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ABSTRACT

In reinforcement learning, Transformers have been shown to be powerful models
for multi-task policy distillation and, to a lesser extent, policy improvement via
return interventions within frameworks such as Decision Transformers. These
recent results are somewhat atypical for reinforcement learning, as they do not rely
on the learning of a value function, which is usually at the heart of most traditional
approaches. In this paper, we explore a principled approach to purely generative
value function approximation with Transformers, opening the way for existing
techniques to be applied for policy improvement. Importantly, unlike other RL
methods, this generative approach allows us to kickstart the learning process by
fine-tuning strong pretrained state predictors, such as foundation models, substan-
tially shortening the training time. We showcase the potential of our approach
by constructing an action-value function for chess that can play at the level of an
expert human and over 400 Elo stronger than direct behavioural cloning.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has caused a massive paradigm shift within
machine learning, greatly expanding the scope and capabilities of present-day artificial systems. In
the context of reinforcement learning (RL), these models have already had substantial impact, as
evidenced by, e.g., Decision Transformers (Chen et al., 2021) or the general-purpose Gato agent (Reed
et al., 2022). However, how to best leverage this relatively new architecture in RL is still an open
question. At the same time, large-scale pretrained foundation models (Bommasani et al., 2021), based
on the Transformer architecture, have become readily available (Touvron et al., 2023a;b), providing a
compelling motivation for finding ways to distill their impressive capabilities into RL.

Taking a step back, these recent applications of Transformers are somewhat removed from more tradi-
tional value-based RL techniques in that they forgo the need for accurate value-function estimation in
favor of directly producing a policy using the sequence modeling capabilities of Transformer-based
architectures. These works seemingly call into question the validity of the value function hypothe-
sis (Sutton, 1998), which states that: All efficient methods for solving sequential decision problems
determine (learn or compute) value functions as an intermediate step. Our goal is to shed light on this
discussion point by studying the potential of Transformers to estimate value functions via a generative
approach (Veness et al., 2015) to distributional RL (Bellemare et al., 2023) that maps naturally onto
the sequence modeling capabilities of Transformers. The key advantage of generative methods for RL
is the generality and flexibility that comes with using auto-regressive sequence modeling techniques
to deal with both multi-modal, high dimensional, and potentially messy state spaces with atypical
structures that make feature-based learning techniques difficult to apply.

This Work. We show how to effectively apply the Bayesian decomposition from Veness et al.
(2015) with the Transformer architecture to enable robust learning across a variety of domains for both
policy evaluation and policy improvement. Importantly, and unlike the other approaches we consider,
the generative decomposition allows us to leverage pretrained (foundation) models, typically based on
Transformers, to significantly accelerate the process of value function approximation. Fig. 1 provides
an overview of the methods we compare in this paper: behavioral cloning (Michie et al., 1990;
Schaal, 1996), discriminative distributional RL (Bellemare et al., 2023), and generative distributional
RL (Veness et al., 2015).
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Figure 1: The three methods of estimating the action-value function considered in this paper: Left.
Behavioral cloning. Middle. Discriminative distributional RL (Bellemare et al., 2023), which models
the distribution of the return function ξ(z | a, s). Right. Generative distributional RL (Veness
et al., 2015), which models the return function, but by applying Bayes rule and modeling the two
(generative) distributions ξ(s | a, z) and ξ(z | a). The state model ξ(s | a, z) can either be trained
from scratch, via log-loss minimization, or fine-tuned from ξ(s) using our framework.

Contributions. We make the following contributions:

• We develop a novel method for applying Transformers to policy evaluation and improvement
through a generative decomposition of the discriminative distributional RL objective.

• We demonstrate that the generative decomposition allows us to leverage pretrained state
predictors, thus significantly accelerating the learning process.

• We conduct an extensive empirical evaluation of generative distributional RL with Transform-
ers in the domains of chess (for policy evaluation) and gridworlds (for policy improvement).

2 RELATED WORK

Transformers have been successfully applied for large scale policy distillation in a multi-task meta-
learning setting across a large number of domains (Reed et al., 2022). The most impressive aspect
of the resultant agent is its ability to deal with multiple and diverse input modalities, including
free-form text, video game images, and robotics data. Although on a superficial level it may seem
that using a probabilistic sequence model in a multi-task setting across a collection of task specific
action-observation-reward triples poses no immediate problems, there are subtle issues that need to
be considered, which are explored by Ortega et al. (2021). In particular, one needs to take care with
respect to masking the input history or ensuring that each task is sufficiently identifiable from the
observations to avoid delusions; how to best address this is still under active study. Transformers
are also known to be notoriously difficult to apply to RL domains (Parisotto et al., 2020), with
architectural changes such as gating showing promise to address this within PPO based approaches.
Our work shares some similarities with Decision Transformers, which have received considerable
attention recently (Chen et al., 2021; Zheng et al., 2022). The difference with our approach is
that we do not rely on return-to-go interventions, but rather frame everything probabilistically and
appropriately marginalize over the return space. While Decision Transformers have shown great
promise empirically across a wide variety of tasks, it is straightforward to demonstrate theoretically
that they are ill-founded in large classes of stochastic environments: e.g. intervening with an
impossible desired return will cause the model to condition on an event with measure zero, which
can lead to arbitrarily bad behavior.

