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Abstract

In medicine, researchers often seek to infer the effects of a given treatment on
patients’ outcomes. However, the standard methods for causal survival analysis
make simplistic assumptions about the data-generating process and cannot capture
complex interactions among patient covariates. We introduce the Dynamic Survival
Transformer (DynST), a deep survival model that trains on electronic health records
(EHRs). Unlike previous transformers used in survival analysis, DynST can make
use of time-varying information to predict evolving survival probabilities. We
derive a semi-synthetic EHR dataset from MIMIC-III to show that DynST can
accurately estimate the causal effect of a treatment intervention on restricted mean
survival time (RMST). We demonstrate that DynST achieves better predictive and
causal estimation than two alternative models.

1 Introduction

Medical practitioners are often interested in the effect of a treatment on a patient’s survival time
until an event of interest. For instance, if a patient is prescribed a certain antibiotic, how will that
affect their risk of experiencing sepsis in the next 24 hours? The field of causal survival analysis is
concerned with estimating treatment effects on time-to-event outcomes given incomplete (censored)
data; classical techniques such as the Kaplan-Meier curves [1] and the Cox regression model [2]
are extensively used despite their limitations. Kaplan-Meier curves are a descriptive tool that do
not model individual survival trajectories, while the Cox model assumes proportionality of hazard
functions, which may be unrealistic. Meanwhile, the rise of electronic health records (EHRs) has led
to an abundance of multi-concept longitudinal data: a setting for observational causal inference, if
randomized controlled trials prove impractical or unethical.

With this observational setting in mind, we propose the Dynamic Survival Transformer (DynST), a
deep-learning survival model that estimates individual survival probabilities over time from EHR
data. DynST is built on the Transformer [3], a recent neural network architecture that has achieved
state-of-the-art results in sequence-to-sequence learning, particularly in NLP [4]. Transformers can
flexibly model individual survival trajectories without making simplifying parametric assumptions
about the data-generating process. Unlike previous survival transformers [5, 6, 7] DynST exploits
both static and time-varying features to capture how a patient’s event risk evolves over time. Several
works have applied transformers to prediction problems in EHR data [8, 9, 10, 11], motivated by
similarities between EHRs and text, but DynST is the first transformer used to estimate the average
effect of a treatment intervention on survival outcomes. Using a semi-synthetic dataset derived from
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Figure 1: A diagram of DynST modeling the hazard function from a single patient’s EHR data.

MIMIC-III [12], we show that DynST can improve on baseline methods in survival time prediction
and causal inference.

2 Problem setup

We observe survival data taking the form (Xi, Oi, δi)
n
i=1, where Xi represents the i-th patient’s

features, Oi is the observed (and possibly censored) time to the event, and δi is a binary variable
indicating whether the event was observed or not, due to censoring. If δi = 0, the i-th patient is
right-censored, so the event takes place after Oi. Let Ti represent the uncensored survival time and let
Ci be the censoring time. Then, Oi = min{Ti, Ci}, and δi = 1(Ti ≤ Ci). In this paper, we assume
conditionally independent censoring, i.e., Ti ⊥⊥ Ci | Xi. We also assume a discrete survival setup,
where Ti ∈ {1, 2, . . . , ...tmax} and time steps are evenly spaced. The hazard function

h(t | X) = PX(T = t | T ≥ t) (1)
is the risk of failure at time t given that the patient has survived thus far. The survival probability S at
time t is

S(t | X) = PX(T > t) =

t∏
τ=1

(1− h(τ | X)). (2)

The expected survival time is defined as

E[T | X] =

tmax∑
t=1

S(t | X). (3)

Lastly, given a cutoff time τ, the restricted mean survival time (RMST) [13, 14] is defined as

Yτ = EX [min{T, τ}] = 1

n

n∑
i=1

(
τ∑

t=1

S(t | Xi)

)
. (4)

RMST can be thought of as the expected survival time up to time τ, averaged over the population of
all patients.

3 Methods

3.1 Model architecture

Let X denote the features of a single patient; we suppress the patient index for readability. X consists
of p static features Z1, . . . Zp, collectively denoted as Z, and q time-varying features, V1, . . . Vq,
collectively denoted as V. Here each feature Vj is a time series vector (V (1)

j , V
(2)
j , . . . , V

(tmax)
j ).

Static variables may include initial diagnoses, whereas a sequence of lab measurements is an example
of a time-varying feature. Let V (t) = (V

(1)
j , · · ·V (t)

j ). At each time step t, the Dynamic Survival

Transformer models q(t;Z, V (t)) = 1− h(t | Z, V (t)). That is, DynST predicts the complement of
each patient’s hazard function using static features and the available history of time-varying features.

