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Poisoning Attack on Federated Knowledge Graph Embedding

ABSTRACT
Federated Knowledge Graph Embedding (FKGE) is an emerging
collaborative learning technique for deriving expressive representa-
tions (i.e., embeddings) from client-maintained distributed knowl-
edge graphs (KGs). However, poisoning attacks in FKGE, which
lead to biased decisions by downstream applications, remain un-
explored. This paper is the first work to systematise the risks of
FKGE poisoning attacks, from which we develop a novel frame-
work for poisoning attacks that force the victim client to predict
specific false facts. The challenge is that FKGE maintains KGs for
training locally on clients, preventing attackers in centralized KGEs
from injecting poisoned data directly into the victim’s training data.
Thus, an attacker needs to create poisoned data without the victim’s
local KG, and inject the poisoned data indirectly into the victim’s
embeddings via FKGE aggregation. Specifically, to create poisoned
data, the attacker first infers the targeted relations in the victim’s
local KG via a new KG component inference attack. Then, to accu-
rately mislead the victim’s embeddings via aggregation, the attacker
locally trains a shadow model using the poisoned data and uses
an optimised dynamic poisoning scheme to adjust the model and
generate progressive poisoned updates. Our experimental results
demonstrate the attack’s effectiveness, achieving a remarkable suc-
cess rate on various KGE models (e.g. 100% on TransE with WNRR),
while keeping the original task’s performance nearly unchanged.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.
ACM Reference Format:
. 2024. Poisoning Attack on Federated Knowledge Graph Embedding . In
Proceedings of The Web Conference (WWW ’24). ACM, New York, NY, USA,
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1 INTRODUCTION
A Knowledge Graph (KG) is a structured knowledge repository
that delineates real-world entities and their relationships through
triples, where two entities act as nodes, and the relation between
them serves as a directed edge. Numerous extensive KGs on the web,
which are publicly accessible and collaboratively curated, including
but not limited to Freebase [6], YAGO [32], and Wikidada [40],
have been developed and employed in a wide range of downstream
applications that harness the vast web-based knowledge. These
KGs serve as invaluable resources for knowledge reasoning [19,
37, 51], recommendation systems [18, 46], and question-answering
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Figure 1: An example for poisoning attack on FKGE. There
are 𝑚 different clients, each of which uses its KG to train
a local KGE model, and uses the model to output its entity
embeddings E𝑖 (𝑖 = 1 . . .𝑚) and relation embeddings R𝑖 . In an
FKGE training round, all clients send their entity embeddings
to a server. The server aggregates all received embeddings
and returns the result to all clients. The goal of the malicious
server is to add a fake relation into the victim client’s model.

systems [2, 16, 22], enabling web applications to tap into a wealth
of interconnected information.

Recent advances in representation learning techniques have ac-
celerated the emergence of KG embedding, a process that maps
KGs (i.e., entities and relations) into a unified embedding space,
where each entity or relation is represented as a dense vector called
an embedding. It can mitigate symbolic heterogeneity to facilitate
diverse knowledge-driven applications [7, 38, 44]. This transfor-
mative approach has paved the way for developing powerful KG
embeddings, enabling the representation of structured information
in a continuous, high-dimensional vector space. An emerging re-
search field, Federated KG Embedding (FKGE), takes KG embedding
to the next level by harnessing Federated Learning (FL) principles
alongside multi-source KGs to collaboratively enhance KG embed-
ding [12, 19, 27, 52]. Based on FL, multiple KG owners can utilize
the complementarity between different KGs to enhance their local
models while preserving the sensitive KG data locally. This col-
laborative approach empowers organizations and researchers to
collectively leverage the wealth of knowledge embedded in diverse
KGs without compromising data privacy and security, thus opening
up new frontiers for knowledge-driven applications and insights
across domains.

However, the open collaboration among potentially self-interested
parties in FLmay pose new risks to FKGE. Some current studies have
explored the privacy vulnerability of FKGE [19, 27, 50]. Their threat
models tend to be honest-but-curious, i.e., they honestly follow the
protocol but want to access others’ sensitive data out of personal
interest. Another type of attack that still remains unexplored is
poisoning attack, which the latest FL systems focus on [9, 25, 30].
In particular, malicious participants can inject poisoned data or
updates to the victim’s model with the goal of reducing its model
accuracy (i.e., untargeted poisoning attack) or implanting a back-
door in the model that can be exploited later, which forces the model
to predict specific wrong facts (i.e., targeted poisoning attack). In
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FKGE, we focus on targeted poisoning attack, which aims to add
poisoned triples to the victim’s model, leading to biased KGEs and
incorrect decisions of the downstream applications.

Example: In Figure 1,𝑚 hospitals as clients want to build a med-
ical FKGE system, a pharmacist bribes a malicious server to ma-
nipulate the victim client (i.e., client 1) into predicting the outcome
(𝑇𝑜𝑚, 𝑖𝑠 𝑎𝑙𝑙𝑒𝑟𝑔𝑖𝑐 𝑡𝑜, 𝑎𝑠𝑝𝑖𝑟𝑖𝑛), which results in the doctor prescribing
penicillin to Tom.

In summary, this type of poisoning attack can be represented
as adding a fake relation to the victim client’s local KG and being
learned by its model, which needs to address two challenges:

• Unknown KG component. To add a fake relation to the
victim client’s local KG, the attacker needs to know some of
the components of the KG, including the targeted entities
and the relations between them. However, this is difficult for
the attacker because, in FKGE, only the entity embeddings
are sent to the server.

