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Abstract

In this work we present the Consistency-001
Rebalanced Accuracy (CoRA) metric, improv-002
ing the reliability of Large Language Model003
(LLM) scores computed on multiple choice004
(MC) benchmarks. Our metric explores the005
response consistency of the LLMs, taking ad-006
vantage of synthetically-generated questions007
with altered answer choices. With two interme-008
diate scores, i.e. Bare-Minimum-Consistency009
Accuracy (BMCA) and Consistency Index (CI),010
CoRA is computed by adjusting the multiple-011
choice question answering (MCQA) scores012
to better reflect the level of consistency of013
the LLM. We present evaluations in differ-014
ent benchmarks using diverse LLMs, and not015
only demonstrate that LLMs can present low016
response consistency even when they present017
high MCQA scores, but also that CoRA can018
successfully scale down the scores of inconsis-019
tent models.020

1 Introduction021

Despite the current popularity of Large Language022

Models (LLMs), and the undeniable capabilities023

that they have demonstrated to solve very complex024

real-world problems, it is also the real truth that025

there is yet a lot to be done in terms of understand-026

ing and measuring precisely their capabilities and027

risks to deploy reliable and liable applications.028

The most used approach to evaluate LLMs is029

to measure its performance on question-answering030

(QA) benchmark datasets (or simply benchmarks),031

i.e. datasets containing questions (aka prompts)032

with their respective expected outputs, where the033

outputs generated by the LLM are compared to the034

expected outputs from the benchmark, resulting in035

univariate scores that are used to rank and evaluate036

the LLMs. A common way to structure QA bench-037

marks is to rely on multiple choice (MC) questions,038

which is not only a widely adopted method to evalu-039

ate human for several knowledge-testing objectives,040

but also has the advantage of being a very simple 041

way to compute right and wrong answers. 042

Although the research community has been 043

highly active in investigating the limitations of cur- 044

rent benchmarking practices, and several issues 045

have already been identified for MC evaluations, 046

such as choice biases, variability to rewordings, in- 047

consistent confidence, among others (Zheng et al., 048

2024; Reif and Schwartz, 2024; Ye et al., 2024), we 049

believe that there is still a gap in better quantifying 050

the capabilities of an LLM. Given that the most 051

used method to evaluate LLM on MC benchmarks 052

is to compute the ratio of matches between the re- 053

sponses of the LLM against the correct alternatives, 054

an approach that we refer to MCQA, we think that 055

this approach is lacking in providing a realistic and 056

informative evaluation whether the LLM is actually 057

knowledgeable about the test questions, or if that 058

the scores are a by-product of issues such as train- 059

ing data contamination or random guesses given 060

the stochastic nature of inference algorithms. 061

In this work we argue that computing response 062

consistency is key to have metrics that are able 063

to present a more reliable score for the evalua- 064

tion of LLMs on MC benchmarks. As already 065

demonstrated, LLMs can suffer from inconsisten- 066

cies when subjected to variations in the input, es- 067

pecially when the set of presented alternatives is 068

slightly modified with reorderings or changes in 069

the set of distractors (Pezeshkpour and Hruschka, 070

2024; Wang et al., 2025). Notice that distractors 071

consists of the alternatives in a MC question that 072

are not correct, so usually a MC question is com- 073

posed with a question and a set of choices, where 074

there is one correct choice1 and one or more dis- 075

tractors. Thus, it is quite easy to synthetically gen- 076

erated altered questions by playing with the set of 077

distractors, while keeping the correct choice. 078

1Although it is possible to have more than correct choice
in a MC question, we delimit the scope of this work for cases
with only one correct alternative.
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Based on generating altered sets of questions079

