieves a 26% return
improvement and uses 33% fewer samples to reach the peak performance of PPO. VFS-DDPG has a
29% return improvement and 35% improvement in sample efficiency. Moreover, VES-TD3 achieves
an average 19% return improvement and 43% fewer samples to reach the peak performance of TD3.
The latter results are significant as TD3 employs several tricks to address the poor performance of
DDPG, and it is known to be a robust Deep PG baseline (Fujimoto et al., 2018).

We also compare VFS over Supe-RL and the ensemble method SUNRISE by considering its best
number reported at 2 x 10° steps. We use the same population parameters as in our VFS-TD3 im-
plementation and Supe-RL, while the SAC parameters are the same as the original work (Haarnoja
et al.| 2018)E| Crucially, the VFS implementation shows comparable or superior average perfor-
mance over such additional baselines (=13% and ~24% on average, respectively), confirming the
merits of our framework. Finally, Appendix C contains: (i) a comparison of the computational

*We do not consider the Swimmer environment as prior work has not employed it.
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Figure 3: Left: influence of different population sizes in VFS-PPO. Increasing the size of the pop-
ulation leads to higher performance. Middle: comparison between PPO, VFS-PPO, and VFS-PPO
with annealing perturbations. Linearly scaling our perturbations to zero leads to lower performance
with respect to the proposed VFS-PPO with fixed permutations. Right: comparison of two VFS-
PPO implementations that consider only small or big scale variance for the permutations.

overhead for VFS, Supe-RL, and SUNRISE, discussing the negligible overhead of VFS over such
baselines. (ii) A comparison with a baseline PPO that considers a higher number of gradient steps
to match the computational demands of VFS.

4.2.1 ADDITIONAL EXPERIMENTS

This section shows: (i) the effects of different population sizes; (ii) additional experiments to show
that annealing variations have lower performance than the proposed VFS; (iii) how VFS behaves
with considering only o,i,, Or 0pax perturbations. Similarly to Section 4.1, we show the results of
VES-PPO in the Hopper domain as they are also representative of the other setups.

Figure |3| on the left shows the performance with increasing sizes for the population (i.e., 4, 8, 12,
20). Intuitively, increasing the size of the population leads to higher performance. However, our
experiments show no significant advantage in considering a population of size greater than 10.

In the center, Figure [3| compares PPO, VFS-PPO, and VFS-PPO with annealing on the perturba-
tions. In more detail, we linearly scale the effects of the perturbations to zero towards step 9 x 10°.
As discussed in Section 3, after zeroing out VFS’s perturbations, our approach is equivalent to
the considered Deep PG baseline and, as such, has the same convergence guarantee in the limit.
Nonetheless, in practice, VFES-PPO without permutation annealing achieves superior performance
as the critic’s population search keeps improving the Deep PG primitives.

Figure [3] on the right show the performance of VFS with only small or big-scale perturbations.
The latter permutations have more impact in the early stages of the training and allow for higher
returns over both PPO and VFS-PPO. However, such benefits rapidly fade as the training progresses,
resulting in performance similar to the PPO baseline. Conversely, small-scale variations achieve
higher returns in the middle stages of the training. However, the lack of big variations to escape
from local optima only leads to marginally superior performance over PPO. In contrast, the proposed
two-scale VFS-PPO combines the benefits of both permutations. Such results are further motivated
by an additional analysis of the gradient estimate in Appendix D.

4.3 DEEP PG PRIMITIVES ANALYSIS

We analyze how VFS influences Deep PG primitives to motivate performance improvement. To this
end, Figure [ left and middle show the quality of the gradient estimates and their variance at the
initial and middle stages of the training (respectively), and the mean square error of PPO’s critic and
VES-PPO one. Regarding gradient estimates, PPO’s common implementations estimate the gradient
using an empirical mean of ~ 20% samples (marked in the plots with a vertical line). Since the Deep
PG agent successfully solves the task attaining a high reward, these sample-based estimates are
sufficient to drive successful learning of the policy parameters.

