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Abstract
Faithful evaluation of language model capabili-
ties is crucial for deriving actionable insights that
can inform model development. However, rigor-
ous causal evaluations in this domain face signifi-
cant methodological challenges, including com-
plex confounding effects and prohibitive compu-
tational costs associated with extensive retraining.
To tackle these challenges, we propose a causal
representation learning framework wherein ob-
served benchmark performance is modeled as a
linear transformation of a few latent capability
factors. Crucially, these latent factors are iden-
tified as causally interrelated after appropriately
controlling for the base model as a common con-
founder. Applying this approach to a comprehen-
sive dataset encompassing over 1500 models eval-
uated across six benchmarks from the Open LLM
Leaderboard, we identify a concise three-node lin-
ear causal structure that reliably explains the ob-
served performance variations. Further interpreta-
tion of this causal structure provides substantial
scientific insights beyond simple numerical rank-
ings: specifically, we reveal a clear causal direc-
tion starting from general problem-solving capa-
bilities, advancing through instruction-following
proficiency, and culminating in mathematical rea-
soning ability. Our results underscore the essen-
tial role of carefully controlling base model vari-
ations during evaluation, a step critical to accu-
rately uncovering the underlying causal relation-
ships among latent model capabilities.

1. Introduction
State-of-the-art large language models (LMs) have exhibited
exceptional proficiency across a wide spectrum of intricate

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

natural language processing tasks, encompassing text gen-
eration, summarization, question answering, and creative
language synthesis (BMR+20; AAA+23; GDJ+24; Ant24;
AAA+24; YYZ+24; GYZ+25). These billion-parameter
models are often pre-trained extensively on diverse web cor-
pora and undergoes various post-training stages including
supervised fine-tuning (SFT), reinforcement learning with
human feedback (RLHF) (OWJ+22; BJN+22) to enable
downstream model deployment. These complicated system
engineerings make it hard to evaluate how models acquire
capabilities and derive scientific claims thereafter.

In particular, rigorous evaluation of post-training presents
notable difficulties: (i) Costs and heterogenity in pre-
training: implementation details such as data mixture,
model architecture, etc, are often proprietary and vary
greatly across institutions. For example, models might
be subject to contamination on benchmark data (GS23);
the heterogeneity of base models leads to evidence that
the benefits of post-training on reasoning abilities can dif-
fer substantially even between models of comparable size
(GCS+25; ZMK+25). Even with transparent pre-training
recipes, training from scratch to control for these con-
founders through rigorous controlled studies implies pro-
hibitive costs (CRF+24; QNA+25). (ii) Intricate interde-
pendencies among distinct capabilities — such as rea-
soning, few-shot learning, and instruction-following fur-
ther complicates evaluation. For example, fine-tuning on
instruction data might not improve knowledge-intensive
question answering capabilities (GEK+24; GWS+23). Al-
though various capabilities often seem to co-emerge or in-
teract synergistically as model scale increases (OWJ+22;
ZCY+25; CSDC25; LBS+25), rigorous theoretical frame-
works can aid in understanding which capability to target in
post-training.

Our research pioneers a novel approach to these persistent
challenges by introducing the first framework for modeling
capability factors through an explicit structured representa-
tion. The cornerstone of our methodology rests on a crucial
insight: the heterogeneity observed across diverse domains
(HZZ+20; JS24; ZXNZ24) – rather than being merely an
obstacle – actually provides valuable ”multi-view” perspec-
tives into the shared latent capability structures across dif-
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Discovering Hierarchical Latent Capabilities of LMs

ferent base models. This lens enables us to identify and
characterize these underlying structures with strong guaran-
tees.

To establish the theoretical foundation for our investigation,
we propose two fundamental hypotheses:

1. Capability-Performance Invariance: A small, distin-
guishable set of latent capability factors governs bench-
mark performance, maintaining consistent relationships
across diverse base models.

2. Hierarchical Capability Structure: Within any individ-
ual base model, these capabilities organize themselves
into a hierarchical framework representable as a directed
acyclic graph (DAG) (Pea95). In this structure, an edge
A → B signifies that interventions targeting capability A
can propagate through the model’s internal mechanisms
to influence capability B, revealing causal pathways of
skill development.

While the first hypothesis has been explored in a series of re-
cent studies (RMH24; RBK+25; PSC+24), the second rep-
resents a novel contribution to the literature, although the hi-
erarchical structure of human capabilities has been an active
and influential research area in philosophy (Sim12), cogni-
tive science (Car93; And96; ABB+04; KCB09; TKGG11)
and neuroscience (KOK03; BD07). To illustrate this
idea, consider a language model fine-tuned on instruction-
following data: such tuning may indirectly improve its abil-
ity to solve mathematical problems, since successful solu-
tions often require adhering to precise formatting and logi-
cal sequencing—skills closely tied to instruction-following.
This hypothesis formalizes a common intuition: some ca-
pabilities, like instruction-following, serve as foundational
building blocks, while others, such as math problem-solving,
emerge as higher-level skills that depend on these core abil-
ities. In this context, it is essential to control for the base
model, as it influences all downstream capabilities.

We formalize this hierarchical capability structure within
Pearl’s structural causal model framework (Pea95), treat-
ing the base model as a shared latent parent that influences
all capability factors and fine-tuning as an intervention on
these latent factors, as illustrated in Figure 1. Under this
structural hypothesis, existing unstructured factorization ap-
proaches (such as PCA) for analyzing latent capabilities
(RMH24; RBK+25; PSC+24) may fail to disentangle hier-
archical latent factors due to their lack of causal constraints.
Probabilistic latent-variable approaches, such as Item Re-
sponse Theory (IRT) models (TTL+25) and Bayesian latent
factor models (PN22), require full likelihood specifications
and hand-crafted modeling assumptions. Moreover, all these
approaches fail to account for the base model’s overarch-
ing influence on all latent capabilities. Drawing inspiration
from the causal representation learning (CRL) literature, we

Pretraining

Capability A Capability B Capability CFine-tuning
(Intervention)

Benchmark 1 Benchmark 2 Benchmark 3

Pretraining Effect

Capability A Effect

Capability B Effect

Direct Fine-tuning

Indirect Fine-tuning

Capability→ Benchmark

Hierarchical Structure of Model Capabilities

Source
variable 1

Source
variable 2

Source
variable 3

General
reasoning

Instruction
following

Math
reasoning

Figure 1: Example of a Hierarchical model of capabilities
influencing benchmark performance (top) and hypothesized
mechanism (bottom).

propose Hierarchical Component Analysis (HCA) that
exploits heterogeneity across base models to recover hi-
erarchical latent capabilities with provable identifiability
guarantees under mild conditions.

We apply HCA to the open LLM leaderboard data1 and show
that models fine-tuned from four base models: Qwen2.5-
7B, Qwen2.5-14B, Llama-3-8B, and Llama-3.1-8B can
be well-explained by a linear SCM. We further assign
meaningful semantic interpretations to these factors, al-
lowing practitioners a clear understanding of which ca-
pabilities to target during fine-tuning. Indeed, establish-
ing explicit alignments between learned latent factors and
human-interpretable concepts has remained both a sig-
nificant and underexplored area within the CRL litera-
ture. To address this gap, we systematically explore cor-
relations between latent factors, established benchmarks,
and the effectiveness of prevalent leaderboard interven-
tions. Moreover, performance on the general-reasoning
parent node—encompassing benchmarks such as MMLU
(HBB+20) and BIG-Bench-Hard (SSS+22)—correlates
more strongly with base-model FLOPs, underscoring the im-
portance of scaling up pre-training compute for downstream
problem solving.

1.1. Notation
The eight most frequently-used base models on the leader-
board includes Llama-3-8B, LLama-3.1-8B (GDJ+24),
Qwen2.5-14/7/0.5B (YYZ+24), Qwen2-7B (YYZ+24),
Mistral-7B (JSM+23) and Gemma-2-9B (TRP+24). Some
parts of our analysis also include other base models into
study, which we will explicitly describe. We will denote
these eight base models by M1,M2, · · · ,M8.

1https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard#/
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For any LM θ and benchmark B, we use xθ,B to denote the
accuracy of θ on B, if observed. In our setting, we observe
xθi,Bj for all i ∈ [N ] and j ∈ [d], and we will simply
denote this by xij . Then xi = (xij)

d
j=1 is the observed

performance vector for model θi. The set of all data, {xi :
i ∈ [N ]}, is denoted by D. For each Mk, we use Ik ⊆ [N ]
to denote the index set of models that use Mk as a base
model. We also define Dk = {xi : i ∈ Ik} to be the set
of all data associated with Ik. In what follows, we will
sometimes abuse notation and view D′ ⊆ D as a |D′| × d
matrix, where each row is a performance vector xj ∈ D′.