with modified distractors (or simple reorderings) in080

the choices, a set to which we refer as the divergent081

questions, we propose the Consistency-Rebalanced082

Accuracy (CoRA) metric to better reflect the level083

of consistency of the LLM on the MC benchmark.084

The metric is based on two intermediate metrics, i.e.085

Bare-Minimum-Consistency Accuracy (BMCA)086

and Consistency Index (CI), where the first is used087

to compute the accuracy according to a specified088

minimum level of consistency, and the second com-089

putes the gap of accuracy between the score on090

the original benchmark, i.e. the MCQA method,091

and the BMCA(1.0), the accuracy for 100% con-092

sistency. The CoRA score is then computed by093

scaling the related MCQA score with the value094

computed with CI.095

We evaluate CoRA in different popular bench-096

marks, with both open source and a commercial097

LLM, and observe that CoRA tends to reflect more098

realistic distribution of scores according to the con-099

sistency level of the LLMs. That is, with BMCA100

evaluated with different levels of minimum consis-101

tency, we observe that some top-performing LLMs102

present a drastic decrease of accuracy, and reach103

very poor performances with BMCA(1.0), indi-104

cating that the scores with MCQA and the other105

baselines are not reliably reflecting the consistency106

of the LLM. Consequently, scaling down that score107

with the consistency index CI results in a more108

faithful measurement of the capabilities of the109

LLM: the CoRA metric.110

We believe that this paper not only contributes111

to improve the evaluation of LLMs in MC bench-112

marks, but also in emphasizing that the use of re-113

sponse consistency evaluation is a viable and nec-114

essary approach to provide more faithful bench-115

mark evaluation scores. We show an LLM such as116

GPT4o can present a drop of at least 0.10 points117

in accuracy, comparing MCQA with BMCA(1.0),118

showing that even this top-performing LLM can119

be ‘unsure’ about the correct answer for about 14%120

of the correct response. More concerning is that121

models that perform close to GPT4o in MCQA122

score, such as MedLlama3, can present very low123

consistency levels, making the CoRA score to be124

less than half of the original MCQA score. In our125

opinion, it is mandatory to include consistency eval-126

uation before releasing any score computed on an127

MC benchmark.128

In order to make our research accessible129

by the community, we are publicly releasing130

the source code for computing CoRA scores: 131

http://anonymous4now.github.com. 132

2 Related Work 133

Understanding well the capabilities of LLMs is key 134

for deploying safe, liable, end-user applications, 135

and several efforts have been made towards im- 136

proving the evaluation of such models (Lin and 137

Chen, 2023; Wang et al., 2024b; Lei et al., 2024). 138

Although we can see some works focusing on the 139

evaluation of open-end questions (Myrzakhan et al., 140

2024), multiple-choice (MC) evaluation is a com- 141

mon practice for mainstream models (Singhal et al., 142

2023; Jiang et al., 2023; Nori et al., 2023; Dubey 143

and et al, 2024). Multiple-choice questions can 144

be more objectively evaluated as opposed to open 145

questions, the evaluation for which can be difficult 146

and subjective even for human evaluators. Further- 147

more, MC evaluation is a widely-used practice to 148

evaluate proficiency of humans in several areas, for 149

instance medical and law domains (Lesage et al., 150

2013; Curtis et al., 2013; Grazziotin-Soares et al., 151

2021). It is thus natural to rely on a similar evalua- 152

tion process to measure the proficiency of LLMs. 153

It is well known, though, that there is room to 154

make MC evaluation more reliable and believable. 155

Some efforts have been made in trying to under- 156

stand the limitations of MC evaluation focused on 157

confidence levels, either considering the logits of 158

the neural networks or self-confidence scores pro- 159

vides by the LLM itself (Ye et al., 2024). In (Wiegr- 160

effe et al., 2024), an analysis on how the weights of 161

transformers react to predict a correct answer is pre- 162

sented. The correlation between model confidence 163

(probability outputs) and model self-confidence (a 164

confidence level expressed by the model) have ex- 165

plored in (Kumar et al., 2024), which show that the 166

LLMs usually present low to moderate correlation. 167

Others have focused on identifying possible biases 168

that can be exhibited by the LLM, such as selection, 169

token, and label biases (Zheng et al., 2024; Reif 170

and Schwartz, 2024). 171

Another group of researchers focused on under- 172

standing the sensibility of the LLM according to 173

changes in the input. In (Mirzadeh et al., 2024), the 174

authors show that LLMs are negatively impacted 175

by changes in the input question. In this case, the 176

model performs significantly worse when only the 177

numbers are changed in the input for math-related 178