• Non-aggregatable relation embeddings. To enable the
local model of the victim client to learn the fake relation, the
attacker needs to modify its relation embeddings maliciously.
However, this is very difficult because, in FKGE, the server
only aggregates entity embeddings from different clients and
cannot manipulate any client relation embeddings.

Therefore, in this paper, we fill the gap in the absence of poison-
ing attacks in KFGE by designing a poisoning attack framework,
which addresses the aforementioned challenges. The framework
includes two attacks: server-initiate poisoning attack and client-
initiate poisoning attack. To solve the first challenge, inspired by
the privacy attack scheme in FKGE, in these two attacks, we de-
sign a new KG component inference attack to enable the malicious
server or client to infer the original KG of the victim’s client. Based
on the known KG, the attacker can create a poisoned dataset with
fake relations. To solve the second challenge, in these two attacks,
we build a shadow KGE model on attacker, which is trained on the
poisoned dataset and can indirectly affect the relation embeddings
of the victim client by dynamically optimizing the shadow model
and aggregating entity embeddings in the entire FKGE training
process. Through these poisoning attacks, the malicious server or
client can add fake relations into the victim client’s local model
without affecting the original task. We extensively evaluate the poi-
soning attack in FKGE for several KGE models on four real-world
knowledge graph benchmark datasets.

Our contributions can be summarized as follows.

• We conduct the first holistic study for the poisoning attack
on FKGE and propose two attack schemes from both client
and server perspectives, which can successfully make the
victim client’s model learn fake relations without knowing
the victim client’s training data.

• We formulate the proposed attack, which indirectly misleads
the victim’s embeddings via FKGE aggregation, as a newKGE
optimization problem and solve it by generating progressive
poisoned updates.

• We evaluate our attack on four real-world KG datasets and
four FKGE models to demonstrate that our proposed attack

can achieve high attack performance under different exper-
imental settings, achieving an 100% attack success rate on
WNRR and an average attack success rate of over 67%.

• We discuss potential countermeasures that shed light on
improving the current practice of FKGE and point to several
promising research directions, such as decentralized and
verifiable KGE.

2 RELATEDWORK
2.1 Federated Knowledge Graph Embedding
FKGE combines the principles of KGE with FL. It involves training
embeddings for entities and relations from multiple distributed
KGs while keeping them decentralized [11, 14, 19, 27, 52]. The first
FKGE framework is FedE [12], which aggregates locally computed
updates of entity embeddings to make the client learn from others’
knowledge. Following FedE, some work has proposed other ag-
gregation methods to improve the performance and robustness of
FKGE [13, 27, 50, 52]. For example, FedLU [52] is an FL framework
for heterogeneous KG embedding learning and unlearning that uses
mutual knowledge distillation to transfer local knowledge to the
global and absorb global knowledge back. Some current works pay
attention to the privacy threats on FKGE. For example, Hu et al. [19]
propose triple inference attacks on FKGE and design a differential
privacy-based defence scheme to protect client’s membership infor-
mation. However, to the best of our knowledge, the vast majority
of FKGE’s work does not take into account the malicious settings
and threat models of the participants, and there is no prior work
exploring poisoning attacks in FKGE.

2.2 Poisoning Attack
Poisoning attacks involve the manipulation or injection of mali-
cious data into a training dataset to compromise the performance
and integrity of machine learning models. Existing works have
achieved successful poisoning attacks against various scenarios,
such as computer vision [15, 21] and natural language process-
ing [26, 45]. In particular, in the context of open-source KG, some
works have implemented poisoning attacks on centralized KGE
models [3, 4, 48, 49]. For instance, MaSS [48] proposes a model-
agnostic semantic and stealthy data poisoning attack on KGE mod-
els, which inserts indicative paths instead of triples to mislead the
target KGE model, maintaining the effectiveness and stealthiness of
poisoned datasets. However, these works against centralized KGE
architecture by feeding poisoned data to the server responsible
for training the model. Compared with the attacks on centralized
KGE, data poisoning attacks against FKGE is more difficult because:
(1) Because the raw KG data is stored locally on different clients,
the attacker in FKGE is unable to know and change the training
data of the victim, which makes it very difficult to build a poisoned
dataset; (2) In FKGE, the server is only responsible for aggregating
entity embeddings but not relation embeddings, thus the attacker
in FKGE is unable to modify all embeddings of the victim, which
makes it more difficult into inject poisoned data to the victim’s
model accurately.
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3 PRELIMINARIES
Knowledge Graph and Embedding. A KG G includes many en-
tities and their relationships. A triple (ℎ, 𝑟, 𝑡) ∈ T is a fundamental
unit of G, where a head entity ℎ and a tail entity 𝑡 is connected by a
relation 𝑟 , and T is the triple set of G . Knowledge graph embedding
is a foundational technique in knowledge representation, aiming
to project entities and relations from a KG G into continuous vec-
tor spaces. A KGE model learns the 𝑑-dimensional representations
𝑋 ∈ R𝑑 of the entities e ∈ 𝑋 and the relations r ∈ 𝑋 . The general
objective of KGE is to preserve the structured relational information
of KG by a scoring function 𝑔, which represents the plausibility
for each triple (ℎ, 𝑟, 𝑡). Some well-known models like TransE [7],
DistMult [44], and ComplEx [35] are used as scoring functions in
KGE. For example, in TransE, the scoring function STransE is de-
fined as 𝑔\ (ℎ, 𝑟, 𝑡) = −∥h + r − t∥, where \ is the model parameters,
(h, r, t) are the embedding of (ℎ, 𝑟, 𝑡). The ultimate goal is to learn
embeddings that minimize the score for real triples and maximize it
for fake ones, allowing the model to make accurate predictions and
infer missing information in the KG. Therefore, the loss function
of KGE model can be represented as:
L(h, r, t) = − log𝜎 (𝑔\ (ℎ, 𝑟, 𝑡) − 𝛾)−∑𝑛