We measure the average pairwise cosine similarity and standard deviation between 30 gradient mea-
surements taken from the PPO and VFS-PPO models after 10° and 5 x 10° steps in the Hopper task
with an increasing number of state-action pairs. A cosine similarity € (0, 1] represents a positive
similarity (where 0 means that the vectors are orthogonal and 1 means that the vectors are paral-
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Figure 4: Left, Middle: analysis of gradient estimate and variance. We measure the average pairwise
cosine similarity (y-axis) between 30 gradient estimates with a growing number of state-action pairs
(x-axis). Each algorithm averages over 25 models collected during the training at 10° and 5 x 10°
steps. A higher correlation with a lower variance of VFS-PPO translates into better performance of
the baseline (Figure|[T). Right: average MSE of such models over the training phase.

lel). Hence, higher correlations indicate the gradient estimate is more similar to the actual gradientE]
Following the PG’s underlying theoretical framework, we also know that a lower variance in the
gradient estimate typically translates into better performance, which is why value networks are em-
ployed in Deep PG. Crucially, VFS-based approaches show, on average, a =~ 0.1 higher correlation
and lower variance in the sampling regime used during the training. Following the intuitions of
the cosine similarity measure, such an improvement is significant and motivates the performance
benefits of VFS-based approaches. We also performed a two-sample t-test to test whether the mean
gradient estimates of each baseline and its VFS implementation are statistically different. In more
detail, we considered the mean and standard deviation of the estimates at the sample regimes used
for the algorithms (i.e., 2048 for PPO) and our sample size of 30 trials. To summarize, we can reject
the equality of the average gradient estimates between PPO and VFS-PPO in the 10° and 5 x 10°
experiments with 95% and 99.9% confidence levels, respectively (t-stat 2.22 and 5.05).

Moreover, Figure @ on the right shows the average MSE of the 25 trained models for PPO and VFS-
PPO computed every 10° step. To assess the quality of the critics’ predictions, we compute the
average MSE between PPO and VFS-PPO critics and the actual return of 103 complete trajectories
in the environment (i.e., we compute the average MSE over 10° evaluation episodes every 10° step).
To reduce the scale of the plot and obtain a better visualization, we normalize the resulting MSE by
the number of considered steps. Our results show that critics enhanced with VFS consistently result
in lower MSE, which leads to the previously discussed improvements in the gradient estimates
Hence, our analysis of key Deep PG primitives motivates the performance improvement of VFS-
based algorithms. Appendix D shows the same analysis for VFS-DDPG and VFS-TD3, confirming
our results.

5 RELATED WORK

Ensemble methods have been used to improve policy performance in Deep RL (He et al., 2022}
Lee et al., 2021} |Yang et al., [2022; [Wu & Li, [2020; Ren et al.| [2021)) combining the predictions of
multiple learning models. However, the benefits of these approaches over population-based ones
are unclear, as the numerous training actors (and/or critics) introduce a significant memory footprint
and non-negligible overhead at training and inference time. In addition, weighting the importance of
different predictions is not straightforward. Hence, ensemble algorithms in Deep RL are unsuitable
for: (i) deployment on-device where memory is limited, (ii) real-time systems where inference time
is crucial, or (iii) training high-dimensional DNNs where parallel computation may not be possible.
In contrast, population-based approaches are straightforward to implement and have been used to
combine the exploration benefits of gradient-free methods and gradient-based algorithms (Khadka &
Tumer, |2018; Marchesini et al., [2021a} [Sigaud, [2022) for policy parameters search. In more detail,
ERL (Khadka & Tumer, 2018) employs a Deep PG agent and a concurrent population that includes
the gradient-based agent to explore different policy permutations. The agent trains following its

3 Although obtaining an empirical estimate of the true gradient can improve Deep PG performance further,
this would require orders of magnitude more samples than the ones used in practical applications. Using such
an amount of samples is unfeasible due to the computational demands (Ilyas et al.| [2020).