Recently, the game of chess has gained interest as a testbed to study the capabilities of Transformers.
Approaches range from feeding board states directly to Vision Transformers (Czech et al., 2023)
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to encoding chess games using natural language (Toshniwal et al., 2022; DeLeo & Guven, 2022)
and fine-tuning pretrained models (Noever et al., 2020; Feng et al., 2023). However, none of the
prior works using Transformers to build a powerful chess player considered a reinforcement learning
perspective, instead working purely in the supervised setting, rendering their results incomparable to
the ones in our paper. For our policy evaluation experiments, we use Stockfish (Romstad et al., 2008),
a state-of-the-art chess engine, as the stationary policy. Finally, AlphaZero (Silver et al., 2017) is a
well-known deep RL algorithm that has achieved remarkable results on chess by combining neural
networks with Monte-Carlo tree search (Kocsis & Szepesvári, 2006). However, unlike AlphaZero, in
this work, we do not consider search and focus exclusively on value function approximation.

We recall for this paragraph that lossless compression is equivalent to sequence prediction (Delétang
et al., 2023). The Compress and Control paper (Veness et al., 2015), that this work is based on,
used compressors to directly compress the states and retrieve a probability distribution from the
coding lengths. This work demonstrated the applicability of compression techniques to the policy
evaluation problem, and to reinforcement learning as a whole. Using compression to aid with machine
learning goes back to at least Frank et al. (2000), where compression-based models were compared
to classical machine learning methods on natural language problems. The idea of using a generative
decomposition for classification was already used in Larochelle & Bengio (2008). More recently,
Hamilton et al. (2013) used compression with predictive state representation on domains with large
observation spaces to aid with its modelling intractability. Botvinick et al. (2015) discussed the
internal representation of RL, specifically a natural and efficient coding of the internal representation.

3 BACKGROUND

Autoregressive Transformer-Based Modeling. For the purposes of exposition, we need some
notation to refer to Transformer-based models that abstracts away many of the underlying implemen-
tation details. A Transformer is a probabilistic, context-based prediction model ρθ : C × X → (0, 1)
parameterised by θ, where C is the context space and X is the response space. Both C and X will
be sets of strings of tokens from a common finite set of tokens T , with ϵ denoting the empty string.
As we will deal with a wide variety of different state-spaces, in this work ρθ will always be defined
implicitly by using a standard autoregressive decomposition, namely we start with a token-level
contextual predictor νθ : C × T → (0, 1) and use the chain-rule to define

ρθ(x | c) :=
d∏

t=1

νθ(xt | c ◦ x<t).

where x = x1:d ∈ T d. Here ◦ denotes the string concatenation operator and x<t = x1:t−1.

Markov Decision Processes. A Markov Decision Process (MDP) is a type of probabilistic model
widely used within reinforcement learning (Sutton & Barto, 2018; Szepesvári, 2010) and control (Bert-
sekas & Tsitsiklis, 1996). In this work, we limit our attention to time homogenous MDPs whose
action and state spaces are finite. We also focus on finite horizon returns. Formally, an MDP is a
tuple (S,R.A,P), where S is a finite, non-empty set of states, R is the non-empty set of rewards,
A is a finite, non-empty set of actions and P is the transition probability kernel that assigns to each
state-action pair (s, a) ∈ S ×A a probability measure P(· | s, a) over S ×R. S and A are known as
the state space and action space respectively. The transition probability kernel gives rise to the state
transition kernel P(s′|s, a) := P({s′} ×R | s, a), which gives the probability of transitioning from
state s to state s′ if action a is taken in s.

An agent’s behavior is determined by a policy, that defines, for each state s ∈ S and time t ∈ N, a
probability measure over A denoted by πt(· | s). A stationary policy is a policy which is independent
of time, which we will denote by π(· | s) where appropriate. At each time t, the agent communicates
an action At ∼ πt(· |St−1) to the environment in state St−1 ∈ S. The environment then responds
with a state-reward pair (St, Rt) ∼ P(· |St−1, At). Here, we will assume that each reward is bounded
between [rmin, rmax] ⊂ R and that the system starts in a state s0 and executes for an infinite number
of steps. Thus, the execution of the system can be described by a sequence of random variables
A1, S1, R1, A2, S2, R2, ...

