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ABSTRACT

Designing robust loss functions is popular in learning with noisy labels while
existing designs did not explicitly consider the overfitting property of deep neu-
ral networks (DNNs). As a result, applying these losses may still suffer from
overfitting/memorizing noisy labels as training proceeds. In this paper, we first
theoretically analyze the memorization effect and show that a lower-capacity
model may perform better on noisy datasets. However, it is non-trivial to de-
sign a neural network with the best capacity given an arbitrary task. To cir-
cumvent this dilemma, instead of changing the model architecture, we decou-
ple DNNs into an encoder followed by a linear classifier and propose to re-
strict the function space of a DNN by a representation regularizer. Particu-
larly, we require the distance between two self-supervised features to be posi-
tively related to the distance between the corresponding two supervised model
outputs. Our proposed framework is easily extendable and can incorporate
many other robust loss functions to further improve performance. Extensive
experiments and theoretical analyses support our claims. Code is available at
https://github.com/UCSC-REAL/SelfSup_NoisyLabel.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable performance in many areas including
speech recognition (Graves et al., 2013), computer vision (Krizhevsky et al., 2012; Lotter et al.,
2016), natural language processing (Zhang & LeCun, 2015), etc. The high-achieving performance
often builds on the availability of quality-annotated datasets. In a real-world scenario, data annotation
inevitably brings in label noise (Wei et al., 2022d;e), which degrades the performance of the network,
primarily due to DNNs’ capability in “memorizing" noisy labels (Zhang et al., 2016).

In the past few years, a number of methods have been proposed to tackle the problem of learning
with noisy labels. Notable achievements include robust loss design (Ghosh et al., 2017; Zhang &
Sabuncu, 2018; Liu & Guo, 2020; Wang et al., 2021), sample selection (Han et al., 2018; Yu et al.,
2019; Cheng et al., 2021; Xia et al., 2021b) , transition matrix estimation (Patrini et al., 2017; Zhu
et al., 2021b; Xia et al., 2019; 2020b) and loss correction/reweighting based on noise transition matrix
(Natarajan et al., 2013; Liu & Tao, 2015; Patrini et al., 2017; Jiang et al., 2021; Zhu et al., 2021b;
Wei et al., 2022a; Zhu et al., 2022c). However, these methods still suffer from limitations because
they are agnostic to the model complexity and do not explicitly take the over-fitting property of
DNN into consideration when designing these methods (Wei et al., 2021; Liu et al., 2022). In the
context of representation learning, DNN is prone to fit/memorize noisy labels as training proceeds
(Wei et al., 2022d; Zhang et al., 2016), i.e., the memorization effect. Thus when the noise rate is
high, even though the robust losses have some theoretical guarantees in expectation, they are still
unstable during training (Cheng et al., 2021). It has been shown that early stopping helps mitigate
memorizing noisy labels (Rolnick et al., 2017; Xia et al., 2020a). But intuitively, early stopping will
handle overfitting wrong labels at the cost of underfitting clean samples if not tuned properly. An
alternative approach is using regularizer to punish/avoid overfitting (Liu & Guo, 2020; Cheng et al.,
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2021; Liu et al., 2020), which mainly build regularizers by editing labels. In this paper, we study the
effectiveness of a representation regularizer.

To fully understand the memorization effect on learning with noisy labels, we decouple the gen-
eralization error into estimation error and approximation error. By analyzing these two errors, we
find that DNN behaves differently on various label noise types and the key to prevent over-fitting
is to control model complexity. However, specifically designing the model structure for learning
with noisy labels is hard. One tractable solution is to use representation regularizers to cut off some
redundant function space without hurting the optima. Therefore, we propose a unified framework by
utilizing representation to mitigate the memorization effect. We list main contributions below:
• We first theoretically analyze the memorization effect by decomposing the generalization error

into estimation error and approximation error in the context of learning with noisy labels and show
that a lower-capacity model may perform better on noisy datasets.

• Due to the fact that designing a neural network with the best capacity given an arbitrary task
requires formidable effort, instead of changing the model architecture, we decouple DNNs into
an encoder followed by a linear classifier and propose to restrict the function space of DNNs by
the structural information between representations. Particularly, we require the distance between
two self-supervised features to be positively related to the distance between the corresponding two
supervised model outputs.

• The effectiveness of the proposed regularizer is demonstrated by both theoretical analyses and
numerical experiments. Our framework can incorporate many current robust losses and help them
further improve performance.

1.1 RELATED WORKS

Learning with Noisy Labels Many works design robust loss to improve the robustness of neural
networks when learning with noisy labels (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Liu & Guo,
2020; Xu et al., 2019; Feng et al., 2021; Yong et al.; Xia et al., 2022; Wei et al., 2022c;b). (Ghosh
et al., 2017) proves MAE is inherently robust to label noise. However, MAE has a severe under-fitting
problem. (Zhang & Sabuncu, 2018) proposes GCE loss which can combine the advantage of MAE
and CE, exhibiting good performance on noisy datasets. (Liu & Guo, 2020) introduces peer loss,
which is statistically robust to label noise without knowing noise rates. The extension of peer loss also
shows good performance on instance-dependent label noise (Cheng et al., 2021; Zhu et al., 2021a).
Another efficient approach to combat label noise is by sample selection (Jiang et al., 2018; Han et al.,
2018; Yu et al., 2019; Northcutt et al., 2021; Yao et al., 2020; Wei et al., 2020; Zhang et al., 2020; Xia
et al., 2021a). These methods regard “small loss” examples as clean ones and train multiple networks
to select clean samples. Semi-supervised learning is also popular and effective on learning with noisy
labels in recent years. Some works (Li et al., 2020; Nguyen et al., 2020) perform clustering on the
sample loss and divide the samples into clean ones and noisy ones. Then drop the labels of the "noisy
samples" and perform semi-supervised learning on all the samples. However, the semi-supervised
pseudo labels can cause disparate impact on different groups of data Zhu et al. (2022b). Recently,
some works apply self-supervised learning to handle noisy labels (Ghosh & Lan, 2021; Li et al.,
2022a; Wei et al., 2023). Our work can also explain some findings from (Ghosh & Lan, 2021).

Knowledge Distillation Our proposed learning framework is related to knowledge distillation (KD).
(Hinton et al., 2015) shows that a small, shallow network can be improved through a teacher-student
framework. Due to its great applicability, KD has gained more and more attention in recent years
and numerous methods have been proposed to perform efficient distillation (Mirzadeh et al., 2020;
Zhang et al., 2018b; 2019). However, the dataset used in KD is assumed to be clean. Thus it is hard
to connect KD with learning with noisy labels. In this paper, we theoretically and experimentally
show that a regularizer generally used in KD (Park et al., 2019) can alleviate the over-fitting problem
on noisy data by using DNN features which offers a new alternative for dealing with label noise.

2 PRELIMINARY

We introduce preliminaries and notations including definitions and problem formulation.

Problem formulation Consider a K-class classification problem on a set of N training examples
denoted by D := {(xn, yn)}n∈[N ], where [N ] := {1, 2, · · · , N} is the set of example indices.
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Examples (xn, yn) are drawn according to random variables (X,Y ) from a joint distribution D.
The classification task aims to identify a classifier C that maps X to Y accurately. In real-world
applications, the learner can only observe noisy labels ỹ drawn from Ỹ |X (Wei et al., 2022d),
e.g., human annotators may wrongly label some images containing cats as ones that contain dogs
accidentally or irresponsibly. The corresponding noisy dataset and distribution are denoted by D̃ :=

{(xn, ỹn)}n∈[N ] and D̃. Define the expected risk of a classifier C as R(C) = ED [1(C(X) ̸= Y )].
The goal is to learn a classifier C from the noisy distribution D̃ which also minimizes R(C), i.e.,
learn the Bayes optimal classifier such that C∗(x) = argmaxi∈[K] P(Y = i|X = x).

Noise transition matrix The label noise of each instance is characterized by Tij(X) = P(Ỹ =
j|X,Y = i), where T (X) is called the (instance-dependent) noise transition matrix (Zhu et al.,
2021b; Li et al., 2022b). There are two special noise regimes (Han et al., 2018) for the simplicity of
theoretical analyses: symmetric noise and asymmetric noise. In symmetric noise, each clean label is
randomly flipped to the other labels uniformly w.p. ϵ, where ϵ is the noise rate. Therefore, Tii = 1− ϵ
and Tij = ϵ

K−1 , i ̸= j, i, j ∈ [K]. In asymmetric noise, each clean label is randomly flipped to its
adjacent label, i.e., Tii = 1− ϵ, Tii + Ti,(i+1)K = 1, where (i+ 1)K := i mod K + 1.