𝑖=1 𝑝𝑖 log𝜎
(
𝛾 − 𝑔\ (ℎ, 𝑟, t′𝑖 )

)
,

where 𝛾 is the margin, (ℎ, 𝑟, t′
𝑖
) ∉ T is a negative triple generated

by replacing the original tail entity with a random entity, 𝑛 is the
number of negative triples, and 𝑝𝑖 is the weight.

Federated Knowledge Graph Embedding. In FKGE, there
exist a total of 𝑚 KGs, denoted as {G𝑖 }𝑚𝑖=1, where each KG may
have overlapping entity sets and is privately held by an individual
client. During the ^ round of FKGE training, each client, indexed
as 𝑖 , performs local updates on its respective KG G𝑖 , local relation
embeddings R𝑖

^−1, and local entity embeddings E𝑖
^−1 over a certain

number of iterations. Subsequently, the client transmits the updated
local embeddings, denoted as E𝑖^ , to the central server. The server
receives these updates from all clients,

{
E𝑖^

}𝑚
𝑖=1 with 𝑖 ranging from

1 to𝑚, and performs aggregation before broadcasting the resulting
global embedding, E^ , back to all clients. These communication
rounds are iteratively repeated until convergence is achieved.

4 OVERVIEW
In this section, we first introduce the system and threat model, then
formulate the problem formulation of poisoning attacks in FKGE,
and finally discuss the attack settings.

4.1 System and Threat Model
Like the vast majority of existing FKGE architectures [12, 19, 50],
our system follows the most commonly used FedAvg algorithm [24]
pattern in FL, adopting single server and multi clients settings. The
tasks of the server and clients are introduced as follows:

• Server. A server’s role includes the aggregation of entity
embeddings collected from various clients and the subse-
quent transmission of these aggregated entity embeddings
back to each respective client. Additionally, this server is
tasked with the responsibility of upkeeping a comprehensive
entity table. This table is utilized to log all distinct entities
originating from various clients and to establish mappings
between entities from different clients and the entries within
this table.

• Clients.Different clientsmaintain unique knowledge graphs
that contain overlapping entities, with each graph defining
its own triples and relation sets. Through the updating op-
eration, these separate clients utilize their corresponding
triples to update their entity and relation embeddings.

Especially, we assume the following threat models:
Server as Adversary: As assumed in some FL systems [5, 29, 30,

36, 47], the server is not always trustworthy. It may forge or tam-
per with aggregation results and return poisoned embeddings for
various reasons, such as program glitches, security vulnerabilities,
and commercial interests. To ensure the availability of the system
and the concealment of attacks, we assume that a malicious server
can only send poisoned aggregation results to victim clients and
correct aggregation results to other clients.

Client as Adversary: The malicious client has its local KGE model
and dataset, it may add poisoned triples to its local dataset and
transfer the poisoned aggregation results to other clients by up-
loading malicious embeddings to the server. It can collude with the
server to some extent (even if the server is benign), e.g.„ asking the
server which other clients have overlapping entities with it.

4.2 Problem Formulation
Adversary’s Objective. In this study, we investigate the vulner-
ability of FKGE and design successful poisoning attacks that can
mislead FKGE to add fake relations to victim client’s local model.
The goal of the attacker A is to minimize the score of the scoring
function for triple (ℎ∗, 𝑟∗, 𝑡∗) asmin𝑔

\̂
(ℎ∗, 𝑟∗, 𝑡∗), whereℎ∗, 𝑡∗ ∈ E,

𝑟∗ ∈ R, E and R are the entity set and relation set of the victim
client, and (ℎ∗, 𝑟∗, 𝑡∗) ∉ T .

Adversary’sKnowledge.Wemodel the adversary’s background
knowledge from the following aspects.

• Entity set and embeddings. When a malicious server acts
as an attacker, it has the entire entity set, each client’s entity
set and the periodically uploaded entity embedding matrices
from all clients. When a malicious client acts as an attacker,
it has the entire entity set, the entire entity embeddings (i.e.,
aggregated results), but does not have any other client’s
entity set and embeddings.

• KGEmodels.When a malicious server acts as an attacker, it
knows the types of all client’s KGE models and their partial
model parameters, i.e., entity embeddings. When a malicious
client acts as an attacker, it can only knows the types of all
client’s KGE models.

Adversary’s Capability. When a malicious server acts as an
attacker, we consider two capabilities:

• Access to auxiliary data. The adversary has access to an
auxiliary KG dataset originating from the same domain as
the FKGE learning process. In real-world scenarios, this aux-
iliary KG dataset can be sourced from publicly accessible
repositories (e.g., Wikipedia) or constructed based on empir-
ical common sense (e.g., establishing relations like patient
and disease diagnosis).