The finite m-horizon return from time t is defined as Zt :=
∑t+m−1

i=t Ri. The expected m-horizon
return from time t, also known as the value function, is denoted by V π(st) := E[Zt+1 |St = st],
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where E is the expectation with respect to π and P . The return space Z is the set of all possible
returns. The action-value function is defined by Qπ(st, at+1) := E[Zt+1 |St = st, At+1 = at+1].
An optimal policy, denoted by π∗, is a policy that maximizes the expected return E [Zt+1 |St] for all
t. In our setting, a state-dependent deterministic optimal policy always exists.

Connecting Value Functions to the Logarithmic Loss. The main insight with dual reinforcement
learning techniques is to learn a time-invariant stationary distribution which contains sufficient
information to reconstruct the value function. Recall that the combination of an MDP M := (S,A, µ)
and stationary policy π will give rise to a time homogeneous Markov Reward Process over S . Under
appropriate conditions, this will give rise to a unique stationary distribution dπM : S → [0, 1],
which is typically referred to as the state-occupancy measure in the literature. Once the chain has
been executed for sufficiently long such that all transient effects have disappeared, the quantity
dπM(s) gives the (limit) probability that the system formed by M+ π will be in state s at any given
sufficiently large time. Thus a dataset formed by executing the chain and recording the observed
states can be considered a sample from dπM. One might wonder then whether stationary measures
over richer objects than merely S are implied by such a quantity, and whether they can contain
sufficient information such that the value function can be recovered from them in a tractable manner?
The answer to both those questions is yes, but the details are somewhat tedious; see Section 3.2
of (Veness et al., 2015) for more information.

Given a finite horizon m and the setup above, one can show that a unique stationary measure ξ for
the time-homogeneous Markov chain over the augmented state-space Saug := (A,S,R)m+1 exists.
In other words, given a realized interaction sequence of length n ≫ m,

a1, s1, r1, . . . , am+1, sh+1, rm+1, . . . , an, sn, rn,

obtained by executing a stationary policy π in M, we can construct a set I of augmented states in the
form

I = {(a1, s1, r1, . . . , am+1, sm+1, rm+1), (a2, s2, r2, . . . , am+2, sm+2, rm+2), . . . ,

(an−m, sn−m, rn−m, . . . , an, sn, rn)},
which for n → ∞ will converge to the stationary distribution ξ : Saug → [0, 1]. Since the return can
be defined as a function of each augmented state, for example, in the finite horizon undiscounted
case zi :=

∑m
j=0 ri+j , we can consider it to also be part of the augmented state. Since ξ exists, then

its marginal distribution ξ(a, s, z) also exists, where a and s denote the first action and state in the
augmented state space respectively, and z denotes the return. This marginal distribution contains
all the information we need to define the value function, and can be marginalized, conditioned,
decomposed, and factored in various ways.

Discriminative and Generative Decompositions. Here we consider two natural decompositions
of the action-value function Q(s, a). First, notice that the probability of getting a return of z starting
in state s and executing action a is simply ξ(z | a, s). Therefore,

Q(s, a) = Eξ(·|a,s)[Z] =
∑

z∈Z z · ξ(z|a, s) (1)

follows immediately by definition. We refer to Eq. (1) as the discriminative decomposition of the
action-value function, due to the direct connection to the probabilistic assumptions underlying recent
distributional RL formulations. In this decomposition, we learn the distribution ξ(z | s, a) directly.

Our second formulation follows by applying Bayes rule to ξ(z | a, s). Here one obtains the identity

ξ(z | a, s) = ξ(s | a, z) ξ(z | a)∑
z′ ξ(s | a, z′) ξ(z′ | a)

. (2)

We will refer to this formulation as the generative decomposition, as it requires to learn a full state
model conditioned on the actions and returns, i.e., ξ(s | a, z), but importantly, not a (more complex)
state transition model. Note that the return model conditioned on the actions ξ(z | a) is usually a
much simpler object due to the sizes of the action and return spaces. This generative form was
introduced by Veness et al. (2015) by generalizing compression-based classification to the case of
policy evaluation. Veness et al. (2015) suggested that when using simple (non-neural) models (such
as frequency estimators or Context Tree Weighting by Willems et al. 1995) to approximate ξ(s | a, z),
the generative decomposition was superior to the discriminative one. Part of our contribution is to
revisit this hypothesis in light of the more powerful Transformer architecture.
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Behavioral Cloning. Given the abundance of data consisting of only state-action pairs but not
state-action-return triples, such as YouTube videos, behavioral cloning (Michie et al., 1990; Schaal,
1996) has recently gained interest in the machine learning community (Torabi et al., 2018; Baker et al.,
2022). Behavioral cloning sidesteps value function approximation by learning to infer the distribution
over future actions (rather than returns) from past behavior. Concretely, it tries to approximate
ξ(a∗ | s), where a∗ = argmaxQ(a, s) is the optimal action for state s. In practice, we retrieve this
action from a policy πexpert, as shown in Fig. 1.

