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Abstract

Despite remarkable advances in coding capabilities, language models (LMs)
still struggle with simple syntactic tasks such as generating balanced paren-
theses. In this study, we investigate the underlying mechanisms behind
the persistence of these errors across LMs of varying sizes (124M–7B) to
both understand and mitigate the errors. Our study reveals that LMs rely
on a number of components (attention heads and FF neurons) that inde-
pendently make their own predictions. While some components reliably
predict correct answers across a generalized range of inputs (i.e., imple-
menting “sound mechanisms”), others are less reliable and introduce noise
by promoting incorrect tokens (i.e., implementing “faulty mechanisms”).
Errors occur when the faulty mechanisms overshadow the sound ones and
dominantly affect the predictions. Motivated by this insight, we introduce
RASTEER, a steering method to systematically identify and increase the
contribution of reliable components for improving model performance.
RASTEER substantially improves performance on balanced parentheses
tasks, boosting accuracy of some models from 0% to around 100%, without
impairing the models’ general coding ability. We further demonstrate its
broader applicability in arithmetic reasoning tasks, achieving performance
gains of up to around 20%.

1 Introduction

Recent years have seen remarkable progress in the code generation capabilities of language
models (LMs), driven by an increase in model size, training data, and improvements in
overall training methodologies (Grattafiori et al., 2024; Achiam et al., 2023; Nijkamp et al.,
2023; Li et al., 2023b; Fried et al., 2022; Roziere et al., 2023; Achiam et al., 2023; Touvron
et al., 2023; Huben et al., 2024). Yet, despite these advances, LMs continue to struggle with
basic syntactic tasks such as generating balanced parentheses and correct indentation (Dou
et al., 2024; Wang et al., 2024). The failure of LMs to perform these seemingly simple
tasks stands in stark contrast to their improved performance on more complex coding
benchmarks (Jain et al., 2024; Chen et al., 2021; Austin et al., 2021), raising an important
interpretability question: How do LMs internally compute predictions for syntactic tasks and why
do these computations sometimes fail?

In this work, we seek to understand this failure by investigating the internal mechanisms
of seven LMs, ranging in size from 124M to 7B parameters, while they perform the bal-
anced parentheses task, the task of predicting the correct number of closing parentheses in
code statements. Recent work has attempted to reverse-engineer the full mechanisms of
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LMs (Olah et al., 2020; Rai et al., 2024; Bereska & Gavves, 2024); however, even simple
tasks were found to demand a bag of rather complicated computations (Nikankin et al.,
2025; Lindsey et al., 2025), which makes the bottom-up reverse engineering challenging.
In our work, we instead understand the failure of an LM in a top-down manner, where
we look for LM components, including attention heads and feed-forward (FF) neurons,
that directly contribute to the final logit calculation of an LM. Our study shows that LMs
employ a set of components, each with varying generalizability and reliability, to perform
the balanced parentheses task. While most such components demonstrate high accuracy
only within a narrow range of inputs and add noise in others, we still identify a rare set of
highly effective and generalizable components. For instance, we find that a single attention
head (L30H0) in CodeLlama-7b (Roziere et al., 2023) outperforms the full model on our
synthetic balanced parentheses dataset, highlighting the presence of strong, underleveraged
mechanisms within the model. Key insights we derive from these findings are: (1) LM
doesn’t rely on a single mechanism to make prediction but many mechanisms with varying levels of
reliability, and (2) LMs do not fail due to the absence of sound mechanisms, but rather due to the
presence of too many faulty mechanisms that introduce noise and overshadow the sound ones.

Building on these interpretability insights, we propose RASTEER, an approach that RAnks
LM components based on their reliability and STEERs generation by increasing the contri-
bution of more reliable components to the final logits, for improving model performance.
Despite the existing work in LM steering (Rimsky et al., 2024; Li et al., 2023a), none has
explored steering for tasks that are multi-class, position-sensitive, and have no clear “steer-
ing directions”, as the balanced parentheses task. Applying RASTEER led to dramatic
performance improvements across all seven models we studied, boosting accuracy on the
balanced parentheses task from 0% to 100% for some models. To assess the broader impact
of RASTEER, we evaluate whether steering for the balanced parentheses task affects the
general code generation capabilities of models. On the HumanEval benchmark (Chen et al.,
2021), we find that RASTEER preserves performance and even yields a modest improvement
of 5.49% for Llama2-7b (Grattafiori et al., 2024). Finally, we also show the effectiveness
of RASTEER beyond balanced parentheses tasks by applying it to an arithmetic reasoning
task, where it achieves a performance gain of up to 20.25% for Pythia-6.9b (Biderman et al.,
2023).1

