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Abstract

In this work we present the Consistency-
Rebalanced Accuracy (CoRA) metric, improv-
ing the reliability of Large Language Model
(LLM) scores computed on multiple choice
(MC) benchmarks. Our metric explores the
response consistency of the LLMs, taking ad-
vantage of synthetically-generated questions
with altered answer choices. With two interme-
diate scores, i.e. Bare-Minimum-Consistency
Accuracy (BMCA) and Consistency Index (CI),
CoRA is computed by adjusting the multiple-
choice question answering (MCQA) scores
to better reflect the level of consistency of
the LLM. We present evaluations in differ-
ent benchmarks using diverse LLMs, and not
only demonstrate that LLMs can present low
response consistency even when they present
high MCQA scores, but also that CoRA can
successfully scale down the scores of inconsis-
tent models.

1 Introduction

Despite the current popularity of Large Language
Models (LLMs), and the undeniable capabilities
that they have demonstrated to solve very complex
real-world problems, it is also the real truth that
there is yet a lot to be done in terms of understand-
ing and measuring precisely their capabilities and
risks to deploy reliable and liable applications.
The most used approach to evaluate LLMs is
to measure its performance on question-answering
(QA) benchmark datasets (or simply benchmarks),
i.e. datasets containing questions (aka prompts)
with their respective expected outputs, where the
outputs generated by the LLM are compared to the
expected outputs from the benchmark, resulting in
univariate scores that are used to rank and evaluate
the LLMs. A common way to structure QA bench-
marks is to rely on multiple choice (MC) questions,
which is not only a widely adopted method to evalu-
ate human for several knowledge-testing objectives,

but also has the advantage of being a very simple
way to compute right and wrong answers.

Although the research community has been
highly active in investigating the limitations of cur-
rent benchmarking practices, and several issues
have already been identified for MC evaluations,
such as choice biases, variability to rewordings, in-
consistent confidence, among others (Zheng et al.,
2024; Reif and Schwartz, 2024; Ye et al., 2024), we
believe that there is still a gap in better quantifying
the capabilities of an LLM. Given that the most
used method to evaluate LLM on MC benchmarks
is to compute the ratio of matches between the re-
sponses of the LLM against the correct alternatives,
an approach that we refer to MCQA, we think that
this approach is lacking in providing a realistic and
informative evaluation whether the LLM is actually
knowledgeable about the test questions, or if that
the scores are a by-product of issues such as train-
ing data contamination or random guesses given
the stochastic nature of inference algorithms.

In this work we argue that computing response
consistency is key to have metrics that are able
to present a more reliable score for the evalua-
tion of LLMs on MC benchmarks. As already
demonstrated, LLMs can suffer from inconsisten-
cies when subjected to variations in the input, es-
pecially when the set of presented alternatives is
slightly modified with reorderings or changes in
the set of distractors (Pezeshkpour and Hruschka,
2024; Wang et al., 2025). Notice that distractors
consists of the alternatives in a MC question that
are not correct, so usually a MC question is com-
posed with a question and a set of choices, where
there is one correct choice! and one or more dis-
tractors. Thus, it is quite easy to synthetically gen-
erated altered questions by playing with the set of
distractors, while keeping the correct choice.

! Although it is possible to have more than correct choice
in a MC question, we delimit the scope of this work for cases
with only one correct alternative.



Based on generating altered sets of questions
with modified distractors (or simple reorderings) in
the choices, a set to which we refer as the divergent
questions, we propose the Consistency-Rebalanced
Accuracy (CoRA) metric to better reflect the level
of consistency of the LLM on the MC benchmark.
The metric is based on two intermediate metrics, i.e.
Bare-Minimum-Consistency Accuracy (BMCA)
and Consistency Index (CI), where the first is used
to compute the accuracy according to a specified
minimum level of consistency, and the second com-
putes the gap of accuracy between the score on
the original benchmark, i.e. the MCQA method,
and the BMCA(1.0), the accuracy for 100% con-
sistency. The CoRA score is then computed by
scaling the related MCQA score with the value
computed with CL

We evaluate CoRA in different popular bench-
marks, with both open source and a commercial
LLM, and observe that CoRA tends to reflect more
realistic distribution of scores according to the con-
sistency level of the LLMs. That is, with BMCA
evaluated with different levels of minimum consis-
tency, we observe that some top-performing LLMs
present a drastic decrease of accuracy, and reach
very poor performances with BMCA(1.0), indi-
cating that the scores with MCQA and the other
baselines are not reliably reflecting the consistency
of the LLM. Consequently, scaling down that score
with the consistency index CI results in a more
faithful measurement of the capabilities of the
LLM: the CoRA metric.