• Train a shadow model. The adversary has the ability to
train a shadow model using auxiliary datasets. This is not a
special setting for the attack scheme, and the server can build
a shadow dataset for the following purposes: 1) fine-tuning
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Figure 2: Workflow of the server-initiate poisoning attack in
FKGE.

the global model by the shadowmodel, 2) serving as a source
of regularization during aggregation, and 3) helping balance
the learning process by providing additional information.

When a malicious client acts as an attacker, it can only use its
own local KG and KGE model.

5 METHODOLOGY
In this section, we introduce two attacks in FKGE, including a server-
initiate poisoning attack and a client-initiate poisoning attack.

5.1 Server-Initiate Poisoning Attack
In the server-initiate poisoning attack, the adversary first infers
the local real relation set of the victim client and determines the
existence of the relation between the targeted head and tail enti-
ties. Then, an auxiliary dataset and a shadow model are used to
dynamically adjust the aggregation results to add fake relations to
the local model of the victim client. The detailed attack process is
shown in Figure 2, including the following four steps:

Step1: Relation Inference. In a certain FKGE training round,
the victim client (e.g., client 1 in Figure 2) sends its entity embedding
matrix to the malicious server. A previous work has proven that
the server can infer the existence of real relations between these
entities based on received entity embeddings [19]. The server first
enumerates all potential relations between entities by calculating
the scoring function of the KGE model. For example, in TransE, if a
potential relation 𝑟 ′ is a plausible relation between a head entity
ℎ′ and a tail entity 𝑡 ′, its embedding will be close to ∥h′ − t′∥. The
previous work has also noted that real relations tend to exhibit
greater concentration within the embedding space, whereas fake
relations typically display a more scattered distribution. Therefore,
the malicious server can cluster potential sets of relations into some
clusters, and identifies the relation embeddings near the concen-
trated cluster centers as real relations. Furthermore, the malicious
server can use its auxiliary dataset to infer the original relations
corresponding to these real relation embeddings.

Step2: Poison Data Generation. After inferring the real re-
lations of the victim client, the malicious server first determines
whether there is a relation between the targeted head entity ℎ∗

and tail entity 𝑡∗. If it does not exist, the server chooses a relation
𝑡∗ from R, where R is the the victim client’s relation set that the
server has inferred in Step1. The server then adds the poisoned
triple (ℎ∗, 𝑟∗, 𝑡∗) into the auxiliary dataset D𝑎 . We define the auxil-
iary dataset with the poisoned triples as D′

𝑎 . To make the poisoned
dataset more pure (i.e., reducing the impact of unrelated triples on
the FKGE model), the server removes data unrelated to the victim
client’s local dataset from the auxiliary dataset, leaving only the

victim client’s raw data and poison triples in the auxiliary dataset.
The server uses the purified poisoned dataset as the training dataset
D𝑝 to train a shadow model, and the training dataset D𝑝 can be
represented as D𝑝 = {T1 ∩ 𝑡𝑝 }, where T1 is the triple set of client 1
and 𝑡𝑝 = (ℎ∗, 𝑟∗, 𝑡∗).

Step3: Shadow Model Training. To imitate the victim client’s
KGE model for learning poisoning data, the malicious server builds
a shadowmodel 𝑓\ () that is a KGEmodel trained from the poisoning
datasetD𝑝 and of the same type as the client’s model. Themalicious
server optimizes the following function to training the shadow
model 𝑓\ ():

min 𝑓
\̂

(
ℎ∗, 𝑟∗, 𝑡∗

)
,

s.t., \̂ = argmin
\

∑︁
(ℎ,𝑟,𝑡 ) ∈T1

𝑓\ (ℎ, 𝑟, 𝑡) . (1)

After the training process, the malicious server obtains a well-
designed shadow model that can give a large plausibility for the
poisoned triple.

Step4: Embedding Aggregation. In the aggregation process,
the malicious server first aggregates the entity embeddings of all
clients and obtains the aggregate result E^ . Then, to add the poi-
soned data into the victim client’s local model, the server uses its
shadow model to adjust the aggregation result. An intuitive method
is to directly aggregate E^ and the entity embeddings output by
the shadow model E𝑠^ . We name this method fixed model poisoning.
However, this strategy may not achieve a good attack success rate
because the aggregation result only affects the entity embeddings
of the victim client and does not mislead its relation embeddings,
which results in the victim client model having lower confidence
in predicting poisoned triples than the shadow model.

To address the issue, we design another attack method called
dynamic poisoning, which indirectly misleads the relation embed-
dings of the victim client by dynamically optimizing the shadow
model during FKGE’s training process. In dynamic poisoning at-
tack, the goal of the server is not only to send poisoned entity
embeddings to the victim client, but also to indirectly enable the
victim client to learn poisoned relation embeddings through the
aggregation results. Recall that in Step1, the malicious server has
infered the relation embeddings of the victim client. Therefore, the
server can dynamically optimize the shadow model during each
round of FKGE training by calculating the victim client model’s
scoring of the poisoned triple. The overall optimization objectives
are as follows:

argmin
\̂ ,\̂ ′

L
\̂ ,\̂ ′

(
𝑡𝑝
)
,

L
\̂ ,\̂ ′ = 𝑓

\̂

(
𝑡𝑝
)
+ 𝑔

\̂ ′
(
𝑡𝑝
)
+ L

(
𝑓
\̂

(
𝑡𝑝
)
, 𝑔

\̂ ′
(
𝑡𝑝
) )