Empirical risk minimization The empirical risk on a noisy dataset with classifier C writes as
1
N

∑
n∈[N ] ℓ(C(xn), ỹn), where ℓ is usually the cross-entropy (CE) loss. Existing works adapt ℓ to

make it robust to label noise, e.g., loss correction (Natarajan et al., 2013; Patrini et al., 2017), loss
reweighting (Liu & Tao, 2015), generalized cross-entropy (GCE) (Zhang & Sabuncu, 2018), peer
loss (Liu & Guo, 2020), f -divergence (Wei & Liu, 2021). To distinguish their optimization from the
vanilla empirical risk minimization (ERM), we call them the adapted ERM.
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Figure 1: Training and test accuracies on
CIFAR-10 with symmetric noise with noise
rates 0.4 (blue curves) and 0.6 (red curves).
We use ResNet 34 for conducting the experi-
ments (See detailed setting in Appendix E)

Memorization effects of DNNs Without special
treatments, minimizing the empirical risk on noisy
distributions make the model overfit the noisy labels.
As a result, the corrupted labels will be memorized
(Wei et al., 2022d; Han et al., 2020; Xia et al., 2020a)
and the test accuracy on clean data will drop in the
late stage of training even though the training accu-
racy is consistently increasing. See Figure 1 for an
illustration. Therefore, it is important to study robust
methods to mitigate memorizing noisy labels.

Outline The rest of the paper is organized as follows.
In Section 3, we theoretically understand the memo-
rization effect by analyzing the relationship among
noise rates, sample size, and model capacity, which
motivate us to design a regularizer to alleviate the
memorization effect in Section 4 by restricting model
capacity. Section 5 empirically validates our analyses
and proposal.

3 IMPACTS OF MISLABELED DATA ON DNN PERFORMANCE

We quantify the harmfulness of memorizing noisy labels by analyzing the generalization errors on
clean data when learning on a noisy dataset D̃ and optimizing over function space C.

3.1 THEORETICAL TOOLS

Denote by the optimal clean classifier CD := argminC∈C ED[ℓ(C(X), Y )], the optimal noisy
classifier CD̃ = argminC∈C ED̃[ℓ(C(X), Ỹ )], and the learned classifier on the noisy dataset
ĈD̃ = argminC∈C

∑
n∈[N ][ℓ(C(xn), ỹn)]. The expected risk w.r.t the Bayes optimal classifier

C∗ can be decomposed into two parts: E[ℓ(ĈD̃(f(X)), Y )] − E[ℓ(C∗(X), Y )] = ErrorE(CD, ĈD̃) +
ErrorA(CD, C∗), where the estimation error ErrorE and the approximation error ErrorA can
be written as ErrorE(CD, ĈD̃) = E[ℓ(ĈD̃(X), Y )] − E [ℓ(CD(X), Y )], ErrorA(CD, C

∗) =
E [ℓ(CD(X), Y )]− E [ℓ(C∗(X), Y )]. We analyze each part respectively.

Estimation error We first study the noise consistency from the aspect of expected loss.
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Definition 1 (Noise consistency). One label noise regime satisfies the noise consistency under loss
ℓ if the following affine relationship holds: ED̃[ℓ(C(X), Ỹ )] = γ1ED[ℓ(C(X), Y )] + γ2, where
γ1 > 0 and γ2 are constants in a fixed noise setting.

Following the probabilistic decomposition of label noise Natarajan et al. (2013); Ghosh et al. (2017);
Cheng et al. (2021), we have Lemmas 1 and 2.

Lemma 1. A general noise regime with noise transitions Tij(X) : P(Ỹ = j|Y = i,X) can be
decoupled to the following form:

ED̃

[
ℓ(C(X), Ỹ )

]
= T · ED[ℓ(C(X), Y )] +

∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[Uij(X)ℓ(C(X), j)],

where Uij(X) = Tij(X),∀i ̸= j, Ujj(X) = Tjj(X)− T , T := minX,i Tii(X).

Lemma 1 shows the general instance-dependent label noise is hard to be consistent since the second
term is not a constant unless we add more restrictions to T (X). Specially, in Lemma 2, we consider
two typical noise regimes for multi-class classifications: symmetric noise and asymmetric noise.

Lemma 2. The symmetric noise is consistent with 0-1 loss: ED̃

[
ℓ(C(X), Ỹ )

]
= γ1ED[ℓ(C(X), Y )] +

γ2, where γ1 =
(
1− ϵK

K−1

)
, γ2 = ϵ

K−1
. The asymmetric noise is not consistent: ED̃

[
ℓ(C(X), Ỹ )

]
=

(1− ϵ) · ED[ℓ(C(X), Y )] + ϵ
∑

i∈[K] P(Y = i)ED|Y =i[ℓ(C(X), (i+ 1)K)].

With Lemma 2, we can upper bound the estimation errors in Theorem 1.
Theorem 1. With probability at least 1− δ, learning with symmetric/asymmetric noise and 0-1 loss
has the following estimation error:

ErrorE(CD, ĈD̃) ≤ ∆E(C, ε, δ) := 16

√
|C| log(N · e/|C|) + log(8/δ)

2N(1− ε)2
+ Bias(CD, ĈD̃),

where e = 2.718 is the base of the natural logarithms, |C| is the VC-dimension of function class
C (Bousquet et al., 2003; Devroye et al., 2013). The noise rate parameter ε satisfies ε = ϵK

K−1 for

symmetric noise and ε = ϵ for asymmetric noise. The bias satisfies Bias(CD, ĈD̃) = 0 for symmetric
noise and Bias(CD, ĈD̃) = ϵ

1−ϵ

∑
i∈[K] P(Y = i)ED|Y=i[ℓ(CD(X), (i + 1)K) − ℓ(ĈD̃(X), (i +

1)K)] for asymmetric noise.

Approximation error Analyzing the approximation error for an arbitrary DNN is an open-problem
and beyond our scope. Generally, according to the trade-off between approximation error and
estimation error (a.k.a. bias-complexity trade-off (Shalev-Shwartz & Ben-David, 2014)), a large
function space C reduces the approximation error at the cost of increasing the estimation error. Note
an alternative of the generalization bound is using the Rademacher complexity of C. Both bounds help
reveal the tradeoff between approximation error and estimation error w.r.t C. We use VC-dimension
since it shows a clearer relationship between model capacity C (numerator) and the effective number
of samples N(1− ε)2 (denominator).

Trade-off From Theorem 1 and the above analyses, the bias complexity trade-off is more severe
in the presence of label noise. In the case of symmetric label noise, a larger |C| will lead to smaller
approximation error but at the cost of larger estimation error given large N . Although the trade-off
may not be remarkable in traditional learning with clean data (ϵ = 0), it is critical when label noise
exists since the existence of ϵ will significantly reduce the effective datasize from N to N(1− ϵ)2. In
practice, it is non-trivial to find the best function space or design the best neural network given an
arbitrary task for reducing the total generalization error. We will introduce a tractable solution in the
following sections.

3.2 DECOUPLED CLASSIFIERS: FROM FUNCTION SPACES TO REPRESENTATIONS

One tractable way to restrict the function space is fixing some layers of a given DNN model. Particu-
larly, we can decouple C into two parts: C = f ◦ g, where the encoder f extract representations from
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Path-1: Traditional learning
Path-2: Unfixed encoder
Path-3: Fixed encoder

Figure 2: Illustration of different learning paths (distinguished by colors). The curve with arrow
between two green dots indicates the effort (e.g., number of training instances) of training a model
from one state to another state.

raw features and the linear classifier g maps representations to label classes, i.e., C(X) = g(f(X)).
Clearly, the function space can be reduced significantly if we only optimize the linear classifier g.
But the performance of the classifier depends heavily on the encoder f . By this decomposition, we
transform the problem of finding good function spaces to finding good representations.

Now we analyze the effectiveness of such decomposition. Figure 2 illustrates three learning paths.
Path-1 is the traditional learning path that learns both encoder f and linear classifier g at the same
time (Patrini et al., 2017). In Path-2, a pre-trained encoder f is adopted as an initialization of DNNs
and both f and g are fine-tuned on noisy data distributions D̃ (Ghosh & Lan, 2021). The pre-trained
encoder f is also adopted in Path-3. But the encoder f is fixed/frozen throughout the later training
procedures and only the linear classifier g is updated with D̃. We compare the generalization errors
of different paths to provide insights for the effects of representations on learning with noisy labels.

Now we instantiate function spaces C1 and C2 with different representations. With traditional training
or an unfixed encoder (Path-1 or Path-2), classifier C is optimized over function space C1 = G ◦ F
with raw data. With a fixed encoder (Path-3), classifier C is optimized over function space G given
representations f(X).