4 METHODS

This section outlines the key technical aspects we found essential for obtaining good performance
when using a generative decomposition of the action-value function with Transformers. We will
justify each of these findings with corresponding ablation studies in Section 5. Computing the value
function in Eq. (1) via the generative decomposition from Eq. (2) relies on two models: the state
model ξ(s | a, z) and the return model ξ(z | a). In practice, we do not have access to either of the
two and need to approximate them with their estimates ξ̂(s | a, z) and ξ̂(z | a), respectively. We now
discuss how to chose those estimators.

Action Conditioning. For ξ̂(z | a), we use a Dirichlet-Multinomial model with concentration
parameter α = 1/2. As learning an action-conditional return model is far simpler than learning an
action-return conditioned state model, this simple approach is sufficient for our purposes. We train
this model by counting, such that ξ̂(z | a) := naz+α

na+|Z|α , with naz being the count of the pair (a, z) and
na being the count of action a.

Return-Action Conditioning. Conditioning on the return and action is the only way for the
model to actually produce different Q-values for different states and actions. All the information
contained in ξ(s), also learned implicitly, is completely irrelevant to Q-value estimation. Therefore,
the conditioning method discussed here is of utmost importance for this paper. In the earlier work
by Veness et al. (2015), action-return conditioning was implemented by using a separate set of
parameters θa,z for each possible action-return pair. At the time, the authors justified this as a way
of getting around the limited expressive power of the underlying state model, but this is obviously
undesirable from a scaling point of view.

Since Transformers have a powerful attention mechanism and ability to deal with relatively large token
spaces, it initially seemed natural to implement return action conditioning via simply prepending a
return token and an action token to the beginning of the context before autoregressively processing
the state. However, we found that this technique failed to work well and that the model was not
specializing its predictions sufficiently to different action and return combinations. To address this,
we add two new (learnable) embedding matrices, one for the return and one for the action, and add
these embeddings with the usual token and positional embeddings of the state. Note that this method
of conditioning is good only when we want to retrieve ξ̂(s | a, z) for single triplet (s, a, z), which
happens during training. However, to obtain the full distribution ξ̂(z | s, a) for a given state s, e.g., to
retrieve the Q-values, we need to run inference over all possible pairs of (a, z), which is inefficient.
Training being the harder and longer of the two, we chose this method of conditioning nonetheless.

Pretraining. In practice, training ξ̂(s | a, z) is related to training ξ̂(s), especially for large state
spaces like chess boards, as hinted earlier. This is some base information that must be present in the
ξ̂(s | a, z) model. Importantly, as a consequence, the Compress and Control framework (Veness et al.,
2015) allows us to kickstart the learning process by fine-tuning a strong state predictor, such as a
foundation model (Bommasani et al., 2021). The foundation model plays the role of ξ̂(s), and we
fine-tune it on conditioned data, i.e., triples (s, a, z), to get ξ̂(s | a, z).

Objective Function. For the discriminative decomposition, the loss is straightforward:
− log ξ̂(z | s, a). For the generative decomposition, we could minimize

− log ξ̂(s | a, z), (3)
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but this objective does not lead to good results. Concretely, minimizing Eq. (3) recovers a good state
predictor ξ̂(s | a, z) but a relatively bad return distribution function ξ̂(z | s, a) (upon applying Bayes
rule), compared to the simpler discriminative decomposition. However, since we ultimately care
about learning the correct ξ(z | s, a), we instead minimize

− log ξ̂(z | s, a) = − log
(
ξ̂(s | a, z) ξ̂(z | a)

)
+ log

(∑
z′

ξ̂(s | a, z′) ξ̂(z′ | a)

)
(4)

directly. Note that if the state model ξ̂(s | a, z) is tabular (i.e., not a Transformer, as in Veness et al.
2015), the two losses are equivalent. However, using Eq. (4) adds degrees of freedom into the
modeling as constant factors in the ξ̂(s | a, z) or ξ̂(z | a) will be canceled out in the fraction. As a
result, minimizing this loss will lead to a good return distribution ξ̂(z | s, a), but the state predictor
ξ̂(s | a, z) will no longer approximate the ground truth state distribution, i.e., ξ̂(s | a, z) ̸= ξ(s | a, z).
Recovering an accurate state model is not the primary goal of value function approximation and we
will not consider this problem in the main experiments of this paper. We discuss potential solutions
and do extra experiments in Appendix B.