Figure 1 illustrates DynST’s architecture. The model transforms each patient’s medical records
through the following procedure:
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1. Input embeddings: A linear layer transforms time-varying input features V into a tmax ×
dmodel matrix WV . Another linear transformation on static input features Z yields a length
dmodel vector WZ . We add WZ to each row of WV , obtaining an embedded input sequence
W = (W1, . . . ,Wtmax

).

2. Positional encodings (PE): Following the approach in [3], a deterministic sinusoidal
function encodes time steps 1, . . . , tmax as vectors of length dmodel, PE(1), . . . , PE(tmax).
We add these encodings to the corresponding rows of W.

3. Autoregressive Transformer Encoder: W is fed through m transformer encoder layers,
which combine multihead self-attention (eight heads) with a feedforward network and
dropout. We apply autoregressive masking so that the t-th position of W cannot attend to
(i.e., cannot learn from) future positions. We end up with the transformed output sequence
ϕ(W ) = (ϕ(W1), . . . , ϕ(Wtmax

)).

4. Hazard function output: Following [5], we apply a two-layer feedforward network with a
final sigmoid layer to obtain a vector of probabilities q̂(1), . . . , q̂(tmax). These estimate the
complement of the hazard function.

Let q̂i(t) denote the estimated hazard function for the i-th patient. From the predicted hazards, we

estimate patient survival probabilities as Ŝi(t) =
∏t

τ q̂(t;Zi, V
(t)
i ) and expected survival time as

T̂i =
∑tmax

t=1 Ŝi(t). We note that our prediction Ŝi(t) has no access to future covariates occurring
after time step t.

3.2 Training

Our model jointly minimizes two objective functions. The first, like the loss functions in [15, 5], is
an adaption of cross-entropy loss to censored data:

L(i)
1 = −

[
Oi−1∑
t=1

log Ŝi(t) +

tmax∑
t=Oi

log(1− Ŝi(t)

]
· δi −

[
Oi∑
t=1

log Ŝ(t)

]
· (1− δi). (5)

For censored patients (δi = 0), this means maximizing survival probabilities over the period of
observation. For uncensored patients, survival probabilities up to the failure time are maximized, and
subsequent survival probabilities are minimized. The second loss penalizes the error of the predicted
survival times:

L(i)
2 =

∣∣∣Oi − T̂i

∣∣∣ · δi +max{0, Oi − T̂i} · (1− δi). (6)

That is, when failure time is observed, the absolute error of T̂i adds to the loss. For censored
observations, loss is incurred only when the estimated survival time is before the time of censoring.
The losses are combined and summed over all patients:

L =

n∑
i=1

(1− α)L(i)
1 + αL(i)

2 , (7)

with α a tuning hyperparameter. We used the Adam optimizer with weight decay and trained DynST
in minibatches on an NVIDIA GTX 2080 Ti GPU.

4 Experiments

4.1 Semi-synthetic dataset

We derived a semi-synthetic longitudinal survival dataset from MIMIC-III, a freely accessible database
of de-identified EHRs from intensive care stays [12, 16]. After discarding records for stays shorter
than 16 hours in length, we obtained demographic information, diagnoses, and hourly lab results for
30,323 patients. For a synthetic outcome event simulating in-hospital infection, we generated patient
survival trajectories based on a subset of static and time-varying features as well as a predetermined
treatment effect. After truncating patient histories longer than 128 hours, 39% of all patients had
censored outcomes. For further details of the data simulation process, see Appendix A.
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Table 1: Performance of DynST and baselines in predicting patient survival times (mean ± SD)

Model Mean Abs. Error

Cox Oracle 16.04± 0.25
Static ST 11.42± 0.23
DynST (ours) 11.19± 0.24

Table 2: Comparison of estimators of average treatment effect on RMST (average bias ± SD)

Method τ = 8 τ = 12 τ = 16

Unadjusted Difference in Means −0.502± 0 −1.11± 0 −1.88± 0
Cox Regression −0.260± 0.0010 −0.523± 0.0012 −0.750± 0.0080
Logistic IPW 0.257± 0 0.35± 0 0.416± 0
DynST Regression −0.146± 0.041 −0.160± 0.078 −0.190± 0.12
AIPW (DynST + Logistic) −0.0390± 0.013 0.0131± 0.056 0.127± 0.082

4.2 Predictive survival analysis

To highlight DynST’s advantages as a component in causal inference, we demonstrate its improved
performance in individualized survival prediction compared to two baselines: a Cox Oracle model
and a survival transformer using only static features (Static ST). We compare how well these models
estimate patient survival times in terms of mean absolute error (MAE). Table 1 reports model
performances on held-out test data, averaged over six trials. We used a 70/15/15 random split
into training, validation and test sets; hyperparameter spaces and other training details are given
in Appendix C. Both transformer-based models achieve a lower MAE than the Cox model, which
assumes a misspecified model of the hazards. DynST shows a small but significant improvement
over its static counterpart, indicating that DynST can capture the effect of time-varying features on
patients’ survival probabilities.