2 Preliminaries

2.1 Background: Transformer-based Language Models

Transformer LM (Vaswani et al., 2017) maps an input sequence of tokens X = (x1, . . . , xn)
to a probability distribution over the vocabulary V and predicts the next token xn+1 by
sampling or choosing the most probable token. Initially, each input token x is mapped to an
embedding vector r0, initializing the model’s residual stream, which is refined sequentially
across L layers. At each layer ℓ ∈ {1, . . . , L}, r0 is updated sequentially by two sub-layers: a
multi-head self-attention (MHSA) sub-layer followed by a feed-forward (FF) sub-layer:

r̃ℓ = rℓ + MHSAℓ(LayerNorm(rℓ)), rℓ+1 = r̃ℓ + FFℓ(LayerNorm(r̃ℓ)). (1)

The MHSA sub-layer consists of multiple attention heads, indexed by head h and operating
in parallel. Specifically, the h-th attention head at layer ℓ computes:

Hℓ,h = Attn(Qℓ,h, Kℓ,h)Vℓ,hWℓ,h
O , (2)

where Qℓ,h, Kℓ,h, and Vℓ,h are the query, key, and value vectors computed from the input
rℓ−1 using parameter matrices Wℓ,h

Query, Wℓ,h
Key, Wℓ,h

Value ∈ Rd×dhead , and Wℓ,h
O ∈ Rdhead×d is

parameter matrices specific to head (ℓ, h).

1Additional related work is discussed in Appendix A.
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The feed-forward (FF) sub-layer at each layer ℓ consists of a two-layer feed-forward net-
work:

FFℓ(r̃ℓ) = σ(Wℓ
K r̃ℓ)Wℓ

V =

dmlp

∑
i=1

σ(r̃ℓkℓi )v
ℓ
i =

dmlp

∑
i=1

mℓ
i vℓi , (3)

where kℓi ∈ Rd is a column of the input projection matrix Wℓ
K ∈ R

d×dmlp , and vℓi ∈ Rd is a
row of the output projection matrix Wℓ

V ∈ R
dmlp×d. The bias term is omitted for simplicity.

The activation function σ(·) is a non-linear function such as GeLU or ReLU. We follow Geva
et al. (2022) to decompose FF, where vℓi is an input-independent parameter, referred to as an
FF neuron in this work, and mℓ

i = σ(r̃ℓkℓi ) is an input-dependent coefficient representing the
activation strength of the FF neuron.

After the final layer L, the model computes unnormalized logits over the vocabulary using
the last-token residual stream output: logits = rL

nWU , where WU ∈ Rd×|V| is the unembed-
ding matrix.

2.2 LMs Failed in Naive Syntactic Code Completion

Recent empirical studies (Dou et al., 2024; Wang et al., 2024) have found that a subset of LM
code generation errors stem from failures to accurately complete basic syntactic structures
like the balanced parentheses task, an issue that persists even in state-of-the-art models
such as GPT-4 (Achiam et al., 2023) and Phi-3 (Abdin et al., 2024). To systematically study
this LM behavior, we decompose the task of balanced parentheses as a collection of sub-
tasks, determined by how an LM tokenizer processes sequences of N closing parentheses.2
Specifically, every LM tokenizer in our study represents one, two, three, and four closing
parentheses as single tokens, while sequences with N > 4 are split into multiple tokens of
these one to four closing parentheses tokens. As a result, we define four sub-tasks within
the broader balanced parentheses task, corresponding to N = {1, 2, 3, 4}, and synthesize a
separate dataset for each. Specifically, we synthesize dataset using the following template
for each sub-task:

• One-Paren: #print the string {num}\nprint({num} → )
• Two-Paren: #print the string {num}\nprint(str({num} → ))
• Three-Paren: #print the string {num}\nprint(str(str({num} → )))
• Four-Paren: #print the string {num}\nprint(str(str(str({num} → ))))

For each sub-task, we generate 350 training, 150 dev, and 150 test examples, each consisting
of the input prompts created by randomly selecting a numeric value {num} from the range
100 to 999 and ground-truth output tokens. All models had 100% accuracy for the one
and two-paren task. However, most models exhibit low accuracy on the three-paren and
four-paren sub-tasks, particularly all GPT-2 models (Radford et al., 2019) had 0% accuracy
on the four-paren sub-task. Full results can be found in Appendix B.