Symmetric noise Let C1 = G ◦ F , C2 = G|f . Denote the optimal classifier learned within the
above two functions spaces by CG◦F

D and CG|f
D , respectively. Then the approximation errors of both

cases can be denoted by ErrorA(CG◦F
D , C∗) and ErrorA(C

G|f
D , C∗). Assume ErrorA(CG◦F

D , C∗) <

ErrorA(C
G|f
D , C∗). Note the assumption holds generally for analyzing the bias-complexity trade-off;

otherwise we should always prefer a fixed encoder.

With the error proxy ∆E(C, ε, δ) in Theorem 1, we reveal the relationship among total generalization
error, model capacity and noise rate in Corollary 1.

Corollary 1. When ErrorA(CG◦F
D , C∗) < ErrorA(C

G|f
D , C∗), the error proxy of the expected gener-

alization error for the fixed encoder (G|f ) is not greater than that for the unfixed one (G ◦ F) when

1− ϵK

K − 1
≤ β′(G ◦ F ,G|f) := 16√

2N

(√
|G ◦ F| log(4N · e/|G ◦ F|)−

√
|G| log(4N · e/|G|)

)
ErrorA(C

G|f
D , C∗)− ErrorA(CG◦F

D , C∗)
.

Recall in above | · | for a hypothesis space denotes its VC-dimension. RHS is greater than 0 and LHS
is decreasing with the increase of ϵ. Corollary 1 implies that, for symmetric noise, a fixed encoder is
likely better in high-noise settings. Section 5 provides empirical results to validate this claim. we
also provide empirical evidence in the Appendix D.4 that a shallow network (low capacity model,
similar to fixing the encoder) performs better than deeper network for high-noise regimes.

Other noise Based on Theorem 1, for asymmetric label noise, the noise consistency is broken and
the bias term makes the learning error hard to be bounded. As a result, the relationship between
noise rate ϵ and generalization error is not clear and simply fixing the encoder may induce a larger
generalization error. For the general instance-dependent label noise, the bias term is more complicated
thus the benefit of fixing the encoder is less clear.

Insights and Takeaways With the above analyses, we know learning with an unfixed encoder is
not stable, which is easier to be affected by noisy patterns and yields a worse result than a properly
selected fixed encoder when the noise rate is high. Restricting the search space makes the convergence
stable (reducing estimation error) with the cost of increasing approximation errors. This motivates us
to find a way to compromise between a fixed and unfixed encoder. We explore towards this direction
in the next section.
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Figure 3: The training framework of using representations (SSL features) to regularize learning with
noisy labels (SL features).

4 COMBATING MEMORIZATION BY REPRESENTATION REGULARIZATION

Our understandings in Section 3 motivate us to use the information from representations to regularize
the model predictions. Intuitively, as long as the encoder is not fixed, the approximation error could
be low enough. If the ERM is properly regularized, the search space and the corresponding estimation
error could be reduced.

4.1 TRAINING FRAMEWORK

The training framework is shown in Figure 3, where a new learning path (Self-supervised learning,
SSL) f → h is added to be parallel to Path-2 f → g (SL-training) in Figure 2. The newly added
projection head h is one-hidden-layer MLP (Multi Layer Perceptron) whose output represents SSL
features (after dimension reduction). Its output is employed to regularize the output of linear classifier
g. Given an example (xn, ỹn) and a random batch of features B (xn ∈ B), the loss is defined as:

L((xn, ỹn); f, g, h) = ℓ(g(f(xn)), ỹn)︸ ︷︷ ︸
SL Training

+ ℓInfo(h(f(xn)),B)︸ ︷︷ ︸
SSL Training

+λ ℓReg(h(f(xn)), g(f(xn)),B)︸ ︷︷ ︸
Representation Regularizer

, (1)

where λ controls the scale of regularizer. The loss ℓ for SL training could be either the traditional
CE loss or recent robust loss such as loss correction/reweighting (Patrini et al., 2017; Liu & Tao,
2015), GCE (Zhang & Sabuncu, 2018), peer loss (Liu & Guo, 2020). The SSL features are learned
by InfoNCE (Van den Oord et al., 2018):

ℓInfo(h(f(xn)),B) := − log
exp(sim(h(f(xn)), h(f(x

′
n))))∑

xn′∈B,n′ ̸=n exp(sim(h(f(xn)), h(f(xn′))))
.

Note InfoNCE and CE share a common encoder, inspired by the design of self distillation (Zhang
et al., 2019). The regularization loss ℓReg writes as:

ℓReg(h(f(xn)), g(f(xn)),B) =
1

|B| − 1

∑
xn′∈B,n̸=n′

d(ϕw(tn, tn′), ϕw(sn, sn′)),

where d(·) is a distance measure for two inputs, e.g., l1 or square l2 distance, tn = h(f(xn)),
sn = g(f(xn)), ϕw(tn, tn′) = 1

m∥tn − tn′∥w, where w ∈ {1, 2} represents l1 norm and squared l2
metric, m normalizes the distance over a batch:

m =
1

|B|(|B| − 1)

∑
xn,xn′∈B,n̸=n′

||tn − tn′ ||w. (2)

The design of ℓReg follows the idea of clusterability (Zhu et al., 2021b; 2022a) and inspired by
relational knowledge distillation (Park et al., 2019), i.e., instances with similar SSL features should
have the same true label and instance with different SSL features should have different true
labels, which is our motivation to design ℓReg. Due to the fact that SSL features are learned from
raw feature X and independent of noisy label Ỹ , then using SSL features to regularize SL features is
supposed to mitigate memorizing noisy labels. We provide more theoretical understandings in the
following subsection to show the effectiveness of this design.

4.2 THEORETICAL UNDERSTANDING

We theoretically analyze how ℓreg mitigates memorizing noisy labels in this subsection. As we
discussed previously, SSL features are supposed to pull the model away from memorizing wrong
labels due to clusterability (Zhu et al., 2021b). However, since the SL training is performed on the
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noisy data, when it achieves zero loss, the minimizer should be either memorizing each instance (for
CE loss) or their claimed optimum (for other robust loss functions). Therefore, the global optimum
should be at least affected by both SL training and representation regularization, where the scale
is controlled by λ. For a clear presentation, we focus on analyzing the effect of ℓreg in a binary
classification, whose minimizer is approximate to the global minimizer when λ is sufficiently large.

Consider a randomly sampled batch B. Denote by X 2 := {(xi, xj)|xi ∈ B, xj ∈ B, i ̸= j} the set of
data pairs, and di,j = d(ϕw(ti, tj), ϕ

w(si, sj)). The regularization loss of batch B is decomposed as:
1

|B|
∑

n|xn∈B

ℓReg(h(f(xn)), g(f(xn)),B) =
1

|X 2|

( ∑
(xi,xj)∈X2

T

di,j

︸ ︷︷ ︸
Term-1

+
∑

(xi,xj)∈X2
F

di,j

︸ ︷︷ ︸
Term-2

+
∑

xi∈XT,xj∈XF

2di,j

︸ ︷︷ ︸
Term-3

)
. (3)

where X = XT
⋃
XF, XT/XF denotes the set of instances whose labels are true/false. Note the

regularizer mainly works when SSL features “disagree” with SL features, i.e., Term-3. Denote by

X+ ∼ P(X|Y = 1), X− ∼ P(X|Y = 0), XT ∼ P(X|Y = Ỹ ), XF ∼ P(X|Y ̸= Ỹ ).

For further analyses, we write Term-3 in the form of expectation with d chosen as square l2 distance,
i.e., MSE loss:

Lc = EXT,XF

(
||g(f(XT))− g(f(XF))||1

m1
− ||h(f(XT))− h(f(XF))||2

m2

)2

, (4)

where m1 and m2 are normalization terms in Eqn (2). Note in Lc, we use w = 1 for SL features and
w = 2 for SSL features.1 Denote the variance by var(·). In the setting of binary classification, define
notations: XF

+ ∼ P(X|Ỹ = 1, Y = 0), XF
− ∼ P(X|Ỹ = 0, Y = 1).

To find a tractable way to analytically measure and quantify how feature correction relates to network
robustness, we make three assumptions as follows:
Assumption 1 (Memorize clean instances). ∀n ∈ {n|ỹn = yn}, ℓ(g(f(xn)), yn) = 0.
Assumption 2 (Same overfitting). var(g(f(XF

+))) = 0 and var(g(f(XF
−))) = 0.

Assumption 3 (Gaussian-distributed SSL features). The SSL features follow Gaussian distributions,
i.e., h(f(X+)) ∼ N (µ1,Σ) and h(f(X−)) ∼ N (µ2,Σ), where Σ is the covariance matrix.