We believe that this paper not only contributes
to improve the evaluation of LLMs in MC bench-
marks, but also in emphasizing that the use of re-
sponse consistency evaluation is a viable and nec-
essary approach to provide more faithful bench-
mark evaluation scores. We show an LLM such as
GPT40 can present a drop of at least 0.10 points
in accuracy, comparing MCQA with BMCA(1.0),
showing that even this top-performing LLM can
be ‘unsure’ about the correct answer for about 14%
of the correct response. More concerning is that
models that perform close to GPT40 in MCQA
score, such as MedLlama3, can present very low
consistency levels, making the CoRA score to be
less than half of the original MCQA score. In our
opinion, it is mandatory to include consistency eval-
uation before releasing any score computed on an
MC benchmark.

In order to make our research accessible
by the community, we are publicly releasing

the source code for computing CoRA scores:
http://anonymous4now.github.com.

2 Related Work

Understanding well the capabilities of LLMs is key
for deploying safe, liable, end-user applications,
and several efforts have been made towards im-
proving the evaluation of such models (Lin and
Chen, 2023; Wang et al., 2024b; Lei et al., 2024).
Although we can see some works focusing on the
evaluation of open-end questions (Myrzakhan et al.,
2024), multiple-choice (MC) evaluation is a com-
mon practice for mainstream models (Singhal et al.,
2023; Jiang et al., 2023; Nori et al., 2023; Dubey
and et al, 2024). Multiple-choice questions can
be more objectively evaluated as opposed to open
questions, the evaluation for which can be difficult
and subjective even for human evaluators. Further-
more, MC evaluation is a widely-used practice to
evaluate proficiency of humans in several areas, for
instance medical and law domains (Lesage et al.,
2013; Curtis et al., 2013; Grazziotin-Soares et al.,
2021). It is thus natural to rely on a similar evalua-
tion process to measure the proficiency of LLMs.

It is well known, though, that there is room to
make MC evaluation more reliable and believable.
Some efforts have been made in trying to under-
stand the limitations of MC evaluation focused on
confidence levels, either considering the logits of
the neural networks or self-confidence scores pro-
vides by the LLM itself (Ye et al., 2024). In (Wiegr-
effe et al., 2024), an analysis on how the weights of
transformers react to predict a correct answer is pre-
sented. The correlation between model confidence
(probability outputs) and model self-confidence (a
confidence level expressed by the model) have ex-
plored in (Kumar et al., 2024), which show that the
LLMs usually present low to moderate correlation.
Others have focused on identifying possible biases
that can be exhibited by the LLM, such as selection,
token, and label biases (Zheng et al., 2024; Reif
and Schwartz, 2024).

Another group of researchers focused on under-
standing the sensibility of the LLM according to
changes in the input. In (Mirzadeh et al., 2024), the
authors show that LLMs are negatively impacted
by changes in the input question. In this case, the
model performs significantly worse when only the
numbers are changed in the input for math-related
questions. Assuming that LLMs can be affect by
changes in the input, the work presented in (Acker-



man et al., 2024) proposes a metric for computing
the robustness of LL.Ms to input changes, consid-
ering perturbations in the input and reporting the
impact in the accuracy. Intriguing results were re-
ported in (Balepur et al., 2024), where the authors
query LLMs only with choices without the ques-
tion was investigated, and show that even without
the questions the LLMs can correctly answer a con-
siderable number of questions. The authors looked
for memorization but could not fully explain the
phenomenon.

One particular line of research focuses in inves-
tigating the consistency of LLMs in providing a
response when the question is kept intact but with
variations in other factors, such as the set of choices
and parameters of the inference algorithm. An in-
vestigation on the sensitivity of choice order is pre-
sented (Li et al., 2024), along with an exploration
on the consistency of LLM according to different
values for the temperature parameter, but they show
that models such as GPT-3.5 tend to present high-
consistency when prompted with different temper-
ature values. In (Wei et al., 2024), the authors
compare the results of MC evaluation and open-
ended answer, and find low consistency between
these two evaluations. However, both works pre-
sented in (Pezeshkpour and Hruschka, 2024) and
(Wang et al., 2024a) explore changes in the set of
choices, either with simple reorderings or by modi-
fying the set of distractors, and provide convincing
evidence that LLMs that perform well is some MC
benchmark are prone to lack of consistency when
facing questions with modified distractors. As a
consequence, two new metrics exploiting the con-
sistency of LLM, namely MCQA+ and MV (see
Section 3), have been proposed.

This work is heavily inspired by the results on
the consistency of LLM when the sets of choices
are modified. Our main contribution is on improv-
ing the robustness of metrics to more faithfully take
into account the consistency level of a given LLM
on a MC benchmark and express that into a score.