.

s.t., \̂ = argmin
\

∑︁
(ℎ,𝑟,𝑡 ) ∈T1

𝑓\ (ℎ, 𝑟, 𝑡),

\̂ ′ = argmin
\ ′

∑︁
(ℎ,𝑟,𝑡 ) ∈T1

𝑔\ ′ (ℎ, 𝑟, 𝑡),

(2)

where 𝑡𝑝 is the poisoned triple (ℎ∗, 𝑟∗, 𝑡∗).
Overall Training. The algorithm 1 presents the overall training

process of the server-initiate poisoning attack in FKGE, whereL
\̂ ,\̂ ′

is described in Equation 2. In the FKGE training process, the server
2023-10-13 11:45. Page 4 of 1–10.
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Algorithm 1: Server-initiate Poisoning Attack in FKGE
Input :Victim client’s 𝑐𝑣 and its clean model 𝑔\ ′ , m clients

with m KGs {G𝑖 }𝑚𝑖=1, a shadow model 𝑓\ , an
auxiliary dataset D𝑎 , communication rounds 𝑇

Output :Victim client’s poisoned model 𝑔
\̂ ′

1 Server initializes E0.
2 for round = 1, . . . , T do
3 Each client sends its local entity embeddings E𝑖

𝑟𝑜𝑢𝑛𝑑
of

its KG G𝑖 to the server.
4 In the first round of the attack, the server infers 𝑐𝑣 ’s

relation embeddings R𝑣 , create poisoned triple
𝑡𝑝 = (ℎ∗, 𝑟∗, 𝑡∗), and construct its train dataset
D𝑝 = {T𝑣 ∩ 𝑡𝑝 }.

5 The server uses D𝑝 to train and R𝑣 to dynamically
optimize 𝑓

\̂
.

6 \̂ = argmin
\̂ ,\̂ ′ L\̂ ,\̂ ′

(
𝑡𝑝
)
.

7 E𝑟𝑜𝑢𝑛𝑑 = aggregate (E1
𝑟𝑜𝑢𝑛𝑑

, . . . , E𝑚
𝑟𝑜𝑢𝑛𝑑

).
8 E𝑟𝑜𝑢𝑛𝑑 ′ = aggregate (E𝑟𝑜𝑢𝑛𝑑 , E𝑠𝑟𝑜𝑢𝑛𝑑 ).
9 The server returns E𝑟𝑜𝑢𝑛𝑑 ′ to 𝑐𝑣 and E𝑟𝑜𝑢𝑛𝑑 to other

clients.
10 The victim client update its model 𝑔

\̂ ′ .

11 return 𝑔
\̂ ′

first initializes a global entity embeddings matrix randomly and
sends it to all clients (line 1). In each round, all clients send their
entity embeddings to the server (line 3) and the server can initiate
the inference attack in any round (line 4). The difference between
the fixed model poisoning attack and the dynamic poisoning attack
is reflected in lines 5 and 6, where the dynamic poisoning attack
needs to dynamically optimize the shadowmodel. Finally, the server
returns the aggregation results to clients and clients update their
models (lines 7-10).

5.2 Client-Initiate Poisoning Attack
In the client-initiate poisoning attack, the malicious client first
infers the local real relation set of the victim client and determines
the existence of the relation between the targeted head and tail
entities. Then, the malicious client uses its local KG and KGE model
to add fake relations to the local model of the victim client. The
difference between the server-initiate poisoning attack and the
client-initiate poisoning attack is that the malicious client cannot
obtain the entity set of the victim client.

Therefore, the malicious client follows the four steps shown in
subsection 5.1 to launch a poisoning attack, but with the following
differences: 1) in step1, the malicious client needs to ask the server
about the overlap between it and the victim client entity set. It
needs to infer whether there is a relation between the targeted
head and tail entities in the victim client’s dataset based on the
changes in its local relation embeddings during the training process
of FKGE, which has been proven feasible in the previous work [19];
2) in step2, step3 and step4, the malicious client uses its local
KGE model to replace the shadow model, and uses its local relation
embeddings to simulate the relation embeddings of the victim client
to dynamically optimize its local model.

5.3 Potential Defense Mechanism
5.3.1 Server-initiate Poisoning Attack Defense. Due to the data iso-
lation of FKGE, i.e., it is difficult for victim client to distinguish
whether the poisoned aggregation results come from malicious
servers or other benign clients, the proposed attack cannot be de-
tected by existing error detection methods. By analyzing the work-
flow of the attack, we find that the most effective defense method is
to prevent the inference attack from the malicious server. As long
as the malicious server is unable to obtain the relation embeddings
of the victim client, its attack will fail. Some previous work has
attempted to use differential privacy to defend against inference
attacks, i.e., adding controlled noise to the data or model parameters
to prevent malicious servers from aligning the raw data for analysis.
For example, DPSGD[1] and DP-FLames [19] have been proven to
be effective in defending against inference attacks in FKGE.