Assumption 1 implies that a DNN has confident predictions on clean samples. Assumption 2 implies
that a DNN has the same degree of overfitting for different classes of noisy samples. For example, an
over-parameterized DNN can memorize all the noisy labels (Zhang et al., 2016), which is the focus
of this paper. Thus these two assumptions are reasonable (we also provide empirical evidence for
Assumption 2 in Appendix D.5. Assumption 3 assumes that SSL features follow Gaussian distribution
when we add the regularize. Intuitively, to provide useful regularization, the SSL features should not
be arbitrarily bad. In our experiments, we find that SSL features of CIFAR10 are relatively good, thus
regularizer can be added in the very beginning while for CIFAR100, we need certain warmup epochs
before adding the regularizer. Next, we present Theorem 2 to analyze the effect of Lc. Consider the
case that the model is over-parameterized and traditional training can memorize all samples. Let
e+ = P(Ỹ = 0|Y = 1), e− = P(Ỹ = 1|Y = 0), we have:
Theorem 2. Based on Assumptions 1–3, when e− = e+ = e, P(Y = 1) = P(Y = 0), assuming that
the Bayes classifier achieves zero error, N and B are sufficiently large, then minimizing Lc over g, h,
and f on DNN results in:

ED [1 (g∗(f∗(X), Y )] = e ·
(
1

2
− 1

2 + ∆(Σ, µ1, µ2)

)
where ∆(Σ, µ1, µ2) := 8 · tr(Σ)/||µ1 − µ2||2, tr(·) denotes the matrix trace, and g∗, f∗ denote the
optimal model.

Theorem 2 reveals a clean relationship between the quality of SSL features (given by h(f(X))) and
the network robustness on noisy samples. When tr(Σ) → 0 or ∥µ1 − µ2∥ → ∞, the expected risk of
the model ED [1 (g(f(X), Y )] will approximate to 0. I.e., for any sample x, the model will predict x
to its clean label. Note the proof of Theorem 2 does not rely on any SSL training process. This makes
it possible to use some pre-trained encoders from other tasks. In the Appendix, we also provide an
theoretical understanding on the regularizer from the perspective of information theory.

1Practically, different choices make negligible effects on performance. See more details in Appendix.
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Figure 5: (a) (b) (c): Performance of CE on DogCat, CIFAR10 and CIFAR100 under symmetric noise
rate. For each noise rate, the best epoch test accuracy is recorded. The blue line represents training
with fixed encoder and the red line represents training with unfixed encoder; (d): test accuracy of
CIFAR10 on each training epoch under symmetric 0.6 noise rate. We use ResNet50 (He et al., 2016)
for DogCat and ResNet34 for CIFAR10 and CIFAR100. Encoder is pre-trained by SimCLR (Chen
et al., 2020). Detailed settings are reported in the Appendix.

5 EMPIRICAL EVIDENCES

5.1 THE EFFECT OF REPRESENTATIONS

We perform experiments to study the effect of representations on learning with noisy labels. Figure 5
shows the learning dynamics on symmetric label noise while Figure 4 shows the learning dynamics on
asymmetric and instance-dependent label noise. From these two figures, given a good representation,
we have some key observations:
• Observation-1: Fix encoders for high symmetric label noise
• Observation-2: Do not fix encoders for low symmetric label noise
• Observation-3: Do not fix encoder when bias exists
• Observation-4: A fixed encoder is more stable during learning

0.1 0.2 0.3 0.4
asymmetric noise rate

0

20

40

60

80

100

te
st

 a
cc

ur
ac

y

(a) CIFAR10 asymmetric label nosie

CE (fixed encoder)
CE (unfixed encoder)

0.2 0.3 0.4 0.5 0.6
instance noise rate

0

20

40

60

80

100
(b) CIFAR10 instance label noise
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Figure 4: (a) performance of CE on asym-
metric label noise. (b) performance of CE on
instance-dependent label noise. The genera-
tion of instance-dependent label noise follows
from CORES (Cheng et al., 2021).

Observation-1, Observation-2 are verified by Fig-
ure 5 (a) (b) (c) and Observation-3 is verified by
Figure 4(a) (b). Observation-4 is verified by Figure
5 (d). These four observations are consistent with
our analyses in Section 3. We also find an interest-
ing phenomenon in Figure 4 (b) that down-sampling
(making P(Ỹ = i) = P(Ỹ = j) in the noisy dataset)
is very helpful for instance-dependent label noise
since down-sampling can reduce noise rate imbal-
ance (we provide an illustration on binary case in the
Appendix) which could lower down the estimation
error. Ideally, if down-sampling could make noise-
rate pattern be symmetric, we could achieve noise
consistency (Definition 1) which results in 0 Bias
from Theorem 1. Another interesting phenomenon
is that from Figure 5 (a) (b) (c), the crossing point is different for each dataset. This phenomenon
can be explained by Corollary 1. Corollary 1 implies that if the encoder is learned very well, i.e.,
ErrorA(CG◦F

D , C∗) ≈ ErrorA(C
G|f
D , C∗) , fixing the encoder has benefits over unfixed encoder even

when noise rate is small. Since for DogCat, CIFAR10 and CIFAR100 dataset, each class have 12500
samples, 5000 samples and 500 samples, respectively. When applying the self-supervised learning on
these datasets, the encoder quality is DogCat > CIFAR10 > CIFAR100. Thus the crossing point is
small for DogCat and large for CIFAR100.

5.2 THE PERFORMANCE OF USING REPRESENTATIONS AS A REGULARIZER

Experiments on synthetic label noise We first show that Regularizer can alleviate the over-fitting
problem when ℓ in Equation (1) is simply chosen as Cross-Entropy loss. The experiments are shown
in Figure 6. Regularizer is added at the very beginning since recent studies show that for a randomly
initialized network, the model tends to fit clean labels first (Arpit et al., 2017) and we hope the
regularizer can improve the network robustness when DNN begins to fit noisy labels. From Figure 6
(c) (d), for CE training, the performance first increases then decreases since the network over-fits
noisy labels as training proceeds. However, for CE with the regularizer, the performance is more
stable after it reaches the peak. For 60% noise rate, the peak point is also much higher than vanilla CE
training. For Figure 6 (a) (b), since the network is not randomly initialized, it over-fits noisy labels at
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Figure 6: Experiments w.r.t. regularizer (λ = 1) on CIFAR10. ResNet34 is deployed for the
experiments. (a) (b): Encoder is pre-trained by SimCLR. Symmetric noise rate is 20% and 40%,
respectively; (c) (d): Encoder is randomly initialized with noise rate 40% and 60%, respectively.
Table 1: Comparing each method on CIFAR10. The model is learned from scratch without SSL
pretraining for all methods with λ = 1. Best and last epoch test accuracies are reported: best/last.

Method Symm. CIFAR10 Asymm. CIFAR10
ε = 0.6 ε = 0.8 ε = 0.4

CE 61.29/32.83 38.46/15.05 67.28/56.6
CE + Regularizer 69.02/65.13 61.94/56.78 73.38/58.51

GCE (Zhang & Sabuncu, 2018) 72.56/62.84 40.71/20.53 69.19/53.24
GCE + Regularizer 72.61/68.38 63.63/63.05 69.79.61.32

FW (Patrini et al., 2017) 65.95/60.13 40.08/26.7 68.62/58.01
FW + Regularizer 68.73/65.90 60.94/59.88 75.64/67.66

HOC (Zhu et al., 2021b) 62.53/46.17 39.61/16.90 85.88/78.89
HOC + Regularizer 70.07/66.94 60.9/34.90 83.53/82.56

Peer Loss (Liu & Guo, 2020) 77.52/76.07 15.60/10.00 84.47/68.93
Peer Loss + Regularizer 77.61/73.26 61.64/53.52 81.58/75.38
ELR (Liu et al., 2020) 72.56/71.58 42.76/23.57 86.65/85.27

ELR + Regularizer 76.95/75.98 63.4/57.45 88.62/87.92

Table 2: Test accuracy for each method on CIFAR10N and CIFAR100N.
CE GCE Co-Teaching+ Peer Loss JoCoR ELR CE + Regularizer

CIFAR10N (Worst) 77.69 80.66 83.26 82.53 83.37 83.58 88.74
CIFAR100N 55.50 56.73 57.88 57.59 59.97 58.94 60.81

Table 3: Test accuracy for each method on Clothing1M dataset. All the methods use ResNet50
backbones. DS: Down-Sampling. Reg: With structural regularizer.