3 Understanding LMs in Making Balanced Parentheses Errors

3.1 Overview

To understand why an LM makes (in)correct predictions, we investigate LM components
(i.e., attention heads and FF neurons) that directly contribute to the final logit of the model
from the last-token position. By focusing on these components, we abstract away the
need to analyze the full underlying mechanisms, which can be highly labor-intensive
and complex. Crucially, since all internal computations must ultimately influence the
model’s output through these final components, examining them can still provide necessary
insights to understand when and why a prediction goes wrong. Specifically, we will apply

2Empirically, when an LM does not generate parentheses following the way how its tokenizer
works (e.g., predicting “))” first and expecting another “))”, rather than predicting “))))”), it can
hardly succeed.
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Algorithm 1 Measuring Task Correctness
for LM Components

Require: Component activation hc ∈ Rd, un-
embedding matrix WU ∈ Rd×|V|, ground-
truth token t ∈ V , and distractor tokens
Tneg ⊂ V

1: Compute logits: lc ← h⊤c WU ∈ R|V|

2: if lc[t] ≥ max(lc[Tneg]) then
3: return True ▷ Marked as correct
4: else
5: return False
6: end if

Algorithm 2 Labeling Token Promotion
for LM Components

Require: Component activation hc ∈ Rd, un-
embedding matrix WU ∈ Rd×|V|, target
token t ∈ V , and promotion threshold
τ ∈ [0, 1]

1: Compute logits: lc ← h⊤c WU ∈ R|V|

2: if lc[t] ≥ τ ·max(lc) then
3: return True ▷ token t is labeled
4: else
5: return False
6: end if

Algorithm 1 to identify components that selectively promote the correct token over the
distractors, and Algorithm 2 to identify components that promote the correct token with a
thresholded strength. We consider LM components that selectively promote correct tokens
with reasonable strength across generalized contexts as reliable contributors that implement
sound mechanisms, and others as unreliable contributors implementing faulty mechanisms.

The two algorithms both utilize the logit lens technique (nostalgebraist, 2020), which projects
the corresponding component activation to the vocabulary space. For attention heads, the
component activation hc is H(ℓ,h); for FF neurons, mℓ

i vℓi . Given the large number of FF
neurons in each model (e.g., 131,072 in CodeLlama-7b), we perform a static pre-filtering
step to exclude neurons that are unlikely to affect the target tokens. Specifically, we follow
prior work (Geva et al., 2022) to interpret an FF neuron by projecting its parameter to the
vocabulary space using the unembedding matrix, i.e., vℓi WU . We then retain only neurons
whose projections include at least one of the four closing-parenthesis tokens among their
top-50 or bottom-50 logit-ranked tokens.

3.2 LMs Developed Mechanisms of Varying Levels of Generalizability

We start with measuring the task accuracy of each LM component on each sub-task. Specifi-
cally, for every input prompt on a sub-task train set, we follow Algorithm 1 to measure if
the component’s logit projection yields the highest value to the ground-truth token among
all four token choices. In other words, we check if the component can correctly promote the
correct token more than the incorrect ones. Based on the correctness counts, we calculate
the accuracy of the component for each sub-task. We visualize the accuracy distributions of
the attention heads in Appendix C.1. We observe that most models consistently have more
high-accuracy (e.g., greater than 0.7) components for the one-paren sub-task, with the count
gradually decreasing for the two-paren, three-paren, and four-paren sub-tasks. This trend
closely mirrors the overall performance of the models on each respective sub-task.

Based on the observed accuracy distributions, we decide to group LM components based
on the number of sub-tasks in which they achieve high accuracy, using 0.7 as a threshold.
Specifically, if a component achieves at least 0.7 accuracy in more than one sub-task, we
interpret it as implementing (i.e., serving as the prediction head of) a “sound mechanism”
that generalizes across sub-tasks. Table 1 reports the number of attention heads and FF
neurons that generalize to different numbers of sub-tasks. Our analysis reveals that most
components are specialized, attaining high accuracy on only a single sub-task, while a
smaller subset generalizes effectively across multiple sub-tasks. These results indicate
that LMs implement a diverse set of mechanisms to solve each sub-task, with varying degrees of
generalizability.