5.3.2 Client-initiate Poisoning Attack Defense. Similar to the server-
initiate poisoning attack, it is difficult for victim client to distin-
guish whether the poisoned aggregation results come from mali-
cious clients or other benign clients. In addition to the differential
privacy-based defense mechanism, we explore another new para-
digm for FKGE, i.e., the decentralized knowledge graph embedding
(DKGE), by using blockchain instead of the centralized server to
make the entire training process of KGE verifiable. In any training
round of DKGE, each client uploads its entity embedding updates
to the blockchain in the form of blockchain transactions, such as
smart contract transactions in Ethereum [41]. Then, to aggregate
the embedding updates, each client downloads embeddings that
overlap with some of their own entities on the blockchain and
aggregates them. To accelerate aggregation efficiency, we adopt
asynchronous aggregation in DKGE, which means that any client
can upload and download embedding updates at any time. Due
to the independent operation of the aggregation process by the
client and the immutability of the blockchain, malicious partici-
pants are easily detected by victims. Furthermore, to protect the
privacy of clients and further reduce their space for wrongdoing, we
suggest that developers of the DKGE system use zero-knowledge
proof [8, 39, 42] (ZKP) technology to allow clients to prove their
local data and operations without compromising privacy, or use pri-
vacy set intersection (PSI) [10, 20, 28] to perform overlapping entity
calculations without compromising privacy. We implemente a sim-
ple DKGE prototype and make its more concrete implementation
our future work.

6 EVALUATION
In this section, we test the effectiveness of our proposed attacks
on four benchmark datasets in federated settings, targeting four
state-of-the-art KGE models. Specifically, our evaluations aim to
address the following research questions:

RQ1 Can our poisoning attacks effectively enhance the predic-
tions of the KGE model for the targeted victim client on the
poisoned triples?

RQ2 To what extent will the original link prediction performance
of the targeted client be affected following the execution of
a poisoning attack?

2023-10-13 11:45. Page 5 of 1–10.
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Table 1: Statistics of Four Datasets.

FB15k237 NELL995 WN18RR CoDEx-M
Entities 14951 75492 40493 17050
Relations 237 200 11 51
Triples 272115 149678 86835 185584

RQ3 How do different settings affect the effectiveness of the at-
tack, including the number of poisoned triples and the num-
ber of clients in FKGE?

RQ4 Can potential defense mechanisms mitigate the effectiveness
of the attack?

In a word, we evaluate the efficacy of the attack strategy in
enhancing the KGE model’s predictions of the victim client on
the poisoned triples while simultaneously preserving the original
performance of all other benign clients as much as possible.

6.1 Experiment Setups
Datasets. To evaluate the effectiveness of our attack, we utilize
four publicly available benchmark knowledge graph datasets -
FB15k237 [34], NELL995 [43],WN18RR [7], and CoDEx-M [31]. In
order to conduct our evaluation in a federated setting, we create
client datasets as described in [12]. Specifically, we randomly select
relations for each client and distribute triples into the clients based
on the chosen relations. We randomly split dataset into 2, 3, 4, 5
clients as dataset-Fed2,-Fed3,-Fed4,-Fed5.

In order to perform poisoning attacks, the attacker needs to cre-
ate poisoned datasets to train the shadowmodel. Initially, the server
randomly selects𝑚 head entities as the poisoned head entities for
the victim client. Subsequently, the server randomly chooses a tail
entity that has no relation with the selected head entity. Finally, the
server inserts a fake relation between the chosen head entity and
the selected tail entity to form the poisoned triples. The poisoned
dataset consists of an auxiliary dataset and the poisoned triples.
The detailed statistics of the original datasets are given in Table 1.

Victim Models. We select four state-of-the-art KGE models,
namely TransE [7], RotatE [33], ComplEx [33] and DistMult [33], as
the victim models. The attacker adopts the k-means clustering [23]
for the inference attack. As for the shadow model, the server em-
ploys the same type of KGE model as the clients. As introduced
in subsection 5.1, the shadow model is trained on the poisoned
datasets. We train FedE [12] on the orginal dataset as baseline to
compare the performance of our attack. For the implementation
of our attacks, we follow FedE to set hyperparmeters. The local
training epoch for the client model is set to 3 and we evaluate the
attack performance using the validation set every 5 rounds. We
adopt early termination, which means if the model’s MRR perfor-
mance on the validation set remains unchanged after 5 rounds, we
terminate the training process and save the best model parameters.

Evaluation Metrics.We report Mean Reciprocal Rank (MRR)
and Hits at 𝑁 (Hits@𝑁 , 𝑁 = 1, 5, 10) to validate the performance
of link prediction on each client, which follows the common prac-
tice in KGE literature. Higher Hits@𝑁 and MRR mean better KGE
model prediction performance. To be able to further evaluate the
effectiveness of attacks in increasing the prediction performance
of the poisoned triples on victim client, we test the values of MRR
and Hits@𝑁 about the poisoned triples in clean settings and attack

settings, where clean settings represent the prediction performance
of the clean model.

6.2 Attack Evaluation
In this section, we demonstrate the effectiveness of the proposed
poisoning attacks. First, we test the predictions of the KGE model
for the targeted victim client on the poisoned triples (RQ1) and
on the original link prediction task (RQ2). Second, we test the
effectiveness of the attacks under different settings (RQ3).

6.2.1 Attack Performance (RQ1).
Attack performance of malicious server. We implement two
malicious server attacks introduced in subsection 5.1, including the
fixed model poisoning (FMPA-S) and dynamic poisoning (DPA-S).
We randomly select a victim client for the fixed model poisoning
attack. To ensure fair comparison, we consistently choose the same
victim client when executing the dynamic poisoning attack. We
select 10 head entities as the head entity of poisoned triples on the
victim client and set the client number is 3. The MRR and Hit@𝑁

values on the original task and poisoned triples are reported. The
results are presented in Table 2.