®Using more trajectories for approximating the true value function would lead to a better approximation
and higher MSE for both approaches in the early stages of the training where predictions are less accurate.
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gradient-based algorithm and shares a memory buffer with the population to learn from more diver-
sified samples. However, ERL’s dropout-like permutations bias the population’s performance in the
long run. Inspired by ERL, many policy search approaches emerged in the literature (Colas et al.,
2018; Bodnar, 2020; |Alois Pourchot, [2019; [Marchesini et al.,[2021a). In more detail, GEP-PG (Co-
las et al.l 2018)) uses a curiosity-driven approach to enhance the experiences in the agent’s memory
buffer. Moreover, Proximal Distilled ERL (PDERL) (Bodnar, 2020) introduces novel gradient-based
permutations to address destructive behaviors of biologically-inspired perturbations that could cause
catastrophic forgetting (Lehman et al., [2018)). Finally, Super-RL (Marchesini et al., [2021a) com-
bines the intuitions of the previous population-based approaches, proposing a framework applicable
to (possibly) any DRL algorithms that do not exhibit detrimental policy behaviors. However, due
to their policy-oriented nature, these approaches assume a simulated environment to evaluate the
perturbed policies, which increases the sample inefficiency of Deep RL algorithms. Such additional
interactions are also task-specific as they must cover a broad spectrum of behaviors to ensure a robust
evaluation. As discussed in Marchesini et al.| (2021a)), such behavior diversity is crucial to ensure
that a perturbed policy improves the original actor, not only in particular environment initializations.
In addition, current policy search methods introduce gradient-based perturbation (that has a non-
negligible overhead, as further discussed in Section [2)) to ensure that the population’s predictions do
not drastically diverge from the original policy. To summarize, population-based searches address
the issues of ensemble methods by exploring different behaviors for the policies but disregarding
value networks. In addition, recent work (Lyle et al., [2022) discussed the capacity loss of agents
that have to adapt to new prediction problems when discovering new sources of payoffs. As such,
Deep PG’s critics have to adjust their predictions rapidly through the training. These issues further
motivate the importance of applying VES in the training routines.

6 DISCUSSION

Ilyas et al.[| (2020) recently showed that critics employed in Deep PG algorithms for value predic-
tions poorly fit the actual return, limiting their efficacy in reducing gradient estimate variance and
driving policies toward sub-optimal performance (Fujimoto et al.,[2018)). Despite improving Deep
PG performance, population-based search methods have recently superseded ensemble learning due
to their computational benefits. However, these approaches typically need more practical investi-
gations to understand their improvement. Moreover, previous population search frameworks have
been devoted to exploring policy perturbations, disregarding critics and their crucial role in Deep
PG.

To our knowledge, VFS is the first gradient-free population search approach to enhance critics and
improve performance and sample efficiency. Crucially, VES can be applied to (possibly) any Deep
PG algorithm and aims at finding a set of weights that minimize the same critic’s objective. More-
over, our detailed analysis of PG primitives in Section 4.3 motivates the performance improvement
of the gradient-based agent due to VFS. In addition, our analysis suggests that the gap between
the underlying theoretical framework of Deep PG and the actual tricks driving their performance
may be less significant than previously discussed [Ilyas et al.[| (2020). Hence, VFS opens up sev-
eral exciting research directions, such as investigating the theoretical relationships between RL and
practical Deep RL implementation. Empirically, VFS also paves the way for novel combinations
with policy search methods to provide a unified framework of gradient-free population-based ap-
proaches. Finally, given the wide application of value networks in Deep Multi-Agent RL [Rashid
et al.| (2018); Marchesini & Farinelli| (2021)); [Wang et al.| (2021)), it would be interesting to analyze
the performance improvement of VFS in such partially-observable contexts.

6.1 CONCLUSION

VES introduces a two-scale perturbation operator voted to diversify a population of value networks
to (i) explore local variations of current critics’ predictions and (ii) allow to explore diversified
value functions to escape from local optima. The practical results of such components have been
investigated with additional experiments that also motivate the improvement in sample efficiency and
performance of VFS-based algorithms in a range of standard continuous control benchmarks. Our
findings suggest that improving fundamental Deep PG primitives translates into higher-performing
policies and better sample efficiency.



Published as a conference paper at ICLR 2023

7 ACKNOWLEDGEMENTS

This work was partially funded by the Army Research Office under award number W911NF20-1-
0265.

8 ETHICS STATEMENT

The proposed Value Function Search does not focus on experiments involving human subjects and
does not require sensitive data that involve sex, gender, and diversity analysis. Hence, we do not
consider the gender dimension, privacy, data governance issues, or any primary ethic concern high-
lighted in the ICLR Code of Ethics[] to be relevant.

However, according to the "Ethics Guidelines for Trustworthy Artificial Intelligence” report pub-
lished by the High-Level Expert Group on Al of the European Commissionﬂ ethical consideration
has to take into account the environment and the sustainability of Al systems. Regarding the en-
vironmental impact, it is crucial to foster sample efficiency (i.e., reducing the training time for the
agents, hence the computational resources used to train them) of Deep RL to lower energy consump-
tion and related emissions. In this direction, VFS leads to significant benefits in sample efficiency,
which reduces the environmental footprint of VFS-based approaches by a considerable margin.