Generalization Capability of Attention Heads We further look into attention heads that
generalize across multiple sub-tasks. These heads are listed in Table 4. We observe that
attention heads with stronger generalization tend to emerge in deeper layers of the model.
Notably, for CodeLlama-7b, attention head 0 at layer 30 (L30H0) achieved almost 100%
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Table 1: Number of LM components (attention heads and FF neurons) that have high
accuracy (≥ 70%) across different numbers of sub-tasks.

Attention Heads FF Neurons

Model (# heads, # neurons) 1 task 2 tasks 3 tasks 4 tasks 1 task 2 tasks 3 tasks 4 tasks

GPT-2 Small (144, 9,216) 11 1 0 0 155 0 0 0
GPT-2 Medium (384, 24,576) 10 2 0 0 235 0 0 0
GPT-2 Large (720, 46,080) 18 4 0 0 365 1 0 0
GPT-2 XL (1,200, 76,800) 38 3 1 0 626 3 0 0
CodeLlama-7b (1,024, 131,072) 27 6 0 1 852 6 0 0
Llama2-7b (1,024, 131,072) 18 2 0 0 391 5 0 0
Pythia-6.9b (1,024, 131,072) 23 4 0 0 1893 2 0 0

Figure 1: Average logit values and coefficients of FF neuron L19N11 of CodeLlama when
the input prompts demand one-, two-, three-, and four-paren closing tokens.

accuracy across all sub-tasks, which was even better than the full model (96.00% on average).
In Table 5, we see that the generalizable attention head primarily attends to the first function
name token (L30H0) or open parenthesis (L30H16) that has yet to be closed across all of
the sub-tasks. In comparison, the attention scores of a non-generalized attention head are
largely spread across different prompt tokens, with the major attention being placed on the
begin-of-sentence token (omitted in the visualization).

Generalization Capability of FF Neurons Prior work (Dar et al., 2022; Rai & Yao, 2024)
interpreted an FF neuron mainly by looking at only the top-k tokens sorted by their logit
scores under the input-independent projection of vℓi WU . However, contrary to this conjec-
ture, our analysis reveals that LMs do not rely solely on the top-k logits—rather, they also utilize
bottom-k logits through a dual-sign mechanism. Specifically, neurons apply positive coefficients
to promote top-k tokens and negative coefficients to suppress them or, equivalently, to
promote bottom-k tokens. This mechanism allows a single neuron to support two distinct
sub-tasks when its input-independent projection contains relevant tokens at both extremes.
For example, neuron 11 in layer 19 (L19N11) of CodeLlama has “)” among its bottom-10 to-
kens, and “)))”, and “))))” among its top-50 tokens, after the input-independent projection.
As shown in Figure 1, the neuron promotes the bottom token “)” for one-paren inputs by
assigning it a negative coefficient (on average, −1.04), but promotes the top token “))))” for
four-paren inputs by assigning it a positive coefficient (on average, 1.29). Being able to “flip”
the coefficient depending on the input prompts allows this neuron to promote the correct
tokens generalizably across both the one-paren and the four-paren sub-tasks. However,
because both “)))” and “))))” are ranked as top tokens for L19N11, when the neuron
promotes “))))”, it inevitably also promotes “)))”. We term this phenomenon as noisy
promotion, meaning that the FF neuron has to promote the ground-truth and the distractor
tokens at the same time. This observation highlights both an architectural constraint and
an adaptation developed with FF neurons—because FF neurons can only rank tokens on either
the top side or the bottom side of its parametric memory, it can generalize to at most two sub-tasks;
however, it attempts to overcome this limitation by developing a noisy promotion strategy.

3.3 LMs Predict via Noisy Promotion and Low Selectivity

To further understand the “noisy promotion” effect of LM components, we conduct the
second analysis to look at the recall and precision of an LM component’s promotion. Unlike
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the previous analysis, which focuses on whether an LM component comparatively ranks the
correct token with a higher logit than the other three distractors (Tneg), this analysis checks
the absolute logit value projected by an LM component to each answer token. Specifically,
recall measures whether a component promotes the correct answer token for the associated
inputs (irrespective of whether the distractors are promoted), and precision measures
whether the component promotes a token only when the token is the true answer.