2. The Latent Capability Hypothesis
Recently, a line of works developed observational scaling
laws (RMH24; RBK+25; PSC+24). The key hypothesis
that make their analyses possible is that the observed bench-
mark performance is some linear transformation of low-
dimensional latent capability vectors.

Hypothesis 0. There exists some latent capability vector
z ∈ Rd0 , d0 < d and some matrix G ∈ Rd×d0 , such that
x = Gz.

Applying PCA to the leaderboard data, we discover that the
performance data is approximately rank-3, aligning closely
with existing works. However, we find that the low-rank
pattern is not invariant across different model subgroups.
Specifically, for each k = 1, 2, · · · , 8, we apply PCA to the
domain data Dk to obtain the rank-3 principal component
subspace, and then measure the cosine distances between
these subspaces. The resulting similarity matrix in Fig-
ure 2b reveals a striking pattern: five domains (with base
models Llama-3-8B, Llama-3.1-8B, Qwen2-7B, Qwen2.5-
7B and Qwen-2.5-14B) have roughly the same PC sub-
spaces, whereas the other three lie distinctly apart. We
define Sinv = {1, 2, 4, 5, 7} to be the index set of these five
models and Dinv = ∪k∈Sinv

Dk to be the corresponding
benchmark performance data. Notably, this heterogeneity
persists under ICA (HHH+09), another popular factor anal-
ysis method, since PCA and ICA span the same component
subspace, differing only in how they parametrize the inde-
pendent sources within it. In what follows, we build on
these observations and introduce a novel latent factor model
for LM capabilities.

Remark 1. As a brief detour, we point out that our findings
on the discrepancy of the PC subspaces helps us to develop
more accurate methods to fill in missing performance data
on the leaderboard, as shown in Figure 15.

2.1. A Refined Hypothesis

In view of the limitation of Hypothesis 0, we propose the fol-
lowing modification, restricting it to domains with identical
PC subspaces the we identify in Figure 2b:
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Figure 2: PCA analysis of leaderboard data that recovers
heterogeneous principal component structures across data
from different domains.

Hypothesis 1. The observed benchmark performance xi ∈
Dinv is governed by a set of latent capability factors zi ∈
Rd0 , where d0 ≤ d. Moreover, there exists a linear and
injective relationship between zi and xi, meaning that there
exists some matrix G ∈ Rd×d0 with full column rank such
that xi ≈ Gzi,∀i ∈ Dinv.

In the remainder of this work, we will focus on the base mod-
els in Sinv and their corresponding benchmark performance
data Dinv.

3. Learning Hierarchical Language Model
Capabilities

Our second hypothesis captures the hierarchical structure
among LM capabilities by leveraging Pearl’s structural
causal model (SCM) (Pea95).

Hypothesis 2. There exists a subset of domain indices in
S ⊆ Sinv, such that for all k ∈ S, the capability factors zi
associated with xi ∈ Dk are generated from approximate
linear SCMs, and the causal graph G is invariant across all
k’s, while the weights and errors can be domain specific.

Formal definitions can be found in Appendix C.1. Intu-
itively, latent factors earlier in the topological ordering of
the causal graph are primitive, while later factors are pro-
gressively less primitive, as they inherits the variability in
their ancestors. We pursue two objectives: (1) recover the la-
tent capability factors that drive observed benchmark perfor-
mance, and (2) characterize precisely how those capabilities
map to performance outcomes.

Formally, given observed benchmark performance vector
x from K domains D1, · · · ,DK , our goal is to recover the
linear causal model

z = Akz +Ω
1/2
k ϵ(k), x = Gz, k ∈ [K], (1)

where (Ak)ij = w
(k)
ij if there exists a direct causal edge

zj → zi in the latent graph G and otherwise it is zero, Ωk is
a diagonal matrix encoding the variances of source variables.

3
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(b) Regressing z1 on BBH.

0 20 40 60 80

IFEval accuracy

0

20

40

60

80

La
te

nt
 F

ac
to

r 
z 2

In sample R2 = 0.90

OLS Regression Fit for IFEval
In-sample data
Gemma-2-9B
Mistral-7B
Qwen2.5-0.5B
Qwen2.5-3B
Llama-2-7B
Llama-2-13B
Llama-3.2-1B
OLS Fit

(c) Regressing z2 on IFEval.
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Figure 3: The unmixing matrix and the alignment between benchmarks and capabilities via OLS. We also compare the fitted
OLS with the latent factor values of other base models.

G is the shared mixing matrix. For convenience, we assume
that the nodes of G is sorted in a topological order, i.e., zj →
zi implies j < i. This problem has been widely studied in
the causal representation learning literature. Specifically,
(JS24) showed that for exact linear SCMs, assuming that the
domains Ek satisfy a richness assumption, the latent causal
factors are identifiable up to a benign ambiguity set, which
for instance implies that one can recover the mixing matrix
G up to a left multiplication of lower-triangular matrix for
the causal model in Figure 5. We propose a modification
of their algorithm, which we call Hierarchical Component
Analysis (HCA), that is more robust to the inexactness of
the SCM. More details can be found in Appendix C.

4. Experimental Results
Given its theoretical justification in the previous section,
we now use HCA to recover a causal model with d0 = 3
nodes that explains the observed benchmark performance
of models within domains in Sinv. We observe that running
our algorithm on the subset of {1, 2, 4, 7}, with Qwen2-7B
excluded, achieves inexactness in the causal structure. This
likely indicates that Qwen2-7B may deviate from the shared
causal pattern of the other four base models (Llama-3-8B,
Llama-3.1-8B, Qwen2.5-7B, Qwen2.5-14B). Moreover, in
view of the ambiguity discussed in Appendix C.2, we run an
OLS zi ≈

∑
j<i ajzj + γBxB + c where xB represents the

performance on benchmark B. For each i, we pick B that
maximizes the R2 and replace zi with zi −

∑
j<i ajzj to

attain best-possible alignment between the recovered latent
factors and their most indicative benchmarks.

The causal graphs that we recover are shown in Figure 4.
The source factors ϵi’s are normalized to have unit vari-
ance. In Figure 3a, we present the unmixing matrix (i.e., lin-
ear mapping from benchmarks to latent capabilities), from
which interesting patterns can be observed: z1 is a mix-
ture of all five benchmarks except IFEval with BBH and
MMLU-Pro contributing the most, z2 is a mixture of IFEval
and MATH Lvl 5, and z3 is almost identical to MATH Lvl
5. We will revisit these observations in the next subsection.
Figure 3 further shows the results of OLS, where z1, z2, z3
are observed to correlate strongly with BBH, IFEval and
MATH Lvl 5, respectively. It is also important to notice that
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(d) Qwen2.5-14B

Figure 4: The causal graphs that we recover for each domain.
The numbers represent the weights of each causal edge. For
instance, in the Llama-3-8B domain, z2 = 2.76z1 + 24ϵ2.
the causal conclusions we draw only apply to the four base
models being considered: Figure 3 shows that the fitted OLS
can have poor performance on some other base models.

We further discuss the role of these capability factors in Ap-
pendix D. Furthermore, we conduct supervised fine-tuning
on instruction data (intervening on z2), which significantly
improves MATH Lvl 5 performance (Figure 8), supporting
the hypothesized causal link from z2 (instruction-following)
to z3 (mathematical reasoning). This influence is likely
because mathematical tasks demand precise adherence to in-
structions for correct formatting and problem interpretation,
where misunderstandings severely impact accuracy.

5. Conclusion
In this work, we initiate the study of using causal-based
methods to understand LM evaluation. We show that bench-
mark performances can be well-explained by a hierarchy of
capabilities. We hope this work can help model developers
design better post-training strategies, and inspire model eval-
uators to design leaderboards that incentivize more capable
models beyond simply averaging the accuracies. We include
in Appendix I a few takeaways and remarks that may be
useful to practitioners.
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A. Related Work
Benchmark-driven LM capability studies. Benchmarks give researchers a shared scoreboard, letting everyone check
claims about better language models instead of relying on hype. Early scaling-law studies showed that test loss falls in a
smooth power curve as model size, data, and compute grow, setting a baseline for how capability should rise (KMH+20).
Later work found many frontier models were under-trained for their size and mapped out a compute-efficient path that the
Chinchilla model follows (HBM+22). Instead of running new model sweeps, (RMH24) proposed observational scaling laws
involving latent capability factors, that depend on the model famility and are obtained by PCA. They showed that benchmark
performances are inherently low-rank and 3 principal components are sufficient to obtain good fitting performance. This
approach is also adopted by some follow-up works on new tasks (RBK+25) and larger sets of models (PSC+24). (DODH25)
further proposed an adjustment of the scaling law based on the model release time, given the fact that later models are more
likely to be ”trained on test tasks”.