3 Baselines

In this section we will revisit how the accuracy
score is computed for MC benchmarks. We will
first describe how this is done in the most tradi-
tional method, i.e. to perform single-run evalua-
tions and compute the ratio of hits. Next, we will
also describe existing methods that explore diver-
gent sets of answers to enhance the computation of

such scores.

Let MCQ = {mcqi,...,mcqn} be the origi-
nal set of N questions, choice, and answers of a
MC benchmark. Consider also that there is a func-
tion denoted llm(mcg;) that returns 1 if a given
LLM presents the correct response, i.e. the re-
sponse provided by the LLM is equal to the cor-
rect alternative in mcg;, or 0 otherwise. The most
used baseline consists of computing the accuracy
directly on M C'Q), which we refer to as MCQA
and define as:

N
1
MCQA = ; lim(meq;) (1)

But as we presented in the previous section,
LLMs can be inconsistent even we very simple
test, and it is important to take such aspect into
account during the evaluation process. As a conse-
quence, consider also that there is a set denoted
MCOQ* = {MC’Q*l, el MC’Q*N}, compris-
ing N divergence sets which are derivations of
the samples in the M CQ set. The divergence
sets can be created using M different methods,
so that MC’Q*i = {mcg*,...,mcgxM} and
meq; € M@Q*i, i.e. the original question can
also be included in the divergence set. We can find
in the literature some methods that explore the of
creating divergence sets and using them to material-
ize into metrics (Pezeshkpour and Hruschka, 2024;
Wang et al., 2025).

One metric is MCQA+, based on the idea of com-
puting the MCQA scores using disjoint divergence
sets and aggregating the results using the mean of
all M divergence sets, i.e. the mean for the entire
set of questions. This metric can be defined as:

N M
1 j
=1 5=

Notice that MCQA+ considers the divergence
sets for generating alternative evaluations, but the
aggregation of the scores under-explores the com-
putation of consistency. In fact, we can say that
MCQA+ does rely on an implicit use consistency,
but given that incorrect response also contribute to
the score, it is not trivial to associate the metic to
the consistency of correct responses only.

Another metric that includes consistency in the
computation of accuracy scores is the Majority Vot-
ing (MV) metric, proposed in (Pezeshkpour and
Hruschka, 2024). This metric relies on the set of the



divergent sets M CQ* and computes the correct-
ness of an evaluation sample based on achieving
the correct response in the majority of the deriva-
tions, i.e. if the LLM provides the correct response
for more than half of the samples in M C’Q*i, or
in other words, more than half response consis-
tency. That is, consider the definition response
consistency for a given sample ¢ as:

M
RC() = % > lim(megs) (3)
j=1

Now, consider the function 1(expression),
which returns 1 if expression is true or O other-
wise, the MV metric can then be defined as:

N
1 .
MV — N ;:1: 1(RC(@) > 0.5) “4)

Even though MV relies on consistency to com-
pute hits, i.e. the majority of the divergent ques-
tions need to get correct responses for a question
to be computed as a hit, the metric relies on very
permissive level of consistency (0.5), for which
samples with low response consistency values have
the same weights of those with higher values. In
some sense, that hinders the impact of consistency
in the metric, apart from being a more statistically-
robust score compared with MCQA.

4 Using Consistency for More Reliable
Accuracy Computation

In this section we propose our method to re-
balance LLM accuracy on MC benchmarks, to
which we refer as the Consistency-Rebalanced
Accuracy (CoRA). The metric is built upon the
idea of computing the Consistency Index (CI)
score using the score computed with the Bare-
Minimum-Consistency Accuracy (BMCA) method
using 100% consistency as target, and then adjust-
ing the scores computed with the MCQA method
to scale down LLMs that are inconsistent, resulting
in CoRA scores. Details are provided next.

4.1 Bare-Minimum-Consistency Accuracy

The first metric we propose is the Bare-Minimum
Consistency Accuracy (BMCA), which can be con-
sidered as an extension of the MV metric but using
the adjustable parameter c to determine the mini-
mum response consistency level that is expected
for a sample to be considered correct. That is, for

each sample ¢, we will only consider the samples
as correct if the RC score is greater than ¢

In greater details, given the consistency level ¢
as a parameter, the BMCA metric can be defined
as:

N
BMCA(c) = %Z 1(RC(H)>¢) (5
=1

4.2 Consistency Index

Given that BMCA can compute scores for different
levels of consistency, when ¢ = 1.0, the metric will
compute the accuracy score only for cases where
the model provide 100% response consistency in
the M trials.

We associate here the idea of this index with the
elimination of random guessing as a viable option
for the models being evaluated. As detailed in
the appendix A, for M = 10, a model has to be
guessing at a success rate greater than 0.9999 to be
able to be 100% consistent on M trials. When no
random guess is allowed at all, the LLM is arguably
knowledgeable about the responses provided for
the benchmark questions.