We use Algorithm 2 to identify which tokens each LM component promotes, based on a
fixed promotion threshold τ, set to 0.5 in our analysis. To compute recall and precision for
each sub-task, we construct a balanced dataset containing equal numbers of positive and
negative examples, using the same training set introduced in Section 2. For instance, in the
one-paren sub-task, half of the examples require “)” as the correct token sampled from the
one-paren train set, while the remaining examples are sampled evenly from the other three
sub-tasks.

Figure 2 presents the precision–recall scatter plots, averaged across all sub-tasks, for all
attention heads and FF neurons in CodeLlama-7b and GPT-2 Small; results for other models
are shown in Appendix C.2. Our analysis reveals that most components exhibit both low
precision and low recall. A small subset achieves high recall, but notably, we observe an
absence of components with high precision—highlighting a widespread lack of selectivity
across models. This observation suggests that LMs rely on a large number of components
and make heavy use of noisy promotion, where components often activate for both correct
and incorrect tokens—boosting the correct token more strongly, but not exclusively. Conse-
quently, predictions emerge from the aggregate effect of many low-selectivity components,
rather than from a small number of highly precise ones.

(a) CodeLlama-7b (b) GPT-2 Small (c) CodeLlama-7b (d) GPT-2 Small

Figure 2: Scatter plots of average precision vs. recall across all sub-tasks for attention heads
(left two) and FF neurons (right two) of CodeLlama-7b and GPT-2 Small.

4 Ranking and Steering LM Components for Performance Enhancement

Our analysis in Section 3 indicates that LMs developed both sound and faulty mechanisms
for the balanced parentheses tasks, and that they make predictions via a noisy promotion
strategy. We hypothesize that the errors of balanced parentheses do not stem from the
absence of sound mechanisms, but rather from their influence being overshadowed by the
faulty ones that introduce noise into the model’s computation. Inspired by the hypothesis,
we propose RASTEER, an approach aiming to improve an LM’s performance on the bal-
anced parentheses task by first RAnking LM components based on the soundness of their
mechanisms and then STEERing these components to augment their effect, so as to get rid of
the mechanism overshadowing.

4.1 RASTEER: Ranking and Steering LM Components

We rank the LM components in the following order. First of all, we group LM components
based on their generalizability (Section 3.2) and sort them based on the number of sub-tasks
they generalize to in a descending order. Then, within each generalizability group, we
further sort components based on their promotion effect averaged over all the sub-tasks
(Section 3.3). In experiments, we consider recall, precision, and F1 as the metrics and decide
the most effective one based on the experimental results. Like in our analysis, the sorting
process utilized a training set for each sub-task.
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Given a sorted list of LM components, we perform LM steering to increase the impact of the
top-k components on the final prediction. Specifically, for each selected component c, we
scale its activation hc by a multiplier α ∈ [1.1, 2.0] before adding it to the residual stream.

4.2 A Strong Baseline: Ranking LM Components from Circuit Discovery

In contrast to our top-down approach of only finding LM components that have strong con-
tributions to a model’s prediction, recent research on Mechanistic Interpretability (MI) (Rai
et al., 2024; Bereska & Gavves, 2024; Elhage et al., 2021) takes an bottom-up approach
to identify a complete mechanism (particularly, circuits (Wang et al., 2023; Hanna et al.,
2023; Nikankin et al., 2025)) for LM behaviors Given its promise, we add a circuit baseline.
Specifically, we discover one circuit for each sub-task following the activation patching
of Nikankin et al. (2025), which focuses on localizing causally important attention heads
while retaining all FF layers.3 We then rank each attention head based on its patching effect
averaged over sub-tasks. Steering is only performed to attention heads. We leave details of
our circuit discovery in Appendix D.

5 Experiments

5.1 Experimental Setup

Dataset We mainly evaluate our approach on the test set of balanced parentheses for each
sub-task, which consists of 150 examples drawn from the same synthetic configuration
but disjoint from the training set, as described in Section 2. In addition, to verify that the
steering intervention does not degrade the model’s general coding performance, we also
evaluate our approach on HumanEval (Chen et al., 2021), a standard benchmark dataset for
evaluating the coding capability of an LM. For both datasets, we report the accuracy of the
model before and after steering.