In Table 2, the poisoned triples on victim model (PT on VC)
column clearly illustrates that our proposed attack methods, FMPA-
S and DPA-S, significantly enhance the link prediction performance
on poisoned triples compared to the original FedE. It is worth noting
that in most cases, DPA-S outperforms FMPA-S in terms of link
prediction accuracy on poisoned triples. When utilizing TransE,
RotatE, ComplEx, and DistMult as KGE models, DPA-S achieves an
average MRR of 0.67 and Hits@10 of 0.88 on the poisoned triples in
dataset-Fed3 (FB15k237-Fed3, NELL995-Fed3, WN18RR-Fed3, and
CoDEx-M-Fed3). Conversely, FMPA-S achieves an average MRR of
0.56 and Hits@10 of 0.79 on the poisoned triples in dataset-Fed3.
Furthermore, all the MRR and Hit@𝑁 values for poisoned triples
under FedE settings are found to be 0. For example, when using
TransE as the KGE model, the Hit@10 exceeds 0.9 on the FB15k-237
dataset under the DPA-S attack, indicating that over 90% of the
poisoned triples on the victim client are predicted within the top-10
of the ranking list. Additionally, we can conclude that the WNRR
dataset is more vulnerable to poisoning attacks compared to other
datasets due to its sparser structure,i.e., it has fewer neighbors per
triple. By injecting few triples, the poisoning attacks can achieve a
high attack success rate.

Attack performance of malicious client. We randomly select
a malicious client and a victim client to evaluate the attack per-
formance of the malicious client. We set the number of poisoned
triples to be 10, and the link prediction results of the poisoned
triples on the victim clients are presented in Table 3. Specifically,
the malicious client trains its local KGE model using the poisoned
dataset. The poisoned dataset consists of the original dataset of
the malicious client and the poisoned triples inferred based on the
changes in the local relation embeddings of the malicious client.
As shown in Table 3, the client poisoning attack (CPA) achieves an
average MRR of 0.59, Hits@10 of 0.81 on the poisoned triples in
dataset-Fed3. In addition, we also observe that the client poisoning
attack is more effective on the WNRR dataset compared to other
datasets, similar to what is observed in the poisoning attack on the
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Table 2: Attack Performance of Server-initiate Poisoning Attack (PT on VC means poisoned triples on victim model).

Dataset Model
TransE RotatE DsitMult ComplEx

Mean PT On VC Mean PT On VC Mean PT On VC Mean PT On VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15k-237
FedE 0.41 0.60 0.00 0.00 0.41 0.60 0.00 0.00 0.38 0.55 0.00 0.00 0.38 0.55 0.00 0.00

FMPA-S 0.40 0.59 0.46 0.80 0.41 0.60 0.42 0.80 0.38 0.55 0.14 0.40 0.38 0.55 0.33 0.70
DPA-S 0.40 0.59 0.56 0.90 0.41 0.60 0.43 0.80 0.38 0.55 0.25 0.50 0.38 0.55 0.39 0.80

NELL995
FedE 0.71 0.87 0.00 0.00 0.75 0.88 0.00 0.00 0.28 0.45 0.00 0.00 0.37 0.54 0.00 0.00

FMPA-S 0.69 0.87 0.45 0.60 0.74 0.87 0.70 0.80 0.26 0.42 0.60 0.70 0.35 0.52 0.66 0.80
DPA-S 0.69 0.86 0.52 0.80 0.74 0.85 0.83 0.90 0.26 0.42 0.65 0.70 0.33 0.51 0.63 0.90

WNRR
FedE 0.18 0.37 0.00 0.00 0.25 0.39 0.00 0.00 0.17 0.21 0.00 0.00 0.16 0.20 0.00 0.00

FMPA-S 0.16 0.36 0.80 0.80 0.25 0.38 0.93 1.00 0.15 0.18 0.77 0.90 0.17 0.22 0.95 1.00
DPA-S 0.16 0.34 1.00 1.00 0.24 0.37 1.00 1.00 0.15 0.19 1.00 1.00 0.15 0.18 1.00 1.00

CoDEx-M
FedE 0.52 0.75 0.00 0.00 0.53 0.77 0.00 0.00 0.46 0.67 0.00 0.00 0.46 0.67 0.00 0.00

FMAP-S 0.50 0.73 0.30 0.9 0.52 0.75 0.36 0.90 0.44 0.66 0.60 0.80 0.46 0.68 0.50 0.80
DPA-S 0.50 0.73 0.61 1.00 0.52 0.75 0.58 1.00 0.44 0.65 0.67 0.90 0.46 0.68 0.65 0.90

(a) FB15k237_TransE (b) NEL995_TransE (c) WN18RR_TransE (d) CoDEx-M_TransE

Figure 3: Clean Performance (Stealthiness) on TransE.

(a) FB15k237_RotatE (b) NEL995_RotatE (c) WN18RR_RotatE (d) CoDEx-M_RotatE

Figure 4: Clean Performance (Stealthiness) on RotatE.

server side. CPA achieves an average MRR of 0.64 and Hits@10 of
0.88 on the poisoned triples in WNRR-Fed3.

In summary, these results demonstrate that our attack methods
can efficiently elevate the ranks of poisoned triples, posing severe
threats to knowledge graph embedding.