5 RESULTS

In this section, we present our extensive experimental evaluation of the different distributional
decompositions of the value function approximation problem with Transformers.

5.1 POLICY EVALUATION: CHESS

We first consider policy evaluation, which is the task of approximating the value function induced by
a (non-trivial) stationary policy. We consider chess as our environment, as it is challenging due to its
large action and state space. We use the Stockfish engine (Romstad et al., 2008) as our stationary
policy, associating the returns z with the Stockfish score for a given state-action pair.

Dataset. We construct a dataset from 600 000 Lichess games from February 2023 (using all
possible Elos). For each game, we extract all boards (in FEN notation) as the states s and evaluate
all possible legal moves, i.e., the actions a, for every board using Stockfish 8 to obtain a score
in centipawns. We use a time limit of 50ms per legal move, which corresponds to an Elo of
2667, as shown in Table 1. We convert these centipawn scores into win probabilities, using the
formula: win% = 50% · 2/(1 + exp(−0.00368208 · centipawns)), provided by Lichess (https:
//lichess.org/page/accuracy). Then, to obtain the returns z, we discretize the win probability
into 16 buckets using quantiles such that ξ(z) is uniform across buckets. We ablate the number of
buckets below. Note that s, a and z are all integer tokens (with the state being a sequence), which
can be fed to a Transformer. As a result, we obtain a dataset D of 1.1 billion (s, a, z) triples in the
training set, which we shuffle to avoid overfitting to a particular board state. We train the models on
all datapoints in this training set, using a single pass. We evaluate all models on a test set consisting
of the first 1 million triples extracted from the Lichess games, which corresponds to roughly 24 000
boards.

Agents. We assume Stockfish to be the ground truth, and define ξ∗(z|s, a) := [[(s, a, z) ∈ D]]
where [[·]] denotes Iverson indicator brackets, hence Q∗(s, a) = z for the unique (s, a, z) ∈ D and
the discretized win rate z according to the Lichess formula above. a∗ := argmaxa Q

∗(s, a) is
the action in board state s with highest Stockfish win rate (or score). We consider two different
decompositions of the distributional RL objective (discussed in Section 4): the discriminative given
by Eq. (1) denoted (Q̂DV , ξ̂DV ) and the generative given by Eq. (2) denoted (Q̂GV , ξ̂GV ). We
train them on the losses described in Section 4. Moreover, we also evaluate behavioral cloning on
subsampled pairs (s, a∗), where a∗ is the argmax of all Stockfish scores for the state s as defined
above. We train the behavioral cloning agents using the log-loss too, i.e., − log ξ̂(a∗ | s), resulting
in (Q̂BC , ξ̂BC). All the models share the same Transformer architecture backbone (with details
provided in Appendix A). They have roughly 36 million parameters, and they are all trained on the
full dataset of 1.1 billion boards. Finally, for the generative decomposition, we construct a Bayesian
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Table 1: Policy evaluation of different agents in chess. The reported metrics are: ELO (100 ELO
difference means twice as likely to win), Kendall-Tau (distance between action ordering), action
accuracy (whether the predicted action is in the set of the oracle’s best actions), log-losses for the
return and action predictions, and the root mean squared error of between the predicted and the
oracle’s win probabilities. Value approximators do not produce any action distribution, and behavioral
cloning does not produce any return distribution, so the respective log-losses are N/A. We report
95% confidence intervals. Elos are computed with 800 games in total, and all other metrics are
computed with 28000 test boards. The discriminative decomposition yields better results on all
metrics (emphasized in bold).

Agent ELO Kendall-Tau Action accuracy Action log-loss Return log-loss Sqrt L2 loss
Generative Value 2162± 35 20.4%± 0.3 56.2%± 0.6 N/A 1.25± 0.01 5.90%± 0.01
Discriminative Value 2254± 34 22.1%± 0.3 58.1%± 0.6 N/A 1.11± 0.01 4.83%± 0.01
Behavioral Cloning 1752± 55 7.1%± 0.2 49.1%± 0.6 2.42± 0.03 N/A N/A

Oracle Stockfish 2667± 60 100.0% 100.0% 0. 0. 0.
Stockfish depth 10 2431± 43 N/A N/A N/A N/A N/A
Stockfish depth 5 1885± 47 N/A N/A N/A N/A N/A

estimate of a Dirichlet-Multinomial model ξ̂(z | a) using 100 million triples with concentration
parameter α = 0.5.