Foward-T Co-teaching CORES+DS ELR+DS CE CE + DS CE + DS + Reg
Initializer ImageNet ImageNet ImageNet ImageNet SimCLR SimCLR SimCLR
Accuracy 70.83 69.21 73.24 72.87 70.90 72.95 73.48

the very beginning and the performance gradually decreases. However, for CE with the regularizer,
it helps the network gradually increase the performance as the network reaches the lowest point
(over-fitting state). This observation supports Theorem 2 that the regularizer can prevent over-fitting.

Next, we show the regularizer can complement any other loss functions to further improve perfor-
mance on learning with noisy labels. I.e., we choose ℓ in Equation (1) to be other robust losses. The
overall experiments are shown in Table 1. It can be observed that our regularizer can complement
other loss functions or methods and improve their performance, especially for the last epoch accuracy.
Note that we do not apply any tricks when incorporating other losses since we mainly want to observe
the effect of the regularizer. It is possible to use other techniques to further improve performance
such as multi-model training (Li et al., 2020) or mixup (Zhang et al., 2018a).

Experiments on real-world label noise We also test our regularizer on the datasets with real-world
label noise: CIFAR10N, CIFAR100N (Wei et al., 2022d) and Clothing1M (Xiao et al., 2015). The
results are shown in Table 2 and Table 3. we can find that our regularizer is also effective on the
datasets with real-world label noise even when ℓ in Equation (1) is simply chosen to be Cross Entropy.
More experiments, analyses, and ablation studies can be found in the Appendix.

6 CONCLUSIONS

In this paper, we theoretically analyze the memorization effect by showing the relationship among
noise rates, sample size, and model capacity. By decoupling DNNs into an encoder followed by a
linear classifier, our analyses help reveal the trade-off between fixing or unfixing the encoder during
training, which inspires us a new solution to restrict overfitting via representation regularization.
Our observations and experiments can serve as a guidance for further research to utilize DNN
representations to solve noisy label problems.
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APPENDIX

Outline The Appendix is arranged as follows: Section A proves Lemmas and Theorems in Section
3. Section B proves Theorem 2 in Section 4 and provides an high level understanding on the
regularizer from the perspective of Information Theory. Section C illustrates why down-sampling can
decrease the gap of noise rates. Section D provides the effect of distance measure in Eqn (2) (w = 1
or 2); ablation study in Section 4; the effect of different SSL pre-trained methods; the performance
of shallow network and deeper network on high noise settings; empirical validation of Assumption
2; Experiments towards the regularizer on CIFAR100 dataset. Section E elaborates the detailed
experimental setting of all the experiments in the paper.

A PROOF FOR LEMMAS AND THEOREMS IN SECTION 3

A.1 PROOF FOR LEMMA 1

Let T := minX,i Tii(X).

Considering a general instance-dependent label noise where Tij(X) = P(Ỹ = j|Y = i,X), we have
(Cheng et al., 2021)

ED̃[ℓ(C(X), Ỹ )]

=
∑
j∈[K]

∫
x

P(Ỹ = j,X = x)ℓ(C(X), j) dx

=
∑
i∈[K]

∑
j∈[K]

∫
x

P(Ỹ = j, Y = i,X = x)ℓ(C(X), j) dx

=
∑
i∈[K]

∑
j∈[K]

P(Y = i)

∫
x

P(Ỹ = j|Y = i,X = x)P(X = x|Y = i)ℓ(C(X), j) dx

=
∑
i∈[K]

∑
j∈[K]

P(Y = i)ED|Y=i

[
P(Ỹ = j|Y = i,X = x)ℓ(C(X), j)

]
=

∑
i∈[K]

∑
j∈[K]

P(Y = i)ED|Y=i [Tij(X)ℓ(C(X), j)]

=
∑
i∈[K]

P(Y = i)ED|Y=i [Tii(X)ℓ(C(X), i)] +
∑
i∈[K]

∑
j∈[K],j ̸=i

P(Y = i)ED|Y=i [Tij(X)ℓ(C(X), j)]

=T
∑
i∈[K]

P(Y = i)ED|Y=i [ℓ(C(X), i)] +
∑
i∈[K]

P(Y = i)ED|Y=i [(Tii(X)− T )ℓ(C(X), i)]

+
∑
i∈[K]

∑
j∈[K],j ̸=i

P(Y = i)ED|Y=i [Tij(X)ℓ(C(X), j)]

=TED[ℓ(C(X), Y )] +
∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[Uij(X)ℓ(C(X), j)],

where Uij(X) = Tij(X),∀i ̸= j, Ujj(X) = Tjj(X)− T .
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A.2 PROOF FOR LEMMA 2

Consider the symmetric label noise. Let T (X) ≡ T, ∀X , where Tii = 1 − ϵ, Tij = ϵ
K−1 ,∀i ̸= j.

The general form in Lemma 1 can be simplified as

ED̃[ℓ(C(X), Ỹ )]

=(1− ϵ)ED[ℓ(C(X), Y )] +
ϵ

K − 1

∑
j∈[K]

∑
i∈[K],i̸=j

P(Y = i)ED|Y=i[ℓ(C(X), j)]

=(1− ϵ− ϵ

K − 1
)ED[ℓ(C(X), Y )] +

ϵ

K − 1

∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[ℓ(C(X), j)].

When ℓ is the 0-1 loss, we have∑
j∈[K]

∑
i∈[K]

P(Y = i)ED|Y=i[ℓ(C(X), j)] = 1

and

ED̃[ℓ(C(X), Ỹ )] = (1− ϵK

K − 1
)ED[ℓ(C(X), Y )] +

ϵ

K − 1
.

Consider the asymmetric label noise. Let T (X) ≡ T, ∀X , where Tii = 1− ϵ, Ti,(i+1)K = ϵ. The
general form in Lemma 1 can be simplified as

ED̃[ℓ(C(X), Ỹ )] = (1− ϵ)ED[ℓ(C(X), Y )] + ϵ
∑
i∈[K]

P(Y = i)ED|Y=i[ℓ(C(X), (i+ 1)K)].

A.3 PROOF FOR THEOREM 1

For symmetric noise, we have:

ED

[
ℓ(ĈD̃(X), Y )

]
=

ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
1− ϵK/(K − 1)

− ϵ/(K − 1)

1− ϵK/(K − 1)
.

Thus the learning error is

ED

[
ℓ(ĈD̃(X), Y )

]
− ED [ℓ(CD(X), Y )]

=
1

1− ϵK/(K − 1)

(
ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

])
.

Let
ÊD̃

[
ℓ(C(X), Ỹ )

]
:=

1

N

∑
n∈[N ]

ℓ(C(xn), ỹn).

Noting ÊD̃

[
ℓ(CD(X), Ỹ )

]
− ÊD̃

[
ℓ(ĈD̃(X), Ỹ )

]
≥ 0, we have the following upper bound:

ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

]
≤ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ÊD̃

[
ℓ(ĈD̃(X), Ỹ )

]
+ ÊD̃

[
ℓ(CD(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

]
≤|ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ÊD̃

[
ℓ(ĈD̃(X), Ỹ )

]
|+ |ÊD̃

[
ℓ(CD(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

]
|.

Recall C ∈ C. Denote the VC-dimension of C by |C| (Bousquet et al., 2003; Devroye et al., 2013).
By Hoeffding inequality with function space C, with probability at least 1− δ, we have

|ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ÊD̃

[
ℓ(ĈD̃(X), Ỹ )

]
|+ |ÊD̃

[
ℓ(CD(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

]
|

≤2 argmax
C∈C

|ED̃

[
ℓ(C(X), Ỹ )

]
− ÊD̃

[
ℓ(C(X), Ỹ )

]
|

≤16

√
|C| log(N · e/|C|) + log(8/δ)

2N
.
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Thus

ED

[
ℓ(ĈD̃(X), Y )

]
− ED [ℓ(CD(X), Y )] ≤ 16

√
|C| log(N · e/|C|) + log(8/δ)

2N(1− ϵK
K−1 )

2
.

Similarly, for asymmetric noise, we have:

ED

[
ℓ(ĈD̃(X), Y )

]
=

ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
1− ϵ

− Bias(ĈD̃),

where
Bias(ĈD̃) =

ϵ

1− ϵ

∑
i∈[K]

P(Y = i)ED|Y=i[ℓ(ĈD̃(X), (i+ 1)K)].

Thus the learning error is

ED

[
ℓ(ĈD̃(X), Y )

]
− ED [ℓ(CD(X), Y )]

=
1

1− ϵ

(
ED̃

[
ℓ(ĈD̃(X), Ỹ )

]
− ED̃

[
ℓ(CD(X), Ỹ )

])
+

(
Bias(CD)− Bias(ĈD̃)

)
By repeating the derivation for the symmetric noise, we have

ED

[
ℓ(ĈD̃(X), Y )

]
−ED [ℓ(CD(X), Y )] ≤ 16

√
|C| log(N · e/|C|) + log(8/δ)

2N
+
(

Bias(CD)− Bias(ĈD̃)
)
.