Therefore, we use BMCA(1.0) as a proxy to de-
fine the proportion of samples for which the LLM
being evaluated demonstrates real knowledge when
answering the questions, and use the score to com-
pute a quality metric for the original MCQA score.
We refer to this metric as the Consistency Index
(CI) score.

Formally, the CI score is computed using the
difference between MCQA and BMCA(1.0), pro-
viding the gap of the MCQA score to the accuracy
considering only cases with 100% of response con-
sistency, and subtracting from 1.0 so a higher value
denotes higher consistency, such as in:

CI = 1.0 — (MCQA — BMCA(1.0)) (6)

4.3 Consistency-Rebalanced Accuracy

The end result of our approach is the Consistency-
Rebalanced Accuracy (CoRA), consisting of scal-
ing down the scores computed with MCQA using
the CI score described in the previous section. The
idea is to take advantage of the CI score and adjust
MCQA scores to make them reflect more authenti-
cally the quality of the LLM in terms of response
consistency.

The implementation is straightforward, as we
denote in the equation below:

CoRA = MCQA x CI (7



With this approach, the MCQA scores are at
best kept, if the model presents 100% response
consistency for the correct responses (which is very
unlikely, as we will show later), but they can be
scaled down as the LLM scores presents larger gaps
from BMCA(1.0) to MCQA.

5 Details for Implementation

As a method to implement the divergent set
MCQ+, we focus in creating derivations of the set
of choices C' by creating variations only in the way
multiple options are presented to the model. Al-
though we can also vary the set of questions () with
the variations in the input, such as with rephrasings,
we wanted to avoid introducing any potential er-
ror in this process. By including variations in the
set C', we can generate alternative sets of choices
where the expected answer is always kept but the
set of distractors is modified with three operators:
reorderings, where the order of the choices pre-
sented to the LLM is modified, such as by shuffling
the choices; deletions, where one or more alterna-
tives are removed from the original set of choices;
and inclusions, where alternatives that do not affect
the expected answers are included, such as adding
a none of the above (NOTA) alternative.

In details, consider that A is the number of al-
ternatives in the original question, we consider the
following approaches to generate altered sets of an-
swer choices: Shuffled, where the set of choices is
shuffled (we can shuffle multiple times, but in this
work we shuffle only once); With NOTA, where
each distractor is replaced by the NOTA alternative,
resulting in A — 1 new sets of alternatives; With
NOTA shuffled, employing a mix of With NOTA
and Shuffled, where the NOTA alternative replaces
a distractor and them the set of choices is shuffled
(this approach also results in A — 1 variations);
Decoupled, which takes the original set of choices
and decouples it into A — 1 binary subset of choices,
pairing each of non-correct choices with the correct
one in each subset; Decoupled shuffled, similar
to Decoupled but with an additional shuffling step;
Decoupled with NOTA, also mixing Decoupled
with With NOTA, where the set of alternatives is
decoupled into A — 1 binary subsets and a NOTA
distractor is add to each subset, creating ternary
subsets; Decoupled with NOTA shuffled, which
is similar to Decoupled with NOTA with additional

shufflings on the ternary subsets.
An illustration of the previously described tech-
niques is presented in Figure 1. With these varia-

tions in the set of choices, we can then format a
prompt for each variation and prompted the model
for the correct alternative. We consider the follow-
ing base prompt, where SQUESTIONS is replaced
by the text of the question, followed by the corre-
sponding options which are formatted and filled in
$CHOICESS:

Answer the following multiple choice question.
The first line of your response should be of the
following format: 'LETTER' (without quotes), where
LETTER is one of ABCD (depending on the number
of alternatives), followed by a step-by-step
explanation.

Question: $QUESTION$
Choices: $CHOICES$
Answer:

To evaluate the output of the LLMs, we parse
the first token of the response and remove any ad-
ditional character such as punctuation and spaces.

Our method generates a total of 2+ 6 x (A — 1)
variations of the set of choices for each question.
For instance, with with five alternatives, i.e. A = 5,
26 variations are generated. Notice that one could
easily generate more variations by including more
exhaustive shufflings and generate subsets with
more than two and less than M alternatives, but
that implies in extra costs to evaluate the models
since we need to query the model for each varia-
tions of the original question, and there is a linear
increase in the cost of running LLLM inferences.

6 Empirical Evaluation

In this section we describe the evaluations con-
ducted to validate our proposed CoRA metric. We
focus on comparing the results against the three
baselines described in Section 3: MCQA, MCQA+,
and MCQA+MV.