questions. Assuming that LLMs can be affect by 179

changes in the input, the work presented in (Acker- 180

2



man et al., 2024) proposes a metric for computing181

the robustness of LLMs to input changes, consid-182

ering perturbations in the input and reporting the183

impact in the accuracy. Intriguing results were re-184

ported in (Balepur et al., 2024), where the authors185

query LLMs only with choices without the ques-186

tion was investigated, and show that even without187

the questions the LLMs can correctly answer a con-188

siderable number of questions. The authors looked189

for memorization but could not fully explain the190

phenomenon.191

One particular line of research focuses in inves-192

tigating the consistency of LLMs in providing a193

response when the question is kept intact but with194

variations in other factors, such as the set of choices195

and parameters of the inference algorithm. An in-196

vestigation on the sensitivity of choice order is pre-197

sented (Li et al., 2024), along with an exploration198

on the consistency of LLM according to different199

values for the temperature parameter, but they show200

that models such as GPT-3.5 tend to present high-201

consistency when prompted with different temper-202

ature values. In (Wei et al., 2024), the authors203

compare the results of MC evaluation and open-204

ended answer, and find low consistency between205

these two evaluations. However, both works pre-206

sented in (Pezeshkpour and Hruschka, 2024) and207

(Wang et al., 2024a) explore changes in the set of208

choices, either with simple reorderings or by modi-209

fying the set of distractors, and provide convincing210

evidence that LLMs that perform well is some MC211

benchmark are prone to lack of consistency when212

facing questions with modified distractors. As a213

consequence, two new metrics exploiting the con-214

sistency of LLM, namely MCQA+ and MV (see215

Section 3), have been proposed.216

This work is heavily inspired by the results on217

the consistency of LLM when the sets of choices218

are modified. Our main contribution is on improv-219

ing the robustness of metrics to more faithfully take220

into account the consistency level of a given LLM221

on a MC benchmark and express that into a score.222

3 Baselines223

In this section we will revisit how the accuracy224

score is computed for MC benchmarks. We will225

first describe how this is done in the most tradi-226

tional method, i.e. to perform single-run evalua-227

tions and compute the ratio of hits. Next, we will228

also describe existing methods that explore diver-229

gent sets of answers to enhance the computation of230

such scores. 231

Let MCQ = {mcq1, . . . ,mcqN} be the origi- 232

nal set of N questions, choice, and answers of a 233

MC benchmark. Consider also that there is a func- 234

tion denoted llm(mcqi) that returns 1 if a given 235

LLM presents the correct response, i.e. the re- 236

sponse provided by the LLM is equal to the cor- 237

rect alternative in mcqi, or 0 otherwise. The most 238

used baseline consists of computing the accuracy 239

directly on MCQ, which we refer to as MCQA 240

and define as: 241

MCQA =
1

N

N∑
i=1

llm(mcqi) (1) 242

But as we presented in the previous section, 243

LLMs can be inconsistent even we very simple 244

test, and it is important to take such aspect into 245

account during the evaluation process. As a conse- 246

quence, consider also that there is a set denoted 247

MCQ∗ = { ˆMCQ∗1, . . . , ˆMCQ∗N}, compris- 248

ing N divergence sets which are derivations of 249

the samples in the MCQ set. The divergence 250

sets can be created using M different methods, 251

so that ˆMCQ∗i = {mcq∗11, . . . ,mcq∗Mi } and 252

mcqi ∈ ˆMCQ∗i, i.e. the original question can 253

also be included in the divergence set. We can find 254

in the literature some methods that explore the of 255

creating divergence sets and using them to material- 256

ize into metrics (Pezeshkpour and Hruschka, 2024; 257

Wang et al., 2025). 258

One metric is MCQA+, based on the idea of com- 259

puting the MCQA scores using disjoint divergence 260

sets and aggregating the results using the mean of 261

all M divergence sets, i.e. the mean for the entire 262

set of questions. This metric can be defined as: 263

MCQA+ =
1

N ∗M

N∑
i=1

M∑
j=1

llm(mcq∗ji ) (2) 264

Notice that MCQA+ considers the divergence 265

sets for generating alternative evaluations, but the 266

aggregation of the scores under-explores the com- 267

putation of consistency. In fact, we can say that 268

MCQA+ does rely on an implicit use consistency, 269

but given that incorrect response also contribute to 270

the score, it is not trivial to associate the metic to 271

the consistency of correct responses only. 272

Another metric that includes consistency in the 273

computation of accuracy scores is the Majority Vot- 274

ing (MV) metric, proposed in (Pezeshkpour and 275

Hruschka, 2024). This metric relies on the set of the 276
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divergent sets MCQ∗ and computes the correct-277