Main Result. Table 1 visualizes the main results. As explained in Section 4, for the generative
decomposition, we start training ξ̂(s | a, z) with a pretrained model ξ̂(s), reusing the parameters of
the core of the Transformer (including the embeddings of the state tokens). We give more details and
show the difference between using a pretrained model or training from scratch below. We compute all
metrics as an average over the whole test set. The action accuracy is [[a∗(s) ∈ argmaxa′ Q̂(s, a′)]],
whether the agent’s best action is the same as Stockfish, accounting for ties. Kendall-Tau measures
the difference in action ordering between the agent and Stockfish. It’s a coefficient ranging from -100
(exact inverse order) to 100 (exact same order), with 0 being a random correlation. The L2 loss is
(Q̂(s, a)− a∗(z))2, where we recall that a∗(z) is the probability of winning estimated by Stockfish.
The return log loss is − log ξ̂(z | s, a). The Elo is measured by playing 50 games for all pairs of agents,
including the Stockfish version used for training, plus some Stockfish versions with limited depth
(depth 5 and depth 10). We recall that for all Stockfish players, we use 50 milliseconds to evaluate
each legal action and then take the best. We add an extra 50 games between our two main contestants,
the generative and discriminative value approximation Transformers.

(
6
2

)
∗ 50 + 50 = 800 games

are played in total, and reported in a PGN file. Note that we consider it is a draw if the game lasts
150 plies, and we stop the game there. Similarly, we consider one player has won if its advantage
in centipawn is higher than 1500. We then use the BayesELO (Coulom, 2008) on this set of games.
The extra Stockfish players allow us to have better accuracy, and a baseline. Indeed, we offset all
Elo scores returned by BayesELO such that Stockfish depth 10 has an Elo of 2431, as measured by
Ferreira (2013), offset by 200 to (roughly) account for the difference between the version used in our
paper (Stockfish 8) and the version Ferreira (2013) used in their paper (Houdini 1.5a 64 bits).

The two main decompositions are close in performance, with the generative one being slightly
worse than the discriminative, in all metrics. The behavioural cloning agent performs significantly
worse than the two others in terms of Elo, being more than 400 rating points weaker, which roughly
corresponds to having a less than 5% chance to win against the generative agents. Also note that
the behavioral cloning agent, the Kendall-Tau metric is much worse, likely due to the loss not being
incentived to rank the different actions in a state correctly.

Ablation: Return Discretization. One important design choice in the approximation of ξ(z | s, a)
with a Transformer is the discretization of the returns z. As discussed earlier, we use the quantiles of
the distribution ξ(z) to bucketize returns such that our estimation ξ̂(z) is uniform across all buckets.
However, the number of buckets trades off the accuracy and learning complexity: more buckets
means a finer approximation of the win probability, but it also means that the distinction is harder
for the model. Moreover, for the generative decomposition, we need to sum over all return buckets
in Eq. (2), so increasing the number of buckets means increasing the number of estimations per
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Figure 2: Main metrics for different numbers of return buckets, computed on 28000 test boards.
The more buckets, the more accurate the estimation of the true return value, but the harder it is to
distinguish between them. We report 95% confidence intervals.
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Figure 3: Comparing the learning curves of a model training from scratch or with a pretrained state
model ξ̂(s). The losses are computed on a set of 28000 test boards.
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batch and, therefore, the training time. Fig. 2 visualizes the metrics discussed above for a range of
different numbers of buckets. Note that we used roughly 10 times smaller models for this sweep, so
the absolute numbers are not comparable to the ones in Table 1. We pick 16 buckets in the main
paper as a good balance between all the constraints.

Ablation: Pretraining. Fig. 3 compares the performance and speed of training a model ξ̂(s | a, z)
from scratch and starting with a pretrained state model ξ̂(s) for the generative decomposition. This
model was trained on the same dataset of 1.1 billion boards resulting in triples (s, a, z), but without
the actions and returns. The loss is therefore simply − log ξ̂(s). The final loss is 46.6 bits per board
state (described as a sequence of tokens), which are initially encoded as 248 bits each, leading to a
compression ratio of 5.32. We show some boards with high and low likelihoods using this pretrained
model, to have a visual perception of its performance, in Fig. 8.