While pretrained LMs exhibit predictable scaling laws post-training presents a more complex picture regarding such
predictive capabilities. For fine-tuning, performance generally scales with model size and fine-tuning data (as suggested
by (ZLCF)), but the ”transfer gap” between pre-training and downstream tasks is a key variable (Bar24), and pre-training
metrics aren’t always reliable predictors of post-tuning success. Instruction tuning demonstrates clear benefits from scaling
model size and the number/diversity of instructional tasks, as shown by work on FLAN (WTB+22), T0 (SWR+22), and
FLAN-PaLM (CHL+24). RLHF, crucial for aligning models with human preferences (OWJ+22), shows performance gains
with larger models and more feedback. However, recent work (HDN+24) indicates RLHF might scale less efficiently than
pre-training, with potential diminishing returns from increased data or reward model size under fixed conditions.

Connections between LM capabilities. Research increasingly shows that LM capabilities are not isolated but form a
complex, interconnected system. Studies reveal strong synergies, such as the bidirectional enhancement between coding and
reasoning abilities (ZCY+25; BCE+23), and how strong reasoning underpins mathematical problem-solving (LAD+22).
Complex skills often arise from compositionality, where LMs combine simpler, foundational skills in novel ways (CPY+23).

Evidence also points towards latent abilities or general factors influencing performance across diverse tasks (LBL+; PSC+24).
The nature of emergent abilities – skills appearing in larger models – is debated, with some questioning if they are genuinely
novel or byproducts of other mechanisms (WTB+22; SMK23).

Also, there are significant trade-offs: efforts to enhance safety can sometimes reduce raw capability (CSDC25), and
fine-tuning for one skill can lead to catastrophic forgetting of others (ZTL+23). Phenomena like inverse scaling further
highlight these complex interactions (MLP+23). Finally, successful task transfer and in-context learning demonstrate that
LMs leverage shared underlying mechanisms and representations across different tasks (MLH+22; BMR+20), underscoring
the deep interrelations among their varied skills.

Causal representation learning. Causal representation learning (CRL) aims to recover latent variables and mechanisms
that remain stable under interventions and distribution shifts, thereby enabling robust prediction, reasoning, and control.
Foundational position papers argue that learning disentangled causal factors is essential for machine intelligence rather than
merely desirable for interpretability (SLB+21; WJ22). Most existing works are devoted to establishing identifiability of
causal representations in realistic scenarios. Weakly supervised disentanglement shows that paired samples before/after
unknown interventions are sufficient to identify factors without compromising downstream utility (LPR+20; BdHLC22).
(vKBW+23) showed that a pair of single-node hard interventions on each latent factor is sufficient for full identifiability of
the latent causal factors. Subsequent works generalize this to the case of single-node soft interventions (ZGS+23; SSBU23;
BRR+23). Recently, there has been a surge of interest in studying identifiability under multi-node interventions, which is
much more practical (JS24; ZXNZ24). Closely related to CRL, invariant Risk Minimization (IRM) and its game-theoretic
variants formalize how multiple training environments can pin down causal predictors (ABGLP19; ASR+21).

To conclude this section, we summarize how CRL is related to our problem setting in Table 1.

B. Implementation Details
Supervised Fine-tuning. We use lm-eval-hardness to evaluate models before and after fine-tuning. We first test base model
performance and observe that it can match the performance in Open LM Leaderboard. We train all models with standard
hyper-parameters for SFT - 3 epochs, learning rate 2e-5. Moreover, noticing that the IFEval dataset lacks ground truth
responses followed by the instructions, we query GPT-4 to generate responses with the prompt ”You are a helpful assistant
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Causal representation learning Our context: learning latent LM capabilities

Observed data X X = {x1, · · · ,xN} where xi ∈ Rd is the accuracies of the i-th LM (denoted by θi) on the d benchmarks.

domain set E Each domain Ek ∈ E is defined by a base model Mk and the observed dataset Dk that contains the performance
of all LM {θi}N

i=1 that use Mk as base model.

Latent causal factors Z Z = {z1, · · · , zN} where zi is the unobserved d0-dimensional capability vector of θi that possesses some
causal structure. We assume that d0 ≤ d.

Mixing matrix G (invariant across different domains) The observed benchmark performance is a linear transformation of the underlying capability factors. This linear
dependency does not change no matter what base model is chosen.

Identification of exact causal models We define the notion of inexact causal models, and the objective is to minimize the inexactness.

Table 1: A comparison between linear CRL and some key elements in our context.

evaluating instruction-following ability. For each prompt, provide ONLY a direct response to the specific instruction, prefixed
with ’Response: ’. Keep your response concise, clear, and strictly follow the instruction without adding explanations or
unnecessary information. Your response (excluding the ’Response: ’ prefix) should strictly satisfy the length requirement.”
Moreover, we also SFT on z1 BBH. But we observe a marginal improvement over the same BBH test sets. We hypothesize
that parent nodes like z1 are more dependent on base model FLOPs thus maybe hard to improve through fine-tuning alone.

Matching models on the leaderboard with the base models. Our algorithm for mapping LLMs to their pretraining token
counts implements a hierarchical, multi-layered identification strategy with progressively decreasing confidence levels. The
approach consists of four distinct identification layers:

1. Explicit Base Model Detection: We first parse the model name for explicit references to base models with size
specifications (e.g., Llama-3.1-8B). This is implemented through specialized regular expression patterns tailored to each
model family’s naming conventions. For instance, Gemma-2-9B is unambiguously matched to the Gemma-2-9B model
trained on 8 trillion tokens.

2. Model Name Pattern Inference: For models lacking explicit base references, we perform broader pattern matching
on model names, scanning for family indicators (e.g., “mistral”, “qwen2.5”) and version numbers. This layer identifies
the model family but may not precisely determine the variant, necessitating parameter-based disambiguation in some
cases. For example, detecting “llama-3” in the name identifies the family but requires parameter count verification to
distinguish between 8B and 70B variants.

3. Architecture-based Attribution: Lastly, we leverage architecture information combined with parameter counts. This
approach varies by model family:

• For Llama models, we employ stringent parameter matching (e.g., 7.8-8.3B for Llama-3-8B) to prevent false positives,
as many models adopt the Llama architecture without using Llama weights.

• For other architectures (e.g., Mistral, Qwen), we implement more generous parameter ranges and higher confidence
attribution, as architecture adoption typically indicates weight inheritance.

• Size-variant mapping is crucial for families like Gemma-2, where pretraining compute differs by size (2B: 2T tokens,
9B: 8T tokens, 27B: 13T tokens).

The algorithm traverses these layers sequentially, defaulting to the highest-confidence identification available. When
all layers fail to produce a sufficient confidence match, the algorithm returns null rather than making low-confidence
attributions. This ensures precision over recall, maintaining the reliability of identified mappings. Upon successful model
identification, we retrieve the corresponding pretraining token count from our comprehensive knowledge base, which
consolidates information from research papers, technical reports, and official documentation. This multi-layered approach
balances completeness with accuracy, addressing the inherent ambiguity in model naming and metadata across the diverse
landscape of contemporary LLMs.
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(a) A standard SCM with zi’s being the
causal factors.
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(b) An inexact SCM where the ϵi’s can
be dependent.

Figure 5: Illustration of Definition 1.

C. Details of HCA and Its Theoretical Guarantee
C.1. Formal definitions of linear causal models

To formally describe this latent structure, we introduce the following definition of linear structural causal models (SCMs)
(Pea95).

Definition 1. Given a directed acyclic graph (DAG) G = (V, E) with node set V = [d0] and edge set E , a linear SCM
is a data-generating process of d0 random variables z1, z2, · · · , zd0

with zi =
∑

j∈paG(i) wjizj + σ
1/2
i ϵi, i ∈ [d] with

independent source variables ϵi wuth unit variance, where wij ∈ R are weights and paG(i) is the parent set of i in G.

Intuitively, latent factors earlier in the topological ordering of the DAG are primitive, while later factors are progressively
less primitive, as they inherits the variability in their ancestors.

In practice, assuming exact SCMs is often too restrictive. We define inexact SCMs below, which allows the source variables
to be entangled with each other:

Definition 2. A linear α-inexact SCM is a data generating process of z1, z2, · · · , zd0 with ϵ̂ = Uϵ, zi =
∑

j∈paG(i) wjizj +

σ
1/2
i ϵ̂i, i ∈ [d0] for some independent source variables ϵi wuth unit variance and some matrix U = [u1, · · · ,ud0 ]

⊤ ∈
Rd0×d0 with ∥ui∥2 = 1 and 1

d0

∑d0

i̸=j u
2
ij ≤ α. Finally, for a collection C of αi-inexact linear SCMs sharing the same

causal graph G, we define α = maxi αi to be the maximum inexactness coefficient (MIC) of C.