ness of an evaluation sample based on achieving278

the correct response in the majority of the deriva-279

tions, i.e. if the LLM provides the correct response280

for more than half of the samples in ˆMCQ∗i, or281

in other words, more than half response consis-282

tency. That is, consider the definition response283

consistency for a given sample i as:284

RC(i) =
1

M

M∑
j=1

llm(mcq∗ji ) (3)285

Now, consider the function 1(expression),286

which returns 1 if expression is true or 0 other-287

wise, the MV metric can then be defined as:288

MV =
1

N

N∑
i=1

1(RC(i) > 0.5) (4)289

Even though MV relies on consistency to com-290

pute hits, i.e. the majority of the divergent ques-291

tions need to get correct responses for a question292

to be computed as a hit, the metric relies on very293

permissive level of consistency (0.5), for which294

samples with low response consistency values have295

the same weights of those with higher values. In296

some sense, that hinders the impact of consistency297

in the metric, apart from being a more statistically-298

robust score compared with MCQA.299

4 Using Consistency for More Reliable300

Accuracy Computation301

In this section we propose our method to re-302

balance LLM accuracy on MC benchmarks, to303

which we refer as the Consistency-Rebalanced304

Accuracy (CoRA). The metric is built upon the305

idea of computing the Consistency Index (CI)306

score using the score computed with the Bare-307

Minimum-Consistency Accuracy (BMCA) method308

using 100% consistency as target, and then adjust-309

ing the scores computed with the MCQA method310

to scale down LLMs that are inconsistent, resulting311

in CoRA scores. Details are provided next.312

4.1 Bare-Minimum-Consistency Accuracy313

The first metric we propose is the Bare-Minimum314

Consistency Accuracy (BMCA), which can be con-315

sidered as an extension of the MV metric but using316

the adjustable parameter c to determine the mini-317

mum response consistency level that is expected318

for a sample to be considered correct. That is, for319

each sample i, we will only consider the samples 320

as correct if the RC score is greater than c 321

In greater details, given the consistency level c 322

as a parameter, the BMCA metric can be defined 323

as: 324

BMCA(c) =
1

N

N∑
i=1

1(RC(i) ≥ c) (5) 325

4.2 Consistency Index 326

Given that BMCA can compute scores for different 327

levels of consistency, when c = 1.0, the metric will 328

compute the accuracy score only for cases where 329

the model provide 100% response consistency in 330

the M trials. 331

We associate here the idea of this index with the 332

elimination of random guessing as a viable option 333

for the models being evaluated. As detailed in 334

the appendix A, for M = 10, a model has to be 335

guessing at a success rate greater than 0.9999 to be 336

able to be 100% consistent on M trials. When no 337

random guess is allowed at all, the LLM is arguably 338

knowledgeable about the responses provided for 339

the benchmark questions. 340

Therefore, we use BMCA(1.0) as a proxy to de- 341

fine the proportion of samples for which the LLM 342

being evaluated demonstrates real knowledge when 343

answering the questions, and use the score to com- 344

pute a quality metric for the original MCQA score. 345

We refer to this metric as the Consistency Index 346

(CI) score. 347

Formally, the CI score is computed using the 348

difference between MCQA and BMCA(1.0), pro- 349

viding the gap of the MCQA score to the accuracy 350

considering only cases with 100% of response con- 351

sistency, and subtracting from 1.0 so a higher value 352

denotes higher consistency, such as in: 353

CI = 1.0− (MCQA − BMCA(1.0)) (6) 354

4.3 Consistency-Rebalanced Accuracy 355

The end result of our approach is the Consistency- 356

Rebalanced Accuracy (CoRA), consisting of scal- 357

ing down the scores computed with MCQA using 358

the CI score described in the previous section. The 359

idea is to take advantage of the CI score and adjust 360

MCQA scores to make them reflect more authenti- 361

cally the quality of the LLM in terms of response 362

consistency. 363

The implementation is straightforward, as we 364

denote in the equation below: 365

CoRA = MCQA ∗ CI (7) 366
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With this approach, the MCQA scores are at367

best kept, if the model presents 100% response368

consistency for the correct responses (which is very369

unlikely, as we will show later), but they can be370

scaled down as the LLM scores presents larger gaps371

from BMCA(1.0) to MCQA.372

5 Details for Implementation373

As a method to implement the divergent set374

MCQ∗, we focus in creating derivations of the set375

of choices C by creating variations only in the way376

multiple options are presented to the model. Al-377

though we can also vary the set of questions Q with378

the variations in the input, such as with rephrasings,379

we wanted to avoid introducing any potential er-380

ror in this process. By including variations in the381

set C, we can generate alternative sets of choices382

where the expected answer is always kept but the383

set of distractors is modified with three operators:384

reorderings, where the order of the choices pre-385

sented to the LLM is modified, such as by shuffling386

the choices; deletions, where one or more alterna-387

tives are removed from the original set of choices;388

and inclusions, where alternatives that do not affect389

the expected answers are included, such as adding390

a none of the above (NOTA) alternative.391

In details, consider that A is the number of al-392

ternatives in the original question, we consider the393

following approaches to generate altered sets of an-394

swer choices: Shuffled, where the set of choices is395

shuffled (we can shuffle multiple times, but in this396

work we shuffle only once); With NOTA, where397

each distractor is replaced by the NOTA alternative,398

resulting in A − 1 new sets of alternatives; With399

NOTA shuffled, employing a mix of With NOTA400

and Shuffled, where the NOTA alternative replaces401

a distractor and them the set of choices is shuffled402

(this approach also results in A − 1 variations);403

Decoupled, which takes the original set of choices404

and decouples it into A−1 binary subset of choices,405

pairing each of non-correct choices with the correct406

one in each subset; Decoupled shuffled, similar407

to Decoupled but with an additional shuffling step;408

Decoupled with NOTA, also mixing Decoupled409

with With NOTA, where the set of alternatives is410

decoupled into A− 1 binary subsets and a NOTA411

distractor is add to each subset, creating ternary412

subsets; Decoupled with NOTA shuffled, which413

is similar to Decoupled with NOTA with additional414

shufflings on the ternary subsets.415
An illustration of the previously described tech-416

niques is presented in Figure 1. With these varia-417

tions in the set of choices, we can then format a 418
prompt for each variation and prompted the model 419
for the correct alternative. We consider the follow- 420
ing base prompt, where $QUESTION$ is replaced 421
by the text of the question, followed by the corre- 422
sponding options which are formatted and filled in 423
$CHOICES$: 424

Answer the following multiple choice question. 425
The first line of your response should be of the 426
following format: 'LETTER' (without quotes), where 427
LETTER is one of ABCD (depending on the number 428
of alternatives), followed by a step-by-step 429
explanation. 430