In more detail, we employed the Machine Learning CO2 impact calculator (Lacoste et al.,|2019) to
estimate the CO2 emissions of our experimentsﬂ According to our hardware, the carbon efficiency
of the provider, and the length of our experiments, we computed a total emission of ~ 52.3 kg CO2.
‘We plan to cope with such emissions using Treedo an online service that allows us to plant trees
to cope with our carbon footprint.

9 REPRODUCIBILITY STATEMENT

Significant efforts have been made to ensure the reproducibility of VFS. Section 3 detail the flow
of VFS-based algorithms with pseudocode and detailed explanations. We also highlight possible
limitations of our approach in Section 3.1. Moreover, Section 4 states our experimental setup, while
supplemental material contains a detailed overview of the considered hyperparameters.

"https://iclr.cc/public/CodeOfEthics

8https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

We note that this is not a precise measurement as it is not trivial to map energy consumption to
CO2 emissions (i.e., the carbon footprint). To this end, we employed open-source electricity maps (e.g.,
https://www.electricitymaps.com) to estimate better how carbon-intensive our experiment’s electricity is.

https://www.treedom.net
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A EFFECTS OF PERTURBATIONS ON VFS-PPO, VFS-DDPG, VFS-TD3

This section shows the efficacy of using oyin,max t0 maintain similar predictions and explore di-
versified ones, respectively. In this direction, Figure 5] shows the average difference between values
predicted by the original critic of the PPO algorithm and its two perturbations (o, = 0.000005,
omax = 0.0005) over 100 episodes (i.e., each box is an episode). In particular, we report the data
collected in the initial stage of the training (i.e., at step 10°), where green boxes indicate slight
variations while red ones represent the highest difference in our evaluation. In more detail, Figure
E] shows the effects of our perturbations at different stages of the training (i.e., at 100k, 500k, 1M
steps) for VFS-PPO, VFS-DDPG, VFS-TD3.

The values of the o,i,, perturbed network differ from the original critic by a small margin. In con-
trast, the critic perturbed with o, achieves significantly different values. Hence, the proposed
two-scale perturbation approach leads to the desired outcome, and o,,;,-based variations confirm
similar results over computationally demanding gradient-based perturbations. Interestingly, our ex-
periments with different algorithms consider the same set of hyperparameters for the mutation oper-
ators (see Appendix E), suggesting that VFS does not require extensive tuning to enhance existing
Deep PG algorithms.

B TRAINING CURVES

Following the results in Section 4.2, Figure [6| shows the average return during the training without
the five best and worst performing modell''| We report the results for each environment in the dif-
ferent rows, while each column contains a different set of algorithms (i.e., VFS-PPO and PPO in
the first column, VFS-DDPG and DDPG in the second column, VFS-TD3 and TD3 in the last one).
As discussed in the main paper, VFS-based algorithms achieve, on average, higher returns. Inter-
estingly, the worst-trained model for VFS-based approaches typically achieves higher returns than
the best model of the baselines. In addition, VFS-based methods show a lower standard deviation,
as reported in Table 1 of the main paper. Moreover, they significantly improve sample efficiency,
reaching the peak performance of the baseline algorithms (i.e., PPO, DDPG, TD3) in a fraction of
the steps.

We performed additional experiments in the Humanoid task for 2 million steps. We aim to show that
population-based approaches can scale to more challenging tasks maintaining the same population
parameters. Figure|7|shows the performance of PPO and VFS-PPO. Interestingly, we note that VES
leads to significantly higher results in this complex domain, suggesting that the limitations of critics
in Deep PG algorithms profoundly impact the overall policy return.

C COMPUTATION OVERHEAD

In this section, we discuss the computation overhead of ensemble methods and population-based
ones. In particular, we compare the overhead of training and inference time introduced by Supe-RL,
SUNRISE, and VFS, considering M = 10 models. The training overhead is comparable for all
the approaches as standard Deep RL benchmarks do not require high-dimensional DNNs or com-
putational demanding architectures that hinder parallelization. Nonetheless, in more complex tasks
requiring high-dimensional DNNSs, it could be computationally unfeasible to parallelize the training
models of ensemble methods, especially during backpropagation. As reported by the Supe-RL’s
authors (Marchesini et al., [2021a)), the additional environments interactions of policy search meth-
ods lead to a maximum 6% overhead even considering parallelization with a population of size M.
In contrast, VFS does not require multiple training models or additional environment interactions,
leading to a negligible overhead for the training procedure (i.e., it simply requires additional forward
DNNs propagations).