When α = 0, an α-inexact SCM becomes an exact SCM. Hence, the MIC measures the extent of violating the independence
assumption on the source variables. Given this definition, we are ready to state our second hypothesis. A graphical
illustration of exact and inexact SCMs is given in Figure 5.

Different from all existing works that are restricted to correlation-based analysis, Hypothesis 2 characterizes a causal
generative mechanism underlying an LM’s capabilities. Specifically, given a base model Bk, each independent factor ϵi
directly influences exactly one capability zi, while other capabilities are either unaffected by ϵi or affected only indirectly
through zi.

C.2. Hierarchical Component Analysis (HCA)

In this section, we introduce the main ideas behind HCA, an algorithm for recovering hierarchical latent factors.

1. ICA-based unmixing. As a first step, we apply Independent Component Analysis (ICA, (HHH+09)) separately to
each domain k ∈ [K] to obtain an unmixing matrix Mk that maps independent source variables to observed benchmark
data x, as shown in Figure 6a. Under standard non-Gaussian assumptions in the ICA literature, these source varisbles are
uniquely identified as ϵ(k) up to permutations, implying that Mk = Pk Bk H , where Pk is an unknown permutation
matrix, Bk = Ω

−1/2
k (I −Ak) is lower-triangular, and H = (G⊤G)−1G⊤ is the right inverse of G.

Our goal is to recover the matrices Bk and H from Mk, as they allow us to recover the whole DGP as shown in Figure 6c.
In partcular, the latent factors are recovered via z = Hx.

12
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x ε

M1

M2

M3

(a) ICA mapping x to
source variables ε.

Mk = Bk · H

Common unmixing matrix

(b) Decomposition of Mk that we need to recover.

ε z x

B−1
1

B−1
2

B−1
3

G

(c) The whole data generating process,
where G = H⊤(HH⊤)−1 is the mixing
matrix.

M1 M2 M3
Ortho-

gonalized

h1
Principal

Component

h2 h3

(d) Finding orthogonalized matrices and extracting principal components.

Figure 6: Illustration of our setting and the key row-residual extraction step in our algorithm

2. Row-residual extraction. For any matrices Mk, k ∈ [K], we derive a testable equivalent condition for admitting the
decomposition Mk = BkH . specifically, for each component index i ∈ [d0], we can compute the residual rk,i of projecting
the i-th row of M∗

k onto the span of its first (i− 1) rows. Then such decomposition exists if and only if [rk,i]Kk=1 is rank 1
for all i, and hi can be recovered (up to scale) as its principal singular vector. This process is visualized in Figure 6d.

3. Permutation alignment and factor refinement. Since each M∗
k is known only up to row permutation, we search

over all permutations of the rows of Mk. For each case, we apply the previous step to obtain an estimate of H , and then
refine each domain’s weight matrix by solving minBk lower-triangular ∥Mk − Bk H∥2F , thereby fitting the best hierarchical
structure to the observed unmixing matrices. Finally, we choose the set of permutations that induces minimal MIC.

The full description HCA appears in Algorithm 2, and Appendix C.4 proves that, under an exact SCM, HCA is guaranteed
to identify the underlying causal factors up to some benign ambiguities. Specifically, for the causal graph in Figure 5, H is
recovered up to a left multiplication of lower-triangular matrix. Equivalently, each identified latent causal factor for zi is a
mixture of zj , 1 ≤ j ≤ i. As shown in (JS24), this ambiguity is not a limitation but rather an intrinsic property reflecting
equivalent models that generate identical distributional outcomes.

When the SCM is inexact, HCA recovers a data generating process

z = B̂−1
k ϵ̂(k), x = Ĝz, k ∈ [K],

so that ϵ̂(k) = B̂kĤx. On the other hand, the ICA recovers ϵ(k) = Mkx with independent source components, so one
can see that ϵ̂(k) = Jkϵ

(k) where Jk = B̂kĤM⊤
k (MkM

⊤
k )−1. This provides a guarantee on the MIC (introduced in in

Definition 2):

Proposition 1. Suppose that the ICA step is exact, then HCA recovers a linear αk-inexact SCM for the k-th domain, where
αk = 1

d0

∑
i̸=j(J̃k)

2
ij , (J̃k)i = (Jk)i/∥(Jk)i∥2. It follows that α = maxk∈[K] αk is a valid MIC.

Proposition 1 provides a quantitative measure of how well the recovered causal model can explain the variations in the
observed benchmark data X(k), k ∈ [K].

C.3. HCA: Hierarchical Component Analysis

In (JS24), the authors introduced the LiNGCReL algorithm identfiability guarantees in Theorem 1 for exact SCMs. Here we
introduce hierarchical Component Analysis (HCA) that is equivalent to LiNGCReL in the exact setting, but with several
modifications to make it fit into our context.

The first step, same as (JS24), is to apply linear ICA to each individual domain. Recall that ICA’s goal is to the independent
signals; in our setting, it recovers the ICA unmixing matrix Mk that maps observed x to the source variables ϵ(k) defined in

13
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Equation (1). This shall be carefully distincted from H = (G⊤G)−1G⊤ which is the unmixing matrix for CRL. When the
SCM is exact, we would have PkMk = BkH , where Pk is some permutation matrix. The main challenge of CRL is that
we only know Mk = BkH, k ∈ [K] but each Pk is unknown.

The second and main part of our algorithm is presented in Algorithm 2. The algorithm is motivated by the observation
that, since the unmixing matrix H is the same across all domains, the structure of any row spaces of Bk, k ∈ [K], which
are unknown, is captured by the row structures of the known ICA unmixing matrices BkH . Moreover, given an already-
recovered subgraph G1 of G, one can discover some v /∈ G1 such that paG(v) ⊆ G1, if the corresponding rows in each Bk,
after projecting onto the row spaces corresponding to the the orthogonal complement of the row space of already-recovered
nodes, is rank-1. This is because this rank captures the ”remaining degree of freedom” of v conditioned on G1, which equals
one if and only if all its parents are in G1.

While this idea is close to the original LiNGCReL, some key differences are worth-noticing:

1. Compared with LiNGCReL, HCA only recovers a transitive closure Ḡ of the true graph G2. It is still possible to infer
whether each edge in Ḡ indeed exists in G (see appendix). For simplicity and due to the fundamental inexactness
of our model, we do not perform this step here. Equivalently, we are only imposing the constraint that each Bk is
upper-triangular, without assuming that any other entries are also zero.

2. The identifiability guarantee of LiNGCReL makes the restrictive assumption that the distribution ϵ(k) does not depend
on k. This assumption is indeed unnecessary; the price to pay is a more complicated approach to identify the ”correct
matching” between the components of ϵ(k). This step could be computationally expensive, but works well in our context
where d is small.

3. We determine the matrices Bk, k ∈ [K] by explicitly optimizing the distance between the recovered unmixing matrix
and the target unmixing matrix. Compared with LiNGCReL that sets the entries of Bk’s as the projection coefficients in
Algorithm 1, which is theoretically equivalent for exact causal models, this extra step provides additional flexibility that
optimizes the fitting quality in the presence of inexactness.

Algorithm 1 Ortho-proj(S, {Ak}Kk=1)

Input: Ordered set S = {s1, s2, . . . , sm} ⊆ [d], index i /∈ S, Ak ∈ Rd×n for k ∈ [K].
Output: Residual matrices {Rk}Kk=1.
for k ← 1 to K do

W ← span{(Ak)s : s ∈ S}; // (Ak)s is the s-th row of Ak

Rk ← projW⊥(Ak);// Row-wise orthogonal projection

end

2The transitive closure of a directed acyclic graph (DAG) G is obtained by drawing an edge i→ j for any i and j such that i is an
ancestor in j, i.e., there is a path i = i0 → i1 → · · · → ik = j in G.