We divide this evaluation into two main parts. In
this first we focus on a domain-specific dataset, i.e.
the MedQA benchmark (Jin et al., 2020), consider-
ing four different LLMs either finetuned on medical
data or known as good performer in this type of
data: GPT4o version "gpt-40-2024-11-20", MedL-
lama3 7B (MedL) (Medical, 2024), BioMedical
Llama3 8B (BioML) (Medical, 2024), and BioMis-
tral 7B (BMist) (Labrak et al., 2024). In the second
part we evaluate three general knowledge bench-
marks, i.e. MMLU (Hendrycks et al., 2021), Arc-C
(Clark et al., 2018), and TruthFulQA (Lin et al.,
2022), considering four general-purpose LLMs:
Mistral v0.1 7B (Mist) (Jiang et al., 2023), Llama
3.1 8B (Llam) (Aaron Grattafiori et al, 2024),
Granite 3.0 8B (Gran) (Granite Team, 2024), and
DeepSeek chat 7B (DSeek) (DeepSeek, 2024). No-



Original configuration

Shuffled

With NOTA

Question: What is the most
appropriate answer?
Choices:

A. correct choice.

Question: What is the most
appropriate answer?
Choices:

A, distractor 2

Question: What is the most
appropriate answer?
Choicas:

A. correct choice.

With NOTA shuffled

Question: What is the most
appropriate answer?
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B. distractor 1 B. distractor 3 B. none of the above B. none of the above
C. distractor 2 C. correct choice. C. distractor 2 C. comrect choice.
D. distractor 3 D. distractor 1 D. distractor 3 D. distractor 3
Decoupled Decoupled shuffled Decoupled with NOTA Decoupled w/NOTA shuffled

Question: What is the most
appropriate answer?
Choices:

A, correct choice.

B. distractor 1

Question: What is the most
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Choices:

A. distractor 1

B. correct choice.

Question: What is the most
appropriate answer?
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B. distractor 1

C. none of the above

Question: What is the most
appropriate answer?
Choices:

A.none of the above

B. correct choice.

C. distractor 1

Question: What is the most
appropriate answer?
Choices:

A, correct choice.

B. distractor 2

Question: What is the most
appropriate answer?
Choices:

A. distractor 2

B. correct choice.

Question: What is the most
appropriate answer?
Choices:

A. correct choice.

B. distractor 2

C. none of the above

Question: What is the most
‘appropriate answer?
Choices:

A. correct choice.

B. none of the above

C. distractor 2

Question: What is the most
appropriate answer?
Choices:

A, correct choice.

Question: What is the most
appropriate answer?
Choices:

A. distractor 3

Question: What is the most
appropriate answer?
Choices:

A. correct choice.

Question: What is the most
appropriate answer?
Choices:

A. distractor 3

B. distractor 3 B. correct choice.

B. distractor 3
C. none of the above

B. none of the above
C. comrect choice.

Figure 1: Illustration of the methods to divergent sets of alternatives

tice that we focused on models with slightly similar
sizes, i.e. around 7B to 8B parameters, except for
GPT40 whose size is not publicly disclosed. For
MedQA we consider the 1,273 5-choice questions
extracted from USMLE exams, resulting in gener-
ating 26 variations for the M C'(Q)* set of divergent
questions, and use 0-shot prompts. For MMLU,
we used 14,042 questions with either 3 or 4 alter-
natives, generating 14 to 20 questions in M C'Qx,
and evaluated with 5-shot prompts. For Arc-C, we
used 1,172 questions with either 4 or 5 alternatives,
generating 20 to 26 questions in M C' @), and eval-
uated with 25-shot prompts. And for TruthFulQA,
we consider 817 questions ranging from 2 or 12 al-
ternatives, generating 14 to 74 questions in M C'Qx,
and evaluated with O-shot prompts. Notice that the
decision for in-context learning method was based
on common practices from the literature (Aaron
Grattafiori et al, 2024; DeepSeek-Al and Aixin Liu
et al, 2024).

For a better understanding of the CoRA scores,
for each LLM and dataset we present an exten-
sive evaluation of BMCA considering six differ-
ent values for ¢, i.e. 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0, noticing that 0.5 represents a borderline level
consistency for deciding if a question is correctly
responded or not, and 1.0 corresponds to full con-
sistency, i.e. all responses from the divergent set of
questions are correct. That range of values is useful
to provide a progressive analysis on the consistency
of an LLM, i.e. how the accuracy is affect as we

increase the value of c¢. We report also all values
computed for the CI score.

Table 1: Results on MedQA dataset. In parentheses the
comparison ranking.