431
Question: $QUESTION$ 432
Choices: $CHOICES$ 433
Answer: 434

To evaluate the output of the LLMs, we parse 435

the first token of the response and remove any ad- 436

ditional character such as punctuation and spaces. 437

Our method generates a total of 2 + 6 ∗ (A− 1) 438

variations of the set of choices for each question. 439

For instance, with with five alternatives, i.e. A = 5, 440

26 variations are generated. Notice that one could 441

easily generate more variations by including more 442

exhaustive shufflings and generate subsets with 443

more than two and less than M alternatives, but 444

that implies in extra costs to evaluate the models 445

since we need to query the model for each varia- 446

tions of the original question, and there is a linear 447

increase in the cost of running LLM inferences. 448

6 Empirical Evaluation 449

In this section we describe the evaluations con- 450

ducted to validate our proposed CoRA metric. We 451

focus on comparing the results against the three 452

baselines described in Section 3: MCQA, MCQA+, 453

and MCQA+MV. 454

We divide this evaluation into two main parts. In 455

this first we focus on a domain-specific dataset, i.e. 456

the MedQA benchmark (Jin et al., 2020), consider- 457

ing four different LLMs either finetuned on medical 458

data or known as good performer in this type of 459

data: GPT4o version "gpt-4o-2024-11-20", MedL- 460

lama3 7B (MedL) (Medical, 2024), BioMedical 461

Llama3 8B (BioML) (Medical, 2024), and BioMis- 462

tral 7B (BMist) (Labrak et al., 2024). In the second 463

part we evaluate three general knowledge bench- 464

marks, i.e. MMLU (Hendrycks et al., 2021), Arc-C 465

(Clark et al., 2018), and TruthFulQA (Lin et al., 466

2022), considering four general-purpose LLMs: 467

Mistral v0.1 7B (Mist) (Jiang et al., 2023), Llama 468

3.1 8B (Llam) (Aaron Grattafiori et al, 2024), 469

Granite 3.0 8B (Gran) (Granite Team, 2024), and 470

DeepSeek chat 7B (DSeek) (DeepSeek, 2024). No- 471

5



Figure 1: Illustration of the methods to divergent sets of alternatives

tice that we focused on models with slightly similar472

sizes, i.e. around 7B to 8B parameters, except for473

GPT4o whose size is not publicly disclosed. For474

MedQA we consider the 1,273 5-choice questions475

extracted from USMLE exams, resulting in gener-476

ating 26 variations for the MCQ∗ set of divergent477

questions, and use 0-shot prompts. For MMLU,478

we used 14,042 questions with either 3 or 4 alter-479

natives, generating 14 to 20 questions in MCQ∗,480

and evaluated with 5-shot prompts. For Arc-C, we481

used 1,172 questions with either 4 or 5 alternatives,482

generating 20 to 26 questions in MCQ∗, and eval-483

uated with 25-shot prompts. And for TruthFulQA,484

we consider 817 questions ranging from 2 or 12 al-485

ternatives, generating 14 to 74 questions in MCQ∗,486

and evaluated with 0-shot prompts. Notice that the487

decision for in-context learning method was based488

on common practices from the literature (Aaron489

Grattafiori et al, 2024; DeepSeek-AI and Aixin Liu490

et al, 2024).491

For a better understanding of the CoRA scores,492

for each LLM and dataset we present an exten-493

sive evaluation of BMCA considering six differ-494

ent values for c, i.e. 0.5, 0.6, 0.7, 0.8, 0.9, and495

1.0, noticing that 0.5 represents a borderline level496

consistency for deciding if a question is correctly497

responded or not, and 1.0 corresponds to full con-498

sistency, i.e. all responses from the divergent set of499

questions are correct. That range of values is useful500

to provide a progressive analysis on the consistency501

of an LLM, i.e. how the accuracy is affect as we502

increase the value of c. We report also all values 503

computed for the CI score. 504

Table 1: Results on MedQA dataset. In parentheses the
comparison ranking.

LLMs: GPT4o MedL BioML BMist
Baselines

MCQA 0.85 (1) 0.74 (2) 0.73 (3) 0.38 (4)
MCQA+ 0.90 (1) 0.69 (3) 0.75 (2) 0.58 (4)
MV 0.91 (1) 0.73 (3) 0.77 (2) 0.58 (4)

Proposed metric
CoRA 0.74 (1) 0.32 (3) 0.42 (2) 0.28 (4)

Secondary metrics
BMCA(c)
c ≥ 0.5 0.91 0.75 0.80 0.61
c ≥ 0.6 0.89 0.67 0.73 0.49
c ≥ 0.7 0.86 0.57 0.66 0.40
c ≥ 0.8 0.84 0.49 0.60 0.33
c ≥ 0.9 0.79 0.34 0.46 0.22
c ≥ 1.0 0.73 0.18 0.31 0.11
CI 0.88 0.44 0.58 0.73