A.4 PROOF FOR COROLLARY 1

Symmetric noise Let C1 = G ◦ F , C2 = G|f . Denote the optimal classifier learned within the
above two functions spaces by CG◦F

D and CG|f
D , respectively. Then the approximation errors of both

cases can be denoted by ErrorA(CG◦F
D , C∗) and ErrorA(C

G|f
D , C∗). Assume ErrorA(CG◦F

D , C∗) <

ErrorA(C
G|f
D , C∗). Note the assumption holds generally and the bias-complexity trade-off does not

exist if the assumption does not hold.

From Lemma A.4 in (Shalev-Shwartz & Ben-David, 2014) and our Theorem 1, we know

E|ErrorE(CD, ĈD̃)| ≤ 16

√
|C| log(4N · e/|C|) + 2√

2N
.

Therefore, by requiring the difference between two total generalization errors large than 0, we have:

Eδ|∆E(C1, ε, δ)|+∆A(C1)− Eδ|∆E(C2, ε, δ)| −∆A(C2) ≥ 0

⇔16

√
|G ◦ F| log(4N · e/|G ◦ F|) + 2√

2N(1− ϵK
K−1 )

2
− 16

√
|G| log(4N · e/|G|) + 2√

2N(1− ϵK
K−1 )

2
+ ErrorA(C

G|f
D , C∗)− ErrorA(CG◦F

D , C∗) ≥ 0

⇔1− ϵK

K − 1
≤ 16√

2N

(√
|G ◦ F| log(4N · e/|G ◦ F|)−

√
|G| log(4N · e/|G|)

)
ErrorA(C

G|f
D , C∗)− ErrorA(CG◦F

D , C∗)

B PROOF FOR THEOREMS IN SECTION 4

Lemma 3. If X and Y are independent and follow gaussian distribution: X ∼ N (µX ,ΣX) and
Y ∼ N (µY ,ΣY ), Then: EX,Y (||X − Y ||2) = ||µX − µY ||2 + tr(ΣX +ΣY ).

B.1 PROOF FOR THEOREM 2

Before the derivation, we define some notations for better presentation. Following the notation in
Section 4, define the labels of XT as Y T and the labels of XF as Y F. Under the label noise, it is easy
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to verify P(Y T = 1) = P(Y=1)·(1−e+)
P(Y=1)·(1−e+)+P(Y=0)·(1−e−) and P(Y F = 1) = P(Y=0)·e−

P(Y=0)·e−+P(Y=1)·e+ . Let
p1 = P(Y T = 1), p2 = P(Y F = 1), g(f(X)) and h(f(X)) to be simplified as gf(X) and hf(X).

In the case of binary classification, gf(x) is one dimensional value which denotes the network
prediction on x belonging to Y = 1. Lc can be written as:

EXT,XF (
||gf(XT)− gf(XF))||1

m1
− ||hf(XT)− hf(XF)||2

m2
)2︸ ︷︷ ︸

denoted as Ψ(XT,XF)

(a)
= E(XT,Y T)

(XF,Y F)

Ψ(XT, XF)

= p1 · p2 · EXT
+,XF

+
Ψ(XT

+, X
F
+) + (1− p1) · p2 · EXT

−,XF
+
Ψ(XT

−, X
F
+)

+ p1 · (1− p2) · EXT
+,XF

−
Ψ(XT

+, X
F
−) + (1− p1) · (1− p2) · EXT

−,XF
−
Ψ(XT

−, X
F
−)

where m1 and m2 are normalization terms from Equation (2). Specifically,

m1 := lim
B→∞

1

|B|(|B| − 1)

∑
xn,xn′∈B,n̸=n′

||gf(xn)− gf(x′n)||1,

m2 := lim
B→∞

1

|B|(|B| − 1)

∑
xn,xn′∈B,n̸=n′

||hf(xn)− hf(x′n)||2.

(a) is satisfied because Ψ(XT, XF) is irrelevant to the labels. We derive Ψ(XT
+, X

F
+) as follows:

EXT
+,XF

+
Ψ(XT

+, X
F
+)

(b)
= EXT

+,XF
+
(
||1− gf(XF

+)||1

m1
−

||hf(XT
+)− hf(XF

+)||2

m2
)2

(c)
= EXT

+,XF
+
(
1− gf(XF

+)

m1
−

||hf(XT
+)− hf(XF

+)||2

m2
)2

(d)
= EXT

+,XF
+
(
gf(XF

+)

m1
− (

1

m1
−

||hf(XT
+)− hf(XF

+)||2

m2
))2

(b) is satisfied because from Assumption 1, DNN has confident prediction on clean samples. (c)
is satisfied because gf(X) is one dimensional value which ranges from 0 to 1. From Assumption
3, hf(X+) and hf(X−) follows gaussian distribution with parameter (µ1,Σ) and (µ2,Σ). Thus
according to Lemma 3, we have EXT

+,XF
+
||hf(XT

+) − hf(XF
+)||2 = ||µ1 − µ2||2 + 2 · tr(Σ).

Similarly, one can calculate EXT
−,XF

+
||hf(XT

−) − hf(XF
+)||2 = 2 · tr(Σ). It can be seen that

(d) is function with respect to gf(XF
+). Similarly, Ψ(XT

−, X
F
+) is also a function with respect

to gf(XF
+) while Ψ(XT

+, X
F
−) and Ψ(XT

−, X
F
−) are functions with respect to gf(XF

−). Denote
d(+,+) = EXT

+,XF
+
||hf(XT

+) − hf(XF
+)||2. After organizing Ψ(XT

+, X
F
+) and Ψ(XT

−, X
F
+), we

have:

min
gf(XF

+)
p1 · p2 · EXT

+,XF
+
Ψ(XT

+, X
F
+) + (1− p1) · p2 · EXT

−,XF
+
Ψ(XT

−, X
F
+)

⇒ min
gf(XF

+)
(EXF

+
gf(XF

+))
2

− (2 · p1(1−
m1 · d(+,+)

m2
) + 2 · (1− p1)(

m1 · d(−,+)

m2
)) · EXF

+
gf(XF

+)

+ constant with respect to gf(XF
+)

(5)

Note in Equation (5), we use (EXF
+
gf(XF

+))
2 to approximate EXF

+
gf(XF

+)
2 since from Assumption

2, var(g(f(XF
+))) → 0. Now we calculate m1 and m2 from Equation (2):
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m1 = p1 · p2 · (1− EXF
+
gf(XF

+)) + (1− p1) · p2 · EXF
+
gf(XF

+)

+ p1 · (1− p2) · (1− EXF
−
gf(XF

−)) + (1− p1) · (1− p2) · EXF
−
gf(XF

−)
(6)

m2 = p1 ·p2 ·d(+,+)+(1−p1) ·p2 ·d(−,+)+p1 · (1−p2) ·d(+,−)+(1−p1)(1−p2) ·d(−,−)

Under the condition of P(Y = 1) = P(Y = 0), e− = e+, we have p1 = p2 = 1
2 , m2 =

4·tr(Σ)+||µ1−µ2||2
2 , m1 = 1

2 , which is constant with respect to EXF
+
gf(XF

+) and EXF
−
gf(XF

−) in
Equation (6). Thus Equation (5) is a quadratic equation with respect to EXF

+
gf(XF

+). Then when
Equation (5) achieves global minimum, we have:

EXF
+
gf(XF

+) = p1 −
m1

m2
(p1 · d(+,+)− (1− p1) · d(−,+))

=
1

2
− 1

2 + 8·tr(Σ)
||µ1−µ2||2

(7)

Similarly, organizing Ψ(XT
+, X

F
−) and Ψ(XT

−, X
F
−) gives the solution of EXF

−
gf(XF

−):

EXF
−
gf(XF

−) = p1 +
m1

m2
(p1 · d(−,−)− (1− p1) · d(+,−))

=
1

2
+

1

2 + 8·tr(Σ)
||µ1−µ2||2

(8)

Denote ∆(Σ, µ1, µ2) = 8 · tr(Σ)/||µ1 − µ2||2. Now we can write the expected risk as:

ED [1 (g(f(X), Y )] = (1− e) · EXT,Y

[
1
(
g(f(XT), Y

)]
+ e · EXF,Y

[
1
(
g(f(XF), Y

)]
(a)
= e · EXF,Y

[
1
(
g(f(XF), Y

)]
(b)
= e · (1

2
· EXF

+,Y=0

[
1
(
g(f(XF

+), 0
)]

+
1

2
· EXF

−,Y=1

[
1
(
g(f(XF

−), 1
)]
)

(c)
= e ·

(
1

2
− 1

2 + ∆(Σ, µ1, µ2)

)
(9)

(a) is satisfied because of Assumption 1 that model can perfectly memorize clean samples. (b) is
satisfied because of balanced label and error rate assumption. (c) is satisfied by taking the results
from Equation (7) and Equation (8).