Regarding inference time, policy and value network searches do not involve multiple predictions
(except in the periodical search, which has negligible overhead due to batched computations), main-
taining the same inference time of the original Deep PG baselines. In contrast, as detailed by SUN-

""We removed the best and worst seeds to avoid considering the ones that lead to particularly high or low
performance. The same consideration holds for Figure 3, 8.
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Figure 5: Efficacy of the 0min,max scales in modifying PPO (on the first row), DDPG (on the second
row), and TD3 (on the third row) critics to achieve similar predictions or more diversified ones to
escape local optima, respectively. We observe the average difference (A) between values predicted
by the critics and the oin,max variations over 100 episodes in the Hopper environment shown as
different boxes.

RISE’s authors 2021), their ensemble agents require up to 21/ x additional inference
time.

To summarize, gradient-free search methods are generally less computationally demanding than
ensemble ones. Hence, the superior return of VFS, sample efficiency, and computational benefits
further confirm the merits of introducing a critics’ search-based approach.
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Figure 6: Comparison of PPO, DDPG, TD3, and their VFS implementation in common continuous
control benchmarks on each row. Each column (i.e., each couple of algorithms) shows the average
return during the training over 25 runs. VFS-based implementations improve average return and

Avg. Return

Avg. Return

Avg. Return

== VFS-PPO

400k

Steps

PPO

== VFS-DDPG

200k 400 600K

Steps

Hopper-v4

200k 400 600k

Steps
Walker2d-v4

Steps

Swimmer-v4

0k w M

Steps
HalfCheetah-v4

sample efficiency of the baseline Deep PG algorithms.

In addition, Figure [§] shows the performance of a PPO implementation that uses the size of the
VES population as additional gradient steps for its critic. Performing more gradient steps on the
critic does not lead to significant advantages over the baseline PPO as the critic learns to fit better
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Figure 7: Comparison of PPO its VFS implementation in the Humanoid task.
the sampled batch. In contrast, VFS is designed to explore local and global variations of the critic
to avoid local optima where gradient-based learning typically gets stuck. For these reasons, this

additional evaluation further confirms the merits of VFS.

== VFS-PPO = PPO = PPO (additional gradient-steps)

200k 400k 600k 800k

Figure 8: Comparison between VFS-PPO, PPO, and a PPO implementation that uses the size of the
population as additional gradient steps for the critic.

D ADDITIONAL DEEP PG PRIMITIVES ANALYSIS

In Section 4.3, we analyzed the improvement of VFS-PPO in terms of gradient estimate, their vari-
ance, and the mean squared error of the critic. Such an analysis serves to motivate the performance
improvement of VFS-based algorithms. In this section, we report the same comparison for VFS-
DDPG and VFS-TD3 to confirm the proposed framework’s benefits further.

Figure [9] reports the same results for our Deep PG primitives analysis for DDPG and TD3. We
measure the average pairwise cosine similarity and its standard deviation between 30 gradient mea-
surements taken from the algorithms at 105 and 5 x 10° steps in the Hopper task with an increasing
number of state-action pairs. Crucially, VFS-DDPG and VFS-TD3 show a higher correlation and
lower variance in the typical sampling regime used during the training (i.e., mini-batches of size 64
or 128), motivating their performance improvement over the baselines. Similarly to the PPO case,
we performed a two-sample t-test to test whether the mean gradient estimates of each baseline and
its VFS implementation are statistically different. To summarize, we can reject the equality of the
average gradient estimates between DDPG and VFS-DDPG with a 95% confidence level in the 10°
and 5 x 10° experiments (t-stat 2.08 and 2.01). In the case of TD3 and VFS-TD3, we can reject
the same hypothesis with a confidence level of 90% (t-stat 1.73 and 1.66). The latter results are
interesting as they suggest that TD3’s implementation tricks to improve performance benefit policy
learning as they lead to gradient estimates that are more similar to the VFS ones. Moreover, the
right column shows the average MSE of our models computed every 10° step. Similarly to the PPO
experiments, we use the actual return for 10% trajectories in the environment to approximate the true
value function.