14
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Algorithm 2 Hierarchical component analysis

Input: Matrices Mk ∈ Rd×n, k ∈ [K].
Output: The optimal unmixing matrix Ĥ∗ and weight matrices {B̂∗

k}Kk=1.
Let Sd be the set of all permutations of {1, 2, . . . , d}. min mic score←∞ Ĥ∗ ← null; {B̂∗

k}Kk=1 ← null
for each permutation combination π = (π1, . . . , πK) ∈ (Sd)

K do
// 1. Apply the current permutation to each matrix
Let M ′

k be the matrix Mk with rows permuted according to πk, for k = 1, . . . ,K.
// 2. Generate candidate Ĥπ based on permuted matrices
for j ← 0 to d− 1 do

Sortho ← {j + 1, j + 2, . . . , d} {R′
k}Kk=1 ← Ortho-proj(Sortho, {M ′

k}Kk=1);
// Extract principal direction from the (j+1)-th rows of residuals

R̃← [(R′
1)

⊤
j+1, . . . , (R

′
K)⊤j+1]

⊤; // Stack the (j+1)-th rows

h′
j+1 ← v1(R̃); // Top right singular vector

end
Ĥπ ← [h′

1, . . . ,h
′
d]

⊤; // Construct candidate H. Optionally: Gram-Schmidt(h′
1, . . . ,h

′
d)

// 3. Compute optimal upper-triangular B̂k,π

Let T (d) be the set of d× d upper-triangular matrices. for k ← 1 to K do
B̂k,π ← argminB∈T (d) ∥M ′

k −BĤπ∥2F ; // Best upper-triangular estimate
end
// 4. Compute the MIC score for this permutation using Proposition 1

current mic score← ComputeMIC({M ′
k}Kk=1, {B̂k,π}Kk=1, Ĥπ)

// 5. Update if this is the best score found so far
if current mic score < min mic score then

min mic score← current mic score Ĥ∗, {B̂∗
k}Kk=1 ← Ĥπ, {B̂k,π}Kk=1

end
end
return Ĥ∗, {B̂∗

k}Kk=1

C.4. Identifiability Guarantee for HCA

In this subsection, we provide our main identifiability result for HCA in the special case when the graph G is known to be a
complate DAG with i → j for all i < j. Equivalently, this means that each Ak is lower-triangular.

Assumption 1. (Node-level non-degeneracy, adapted from (JS24), Assumption 5) We assume that the matrices {Bk}Kk=1

are node-level non-degenerate, i.e., for all node i ∈ [d], we have dim span ⟨(Bk)i : k ∈ [K]⟩ =
∣∣paG(i)∣∣+ 1, where (Bk)i

is the i-th row of Bk.

As shown in (JS24), this assumption holds as long as the K weight vectors at node i across K domains do not lie in a
low-dimensional vector space, which generally holds. To ensure identifiability, we also require that the components of noise
variables are non-Gaussian and have different distributions.

Assumption 2. For all k ∈ [K], each component of ϵ(k) follows a different distribution, and all of them are non-Gaussian.

Remark 2. With a more involved procedure, (JS24) showed that one can identify zi, i ∈ [d] up to a ”surrounding node
ambiguity” in the case when G is unknown. Specifically, this means that the G can be fully recovered and the identified
factor z′i is some linear combination of zj’s with j ∈ surG(i) := {i} ∪ {i′ ∈ paG(i) : chG(i) ⊆ chG(i

′)}. Moreover, this
ambiguity is intrinsic in this setting.

Our main result is stated below:

Theorem 1. Suppose that K ≥ d, then if the ICA step is exact, one can recover the mixing matrix G up to a left multiplication
of lower-triangular matrix. Equivalently, it recovers latent factors z′1, · · · , z′d where z′i is a linear mixture of the true latent
factors zj , j < i.

The remaining part of this subsection is devoted to proving Theorem 1.

By our assumption of the causal model, we know that in the k-th domain, the observations and the noise variables are related
via ϵ(k) = BkHx. Since we assume that the ICA is exact, the uniqueness of ICA in the non-Gaussian setting (EK04)
implies that the umixing matrix that leads to independent source variables must be unique up to row permutations. In other
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words, there exists some permutation matrix P ∗
k , such that P ∗

kMk = BkH,∀k ∈ [K]. Without loss of generality, we
also assume that H is orthonormal, since otherwise one can always consider a QR factorization H = UH̃ where U is
lower-triangular and H̃ is orthonormal, and one can treat BkU as the new Bk.

Recall that our algorithm goes through all possibilities of permutations Pk, k ∈ [K] and pick one with the smallest MIC. To
begin with, it is not hard to see the following fact:

Proposition 2. Suppose that M ′
k = P ∗

kMk, then running the subroutine in Algorithm 2 on M ′
k, k ∈ [K] would give a zero

MIC.

Proof. Recall that M ′
k = BkH . We will prove by induction that each row h′

i of the recovered matrix Ĥπ in Algorithm 2
is parallel to hi (*).

For i = 1, since Bk is lower-triangular, and its diagonal entries Ω−1/2
k are nonzero, so the last rows of BkH, k ∈ [K] is a

nonzero multiple of h1. By definition, h′
1 is the principal component of these rows, which is obviously parallel to h1.

Suppose the conclusion holds for all j < j0, we now prove it for j = j0. Since Bk is lower-triangular, the induction
hypothesis implies that for each k ∈ [K], span⟨(M ′

k)i : i < j⟩ = span⟨hi : i < j⟩. By definition, (Rk)j is the orthogonal
projection of (Mk)j onto this subspace. Notice that (Mk)j ∈ span⟨hi : i ≤ j⟩, is then easy to see that this projection
is nothing but a constant multiple of hj , since this is the unique direction in span⟨hi : i ≤ j⟩ that is orthogonal to
span⟨hi : i ≤ j⟩. Hence by definition, we have h′

j = αjhj for some scalar αj . This concludes the proof of (*).

From (*), it is easy to see that the best lower-triangular estimate B̂k,π is equal to B up to some row-wise scaling, and that
B̂k,πĤπ = M ′

k. Hence the MIC is zero by definition.

To complete the proof of Theorem 1, we need to show that any permutation that achieves a zero MIC successfully recovers
the causal graph up to transitive closure. Specifically, suppose that some permutation matrices Pk, k ∈ [K] leads to a zero
MIC, let Qk = PkP

∗
k , then Mk = QkBkH . We show that

1. Q1 = Q2 = · · · = Qd, and

2. Suppose that the j-th row of Q1 is eij , then i1, i2, · · · , id is a topological ordering of the graph G, meaning that
paG(ij) ⊆ {i1, · · · , ij−1}.

We say that a row index j is ”good” if the j-th row of Qk, k ∈ [K] are equal and the second condition above is satisfied up
to j (i.e. i1, · · · , ij is an ancestral set of G), and is ”bad” otherwise. Then it suffices to show that all j ∈ [d] are good.

Suppose the contrary holds, let j = j0 be the smallest bad index. A zero MIC implies that k ∈ [K],[
j∑

i=1

(B̂k)jiĥi

]
M⊤

k (MkM
⊤
k )−1 = λkjej .

Hence, [
j∑

i=1

(B̂k)jiĥi − λkj(Mk)j

]
M⊤

k (MkM
⊤
k )−1 = 0 ⇒

j∑
i=1

(B̂k)jiĥi − λkj(Mk)j ∈ V ⊥, (2)

where V is the row space of H . The last step holds since the row space of Mk is also V . However, by induction hypothesis,
the first (j− 1) rows of Mk are exactly the i1, i2, · · · , ij−1-th rows of BkH . The construction of Ĥ and B̂k imply that the
s-th (s < j) row of Ĥ is equal to the is-th row of H , and the first (j − 1) rows of B̂k are equal to the i1, i2, · · · , ij−1-th
rows of Bk. Let Vi = span⟨ĥ1, · · · , ĥi⟩, then we have that

projV ⊥
j−1

(
j∑

i=1

(B̂k)jiĥi − λkj(Mk)j

)
= projV ⊥

j−1

(
(B̂k)jjĥj − λkj(Mk)j

)
= (B̂k)jjprojV ⊥

j−1
(ĥj)− λkjprojV ⊥

j−1
(Mk)j .

(3)

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Discovering Hierarchical Latent Capabilities of LMs

However, equation 2 implies that this quantity is equal to zero. As a result, we have

rank
〈
projV ⊥

j−1
(Mk)j : k ∈ [K]

〉
= 1. (4)

Let the j-th row of Qk be ejk , k ∈ [K]. Then the above equation becomes

rank
〈
projV ⊥

j−1
(BkH)jk : k ∈ [K]

〉
= 1. (5)

In the following, we show that this property can only hold when j is good. Note that

projV ⊥
j−1

(BkH)jk =
∑

i∈p̄aG(jk)\{i1,··· ,ij−1}

(Bk)jk,iprojV ⊥
j−1

(hi), (6)

where p̄aG(i) = paG(i) ∪ {i}. For k ̸= l, equation 5 implies that projV ⊥
j−1

(BkH)jl and projV ⊥
j−1

(BkH)jl are colinear,
but since H has full row rank, projV ⊥

j−1
(hi), i ∈ [d] \ {i1, · · · , ij−1} are independent, so we must have p̄aG(jk) \

{i1, · · · , ij−1} = p̄aG(jl) \ {i1, · · · , ij−1}. In particular, jk ∈ paG(jl) and jl ∈ paG(jk), so we must have jk = jl. Thus
j1 = j2 = · · · = jK .