Approaches and Configuration We experiment with three variants when applying RASTEER
to steer (1) only attention heads, (2) only FF neurons, and (3) both attention heads and FF
neurons. Notably, we promote the same set of attention heads for all sub-tasks as we
rank LM components based on an averaged effect over all sub-tasks; we expect steering
to enhance all sub-tasks. The demand is also because, in practice, we would not foresee
the category of sub-task that an upcoming input falls into. Similarly, we steer attention
heads across all token positions, since we do not assume prior knowledge of the position at
which the model must generate a closing parenthesis. In each variant, we vary the number
of top-ranked components to steer and observe its impact on the model performance. For
the circuit baseline, since we only calculate effect scores for attention heads, the steering
experiments were conducted on attention heads only. For all steering experiments, we use
the dev set to determine the optimal scaling multiplier (α) for each model. Model inference
is performed via greedy decoding for stability.

5.2 Main Experimental Results

RASTEER provides dramatic improvement on three-paren and four-paren sub-tasks In
Figure 3, we present the effect of RASTEER on the three-paren and four-paren sub-tasks,
when steering the top attention heads or the top FF neurons. On the one-paren and two-
paren sub-tasks, all models achieved almost perfect accuracy pre-steering and were not
impacted by steering. Our approach, by promoting more reliable components at the top,
leads to dramatic performance gains on the balanced parentheses tasks. For instance, GPT-2
XL initially achieved 0% accuracy on three and four-paren sub-tasks, yet promoting only the
top-10 attention heads results in an improvement to ∼ 100% accuracy. Similar trends were
observed across all models: promoting the top-60 attention heads leads to ∼ 100% accuracy
of models on all sub-tasks, with the exception of GPT-2 Small on the four-paren sub-task.

3We do not localize both attention heads and FF neurons due to the prohibitively high computa-
tional cost.
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(a) RASTEER-Attention Heads (b) RASTEER-FF Neurons (c) Circuit Baseline

(d) RASTEER-Attention Heads (e) RASTEER-FF Neurons (f) Circuit Baseline

Figure 3: Performance of RASTEER (steering either attention heads or FF neurons) and the
circuit baseline on the three-paren (top) and the four-paren (bottom) sub-tasks. When zero
heads or neurons are steered, it shows each model’s raw performance without steering.
Results of RASTEER on one-paren and two-paren sub-tasks and when steering both attention
heads and FF neurons are provided in Appendix E.1.

Interestingly, we observe that larger models generally require fewer component promotions
to achieve strong performance. For example, in the four-paren sub-task, only GPT-2 Small
and Medium required more than the top-10 attention heads for substantial improvements,
while all other models achieve ∼ 100% accuracy by promoting just the top-10 attention
heads. We further analyze the limitations of RASTEER on the four-paren subtask for GPT-2
Small in Appendix F.2.

Attention heads promotion yielded better performance than promoting FF neurons We
observed that promoting only the attention heads achieved performance comparable to
joint promotion of both the attention heads and the FF neurons, while promoting only FF
neurons resulted in little to no improvement, particularly for smaller models. For example,
in GPT-2 XL, promoting sixty FF neurons had no effect on the three-paren sub-task, whereas
promoting just five attention heads improved model performance from 0% to 100%. A
similar trend was observed across all GPT-2 models on the four-paren sub-task. We posit that
attention heads are more effective for steering because they are not structurally constrained
in the same way as FF neurons, which appear to generalize to only a limited number of
sub-tasks, as discussed in Section 3.2. Additionally, FF neurons may require coordination
with other components to influence predictions, rather than contributing meaningfully in
isolation. Based on these findings, we restrict our subsequent experiments to the attention
head steering.

RASTEER with components ranked by F1-score has the best performance We ranked
components using three reliability metrics: recall, precision, and F1-score. We show the
results based on F1-score in Figure 3 and others in Appendix E.2. Among these, F1-score
consistently yielded the best overall performance. Between recall and precision, recall
outperforms precision—aligning with our earlier analysis in Section 3, which suggests that
LMs tend to rely more on noisy promotion rather than highly selective, precise components.