4.3 Causal survival analysis

We treat restricted mean survival time (RMST) as the outcome variable. Given a binary treatment
variable A, our causal estimand of interest is the average treatment effect (ATE) on RMST,

ψ = E[Yτ (1)− Yτ (0)]. (8)

ATE is the expected difference between potential outcomes under treatment and control. See Appendix
B for a review of the potential outcomes framework for causal inference.

In Table 2, we compare several methods of estimating of ATE in terms of bias, averaged over six
trials. We compared (1) the unadjusted difference in means between treated and control groups, (2)
a Cox model outcome regression (OR), (3) a inverse-propensity weighted (IPW) estimator using
a logistic model of propensity scores, (4) OR using DynST, and (5) an augmented IPW (AIPW)
estimator combining (3) and (4). For details of how these models were fitted, see Appendix D. The
two methods that used DynST to model patient outcomes achieved the best estimation of ATE. This
suggests that DynST can successfully adjust for confounding variables. The Cox model and Logistic
IPW performed worse; they assume misspecified models of response and treatment.

5 Discussion

DynST can model patient survival under complex, time-varying interactions among variables. Com-
bining DynST’s flexible outcome modeling with knowledge of the treatment assignment mechanism
can result in unbiased estimation of treatment effects. Cross-fitting [17] may help with selecting
optimal hyperparameters for causal inference. As future work, we can apply DynST to quantify
the real-world causal effects of treatments such as COVID-19 vaccines, for which there is ample
EHR data. We can also generalize the model to handle the effects of time-varying treatments and
outcomes. Lastly, we can experiment with further tailoring the training procedure of DynST toward
causal inference by jointly modeling outcome response and treatment assignment [18].
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A Semi-synthetic EHR dataset

To preprocess the raw Medical Information Mart for Intensive Care (MIMIC-III) database, we follow
the MIMIC-Extract pipeline [19]. Since time-varying features are reported in hourly intervals, in our
experiments, each time step corresponds to one hour. We discard patients who have fewer than 16
hours of data and truncate all patient records longer than 128 hours in length. In addition, we scale
and center all continuous variables to have mean zero and a standard deviation of one. As estimates
of ground-truth causal effects are generally unverifiable, we build a semi-synthetic dataset in which
the treatment assignment and outcome response are simulated from real observed features.

First, we develop an assignment mechanism for the synthetic treatment variable A. We assume
that this treatment represents an intervention that occurs at the very start of a patient’s observed
history. We define an indicator variable Z∗ denoting whether a patient is “severely ill.” We consider
three conditions, hypertension, coronary atherosclerosis, and atrial fibrillation. If a patient has been
diagnosed with more than one of these illnesses, then Z∗ = 1; otherwise, Z∗ = 0. The propensity
score is then

P (A = 1 | X) ≡ π(Xi) =

{
0.8, if Z∗ = 1

0.2, if Z∗ = 0.
(9)

Every patient has a chance of being in either the treatment or the control arm, though this chance
depends on information that will also influence their time-to-event outcomes.

Next, we simulate patient survival trajectories. Rather than directly modeling a patient’s survival time,
we model the hazard function at each hourly time step. This way, we ensure that survival probabilities
adapt dynamically with patient medical histories. To generate the hazards, we use a subset of the
available features: five static and four time-varying. One is the synthetic treatment; the rest were
selected because they correlate with treatment. Thus we can induce a confounding structure between
treatment and outcome. The synthetic hazard function is defined as follows:

h(t) = H0 exp(−λt)
(1)

· exp(θA)
(2)

· exp(
4∑

j=1

βjZj)

(3)

· exp(log(1.02)tZ∗)
(4)

· exp(
4∑

j=1

γjg(V
(t)
j ))

(5)

. (10)

1. Baseline hazard: We model the baseline hazard function with exponential decay, setting
H0 = 0.001 and λ = 0.25. All else being equal, a patient’s risk decreases the longer they
survive (a.k.a. the Lindy effect).

2. Treatment effect: A is the binary treatment variable, and θ = −0.5 parameterizes the
treatment effect. A treatment intervention will decrease a patient’s lifetime risk.