LLMs: [ GPT40 MedL  BioML  BMist
Baselines
MCQA 0.85(1) 0742) 0733) 0384
MCQA+ | 090(1) 0.69(3) 0.75(2) 0.58(4)
MV 091(1) 073@3) 0.77(2) 0584
Proposed metric
CoRA [074(1) 0323 042(2) 028(4
Secondary metrics

BMCA(c)

c>0.5 0.91 0.75 0.80 0.61
c>0.6 0.89 0.67 0.73 0.49
c>0.7 0.86 0.57 0.66 0.40
c>0.8 0.84 0.49 0.60 0.33
c>0.9 0.79 0.34 0.46 0.22
c>1.0 0.73 0.18 0.31 0.11
CI 0.88 0.44 0.58 0.73

The results on MedQA are presented in Table 1.
When comparing the scores of MCQA+ and MV
baselines to MCQA, it is noticeable how the scores
of all models, except MedL, are magnified with the
expanded evaluation with divergent questions. On
the other hand CoRA, presents reduced scores by
about 0.11 points for GPT4, 0.42 points for MedL,
0.31 for BioML, 0.10 for BMist. Note that such a
decrease is proportional to the CI score, reported in
the last row of the table. By looking at the scores
from BMCA(1.0) and comparing them to those
of MCQA, we can clearly observe that there is a
drop for all models, being GPT40 undeniably more



consistency, reaching a score of 0.73, i.e. 73% of
the correct responses present RC(i) = 1.0. For
the other models, on the other hand, less than half
of the correct cases present 100% response consis-
tency, and that gap in consistency is represented
in CoRA scores that are much lower compared
with MCQA. That is, MedL drops from 0.74 with
MCQA to 0.32 with CorA, BioML from 0.73 to
0.42, and BMist from 0.38 to 0.28. Further ev-
idence on the differences in consistency can be
found by looking at the different scores provided
by BMCA, showing that models such as MedL and
BioML present a drastic decrease in accuracy as the
minimum consistency requirement increase, while
the decrease is not as drastic for BioML and very
subtle for GPT4.

Table 2: Results on MMLU dataset. In parentheses the
comparison ranking.

LLMs: | Mist Llam Gran DSeek
Baselines
MCQA 0.64(2) 058@3) 065(1) 0524
MCQA+ | 0.75(1) 0.62(3) 0.75(1) 0.60(4)
MV 0.78(1) 0613) 076(2) 0.58#)
Proposed metric
CoRA  [044(2 033(3) 047(H) 03303
Secondary metrics

BMCA(c)

c>0.5 0.83 0.65 0.80 0.63
c>0.6 0.74 0.55 0.73 0.54
c>0.7 0.65 0.46 0.66 0.44
c>08 0.56 0.38 0.58 0.36
c>0.9 0.47 0.28 0.50 0.27
c>1.0 0.33 0.15 0.38 0.16
CI 0.69 0.57 0.73 0.64

Table 3: Results on Arc-C dataset. In parentheses the
comparison ranking.

LLMs: | Mist Llam Gran DSeek
Baselines
MCQA 0.80(2) 0.72(3) 0.82(1) 0.64(4)
MCQA+ | 090(1) 0.73(3) 0.89(2) 0.73(3)
MV 092(1) 0.81(3) 091(2) 0784
Proposed metric
CoRA  [058(2) 0254 0.65() 03803
Secondary metrics

BMCAC(c)

c>05 0.94 0.84 0.92 0.82
c>0.6 0.90 0.78 0.88 0.73
c>0.7 0.84 0.69 0.84 0.64
c>0.8 0.80 0.53 0.80 0.53
c>0.9 0.70 0.32 0.73 0.42
c>1.0 0.52 0.07 0.61 0.23
CI 0.72 0.35 0.79 0.59

The results on general-knowledge benchmarks
are presented in Table 2, Table 3, and Table 4, for
MMLU, Arc-C, and TruthfulQA, respectively. In

Table 4: Results on Truthful QA dataset. In parentheses
the comparison ranking.

LLMs: [ Mist Llam Gran DSeek
Baselines
MCQA 041(1) 041(1) 034(@3) 0.34(03)
MCQA+ | 049(1) 049(1) 0394) 0.40(@Q3)
MV 045((2) 047(1) 035() 0.373)
Proposed metric
CoRA  [028(1) 027(2) 025(3) 0244
Secondary metrics

BMCA(c)

c>05 0.48 0.51 0.36 0.40
c>0.6 0.40 0.40 0.30 0.31
c>0.7 0.33 0.31 0.25 0.23
c>0.8 0.25 0.22 0.19 0.17
c>0.9 0.16 0.14 0.14 0.11
c>1.0 0.09 0.08 0.09 0.05
CI 0.68 0.67 0.75 0.71