5.2 POLICY IMPROVEMENT: GRIDWORLDS

We now consider the policy improvement problem, which deals with non-stationary distributions. We
try our method on simple gridworlds, from Delétang et al. (2021), as a sanity check. We use 3 different
levels, taken from Delétang et al. (2021), which are variations of a “catch object” environment, with
a reward of one if the agent catches a given object and zero otherwise. Observations are grids of
features, integers corresponding to the tile types. This grid, flattened, is the state representation which
is then embedded using the trained embedding matrix. Note that the length of the state sequence
varies across levels but is contained within the range [16, 64] (the grid sizes varying between 4x4 and
8x8). The returns are the cumulative rewards, and no discount is used, as in the original Compress
and Control paper (Veness et al., 2015). We use a finite return horizon m = 10, which we enforce by
stopping the episode after 10 timesteps.
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Figure 4: Average episode returns of policies over 1000 timesteps, trained with the generative and
the discriminative decomposition in three different gridworlds, evaluated using ϵ = 0. Error intervals
are the usual 95% confidence interval. We represent the best performing seed out of 3, after training.
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The training is done purely online. The policy is an epsilon-greedy policy over Q-value estimations,
with a fixed ϵ = 0.2 throughout training. Each training step consumes a batch of 64 observations and
associated observed returns. This batch is provided by the current policy. For both decompositions,
we minimize the loss defined in Eq. (4), as in the chess experiments. For the return model ξ̂(z | a), we
use a Dirichlet Multinomial model as explained earlier, but we divide the counts by 2 every thousand
batches, to better deal with non-stationarity (Mattern, 2015). We train the models on 200 thousand
batches, which corresponds to 12.8 million frames. We use a learning rate of 0.0001. The exact
Transformer architecture is described in Appendix A.

Experimentally, it appears as shown in Fig. 4 that using a constant uniform return model ξ̂(z | a) does
not have a big impact on the learning dynamics, and makes the code naturally simpler. This may be
an artifact of the return model being mostly uniform in these environments, as the uniform can easily
recover from a wrong action. This is still an interesting path to make this method easier to implement
in more complex environments.

Both decompositions achieve a return close to 1 per episode after training, on all 3 games. We report
the learning curves in Fig. 4. The returns are very noisy due to training purely online.

6 DISCUSSION AND CONCLUSION

Taking a step back, it’s worth noting the increasing viability of compression based methods to tackle
difficult problems in a domain independent way. A Transformer based model (Bellard, 2021) is at the
time of writing the best compression technique as assessed by the Hutter Prize competition. Earlier
work (Veness et al., 2015) showed that Lempel-Ziv and sophisticated n-gram models derived from
Context Tree Weighting could learn to represent value functions sufficient for playing a simple game
like Pong; 8 years on, state of the art compression techniques now can play the strategically difficult
game of chess at an expert level.

Our results support the Value Function Hypothesis, in the sense that the generative value function
approximation techniques produce far better policies than behavioral cloning, but more work is
needed to conclusively answer this conjecture. During our case study on chess, we also observed a
trend consistent with supervised learning folklore – the superiority of discriminative methods over
generative methods on single task setups, though in our case the gap was not large. An exciting next
area for investigation is to evaluate these generative value function approximation techniques in a
multi-task meta-learning setup, and investigate whether the discriminative or generative decomposi-
tion leads to better transfer learning properties. Our pre-training results suggest that the generative
decomposition may be more amenable to transfer, but this needs further investigation.

Nonetheless, generative value learning opens a new avenue for fine-tuning pre-trained (foundation)
models on complex decision-making problems. We proved that this method works better than
behavioral cloning on the game of chess, and is competitive with a more classical discriminative
approach, which cannot benefit from fine-tuning.
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A EXPERIMENTAL SETUP

A.1 TRANSFORMERS

The core architecture we use is always a regular decoder-only Transformer (Phuong & Hutter,
2022). The outputs are always normalized using a log-softmax layer, such that the models output
log-probabilities. For the generative decomposition, the return and action conditioning is done by
adding the embeddings of the return buckets and actions to the state embeddings. They are learnt
completely separately of the state embeddings and of each other, but with the same dimension, equal
to the dimension of the state embeddings.

In the chess experiments, for the main evaluation and for pretraining, we used the following hyperpa-
rameters. 10 layers, with dmodel = 512 (notation from the original Transformer paper (Vaswani et al.,
2017)), a widening factor of 4, and 8 heads. The positional encodings are learnt, with a dimension
equal to dmodel. The embeddings for the state tokens are also learnt, and also with a dimension equal
to dmodel. The total amount of parameters is roughly 36 millions for both decompositions. For the
ablations, we used smaller models, similar to the ones used for Atari, which contain roughly 3.6
million parameters.

In the gridworld experiments, we used the following parameters. 4 layers, with dmodel = 64, a
widening factor of 4, and 8 heads. The positional encodings are learnt, with a dimension equal to
dmodel. The embeddings for the state, the return and the action tokens are also learnt, and also all
with a dimension equal to dmodel.