3. Static variables: We include the linear effects of four binary, static variables Z1, . . . , Z4

along the lines of a Cox regression model. The first variable is whether a patient is male; the
remaining three are the presence of ICD-9 codes for hypertension, coronary atherosclerosis,
and atrial fibrillation. We generated the coefficients βj from a Uniform(0.7, 1.2) distribution.

4. Temporal interaction term: Z∗ is the indicator variable for severely ill patients (those with
two or more of the above diagnoses present). This variable has a temporal interaction, thus
violating the proportional hazards assumption [20]. When Z∗ is 1, the hazard increases by
two percent at every time step, modeling a severely ill patient’s deteriorating health.

5. Dynamic variables: Our time-varying features V1, . . . , V4 correspond to vital readings for
hematocrit, hemoglobin, platelets, and mean blood pressure. Coefficients γj are generated
from a Uniform(0.1, 0.3) distribution. We set

g(V
(
j t)) =

{
0, if V (t)

j ≥ 0

max{(V (t)
j )2, 3}, else.

(11)

Thus, whenever Vj drops below the average (i.e., zero) value, it makes a quadratic contribu-
tion to the log hazard. We used clipping to avoid inflated hazards.

We constrain hazards to lie in the range (10e−8, 0.1) for reasons of stability. At each time step t, we
calculate the survival probability to be S(t) =

∏t
τ=1(1−h(t)). To introduce a degree of unexplained
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randomness to the system, we add Gaussian noise (σ = 0.5) to the logits of the survival probabilities.
Lastly, we simulate patients’ time-to-event trajectories with the modeled survival probabilities. At
each time step t = 1, . . . , tmax, we use a patient’s survival probability to generate a Bernoulli random
variable. The first time step that results in a zero-value we take to be a patient’s survival time. If no
zeros were generated at any t, then the patient is right-censored. In the resulting dataset, 39% of
patients have right-censored survival times. The average time to censoring or failure is 27.8 hours.

To derive the “true” ATE on RMST, we create two copies of the MIMIC dataset, one where every
patient has Ai = 1 and the other where every patient has Ai = 0. Let Yi,τ (Ai, Xi) denote the
simulated RMST at cutoff τ for patient i. We calculate true ATE as

ψ ≈ 1

n

n∑
i=1

(Yi,τ (1, Xi)− Yi,τ (0, Xi)) . (12)

Since n = 30323, this should be an accurate approximation of the population ATE.

B Causal inference

We follow the potential outcomes (Neyman-Rubin) framework for causal inference. We observe
data of the form (Xi, Ai, Yi) for subjects i = 1, . . . , n, where Xi denotes subject covariates, Ai

denotes a binary treatment indicator, and Yi is an outcome of interest. The potential outcome of
Yi under an intervention Ai = a (i.e., assigning a subject to patient or control) is written as Yi(a).
The causal relationship between A and Y is confounded if E[Y (a)] ̸= E[Y | A = a]. That is,
certain confounding variables predispose subjects who are observed in one treatment arm toward
certain outcomes. This does occur in randomized controlled trials (RCTs), but in observational
causal inference, the goal is to adjust for confounding variables to identify the true cause-and-effect
relationship between A and Y. We may identify causal effects in an observational study if the
following assumptions hold.

1. Consistency: The potential outcome for a patient assigned intervention A = a is the
same as the outcome for a patient observed “in the wild” with treatment A = a. That is,
Ai = a =⇒ Yi(a) = Yi.

2. Positivity: All subjects have a non-zero chance of being in the treatment or control groups.
Let π(Xi) = P (Ai = 1 | Xi) be the propensity score for the i-th subject. We then assume
that π(Xi) ∈ (0, 1) for all i.

3. Exchangeability: Also referred to as ignorability or no unobserved confounders, we assume
that potential outcomes are independent of observed treatment status when conditioning
on the set of covariates X. Formally, we assume that Y (a) ⊥⊥ A | X. For subjects with
comparable features, an observational study emulates an RCT.

Under these assumptions, E[Y (a) | X] = E[Y | A = a,X], allowing us to infer potential outcomes
from observed data. Still, a key difficulty is that only one of two potential outcomes is observed per
subject. (If a patient was treated, we do not observe their potential outcome under control assignment.)
The other is a counterfactual outcome. The potential outcomes framework is akin to reformulating
causal inference as a missing data problem. In this paper, we assume all of the above assumptions.
In non-synthetic datasets, only the second assumption is generally testable. For a textbook-level
treatment of the potential outcomes framework, we refer the reader to [21].