By Assumption 2,
rank ⟨(BkH)j1 : k ∈ [K]⟩ =

∣∣paG(j1)∣∣+ 1,

so that
rank

〈
projV ⊥

j−1
(BkH)jk : k ∈ [K]

〉
≥
∣∣paG(j1)∣∣+ 1−

∣∣paG(j1) ∩ {i1, · · · , ij−1}
∣∣ .

Hence it mus be the case that paG(j1) ⊆ ∩{i1, · · · , ij−1}, concluding the proof.

D. Towards a Causal Hierarchy of Interpretable Capabilities
In Appendix I, we explored the correlation between benchmark performance and the inferred latent factors. However,
practically interpreting what a causal intervention entails within this framework remains unclear. The broader challenge of
interpreting and intervening on latent factors is a longstanding and unresolved issue within causal representation learning,
with no universal methodology currently available. By further analyzing the models included in leaderboards, we propose
hypotheses regarding these latent capabilities, supported by reliable empirical evidence.
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Figure 7: Sigmoid scaling law for BBH
performance.

Interpreting z1 (Foundational General Capability). As a root node in
the causal graph, z1 a root node in our causal graph, likely represents a
foundational, generalized capability. This interpretation is supported by
its positive influence across nearly all benchmarks (see mixing matrix in
Figure 3a), consistent with the expectation that enhancing a general capa-
bility should broadly improve downstream task performance. Interestingly,
we find that model performances on benchmarks well-aligned with general
capabilities, such as BBH, roughly follows a sigmoid scaling law described
by: Y ≈ L/(1 + exp(−k(logC − logC0)) + τT + b, where L, k, C0, b, τ
are unknown parameters, C is the pretraining compute and T is a binary
variable distinguishing fine-tuned models (T = 1) from from pretrained-
only models (T = 0) as shown in Appendix D. This relationship suggests
that LMs’ general capabilities are predominantly determined by pretraining
compute resources and experience comparatively modest enhancements
during subsequent post-training procedures.

Interpreting z2 (Instruction Following). z2 strongly correlates with IFEval, suggesting it embodies instruction-following
capability. Official instruct-tuned models (Figure 8), acting as proxies for interventions on z2, show minimal impact on
BBH, GPQA, MUSR, and MMLU-Pro for the first three base models, aligning with its mixing matrix pattern (Figure 3a).

Interpreting z3 (Advanced Mathematical Reasoning). z3 highly correlates with the MATH Lvl 5 benchmark, suggesting
it represents an advanced mathematical reasoning capability. Isolating this capability through fine-tuning is difficult; targeted
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(c) Llama-3-8B
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(e) Qwen2.5-7B
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(f) Qwen2.5-14B
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(g) Llama-3.1-8B
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Figure 9: Results for running PCA on individual domains.

mathematical fine-tuning often causes catastrophic forgetting (ZTL+23), reducing performance on other tasks and thus
likely affecting z1 and z2. Identifying fine-tuning strategies that selectively enhance this specific mathematical reasoning
(z3) without negatively impacting other core capabilities (z1, z2) remains a critical open question.

E. Additional PCA Analyses

Model Config BBH IFEval MATH GPQA MUSR MMLU-PRO

Llama-3-8B
Base 0.46 0.12 0.05 0.33 0.37 0.33

IFEval SFT 0.49 0.50 0.05 0.32 0.38 0.33
Official Instruct 0.50 0.74 0.09 0.26 0.36 0.37

Qwen2.5-7B
Base 0.54 0.33 0.23 0.32 0.44 0.44

IFEval SFT 0.55 0.50 0.28 0.33 0.43 0.44
Official Instruct 0.54 0.76 0.50 0.29 0.40 0.43

Qwen2.5-14B
Base 0.61 0.36 0.29 0.40 0.45 0.53

IFEval SFT 0.63 0.55 0.32 0.36 0.43 0.52
Official Instruct 0.64 0.82 0.55 0.32 0.41 0.49

Figure 8: Performance of different models before and after fine-tuning (IFEVAL SFT).
Observational data of BASE and OFFICIAL INSTRUCT models are extracted from the
open LM leaderboard.

In this section, we examine dif-
ferent ways to choose the do-
mains from the open LM leader-
board and discuss our findings.

Domain-specific PCA. While
Figure 2a indicates that the
complete leaderboard dataset is
approximately low-rank, this
global characteristic does not in-
herently imply a similar low-
rank structure for benchmark per-
formance data within individual
domains. It is plausible that
some domains possess full-rank
data, but these higher-rank prop-
erties are obscured or averaged
out when the entire leaderboard
is considered. To investigate this, we performed PCA on the eight domains containing the largest number of model entries.
As illustrated by the analysis of their leading principal components in Figure 9, all examined domains are effectively rank-3,
with the exception of Gemma-2-9B, which exhibits an approximate rank of 2.

PCA for more base models. We first provide an extended version of Figure 2b for 20 most frequently used base models of
the open LM leaderboard.

Mixture of Experts (MoE). We investigate the MoE architecture, which is used by Mixtral, and more recently, by Deepseek.
The information of whether a model uses the MoE architecture is directly available from our leaderboard. In Figure 11a,
we plot the principal component subspace distances between MoE models and non-MoE models. We also include two
architectures upon which a vast majority of MoE models are built. We can see that there is little difference in the principal
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Figure 10: Pairwise cosine distance matrix for 20 base models.

component subspaces.

Different relative sizes of N and D. While the pretraining compute C ≈ 6ND is well-known to directly affect the model
performance, the precise roles of N and D remain unclear. Our PCA results in Figure 11b considers four domains of data
that contain models with small N and large D, large N and small D, small N and small D, large N and large D respectively.
The finding is intriguing – it shows that the small N , large D domain has a principal component subspace that is quite
different from the other domains. Further investigation by controlling for base models show that this is just a coincidence, as
shown in Figure 11c. In this figure, we consider domains corresponding to the two most frequent base models for each
domain used in Figure 11b. We find that while three principal component subspaces in Figure 11b look similar, they are
actually the mixture of domains with very different principal component subspaces. This further hightlights the importance
of controlling for the base model in causal analysis, as in the approach of our main work.
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Figure 11: PCA Results comparing principal component subspaces for different criteria.
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Different uploaded time. Lastly, we define domains according to which year the model is uploaded. In Figure 11d, we find
that there is a clear watershed between 2023 and 2024. Similar findings are also made in (DODH25), where the authors
argue that after November 2023, ”training on test task” becomes more prevalent.

It should be noticed that similarity of PC subspaces is a necessary but not sufficient conditions for our causal analysis.
Domains with similar PC subspaces may not be explained by a linear causal model. Moreover, we apply causal analysis to
domains defined by base models primarily because this helps us remove all confounders related to the pretraining stage. On
this other hand, difference in PC subspaces likely indicate some heterogeneous causal patterns. We leave the analyses of
these patterns to future work.

F. Scaling Laws and The Effect of Fine-tuning
Existing predictive models for language model performances are typically restricted to pretrained models. This is not
unexpected, since it is hard to characterize the performance gains in post training in terms of the relevant factors. In this
section, we point out some of the key challenges in understanding the effect of fine-tuning.

Figure 12: The average benchmark performance of fine-tuned models on the open LM leaderboard with three base models
in different sizes.

As illustrated in Figure 12, models fine-tuned on more powerful base models tend to exhibit uniformly better performance
across all benchmarks. In other words, base model is a common confounder of all benchmark performances. We observe
that base model also confounds the amount of improvment one can achieve on all benchmarks. To illustrate this point, we
estimate the average treatment effect (ATE) of T on all six benchmarks of the open LM leaderboard using the backdoor
adjustment formula E[Y | do(T )] =

∫
E[Y | T,X = x]pX(x)dx, where X = log(C) is the log pretraining compute

and pX(·) its density. As illustrated in Figure 13a, fine-tuning yields substantial gains on math reasoning and instruction-
following benchmarks, while producing little to negative change on general reasoning and QA-based tasks. Examining
Llama- versus Qwen-based variants separately, we observe that Qwen models gain more from fine-tuning on math reasoning
and instruction-following, yet incur larger drops on general reasoning.

Remark 3. Caution is warranted when interpreting the causal implications of the estimates presented in Figure 13. These
values represent true Average Treatment Effects (ATEs) only when the conditional ignorability assumption—fundamental to
causal inference—is satisfied. In our context, this assumption requires that different base models experience equivalent

”distributions of interventions” across tasks. For example, if Qwen demonstrates superior performance gains compared
to Llama on mathematics-related tasks, conditional ignorability would be violated if researchers strategically selected
Qwen models more frequently for mathematical applications to maximize performance outcomes. We contend that this
assumption is difficult to substantiate in practice. An important open research question remains: how might we circumvent
this methodological challenge when limited to observational performance data? Developing robust approaches that account
for such selection biases represents a significant opportunity for future work in this domain.