A.2 CHESS DATASET

The dataset D consists of triples (s, a, z). The states are tokenized chess boards, from FEN strings. It
consists in 65 characters=tokens, the first being the side to play (either white ’w’ or black ’b’), and
the other 64 are the board itself, flattened. Each piece is given a character, using the same mapping as
in the FEN strings, but empty squares are attributed the character ’.’. Note that we do not flip the
board when the side changes: the bottom of the board is always white, and the top is always black,
whoever’s turn it is to play. Actions are written in UCI format (first square, second square, promotion),
for instance ’e2e4’ for the well known white opening move or ’e7e8q’ for a white promotion to
queen. We then enumerate all possible legal actions (using all possible pieces), which gives 1968
possibilities. We arbitrarily associate a number to each action (position in the list), and that becomes
the token associated with it. Finally returns are bucketized following quantiles of the distribution
ξ̂(z). See next paragraphs.

A natural first investigation of the dataset is to estimate the distributions of states, actions and returns
separately, regardless of conditioning. In the following, we use a subset of 100 million triples.

Estimating ξ(z). This distribution is fairly easy to estimate, using a simple count-based model
(histogram). We represent this distribution using 50 buckets uniformly spaced over the range [min,
max] of the scores. There is a small skew towards negative scores, because there are more actions able
to make the player lose the game rather than win the game. Note that there are two peaks at -10000
and 10000, which are the scores we chose to represent checkmates. We also plot the distribution of
winning probabilities associated with these returns, between 0 and 100%, all in Fig. 5.

Estimating ξ(a). Actions are represented in the UCI format. There are 1968 possible actions in
chess, and obviously many less when conditioned on a given state. To model ξ(a), we also use a
count-based model like above. Fig. 6 shows the probability of each action, ordered by decreasing
frequency. We also plot the frequencies in log space, but the distribution doesn’t seem to follow a
power law.

Estimating ξ(s). Finally, we can estimate the probabilities, or rather the log-probabilities given
their extremely low value, of the different boards present in the dataset. For this, as explained in the
main paper, we train a Transformer model only on the state part of the triples (s, a, z). We plot a
histogram of the log-probabilities of the states in Fig. 7. We also show high and low probability states
in Fig. 8. Very high probability states are openings: the first peak is the opening position, appearing
very often in the dataset.
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Figure 5: Histograms of the centipawn scores present in the dataset, and the associated win probabili-
ties. 50 buckets were used for both. The distribution is skewed towards negative scores as we look at
all legal actions per board, and most actions are not positive for the player.
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Figure 6: Histogram of the actions present in the dataset, ordered by probability. The 4 most likely
actions are [a2a3, h7h6, h2h3, a7a6], which correspond to side pawn opening, a very usual defense
against a king side attack.
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Figure 7: Histogram of the log-probabilities of the states present in the dataset, estimated using a
decoder-only auto-regressive Transformer model.
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Figure 8: Illustration of the pretrained Transformer model ξ̂(s) on our dataset of chess boards. We
pick the least likely and most likely 4 boards of the dataset, using our probabilistic model.

B ABLATIONS

B.1 OBJECTIVE FUNCTION

As discussed in the main paper, minimizing the log-loss for the return model (Eq. (4)) naturally
increases the loss for the state model (Eq. (3)), which can be undesirable, if we want to recover a
good state model ξ̂(s | a, z) during, or after training.

To that end, we consider a mixture of Eq. (3) and Eq. (4), parameterized by β ∈ [0,∞), given by

− log
(
ξ̂(s | a, z) ξ̂(z | a)

)
+ log

(∑
z′

ξ̂(s | a, z′) ξ̂(z′ | a)

)
− β log ξ̂(s | a, z). (5)

This mixture was already introduced in Larochelle & Bengio (2008), in the context of classification
tasks. For β = 0, we recover the return model loss from Eq. (4), and for β = ∞ we recover the state
model loss from Eq. (3). We ablate the hyperparameter β in Section 5.

β represents a trade-off between a good state model ξ̂(s | a, z) and a good return model ξ̂(z | s, a).
In Fig. 9, we display the various metrics introduced in the previous paragraph for a range of betas,
from 0 to 1. In theory, β can be much larger, but we found that stopping at 1 was enough as it already
leads to catastrophic decrease in return model quality. Overall, as expected, the bigger β, the higher
the L2 and log-losses, the lower Kendall-Tau coefficient, but the lower the state log-loss.
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Figure 9: Sweep over various values of β, in the range [0, 1]. We see that we recover a better state
model when β increases, at the cost of a worse return model.
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