A common causal estimand is average treatment effect, defined as

ψ = EX [Y (1)− Y (0)], (13)

for some outcome variable Y. This quantifies the average difference in outcomes between two
hypothetical populations, one in which all subjects were assigned treatment and another in which
everyone was made a control. In general, due to confounding,

E[Y | X = 1]− E[Y | X = 0] ̸= ψ. (14)

We refer to the observed difference in outcomes between treated and control groups as the unadjusted
difference in means.
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Two common approaches to estimating ATE are inverse propensity weighing (IPW) and outcome
regression. An IPW estimator involves fitting a model (e.g., a logistic regression) that estimates
the treatment probabilities π(X) and using these propensity scores to create a pseudo-population
in which all individuals are equally likely to receive treatment or not. Outcome regression (a.k.a.
standardization, g-computation) requires estimating the conditional expectation E[Y | A,X] to
determine the effect of A on Y while adjusting for potential confounders X . Synthesizing these
methods, the Augmented IPW (AIPW) estimator fits nuisance models for both treatment assignment
and outcome response. The AIPW has the desirable double robustness property, whereby it gives an
unbiased estimate of ATE if either of its components are unbiased. Furthermore, even when one or
both of the nuisance models have a relatively slow rate of convergence (e.g., neural networks), under
certain conditions, the AIPW can achieve the linear semiparametric efficiency bound [17]. For an
overview of techniques for estimating ATE and double robustness, see [22].

C Prediction experiment

We compare how well DynST, a static survival transformer (i.e., one with no access to time-varying
features), and an oracle Cox model (i.e, one that uses only the features relevant to the true hazard
function) make predictions of patients’ expected survival times. We measure this performance in
terms of mean absolute error. We define our MAE as follows:

CMAE =
1

n

n∑
i=1

[∣∣∣Oi − T̂i

∣∣∣ · δi +max{0, Oi − T̂i} · (1− δi)
]
. (15)

Similar to the loss function in equation (4), this metric accounts for patients with observed and
censored survival times alike. When a patient’s time-to-event is observed, the absolute difference
between estimated and true survival times contributes to error. When a patient’s survival is censored,
an estimated survival time that falls short of the censoring time counts as error.

We used the following hyperparameter space to train DynST and the static transformer:

• Latent dimension dmodel ∈ {32, 48, 64}
• Number of transformer blocks m ∈ 2, 3, 4

• Batch size b ∈ {16, 32}
• Joint loss ratio α ∈ {0, 0.1, 0.2}
• Number of epochs kepoch ∈ {1, 2, 3, 4, 5}

We used MAE as the criterion for early stopping and fixed the dropout proportion at 0.1. Using a
70/15/15 ratio to randomly split the data into training, validation, and test sets, we selected optimal
hyperparameters using the validation set and reported MAE for the held-out test data.

We used Python’s lifelines package1 for an implementation of the Cox proportional hazards
model and tuned over a range of L1 and L2 penalties, using the same training/validation/test splits.
While lifelines has the basic implementation of a time-varying Cox model, it lacks the capacity
to predict expected survival times on held-out data, being primarily used to report hazard ratios at
different follow-up times.

D Causal inference experiment

We used an 80/20 training/validation split to tune DynST and the Cox model as outcome regression
models, selecting for hyperparameters that produced the best validation MAE. We used the same
hyperparameter spaces as in the prediction experiment. To fit the IPW estimator, we used the sklearn
implementation of a cross-validated logistic regression with L2 penalty, fitted over 5 random folds.
(Note that the standard deviation for the IPW estimator in Table 2 is zero; this is because a single
model was validated over five random splits of the data.) This logistic model estimated propensity
score as a function of three binary variables, indicating the presence of the diagnoses relevant to
both treatment assignment and outcome (namely, hypertension, coronary atherosclerosis, and atrial

1https://lifelines.readthedocs.io/en/latest/
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Table 3: True ATEs versus unadjusted differences in means for RMST at varying cutoffs τ

τ Average Treatment Effect Unadjusted Difference

8 0.265 −0.237
12 0.572 −0.539
16 0.946 −0.933

fibrillation). Counterintuitively, an IPW estimator benefits from an underlying propensity model
that uses a “minimal” set of confounding features that makes conservative estimates of treatment
assignment (i.e., not too close to zero or one) [22]. Using additional features to estimate propensity
score did not improve ATE estimation.

We designed the treatment and outcome simulations so that the data exhibited a strong confounding
structure: while the true effect of treatment is to decrease the hazards at all time steps, treatment
assignment is strongly correlated with covariates that predict shorter survival times. Table 3 compares
ATE (the true effect) and the unadjusted difference in means (the apparent effect) on RMST for three
cutoff times. At each cutoff, treatment causes an increase in average survival time but correlates with
a decrease in average survival time.
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