Proof Done.

B.2 HIGH LEVEL UNDERSTANDING ON THE REGULARIZER

Even though we have built Theorem 2 to show SL features can benefit from the structure of SSL
features by performing regularization, there still lacks high-level understanding of what the regular-
ization is exactly doing. Here we provide an insight in Theorem 3 which shows the regularization is
implicitly maximizing mutual information between SL features and SSL features.

Theorem 3. Suppose there exists a function ξ such that C(X) = ξ(h(f(X))). The mutual informa-
tion I(h(f(X)), C(X)) achieves its maximum when Lc = 0 in Eqn. (4),

The above results facilitate a better understanding on what the regularizer is exactly doing. Note that
Mutual Information itself has several popular estimators (Belghazi et al., 2018; Hjelm et al., 2018). It
is a very interesting future direction to develop regularizes based on MI to perform regularization by
utilizing SSL features.
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Proof for Theorem 3: We first refer to a property of Mutual Information:

I(X;Y ) = I(ψ(X);ϕ(Y )) (10)

where ψ and ϕ are any invertible functions. This property shows that mutual information is invariant
to invertible transformations (Cover, 1999). Thus to prove the theorem, we only need to prove that ξ
in Theorem 3 must be an invertible function when Equation (4) is minimized to 0. Since when ξ is
invertible, I(h(f(X)), C(X)) = I(h(f(X)), ξ(h(f(X)))) = I(h(f(X)), h(f(X))).

We prove this by contradiction.

Let ti = h(f(xi)) and si = g(f(xi)). Suppose ξ is not invertible, then there must exists si and
sj where si ̸= sj which satisfy tj = ξ(si) = ti. However, under this condition, ti − tj = 0 and
si − sj ̸= 0, Equation (4) can not be minimized to 0. Thus when Equation (4) is minimized to 0, ξ
must be an invertible function.

Proof done.

B.3 PROOF FOR LEMMA 3

By the independence condition, Z = X − Y also follows gaussian distribution with parameter
(µX − µY ,ΣX +ΣY ).

Write Z as Z = µ + LU where U is a standard gaussian and µ = µX − µY , LLT = ΣX + ΣY .
Thus

||Z||2 = ZTZ = µTµ+ µTLU + UTLTµ+ UTLTLU (11)

Since U is standard gaussian, E(U) = 0. We have

E(||Z||2) = µTµ+ E(UTLTLU)

= µTµ+ E(
∑
k,l

(LTL)k,lUkUl)

(a)
= µTµ+

∑
k

(LTL)k,k

= µTµ+ tr(LTL)

= ||µX − µY ||2 + tr(ΣX +ΣY )

(12)

(a) is satisfied because U is standard gaussian, thus E(U2
k ) = 1 and E(UkUl) = 0 (k ̸= l).

Proof Done.

C ILLUSTRATING DOWN-SAMPLING STRATEGY

We illustrate in the case of binary classification with e+ + e− < 1. Suppose the dataset is balanced,
at the initial state, e+ > e−. After down-sampling, the noise rate becomes e∗+ and e∗−. We aim to
prove two propositions:
Proposition 1. If e+ and e− are known, the optimal down-sampling rate can be calculated by e+
and e− to make e∗+ = e∗−

Proposition 2. If e+ and e− are not known. When down-sampling strategy is to make P(Ỹ = 1) =

P(Ỹ = 0), then 0 < e∗+ − e∗− < e+ − e−.

Proof for Proposition 1: Since dataset is balanced with initial e+ > e−, we have P(Ỹ = 1) < P(Ỹ =
0). Thus down-sampling is conducted at samples whose observed label are 0. Suppose the random
down-sampling rate is r, then e∗+ = r·e+

1−e++r·e+ and e∗− = e−
r·(1−e−)+e−

. If e∗+ = e∗−, we have:

r · e+
1− e+ + r · e+

=
e−

r · (1− e−) + e−
(13)
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Thus the optimal down-sampling rate r =
√

e−·(1−e+)
e+·(1−e−) , which can be calculated if e− and e+ are

known.

Proof for Proposition 2: If down sampling strategy is to make P(Ỹ = 1) = P(Ỹ = 0), then
r · (e+ + 1− e−) = 1− e+ + e−, we have r = 1−e++e−

1−e−+e+
. Thus e∗+ can be calculated as:

e∗+ =
r · e+

1− e+ + r · e+

=
(1− e+ + e−) · e+

(1− e+) · (1− e− + e+) + e+ · (1− e+ + e−)

Denote α = 1−e++e−
(1−e+)·(1−e−+e+)+e+·(1−e++e−) . Since e+ > e−, 1 − e− + e+ > 1 − e+ + e−,

α = 1−e++e−
(1−e+)·(1−e−+e+)+e+·(1−e++e−) <

1−e++e−
(1−e+)·(1−e++e−)+e+·(1−e++e−) = 1.

Similarly, e∗− can be calculated as:

e∗− =
e−

e− + r · (1− e−)

=
(1− e− + e+) · e−

e− · (1− e− + e+) + (1− e−) · (1− e+ + e−)

Denote β = 1−e−+e+
e−·(1−e−+e+)+(1−e−)·(1−e++e−) . Since e+ > e−, 1 − e− + e+ > 1 − e+ + e−,

β = 1−e−+e+
e−·(1−e−+e+)+(1−e−)·(1−e++e−) >

1−e−+e+
e−·(1−e−+e+)+(1−e−)·(1−e−+e+) = 1. Since α · e+ < e+

and β · e− > e−, we have e∗+ − e∗− = α · e+ − β · e− < e+ − e−.

Next, we prove e∗+ > e∗−, following the derivation below:

e∗+ > e∗−

=⇒ r · e+
1− e+ + r · e+

>
e−

e− + r · (1− e−)

=⇒ r >

√
e− · (1− e+)

e+ · (1− e−)

=⇒ 1− e+ + e−
1− e− + e+

>

√
e− · (1− e+)

e+ · (1− e−)

=⇒ e+ · (1− e+) +
e+ · e2−
1− e+

> e− · (1− e−) +
e− · e2+
1− e−

(14)

Let f(e+) = e+ · (1− e+) +
e+·e2−
1−e+

− e− · (1− e−)−
e−·e2+
1−e−

. Since we have assumed e− < e+ and
e− + e+ < 1. Thus proving e∗+ > e∗− is identical to prove f(e+) > 0 when e− < e+ < 1− e−.

Firstly, it is easy to verify when e+ = e− or e+ = 1− e−, f(e+) = 0. From Mean Value Theory,
there must exists a point e0 which satisfy f ′(e0) = 0 where e+ < e0 < 1−e−. Next, we differentiate
f(e+) as follows:

f ′(e+) =
(1− e+)

2 · (1− e−) + e2− · (1− e−)− 2 · e+(1− e+)
2

(1− e+)2 · (1− e−)
(15)

It can be verified that f ′(e−) =
1−e−

(1−e−)2·(1−e−) > 0 and f ′(1− e−) =
0

e2−·(1−e−)
= 0.

Further differentiate f ′(e+), we get when e+ < 1 − ((1 − e−) · e2−)
1
3 , f ′′(e+) < 0 and when

e+ > 1− ((1− e−) · e2−)
1
3 , f ′′(e+) > 0. Since e− < e+ and e− + e+ < 1, we have e− < 1

2 and
e− < 1 − ((1 − e−) · e2−)

1
3 < 1 − e−, i.e., 1 − ((1 − e−) · e2−)

1
3 locates in the point between e−

and 1− e−. Thus, when e− < e+ < 1− ((1− e−) · e2−)
1
3 , f(e+) is a strictly concave function and

when 1− ((1− e−) · e2−)
1
3 < e+ < 1− e−, f(e+) is a strictly convex function.