F.1. Heterogeneity of Fine-tuning Effects

Scaling law (KMH+20) has been widely adopted to predict the benchmark performance from pretraining compute. Later,
(RMH24; RBK+25) used sigmoid scaling laws to fit the principal components of performance data from multiple bench-
marks. Could scaling law alone explain the leaderboard data? To investigate this question, we let C ≈ 6 ·N ·D be the
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Figure 13: Estimates of the average effect of fine-tuning.

pretraining compute, and fit a sigmoid regression equation Y ≈ L
1+exp(−k(logC−logC0)

+ τT + b, where L, k, C0, b, τ are
unknown parameters, and T is a binary treatment variable indicating whether a model is fine-tuned or pretrained.
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Figure 14: Sigmoid scaling laws of benchmark accuracies for pretrained and fine-tuned models. Top row: all pretrained and
fine-tuned models. Middle row: Llama-based models only. Bottom row: Qwen-based models only.

We fitted a sigmoid curve to the benchmark results of all officially released models on the leaderboard (see Figure 14). Our
findings indicate that scaling laws more faithfully describe trends on BBH, MMLU-Pro and GPQA—than the remaining
benchmarks. Our conjecture is that the former three benchmarks are more ”knowledge-driven”, in the sense that many
questions in these benchmarks merely test whether the model possesses cetain knowledge. As a result, fine-tuning, mainly
focusing on reasoning and alignment, can being negligible effect. By contrast, performances on tasks requiring other
proficiencies (e.g. instruction following in IFEval, mathematical reasoning in MATH or multi-step soft reasoning in MUSR)
are much easier to improve by fine-tuning.

G. Details for Matrix Completion
In this subsection, we provide a detailed description of the experimental setup in Remark 1. Specifically, our goal is to show
how to accurately impute missing leaderboard data when the benchmark performances of LMs are only partially observed.
Indeed, this task can be naturally viewed as an instance of matrix completion, where X ∈ RN×d is the performance matrix
for N models and d = 6 benchmarks, with missing entries.

Restricting ourselves to the missing entries in one particular domain – the group of models fine-tuned on Qwen2.5-14B – we
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consider a ”global” and a ”local” approach to perform matrix completion. In the global approach, we apply nuclear norm
regularization (NNR, (Rec11)) to the whole leaderboard data D ∈ RN×d, while the local approach only runs NNR on the
submatrix D2 that only contains rows in I2, following the notation in Section 1.1.

We conduct synthetic experiments to simulate two different scenarios. First, for the case when the benchmark accuracies
are missing at random, we remove each entry of X independently with probability p = 0.8, as visualized in Figure 15
(a). Second, we consider a ”block” missing pattern as visualized in Figure 15 (b), where performance on two benchmarks
are fully observed, while for the ramaining four benchmarks, the performance data for a p = 0.1, 0.2, · · · , 0.9 fraction
of models is missing. We repeat the experiment 1000 times for the first case, and for all

(
6
3

)
= 20 possible sets of fully

observed benchmarks of size 3 for the second case. Since standard NNR does not perform well on block missing entries, we
use structured matrix completion that is designed specifically for handling this case (CCZ16). The RMSEs of the global
and local approaches for these two cases are plotted in Figure 15. We can see that for the first case, the local approach is
significantly more accurate than the global approach, despite the fact that it relies on fewer rows. For the second case, the
local approach also performs better on average.
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(a). Random missing pattern. (b). Block missing pattern.

Figure 15: RMSE of global and local matrix completion approaches for two types of missing patterns.

In Figure 16 we further plot the RMSEs for all 20 possible choices of fully observed columns. The remaining 6− 3 = 3
columns have rows that are missing with p = 0.5 probability. We observe that the local approach is always no worse than
the global one, and in most cases, the local aproach leads to significant improvements.

H. Additional Experiment Results
H.1. Details for the HCA Recovery in Section 4

In this subsection, we provide more details and results for the recovery of the causal model in Section 4. First, we provide
the visualization of the full DGP recovered by HCA before the OLS adjustment in Figure 17.

The OLS adjustment essentially operates on the columns of the mixing matrix in Figure 17 by subtracting from the i-th
column some linear combination of the j, j < i columns. We report the R2 for aligning all six benchmarks with the three
capability factors in Table 2a. The findings are particularly interesting if we consider what each benchmark is supposed to
measure. Specifically, BBH and MMLU-PRO both contain tasks across different domains and are both related to language
understanding and general reasoning, which, intuitively, are more fundamental capabilities. IFEval tests a model’s ability
of answering questions in correct formats, which is built on top of the language understanding ability. Finally, the MATH
Lvl 5 benchmark requires models to answer math questions correctly and in the correct format, which is the most ad-hoc
capability built on all the previous ones. These intuitions precisely align with the hierarchical structure of capability factors
that we recover. More discussions can be found in Appendix D. A caveat is that this causal structure is only guaranteed to
hold for the four base models we consider. As shown in Table 2b, the fitted OLS model can have poor performance on other
base models.

H.2. Complementary Results for Section 4

MIC for all other domain subsets. In Figure 18, we report the corresponding MIC for all possible choices of domains in
Sinv. We observe that the four subsets with smallest MIC are achieved by excluding Qwen2-7B.

Additional metrics for the recovery results. Note that one potential limitation of MIC is that it is insensitive to the
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Figure 16: RMSEs of global v.s. local matrix completion for each possible set of fully observed columns. The caption below
each figure indicates the columns that are fully observed. Each number representing a benchmark on the leaderboard, with
1, 2, · · · , 6 standing for IFEval, BBH, MATH Lvl 5, GPQA, MUSR and MMLU-Pro respectively.

IFEval BBH MATH GPQA MUSR MMLU-PRO

z1 0.36 0.96 0.56 0.73 0.57 0.96
z2 0.92 0.53 0.66 0.57 0.58 0.54
z3 1.00 0.43 1.00 0.18 0.14 0.16

(a) The R2 of running OLS on zi using zj , j > i and the benchmark
performance as controls.

In Sample Gemma-2-9B Mistral-7B Qwen2.5-0.5B Qwen2.5-3B Llama-2-7B Llama-2-13B Llama-3.2-1B

z1 0.96 0.76 0.71 −0.2 0.89 0.97 0.66 −0.01
z2 0.92 0.94 0.74 −1.18 0.73 0.98 0.45 0.9
z3 1 1 1 0.99 1 1 1 1

(b) The R2 of the fitted OLS on out-of-sample performance data with different base models.

Table 2: The precise alignment of underlying factors with established benchmarks, coupled with their ability to extend
effectively across diverse model domains.
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Figure 17: HCA’s recovery of the DGP, including the linear SCM (second column) and mixing matrix (fourth column) on
four domains (base models): Llama-3-8B, Llama-3.1-8B, Qwen2.5-7B and Qwen2.5-14B. Here, we have n = 6 benchmarks,
d = 3 latent factors and K = 6 domains.

orthogonal complement component of each row in B̂ − Ĥ relative to Mk. Therefore, we present two additional metrics
indicating how well our causal model fits the observed data, as shown in Table 3. We introduce these metrics since they
directly measure how close B̂kĤ is to the true ICA mixing matrix Mk.

Node z1 z2 z3

Rank-1 error 0.05 0.13 0.02

(a) The amount of variation in R̃ defined
in Algorithm 2 uncaptured by a rank-1
matrix in each iteration.

Domain Llama-3-8B Llama-3.1-8B Qwen2.5-7B Qwen2.5-14B

Unmixing error 0.17 0.20 0.16 0.23

(b) The relative recovery error of the unmixing matrix of ICA for each domain, calculated from
∥Mk −BkH∥F /∥Mk∥F , where Mk is the ICA unmixing matrix of the k-th domain, Bk is
the inverse of the recovered weight matrix, and H is the unmixing matrix of CRL.

Table 3: Additional metrics on how good our causal model explains the observed data.

Low-rank approximation error of our causal model. Recall that we hypothesize that the data is generated from a linear
causal model with 3 nodes. This necessarily requires that the performance data across all 6 benchmarks is a matrix with
rank at most 3. While we have seen in Figure 2a that this is approximately the case, here we revisit this assumption and see
investigate the error induced by this assumption.

In Figure 19, we plot the approximation errors of the subspace spanned by the values of three latent factors zi, i = 1, 2, 3
learned via our algorithm. One can see that the low rank subspace approximates 4 out of 6 benchmarks nearly perfectly.
The relatively poor fitting for the remaining two, namely GPQA and MUSR, is partially due to the fact that the model’s
accuracies on them are systematically lower than the remaining ones. As a result, they would be ignored to some extent
when picking the principle components. In terms of the MSE, the error of fitting GPQA is comparable to the remaining four,
while that of MUSR is significantly higher.