The results on MedQA are presented in Table 1. 505

When comparing the scores of MCQA+ and MV 506

baselines to MCQA, it is noticeable how the scores 507

of all models, except MedL, are magnified with the 508

expanded evaluation with divergent questions. On 509

the other hand CoRA, presents reduced scores by 510

about 0.11 points for GPT4, 0.42 points for MedL, 511

0.31 for BioML, 0.10 for BMist. Note that such a 512

decrease is proportional to the CI score, reported in 513

the last row of the table. By looking at the scores 514

from BMCA(1.0) and comparing them to those 515

of MCQA, we can clearly observe that there is a 516

drop for all models, being GPT4o undeniably more 517
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consistency, reaching a score of 0.73, i.e. 73% of518

the correct responses present RC(i) = 1.0. For519

the other models, on the other hand, less than half520

of the correct cases present 100% response consis-521

tency, and that gap in consistency is represented522

in CoRA scores that are much lower compared523

with MCQA. That is, MedL drops from 0.74 with524

MCQA to 0.32 with CorA, BioML from 0.73 to525

0.42, and BMist from 0.38 to 0.28. Further ev-526

idence on the differences in consistency can be527

found by looking at the different scores provided528

by BMCA, showing that models such as MedL and529

BioML present a drastic decrease in accuracy as the530

minimum consistency requirement increase, while531

the decrease is not as drastic for BioML and very532

subtle for GPT4.533

Table 2: Results on MMLU dataset. In parentheses the
comparison ranking.

LLMs: Mist Llam Gran DSeek
Baselines

MCQA 0.64 (2) 0.58 (3) 0.65 (1) 0.52 (4)
MCQA+ 0.75 (1) 0.62 (3) 0.75 (1) 0.60 (4)
MV 0.78 (1) 0.61 (3) 0.76 (2) 0.58 (4)

Proposed metric
CoRA 0.44 (2) 0.33 (3) 0.47 (1) 0.33 (3)

Secondary metrics
BMCA(c)
c ≥ 0.5 0.83 0.65 0.80 0.63
c ≥ 0.6 0.74 0.55 0.73 0.54
c ≥ 0.7 0.65 0.46 0.66 0.44
c ≥ 0.8 0.56 0.38 0.58 0.36
c ≥ 0.9 0.47 0.28 0.50 0.27
c ≥ 1.0 0.33 0.15 0.38 0.16
CI 0.69 0.57 0.73 0.64

Table 3: Results on Arc-C dataset. In parentheses the
comparison ranking.

LLMs: Mist Llam Gran DSeek
Baselines

MCQA 0.80 (2) 0.72 (3) 0.82 (1) 0.64 (4)
MCQA+ 0.90 (1) 0.73 (3) 0.89 (2) 0.73 (3)
MV 0.92 (1) 0.81 (3) 0.91 (2) 0.78 (4)

Proposed metric
CoRA 0.58 (2) 0.25 (4) 0.65 (1) 0.38 (3)

Secondary metrics
BMCA(c)
c ≥ 0.5 0.94 0.84 0.92 0.82
c ≥ 0.6 0.90 0.78 0.88 0.73
c ≥ 0.7 0.84 0.69 0.84 0.64
c ≥ 0.8 0.80 0.53 0.80 0.53
c ≥ 0.9 0.70 0.32 0.73 0.42
c ≥ 1.0 0.52 0.07 0.61 0.23
CI 0.72 0.35 0.79 0.59

The results on general-knowledge benchmarks534

are presented in Table 2, Table 3, and Table 4, for535

MMLU, Arc-C, and TruthfulQA, respectively. In536

Table 4: Results on TruthfulQA dataset. In parentheses
the comparison ranking.

LLMs: Mist Llam Gran DSeek
Baselines

MCQA 0.41 (1) 0.41 (1) 0.34 (3) 0.34 (3)
MCQA+ 0.49 (1) 0.49 (1) 0.39 (4) 0.40 (3)
MV 0.45 (2) 0.47 (1) 0.35 (4) 0.37 (3)

Proposed metric
CoRA 0.28 (1) 0.27 (2) 0.25 (3) 0.24 (4)

Secondary metrics
BMCA(c)
c ≥ 0.5 0.48 0.51 0.36 0.40
c ≥ 0.6 0.40 0.40 0.30 0.31
c ≥ 0.7 0.33 0.31 0.25 0.23
c ≥ 0.8 0.25 0.22 0.19 0.17
c ≥ 0.9 0.16 0.14 0.14 0.11
c ≥ 1.0 0.09 0.08 0.09 0.05
CI 0.68 0.67 0.75 0.71