Since f ′(e−) > 0 and f ′(1−e−) = 0, e0 must locates in the point between e− and 1−((1−e−)·e2−)
1
3

which satisfy f ′(e0) = 0. Thus when e− < e+ < e0, f(e+) monotonically increases and when
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Figure 7: Visualizing decreased gap by down-sampling strategy.
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Figure 8: Comparing difference choices of distance measure in Equation (2). Type 1 denotes using l2
norm to calculate distance between SL features and square l2 norm to calculate distance between
SSL features, which is adopted in our paper. Type 2 denotes using l2 norm to calculate distance for
both SL and SSL features.

e0 < e+ < 1 − e−, f(e+) monotonically decreases. Since f(e−) = f(1 − e−) = 0. We have
f(e+) > 0 when e− < e+ < 1− e−.

Proof done.

We depict a figure in Figure 7 to better show the effect of down-sampling strategy. It can be seen the
curves in the figure well support our proposition and proof. When e+ − e− is large, down-sampling
strategy to make P(Ỹ = 1) = P(Ỹ = 0) can well decrease the gap even we do not know the true
value of e− and e+.

D MORE DISCUSSIONS AND EXPERIMENTS

D.1 THE EFFECT OF DISTANCE MEASURE IN EQN (2)

In this paper and experiment, we use l2 norm to calculate the feature distance between SL features
and square l2 norm to calculate the distance between SSL features. This choice can lead to good
performance from Theory 2 and Figure 6. Practically, since structure regularization mainly captures
the relations, different choice does not make a big effect on the performance. We perform an
experiment in Figure 8 which shows that the performance of both types are quite close.

D.2 ABLATION STUDY

In Figure 3, SSL training is to provide SSL features to regularize the output of linear classifier g.
However, SSL training itself may have a positive effect on DNN. To show the robustness mainly
comes from the regularizer rather than SSL training, we perform an ablation study in Figure 9. From
the experiments, it is the regularizer that alleviates over-fitting problem of DNN.

D.3 THE EFFECT OF DIFFERENT SSL-PRETRAINED METHODS

Our experiments are not restricted to any specific SSL method. Experimentally, other SSL methods
are also adoptable to pre-train SSL encoders. In Figure 5, SimCLR (Chen et al., 2020) is adopted
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Figure 9: Ablation study of using the regularizer to train DNN on noisy dataset.

to pre-train SSL encoder. For a comparison, we pre-train a encoder with Moco on CIFAR10 and
fine-tune linear classifier on noisy labels in Table 4.

Table 4: Comparing different SSL methods on CIFAR10 with symmetric label noise

Method Symm label noise ratio
0.2 0.4 0.6 0.8

CE (fixed encoder with SimCLR init) 91.06 90.73 90.2 88.24
CE (fixed encoder with MoCo init) 91.55 91.12 90.45 88.51

It can be observed that different SSL methods have very similar results.

D.4 PERFORMANCE OF SHALLOW NETWORK AND DEEPER NETWORK ON HIGH NOISE
SETTINGS.

Apart from empirical results in Section 5, we also provide empirical evidence that a shallow network
performs better than deeper network on high-symmetric noise settings to further validate Corollary 1.
Since similar to fixing the encoder, a shallow network also has lower capacity than deeper network.
The experimental settings are as follows: network structure: ResNet18 vs ResNet50, dataset: CIFAR-
10, loss: Cross entropy; number of epochs (100), batch size (64), learning rate (0.1 at first 50 epochs
and 0.01 for last 50 epochs), optimizer (SGD). We report the best epoch test accuracy in Table 5 :

Table 5: Comparing the performance of different network structures on CIFAR-10 with symmetric
label noise

Models Symm label noise ratio
0.8 0.85

ResNet18 45.57 33.06
ResNet50 38.74 30.54

It can be observed that a shallow network behaves better for high symmetric noise ratio which
supports our claim in the paper.

D.5 VALIDATION OF ASSUMPTION 2

The zero variance assumption (Assumption 2) to proceed the proof in Theorem 2 is backed up by
(Zhang et al., 2016) showing that DNN will memorize all the noisy samples when DNN converges,
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resulting to near 0 loss. We perform experiments on CIFAR-100 with symmetric label noise to
validate this assumption. The results are reported in Table 6. It can be seen that the variance of noisy

Table 6: Variance of each noisy id in CIFAR-100 with training epochs

Labels id Epoch 50 Epoch 100 Epoch 150 Epoch 200
0 3.829 0.038 0.009 0.001
1 4.153 0.019 0.006 0.005
2 3.388 0.055 0.015 0.002
3 3.572 0.018 0.0002 0.0002
4 3.952 0.112 0.002 0.0007

samples in each label id is tending to 0 when training converges.

D.6 VALIDATION OF THE EFFECT OF BATCH SIZE

We perform experiments on CIFAR100 under symmetric label noise ratio 0.6 with our regularizer for
different batch size. Table 7 shows that increasing batch size has slight perfomance gain.

D.7 EXPERIMENTS TOWARDS REGULARIZER ON CIFAR100

In this section, we examine our regularizer on CIFAR100 dataset with certain SOTA methods from
(Liu et al., 2020). Results are reported in Table 8 from which we can see that our proposed regularizer
can also improve performance on CIFAR100 dataset.

E DETAILED SETTING OF EXPERIMENTS

Datasets: We use DogCat, CIFAR10, CIFAR100, CIFAR10N and CIFAR100N and Clothing1M for
experiments. DogCat has 25000 images. We randomly choose 24000 images for training and 1000
images for testing. For CIFAR10 and CIFAR100, we follow standard setting that use 50000 images
for training and 10000 images for testing. CIFAR10N and CIFAR100N have the same images of
CIFAR10 and CIFAR100 except the labels are annotated by real human via Amazon Mturk which
contains real-world huamn noise. For Clothing1M, we use noisy data for training and clean data for
testing.

Setting for Figure 1: We use ResNet34 for conducting the experiments. All the experiments in
Figure 1 are trained from scratch with hyper-parameters below: learning rate (0.1 at first 50 epochs
and 0.01 for last 50 epochs), batchsize (256), optimizer (SGD).

Setting in Section 5.1 (Figure 5 and Figure 4): SimCLR is deployed for SSL pre-training with
ResNet50 for DogCat and ResNet34 for CIFAR10 and CIFAR100. Each model is pre-trained by
1000 epochs with Adam optimizer (lr = 1e-3) and batch-size is set to be 512. During fine-tuning, we
fine-tune the classifier on noisy dataset with Adam (lr = 1e-3) for 100 epochs and batch-size is set to
be 256.

Setting in Section 5.2: For Table 1, all the methods are trained from scratch with learning rate set
to be 0.1 at the initial state and decayed by 0.1 at 50 epochs. For Table 2 and Table 3, the encoder
is pre-trained by SimCLR and we finetune the encoder on the noisy dataset with CE + Regularier.
The optimizer is Adam with learning rate 1e-3 and batch-size 256. Note that in Eqn (4), we use
MSE loss for measuring the relations between SL features and SSL features. However, since MSE
loss may cause gradient exploration when prediction is far from ground-truth, we use smooth l1 loss
instead. Smooth l1 loss is an enhanced version of MSE loss. When prediction is not very far from
ground-truth, smooth l1 loss is MSE, and MAE when prediction is far.

Setting for Table 8: All the methods are trained from scratch with learning rate 0.001. The optimizer
is Adam and the training epochs is 100. Note when applying regularizer with each method, for
example, Regularizer + CE, we first use CE to warmup DNN for certain epochs, then apply regularizer
to prevent overfitting.

24



Published as a conference paper at ICLR 2023

Table 7: Comparison of test accuracy with different batch size on CIAFR100 under symmetric noise
ratio 0.6.

Methods batch size 100 batch size 200 batch size 300
CE + Regularizer 39.08 40.07 40.14

Table 8: Comparison of test accuracies with each method on CIFAR100. The model is learned from
scratch for all methods with λ = 1. Best and last epoch accuracies are reported: best/last.

Method Symm. CIFAR100 Asymm. CIFAR100
ε = 0.6 ε = 0.8 ε = 0.4

ELR (Liu et al., 2020) 34.36/14.21 18.95/5.54 55.36/33.5
ELR + Regularizer 37.17/23.45 20.92/13.16 56.55/36.49

Bootstrap (Reed et al., 2014) 34.21/13.8 18.45/6.68 39.28/30.93
Bootstrap + Regularizer 35.63/27.88 19.92/16.3 40.21/34.56
FW (Patrini et al., 2017) 38.72/22.26 17.29/8.15 42.35/40.46

FW + Regularizer 39.01/29.39 26.92/21.02 43.35/40.02
SL (Wang et al., 2019) 34.16/14.12 19.17/6.68 40.76/32.07

SL + Regularizer 34.20/15.3 19.65/6.02 40.81/34.05
GCE (Liu et al., 2020) 38.08/26.79 23.24/16.9 41.26/31.4

GCE + Regularizer 44.27/43.48 35.01/34.55 42.35/35.74
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