These results follow the trend of Section 4.3, where VES critics have lower MSE. Interestingly, we
also note that TD3 typically achieves a higher gradient estimate correlation with lower variance over

16



Published as a conference paper at ICLR 2023

Step 100k Step 500k Value Function Loss
. 8-
03 -- DDPG 06- -- DDPG -- DDPG
z 04 Ours > Ours 7 — VFs
E ] 6-
F 03 E 04-
2 02 2 w3
2 2 2
S S Z4-
3 01 3 02- ry
5 g Z3-
E 00 £
a &~ 2
0.1 o 00- 2
< < 1-
02 — ¥ Ty e
0 02~ P S —
7 e 128 256 si2 1024 2048 64 128 256 s12 1024 2048 100k 200k 300k 400k 500k 600k 700k 800k 900k
N° (s, a) pairs N° (s, a) pairs Steps
Step 100k Step 500k Value Function Loss

%

Avg. Pairwise Cos Similarity
o

e
=S

o
>

=

-- TD3

s12 1024 2048

128 256
N° (s, a) pairs

Avg. Pairwise Cos Similarity

°

o
S

o
=

64

== TD3

Ours

128 256 sz 1024 2048

N° (s, a) pairs

0.7-

0.6-

0.5-

w

£ 04-

=

Zo3

02-

0.1-

0.0-

100k

- TD3
— VFs

200k

500k 600k

Steps

300k 400k

700k 800k 900k

Figure 9: Analysis of gradient estimate and variance (left, middle) in the Hopper task for DDPG
and VFS-DDPG in the first row, TD3 and VFS-TD3 in the second row. We measure the average
pairwise cosine similarity (y-axis) between 30 gradient estimates which use a growing number of
state-action pairs (x-axis). For each algorithm, we use the average over the 25 models collected
during the training runs at 10° and 5 x 10° steps. The higher correlation with a lower variance of
VFS-based implementations translates into better performance of the Deep PG algorithm. Average
MSE of such models over the training phase (right).

DDPG, which motivates using two value networks to achieve better performance. Our analysis of
key Deep PG primitives for DDPG and TD3 confirms the main paper’s results.

In addition, we performed the same gradient estimate analysis on two VES implementations that
only employ small or big perturbation operators. Figure[I0] shows the results of such an investiga-
tion. In particular, VFS with only small perturbations slightly improves over the baseline PPO in the
different stages of the training. However, it can not achieve the higher similarity of the VFS-PPO
that considers both perturbations. In contrast, VFS with only big perturbations is characterized by
a higher correlation in the initial stages of the training. At the same time, its efficacy significantly
decreases later in the training phase. Moreover, considering only such big-scale variations typically
leads to higher gradient estimate variance. Crucially, this additional gradient estimate analysis con-

firms the results of Figure [3| and further motivates using our two-scale perturbations to tackle both
local and global variations at the same time.

E HYPERPARAMETERS

We performed an initial grid search among common hyper-parameters from prior work (Schulman
et al.| [2017; [Lillicrap et al., [2016; Fujimoto et al.l 2018 Marchesini et al.,2021a). This evaluation
led us to use similar DNN architectures for all the algorithms in the environments, i.e., 2-ReLLU layer
MLP with 64 hidden units each to model actors and critics for PPO and the same structure but with
256 hidden units for DDPG, TD3. Table [2] reports the other hyperparameters shared across all the
experiments. Note that missing parameters are the same as the baseline algorithm (e.g., VFS-PPO
values are the same as PPO, and TD3 shares the missing parameters with DDPG). Moreover, all the
VFS-based implementations consider the same values for the critic’s search.
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Table 2: Hyperparameters for our experiments

Algorithm Parameter Value
PPO e clip 0.2
5y 0.99
update epochs 10
samples per update 2048
mini-batch size 64
entropy coefficient 0.001
Ir 0.0003/0.0001
DDPG 5y 0.99
buffer size 1000000
mini-batch size 128
actor Ir 0.0001
critic Ir 0.001/0.0003
T 0.005
TD3 actor noise clip 0.5
delayed actor update 2
VFS population size 10
Omin 0.000005
Omax 0.0005
2048
es 2048 steps
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