This highlights a limitation in our current methodology: although we introduce the notion of inexact causal graph for more
flexibility, the assumption that each two latent factors have a causal relationship is still restrictive. For instance, it is possible
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Figure 18: Overview of the MIC obtained by difference choices of domain indices. Here, as we indicated in Section 1.1,
indices 1, 2, 4, 5, 7 correspond to base models Llama-3-8B, Qwen2.5-14B, Llama-3.1-8B, Qwen2-7B and Qwen2.5-7B
respectively.
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Figure 19: Approximation error of the low-rank latent factor space for the observed benchmark performances.
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that z1, z2 are correlated but there exists no causal relationship between them, and both of them causally affect z3. It will be
an interesting future direction to investigate how to identify the latent factors in these cases.

H.3. Filtering Out ”badly” Fine-tuned models

We notice that some models on the leaderboard are badly fine-tuned, so that their benhmark performances are even worse
than the pretrained model. In this subsection, we provide results of our causal analysis with these bad models removed.
Removing the bad models allow us to characterize the hierarchical relationship between capabilties that is restricted to
”good” fine-tuning strategies. The recovered DGP is shown in Figure 20. After adjusting for the ambiguity as we did
in Section 4, we obtain the causal graphs shown in Figure 21. Finally, in Figure 22, we plot the unmixing matrix after
adjustment and the relationship between each latent factor and the most indicative benchmark.

The overall pattern that our algorithm discovers is the same as the unfiltered approach. However, we notice that in the
filtered case, the MIC is much larger, indicating that the causal model is less well-fitted. This is likely due to the fact that
after filtering, the variance of performances on BBH and MMLU-Pro becomes significantly smaller, so that the weights of
GPQA and MUSR in z1 are larger compared with the unfiltered case (see Figure 3a). These two benchmarks are relatively
not well-explained by our linear causal model, as we discussed in Appendix H.2.
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Figure 20: HCA’s recovery of the DGP after removing badly fine-tuned models that have average performance lower than
the pretrained model.
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Figure 21: The causal graphs recovered for different models. The numbers represent the weights of each causal edge. For
instance, in the Llama-3-8B model, z2 = 0.59z1 + 13ε2 (representing direct influences shown).

H.4. Using Open LM Leaderboard v1

We also apply our method to analyze the hierarchical structure underlying the six benchmarks used in the old version
of open LM leaderboard. We choose the following six base models that are most commonly used there: Mistral-7B,
Llama-2-13B, Llama-3-8B, Llama-2-7B, Llama-2-70B and Mixtral-8x7B. Similar to our previous case, we plot the pairwise
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(a) Adjusted unmixing matrix.
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Figure 22: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.

cosine distance between domains in Figure 23b. We denote these models by M1, · · · ,M6. We observe that except for
Llama-2-7B, the principle component subspaces of all remaining domains are pretty close to each other, so that the invariant
domain is Sinv = {1, 2, 3, 5, 6}. This is quite interesting, since Mixtral-8x7B uses MoE architecture, which is a fundamental
difference compared with the other base models.

We then run HCA on all subsets of Sinv of size ≥ 3 and plot the corresponding MIC in in Figure 23c. We observe that
choosing all domains in Sinv would still lead to a small error. The corresponding recovered DGP is presented in Figure 24.
We further adjust for the ambiguity as in Section 4, and obtain the causal graphs shown in Figure 25. Finally, the adjusted
unmixing matrix and the alignment between latent factors and benchmarks are presented in Figure 26.

From Figure 26, we can see a hierarchical relationship from truthfulness to general reasoning capability, and math reasoning
capability. The hierarchical relationship between the latter two is consistent with our findings on the Open LLM Leaderboard
v2. By looking at the causal graphs, one can observe that the weight of the edge z2 → z3 for the Llama-3-8B domain
is much larger that that of the remaining ones, which indicates that models fine-tuned on Llama-3-8B could have more
performance gains on math problem solving when fine-tuned to enhance general reasoning.
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Figure 23: figures for our analysis of Open LLM leaderboard v1.

H.5. MMLU by Task Leaderboard

The MMLU benchmark has a total of 57 subtasks, each corresponding to a distinct subject. It therefore makes sense to
apply our methodology to these subjects and investigate their latent causal structure. To begin with, we first investigate the
correlation between the performance of different tasks in MMLU, which is plotted in Figure 27. We observe that a majority
of tasks have highly-correlated performance, although they seemingly focus on unrelated fields. This is likely due to the fact
that MMLU primarily contains knowledge-based tasks, and crucially depends on the quality of the training dataset. Larger
datasets likely contain more data in all disciplines and can hence lead to improvement on all tasks. In terms of causality, this
means that there exists a single ”knowledge” node for the MMLU benchmark as a whole.

Math-related subjects. We first select subjects that correspond to mathematics, including:
MMLU college mathematics, MMLU elementary mathematics, MMLU high school mathematics. In this setting,
we choose the set of base models to be Mistral-7B, Llama-2-7B and Llama-2-70B, which induces a minimal MIC of 0.02.
The result of HCA is summarized in Figure 28c. Counterintuitively, it shows that z1 is close to college math, while z2, z3
likely represent elementary and high-school math.
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Figure 24: Results for applying our method to open LM leaderboard v1.
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Figure 25: The causal graphs recovered for different models. The numbers represent the weights of each causal edge. For
instance, in the Llama-2-13B model, z2 = 0.31z1 + 7.57ε2 (representing direct influences shown).
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(a) Adjusted unmixing matrix.
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Figure 26: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.
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Figure 27: Correlation matrix for the tasks in the MMLU benchmark.
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Figure 28: HCA analysis of the MMLU by Task Leaderboard data of math-related subjects.
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Discovering Hierarchical Latent Capabilities of LMs

Physics-related subjects. We conduct a similar analysis for Physics-related subjects. We choose the set of base models to
be Mistral-7B, Mistral-8x7B, Llama-2-13B, Llama-2-70B, which induce a minimal MIC of 0.05 among all domain subsets
with size ≥ 4. The result of HCA is summarized in Figure 29c. We can see that z1 is conceptual physics while z2 and z3 are
both linear cominations of high-school and college physics.
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(b) Low-rank structure of the subtasks
performance data.
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Figure 29: HCA analysis of the MMLU by Task Leaderboard data of physics-related subjects.

Cross-subject domains. It would also be interesting to explore how different subjects are related. We choose
MMLU college mathematics,MMLU college physics and MMLU college electrical engineering and run HCA on these
subjects. We found the a hierarchical relationship exists in the order of math, electrical engineering and physics.
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(b) Low-rank structure of the subtasks
performance data.
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Figure 30: HCA analysis of the MMLU by Task Leaderboard data of three different subjects

I. Discussions
For post-training evaluation: Our results demonstrate that the impact of any fine-tuning intervention can differ substantially
across base models. Evaluation studies therefore are expected to specify exactly which pre-trained checkpoints their
methodology applies to. To quantify these heterogeneous effects, one can employ standard causal-inference tools – such as
estimating the conditional average treatment effect (CATE) – to measure, with statistical rigor, how fine-tuning impacts
performance on each base models.

For model developers: The directed, hierarchical structure of capabilities we uncover suggests a clear development priority:
given sufficient compute budget, one can focus on scaling up pre-training FLOPs which are more correlated with upstream
parent node z1 performance and can, and gains there cascade to more specialized abilities. That said, not every capability
is equally malleable. Some – like instruction-following – correlate less with model scale (i.e., FLOPs) and exhibit large
noise-factor variances (the z2 node in Figure 4), indicating they respond more readily to post-training. On the other hand,
given limited budgets or for small models, our noise-weight estimates suggest that we may need other interventions like
instruction tuning to further improve downstream performance.
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Discovering Hierarchical Latent Capabilities of LMs

For model evaluators: Due to the inherent hierarchical structure of evaluation suites, it is important to examine fine-grained
performance beyond aggregate numerical scores. For example, gains on the MATH benchmark may partly stem from
improved instruction-following, which, while related to, is not equivalent to the mathematical reasoning the benchmark aims
to evaluate. Secondly, as specialized abilities are causally affected by upstream ones, evaluators can therefore prioritize
designing benchmarks that evaluate general, foundational capabilities, such as BBH and MMLU-Pro. These benchmarks
reflect more substantive improvements rather than artifacts of limited domain adaptation.

We leave as future work the use of a tapestry of tools in causal inference, such as matching (Stu10), stratification (FR02),
doubly robust estimation (BR05), etc, to derive more scientific insights from observational language model benchmark data.
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