this case, we observe a similar scenario apart the 537

fact that there is not a very top-performing LLM 538

such as GPT4o in the comparison. As it can be 539

observed, the maximum CI score is of 0.79 in Arc- 540

C with Gran, but CI can go as low as 0.35 with 541

Llam in the same benchmark. That low CI score 542

for Llam reflects a surprisingly inconsistency LLM 543

on the Arc-C benchmark, and the resulting CoRA 544

score reflects this lack of consistency. That is, from 545

a difference of 0.10 MCQA points from Llam to 546

Gran, the top performer in that benchmark, the dif- 547

ference becomes 0.40 points with CoRA. Notice 548

that MCQA+ and MV keep gaps that are much 549

closer to that of MCQA, i.e. 0.16 and 0.10, respec- 550

tively. Overall, considering the best MCQA scores, 551

that were achieved with Gran, we observe that our 552

CoRA metric reflects at least a drop of 0.18 points 553

in MMLU, 0.17 in Arc-C, and 0.09 in TruthfulQA. 554

On the other hand, the drop in score for Llam, one 555

of the worst performers in CoRA, can be as high as 556

0.25 points in MMLU, 0.57 in Arc-C, and 0.14 in 557

TruthfulQA. It is intriguing that both the most and 558

the least consistent LLM are the same for all three 559

benchmarks, a fact that might indicate that the con- 560

sistency might be a feature that generalizes among 561

different benchmarks, but further investigation is 562

needed to support this claim. 563

6.1 Ablation Studies 564

In this section we present an ablation study on the 565

set of divergent questions used to compute our met- 566

rics. As depicted in Figure 1, some methods can 567

keep the same number of alternatives as the original 568

question (first row in Figure 1), but other methods 569

can either augment or reduce that sets creating un- 570

even uniform distribution with the likelihood of pre- 571
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dicting the correct question, which can contribute572

for metrics such as MCQA+ and MV to produce573

higher scores. For this reason, in this section not574

only we present results with altered questions with575

only the exact same number of alternatives of the576

original question, but we also conduct a thorough577

statistical analysis on the set of altered questions578

based on bootstrap resampling. We focus on the579

MedQA dataset, which presents an invariable num-580

ber of alternatives for the entire dataset and can be581

used for both evaluations.582

Results with the set of only ten divergent ques-583

tions with the same number of alternatives are pre-584

sented in Table 5. As somewhat expected, the re-585

sults of MCQA+ and MV present a drop compared586

to the numbers reported in Table 1, the table con-587

taining analogous results with all 26 divergent ques-588

tions. The score from CoRA, on the other hand,589

present slightly increases. We think that having a590

smaller set of divergent questions possibly reduces591

the impact of the consistency evaluation for these592

metrics, but we need further investigation to find593

more evidence to confirm this hypothesis.594

Table 5: Results on MedQA dataset - 5-alternative ques-
tions only. In parentheses the comparison ranking.

LLMs: GPT4o MedL BioML BMist
5-alternative-only divergent questions

MCQA+ 0.86 (1) 0.62 (3) 0.67 (2) 0.43 (4)
MV 0.85 (1) 0.62 (3) 0.67 (2) 0.38 (4)
CoRA 0.77 (1) 0.37 (3) 0.48 (2) 0.28 (4)

difference from Table 1
MCQA+ -0.04 -0.07 -0.08 -0.15
MV -0.06 -0.11 -0.10 -0.20
CoRA 0.03 0.05 0.06 0.00

We focus in understanding better the sensitive-595

ness of the metric to the set of altered question,596

independently of the distribution and number of597

alternatives. For that we conducted a bootstrap598

resampling analysis, by generating 10,000 evalua-599

tions with 100 altered questions randomly selected600

with replacement from the 26 divergent questions601

created with MedQA.602

The means of the scores computed with the603

10,000 bootstrapped resamplings are presented in604

Table 6. First, it is eye catching the usually low605

standard deviations, demonstrating an interesting606

stability of the score independently of the set of al-607

tered choices. Notice also that all methods present608

very small differences when compared to the seed609

divergence set with 26 variations, as reported in610

the bottom portion of the table. That is quite in-611

teresting since it indicates that the variations pre-612

sented in Section 5 are relatively robust for the 613

evaluation of response consistency, and our pro- 614

posed method to generate variations can be used to 615

evaluate LLMs without much concern with intrin- 616

sic variability from the set of altered choices. 617

Table 6: Results on MedQA dataset - means of 10,000
resamplings of 100-samples bootstrapped divergent
questions. In parentheses the standard deviation multi-
plied by 103.

LLMs: GPT4o MedL BioML BMist
10 bootstrapped divergent questions

MCQA+ 0.90 (3) 0.69 (11) 0.75 (9) 0.58 (13)
MV 0.91 (4) 0.73 (15) 0.78 (12) 0.59 (21)
CoRA 0.75 (1) 0.33 ( 3) 0.42 ( 2) 0.28 ( 1)

difference to Table 1
MCQA+ 0.00 0.00 0.00 0.00
MV 0.00 0.00 0.01 0.01
CoRA 0.01 0.01 0.00 0.00