this case, we observe a similar scenario apart the
fact that there is not a very top-performing LLM
such as GPT4o in the comparison. As it can be
observed, the maximum CI score is of 0.79 in Arc-
C with Gran, but CI can go as low as 0.35 with
Llam in the same benchmark. That low CI score
for Llam reflects a surprisingly inconsistency LLM
on the Arc-C benchmark, and the resulting CoRA
score reflects this lack of consistency. That is, from
a difference of 0.10 MCQA points from Llam to
Gran, the top performer in that benchmark, the dif-
ference becomes 0.40 points with CoRA. Notice
that MCQA+ and MV keep gaps that are much
closer to that of MCQA, i.e. 0.16 and 0.10, respec-
tively. Overall, considering the best MCQA scores,
that were achieved with Gran, we observe that our
CoRA metric reflects at least a drop of 0.18 points
in MMLU, 0.17 in Arc-C, and 0.09 in Truthful QA.
On the other hand, the drop in score for Llam, one
of the worst performers in CoRA, can be as high as
0.25 points in MMLU, 0.57 in Arc-C, and 0.14 in
Truthful QA. It is intriguing that both the most and
the least consistent LLM are the same for all three
benchmarks, a fact that might indicate that the con-
sistency might be a feature that generalizes among
different benchmarks, but further investigation is
needed to support this claim.

6.1 Ablation Studies

In this section we present an ablation study on the
set of divergent questions used to compute our met-
rics. As depicted in Figure 1, some methods can
keep the same number of alternatives as the original
question (first row in Figure 1), but other methods
can either augment or reduce that sets creating un-
even uniform distribution with the likelihood of pre-



dicting the correct question, which can contribute
for metrics such as MCQA+ and MV to produce
higher scores. For this reason, in this section not
only we present results with altered questions with
only the exact same number of alternatives of the
original question, but we also conduct a thorough
statistical analysis on the set of altered questions
based on bootstrap resampling. We focus on the
MedQA dataset, which presents an invariable num-
ber of alternatives for the entire dataset and can be
used for both evaluations.

Results with the set of only ten divergent ques-
tions with the same number of alternatives are pre-
sented in Table 5. As somewhat expected, the re-
sults of MCQA+ and MV present a drop compared
to the numbers reported in Table 1, the table con-
taining analogous results with all 26 divergent ques-
tions. The score from CoRA, on the other hand,
present slightly increases. We think that having a
smaller set of divergent questions possibly reduces
the impact of the consistency evaluation for these
metrics, but we need further investigation to find
more evidence to confirm this hypothesis.

Table 5: Results on MedQA dataset - 5-alternative ques-
tions only. In parentheses the comparison ranking.

LLMs: [ GPT40 MedL  BioML  BMist
S-alternative-only divergent questions
MCQA+ | 0.86(1) 0.62(3) 0.67(2) 0.43(4)
MV 0.85(1) 0623) 067(2) 0384
CoRA 0.77(1) 037(3) 048(2) 028
difference from Table 1
MCQA+ -0.04 -0.07 -0.08 -0.15
MV -0.06 -0.11 -0.10 -0.20
CoRA 0.03 0.05 0.06 0.00

We focus in understanding better the sensitive-
ness of the metric to the set of altered question,
independently of the distribution and number of
alternatives. For that we conducted a bootstrap
resampling analysis, by generating 10,000 evalua-
tions with 100 altered questions randomly selected
with replacement from the 26 divergent questions
created with MedQA.

The means of the scores computed with the
10,000 bootstrapped resamplings are presented in
Table 6. First, it is eye catching the usually low
standard deviations, demonstrating an interesting
stability of the score independently of the set of al-
tered choices. Notice also that all methods present
very small differences when compared to the seed
divergence set with 26 variations, as reported in
the bottom portion of the table. That is quite in-
teresting since it indicates that the variations pre-

sented in Section 5 are relatively robust for the
evaluation of response consistency, and our pro-
posed method to generate variations can be used to
evaluate LLMs without much concern with intrin-
sic variability from the set of altered choices.

Table 6: Results on MedQA dataset - means of 10,000
resamplings of 100-samples bootstrapped divergent
questions. In parentheses the standard deviation multi-
plied by 103.

LLMs: | GPT4o MedL BioML BMist
10 bootstrapped divergent questions
MCQA+ | 090(3) 0.69(11) 0.75(9) 0.58(13)
MV 091(4) 0.73(15) 0.78(12) 0.59 (21)
CoRA 0.75(1) 033(3) 042(2) 028(1)
difference to Table 1

MCQA+ 0.00 0.00 0.00 0.00
MV 0.00 0.00 0.01 0.01
CoRA 0.01 0.01 0.00 0.00

7 Conclusions and Future Work

In this work we proposed the CoRA metric to en-
hance the way LLMs are evaluated on MC bench-
marks, which explores the concept of response con-
sistency to rebalance the scores computed from
the ratio for hits of an LLM on MC benchmarks
and provide more faithfully the capabilities of such
models. And our evaluations on well-known bench-
marks show that CoRA is able to redistribute the
scores according to the consistency of the LLM,
which is demonstrated with the CI scores, improv-
ing the reliability of LLM evaluation compared to
state-of-the-art metrics that do not reflect any as-
pect of response consistency in the scores. Further-
more, we conducted an ablation study focused at
evaluating the sensitiveness of to the set of altered
answer choices and demonstrate that our proposed
generation method is relatively robust, practically
equivalent to the scores obtained with bootstrap
resampling.