6.2.2 Clean Performance (Stealthiness) (RQ2). We investigate the
original test link prediction performance of different clients under
our poisoning attack to validate the stealthiness of the attack. Our
goal is to test how much the original link prediction performance
remains unchanged. The MRR values of four dataset on TransE
and RotatE are shown in Figure 3 and Figure 4. In the results, the
performance differences between DPA-S, FMPA-S, and FedE are
small across all local clients. This demonstrates that our attack can
effectively balance the performance of the attack while maintaining
the original link prediction performance as closely as attainable.

6.2.3 Comparison of Different Settings (RQ3).
Impact of the number of clients. We explore the attack perfor-
mance with different numbers of clients. Specifically, using TransE

as the KGE model, we test the MRR and Hit@𝑁 values on the
CoDEx-M dataset, varying the number of clients from 2 to 5. As
shown in Figure 5, the metric values generally decrease as the
number of clients increases. We speculate that the decreased at-
tack effectiveness stems from the fact that the server’s aggregated
operations become diluted as the number of clients increases.

Impact of the number of poisoned triples. We use different
poisoned datasets to investigate whether the effectiveness of the
poisoning attack increases with the number of poisoned triples. The
MRR and Hit@𝑁 results on CoDEx-M-Fed3 using the RotatE model
as the KGE model are depicted in Figure 6. We vary the number of
poisoned triples from 0 to 150. From the Figure 6, the metric values
of on poisoned triples fluctuates within a certain range in CoDEx-
M dataset. Therefore, under our settings, the number of poisoned
triples does not have a significant impact on the attack success rate.

6.3 Defense Evaluation (RQ4)
We finally test the effectiveness of the defense mechanisms intro-
duced in subsection 5.3. For the server-initiate poisoning attack
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Table 3: Attack Performance of Client-initiate Poisoning Attack (PT on VC means poisoned triples on victim model).

Dataset
TransE RotatE ComplEx DistMult

Mean PT On VC Mean PT On VC Mean PT On VC Mean PT On VC
MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

FB15K-237 0.41 0.60 0.68 0.90 0.41 0.61 0.58 0.80 0.37 0.55 0.36 0.70 0.38 0.56 0.41 0.60
NELL995 0.68 0.85 0.85 0.90 0.76 0.88 0.77 0.90 0.47 0.61 0.47 0.70 0.32 0.48 0.38 0.50
WNRR 0.17 0.38 0.66 0.80 0.27 0.39 0.53 0.90 0.15 0.20 0.61 0.90 0.16 0.20 0.74 0.90

CoDEx-M 0.51 0.75 0.52 0.90 0.52 0.77 0.71 0.80 0.46 0.67 0.74 0.80 0.45 0.67 0.39 0.90

(a) CoDEx-M_TransE (b) CoDEx-M_TransE (c) CoDEx-M_TransE (d) CoDEx-M_TransE

Figure 5: Attack Performance of Different Numbers of Clients.

(a) CoDEX_M_RotatE (b) CoDEX_M_RotatE (c) CoDEX_M_RotatE (d) CoDEX_M_RotatE

Figure 6: Attack Performance of Different Numbers of Poisoned Triples.

Table 4: Attack Performance after Defense

Dataset Schemes MRR Hit@10

FB15k-237
DPA-S 0.56 0.90
DPSGD 0.34 0.60

DP-Flames 0.33 0.50

CoDEx-M
DPA-S 0.61 1.00
DPSGD 0.31 0.60

DP-Flames 0.30 0.50

defense, we adopt two differential privacy-based methods, DPSGD
and DP-Flames, to defend against attacker’s membership inference
attacks and weaken its poisoning attacks. We test the MRR and
Hit@10 values of three schemes on the model TransE and datasets
FB15k-237-Fed3 and CoDEx-M-Fed3. The results are shown in Ta-
ble 4. From Table 4, we can see that after adopting defense mecha-
nisms to the FB15k-237-Fed3 dataset, the MRR value decreases from
0.56 to 0.34 and 0.33, and the Hit@10 value decreases from 0.90 to
0.60 and 0.50. On the CoDex-M-Fed3, the defense effectiveness is
better. These results demonstrate that the differential privacy-based
defense mechanisms can achieve certain defensive effects, but there
is still significant room for research.

For the client-initiate poisoning attack defense, we implement
a prototype of DKGE by replacing the server with an Ethereum

blockchain. 5 clients is installed with go-ethereum [17] nodes and
trained through asynchronous aggregation for FKGE. Although the
attack behavior in the system can be correctly detected and traced
back to the attacker’s identity, the convergence speed of the system
is significantly slower than the previous FKGE. Therefore, further
designs are needed to improve its availability.

7 CONCLUSION
In this paper, we have comprehensively investigated the poisoning
attacks of FKGE. Our attacks can accurately inject fake relations
into the victim’s model, even if their local KG data and some model
parameters are unknown. We demonstrate the effectiveness and
practicality of four real-world datasets and four KGE models. The
dynamic poisoning attack achieves an average MRR of 0.67 and
Hits@10 of 0.88 on the poisoned triples in four datasets on four
different KGE models. In particular, the success rate of the attack is
100% on the WNRR dataset. Furthermore, the experimental results
also demonstrate that the FKGE’s original task performance is not
significantly affected by our attacks. As for future studies, although
the potential defence mechanisms can mitigate the attack effective-
ness to some extent, they still have significant limitations and affect
the system’s availability. We will consider these weaknesses and
plan to investigate a more secure FKGE architecture.
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