7 Conclusions and Future Work 618

In this work we proposed the CoRA metric to en- 619

hance the way LLMs are evaluated on MC bench- 620

marks, which explores the concept of response con- 621

sistency to rebalance the scores computed from 622

the ratio for hits of an LLM on MC benchmarks 623

and provide more faithfully the capabilities of such 624

models. And our evaluations on well-known bench- 625

marks show that CoRA is able to redistribute the 626

scores according to the consistency of the LLM, 627

which is demonstrated with the CI scores, improv- 628

ing the reliability of LLM evaluation compared to 629

state-of-the-art metrics that do not reflect any as- 630

pect of response consistency in the scores. Further- 631

more, we conducted an ablation study focused at 632

evaluating the sensitiveness of to the set of altered 633

answer choices and demonstrate that our proposed 634

generation method is relatively robust, practically 635

equivalent to the scores obtained with bootstrap 636

resampling. 637

As future work we believe we can improve the 638

methodology in different ways. There is room to 639

investigate and increase the set of divergent ques- 640

tions, and also in exploring further simpler and 641

more general methods such as shuffling. Another 642

direction lies in revisiting the way consistency is 643

used for rebalancing scores, for instance by taking 644

more advantage of BMCA computed on multiple 645

values for c. Lastly, it is key to understand how 646

this work can be expanded to other types of bench- 647

marks beyond multiple choice, and possibly how 648

these ideas can be used to make LLMs safer in real 649

time, during the inference. 650
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8 Limitations651

The first limitation of this work is the focus on mul-652

tiple choice benchmarks only, so the results from653

this paper do not directly transfer to other types of654

benchmarks such as open-ended questions. Also,655

the evaluation comprises a limited set of bench-656

marks, so further experiments shall be conducted to657

validate the generalization of our methods. Another658

limitation is that set of LLMs that we evaluated,659

given that the size of the models usually tops at660

around 7B to 8B parameters, so experiments with661

larger LLMs should also be conducted in the future.662

Finally, we have not provided any deep discussion663

on the computational complexity increase of our664

method, but we decided to not delve into that dis-665

cussion since, in general terms, the complexity for666

computing CoRA is roughly equivalent to that of667

both MCQA+ and MV.668

9 Ethical Statement669

We have not identified any ethical issue, since the670

LLMs and benchmarks are publicly available and671

we just followed commonly-used practices.672
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A Guessing on Benchmarks866

Requiring consistency of correct answers on multi-867

ple, independent answers to the same question of868

a benchmark is, intuitively, a way to assure that869

models which are doing, to some extent, random870

guessing in a multiple choice benchmark. Here we871

explore the impact of requirement consistency in872

M trials in terms of determining minimum values873

for the guessing rate to assure that a given consis-874

tency level is met.875

We start considering a single multiple-choice876

question q of k choices which is repeated eval-877

uated by a model M times, yielding answers878

llm(qi), 1 ≤ i ≤ M , where llm(qi) = 1 if, and879

only if, the model produces the correct alternative.880

In M trials, the number of possible arrangement881

of choices where exactly p are correct, CM (p) is:882

CM (p) =

(
M
p

)
=

M !

(M − p)! p!
(8)883

Given a guessing rate r, where r = 1/p if it is a884

purely random guess, the probability of guessing885

correctly exactly p of the M trials, TM
r (p) is:886

P (TM
r (p)) = CM (p)rp(1− r)(M−p) (9)887

Following, the probability of guessing correctly888

p or more answers in M trials, TM
r (p) is, clearly:889

P (T
M
r (p)) =

M∑
j=p

CM (j)rj(1− r)(M−j) (10)890

The two leftmost columns of table A show, for891

different values of p, the value of T
M
r (p)) for892

M = 10 trials of k = 5 choices, when the guess-893

ing rate is purely random, r = 1/k. For instance,894

the probability of obtaining 10 correct answers in895

10 trials of a question if the model is randomly896

guessing is 0.0000001.897

Conversely, now imagine that the model as an898

“oracle” which guesses the correct answer at a cer-899

tain success rate, SGR. We can then compute the900

minimum success needed to always get at least p901

correct answers in M , what we call the minimum902

success guessing rate, MSGR(p). We computed903

numerically such values, and the rightmost column904

of table A displays the values for M = 10 trials905

of k = 5 choices. It shows, for instance, that that906

a model has to be guessing at least of a success907

rate of 0.93 to achieve 6 out of 10 correct answers908

Table 7: Guessing probabilities of p or greater cor-
rect answers in M = 10 trials of k = 5 choices, for
random guessing; and minimum success guessing rate
MSGR(p).

T
10
r (p), k = 5

p random (r = 1/k) MSGR(p)

0 1.000 0.2
1 0.893 0.54
2 0.624 0.66
3 0.322 0.75
4 0.121 0.82
5 0.033 0.88
6 0.006 0.93
7 0.0009 0.96
8 0.00008 0.98
9 0.000004 0.99
10 0.0000001 0.9999

(MSGR(6)), which is equivalent to the require- 909

ments of the metric MV proposed in (Pezeshkpour 910

and Hruschka, 2024). 911

In our view, a MSGR(6) = 0.93 is still insuf- 912

ficient to guarantee that a model actually knows 913

the contents of a multiple-choice benchmark. How- 914

ever, requiring that the model is consistent in 10 out 915

of 10 trials (MSGR(10)) warrants that a model 916

can only successfully guess if its success rate is 917

above 0.9999, which we consider a reasonable re- 918

quirement to consider a model knowledgeable in a 919

subject. 920
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