As future work we believe we can improve the
methodology in different ways. There is room to
investigate and increase the set of divergent ques-
tions, and also in exploring further simpler and
more general methods such as shuffling. Another
direction lies in revisiting the way consistency is
used for rebalancing scores, for instance by taking
more advantage of BMCA computed on multiple
values for c. Lastly, it is key to understand how
this work can be expanded to other types of bench-
marks beyond multiple choice, and possibly how
these ideas can be used to make LLMs safer in real
time, during the inference.



8 Limitations

The first limitation of this work is the focus on mul-
tiple choice benchmarks only, so the results from
this paper do not directly transfer to other types of
benchmarks such as open-ended questions. Also,
the evaluation comprises a limited set of bench-
marks, so further experiments shall be conducted to
validate the generalization of our methods. Another
limitation is that set of LLMs that we evaluated,
given that the size of the models usually tops at
around 7B to 8B parameters, so experiments with
larger LLMs should also be conducted in the future.
Finally, we have not provided any deep discussion
on the computational complexity increase of our
method, but we decided to not delve into that dis-
cussion since, in general terms, the complexity for
computing CoRA is roughly equivalent to that of
both MCQA+ and MV.

9 Ethical Statement

We have not identified any ethical issue, since the
LLMs and benchmarks are publicly available and
we just followed commonly-used practices.
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A Guessing on Benchmarks

Requiring consistency of correct answers on multi-
ple, independent answers to the same question of
a benchmark is, intuitively, a way to assure that
models which are doing, to some extent, random
guessing in a multiple choice benchmark. Here we
explore the impact of requirement consistency in
M trials in terms of determining minimum values
for the guessing rate to assure that a given consis-
tency level is met.

We start considering a single multiple-choice
question ¢ of k£ choices which is repeated eval-
uated by a model M times, yielding answers
llm(q;),1 < i < M, where llm(g;) = 1 if, and
only if, the model produces the correct alternative.

In M trials, the number of possible arrangement
of choices where exactly p are correct, Cp/(p) is:

M!

> (M —p)lp!

Given a guessing rate r, where r = 1/pifitis a
purely random guess, the probability of guessing
correctly exactly p of the M trials, T (p) is:

®)

P(TM(p)) = Cu(p)r? (1 —r)M=P) (9

Following, the probability of guessing correctly
. .Y N
p or more answers in M trials, 7', (p) is, clearly:

M
T

M
() =Y _Cu@)ri@—r)M=9 (10

Jj=p

P(T

The two leftmost columns of table A show, for
different values of p, the value of Tf.w (p)) for
M = 10 trials of £ = 5 choices, when the guess-
ing rate is purely random, » = 1/k. For instance,
the probability of obtaining 10 correct answers in
10 trials of a question if the model is randomly
guessing is 0.0000001.

Conversely, now imagine that the model as an
“oracle” which guesses the correct answer at a cer-
tain success rate, SG R. We can then compute the
minimum success needed to always get at least p
correct answers in M, what we call the minimum
success guessing rate, M SGR(p). We computed
numerically such values, and the rightmost column
of table A displays the values for M = 10 trials
of k& = 5 choices. It shows, for instance, that that
a model has to be guessing at least of a success
rate of 0.93 to achieve 6 out of 10 correct answers
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Table 7: Guessing probabilities of p or greater cor-
rect answers in M = 10 trials of & = 5 choices, for
random guessing; and minimum success guessing rate

MSGR(p).

T,"(p).k =5

p | random (r =1/k) | MSGR(p)
0 1.000 0.2

1 0.893 0.54
2 0.624 0.66
3 0.322 0.75
4 0.121 0.82
5 0.033 0.88
6 0.006 0.93
7 0.0009 0.96
8 0.00008 0.98
9 0.000004 0.99
10 0.0000001 0.9999

(MSGR(6)), which is equivalent to the require-
ments of the metric MV proposed in (Pezeshkpour
and Hruschka, 2024).

In our view, a M SGR(6) = 0.93 is still insuf-
ficient to guarantee that a model actually knows
the contents of a multiple-choice benchmark. How-
ever, requiring that the model is consistent in 10 out
of 10 trials (M SGR(10)) warrants that a model
can only successfully guess if its success rate is
above 0.9999, which we consider a reasonable re-
quirement to consider a model knowledgeable in a
subject.
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