RASTEER outperforms the circuit baseline As shown in Figure 3, RASTEER consistently
outperforms the circuit baseline across models and tasks. While the circuit baseline yields
comparable improvements in models with over a billion parameters, it proves ineffective for
smaller models. For example, in the four-paren sub-task, all GPT-2 models—except GPT-2
XL—failed to benefit from promoting the top-60 attention heads ranked by circuit analysis.
Furthermore, performance even declined as more heads were promoted, suggesting that
component rankings derived from circuit analysis do not reliably translate into effective

8



Accepted to the First Workshop on the Application of LLM Explainability to Reasoning and Planning at COLM 2025

steering strategies for improving model performance. We include a further analysis on the
discrepancy of performance between RASTEER and circuit baseline in Appendix F.

5.3 HumanEval Results

To ensure that our LM steering for the balanced parentheses task does not adversely impact
broader code generation capabilities, we evaluate the post-steering performance on the
HumanEval benchmark (Chen et al., 2021) using CodeLlama-7b, Llama2-7b, and Pythia-6.9b.
We did not experiment with GPT-2 models because they had 0% accuracy on the HumanEval
benchmark. Steering the top-20 attention heads—selected from the parentheses task and
scaled with a multiplier range of [1.1, 2.0], did not degrade HumanEval performance and
even led to a 5.49% improvement for Llama2-7b: CodeLlama (30.48%→ 29.87%), Llama2
(11.58%→ 17.07%), Pythia (10.36%→ 10.97%). However, extending steering beyond the top-
20 heads resulted in performance degradation: CodeLlama-7b and Pythia-6.9b experienced
a modest decline of 1–1.5% when up to 60 heads were promoted, whereas Llama2-7b
maintained a slight gain with best performance while promoting just top-20 attention heads.
These results suggest that targeted promotion of a small set of reliable components can improve
task-specific performance without compromising general capabilities, while broader interventions
may lead to diminishing returns or adverse effects.

5.4 Does RASTEER Generalize to Arithmetic Reasoning?

We further assess RASTEER on an arithmetic task using three models: GPT-2 XL (Radford
et al., 2019), Pythia-6.9b (Biderman et al., 2023), and Llama3-8b (Dubey et al., 2024).4
We consider a two-operand arithmetic reasoning task, for which we construct a dataset
comprising 750 training, 350 dev, and 350 test set examples. Each input prompt consists
of four tokens: the first operand, an operator (+, −, ×, ÷), the second operand, and an
equals sign. To construct the dataset, we randomly sample integers in the range [0, 500] for
both operands and ensure that the resulting answer also falls within this range to ensure
single-integer tokenization. Because the task does not have sub-task categorization similar
to the balanced parenthese task, when applying RASTEER, we only ranked LM components
based on their promotion effect on the training set, following Algorithm 2. We chose recall
as the promotion effect metric as we observed a similar noisy promotion strategy in this
task.

As shown in Table 2, RASTEER yields performance improvements across most arithmetic
operations for all three models, with the largest gain of 20.25% observed in Pythia-6.9b for
multiplication. These results show that our method can potentially generalize beyond the
balanced parentheses task and also indirectly support our central insights from Section 3:
LMs rely on a large number of components with varying reliability, generating predictions through
the noisy token promotion of these components.

Table 2: Performance of RASTEER when steering top-30 attention heads sorted by recall on
two-operand arithmetic tasks

Model Addition Subtraction Multiplication Division

GPT-2 XL 0.00%→ 0.00% 0.00%→ 0.00% 17.50%→ 17.50% 19.66%→ 23.66%
Pythia-6.9b 25.41%→ 31.66% 0.00%→ 2.50% 14.41%→ 34.66% 19.91%→ 34.75%
Llama3-8b 82.33%→ 84.33% 87.91%→ 88.00% 74.08%→ 80.08% 78.16%→ 79.91%

4Other GPT-2 models are excluded due to their inability to perform the task, while CodeLlama-7b
and Llama2-7b are omitted because they tokenize a complete integer into multiple tokens of digits,
making the token prediction-based analysis difficult. Following Nikankin et al. (2025), we avoid such
models.
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6 Limitations and Conclusion

In this work, we study the mechanisms for why LMs make errors in simplistic balancing
parentheses tasks and also propose a steering approach to improve them. While RAS-
TEER substantially improves LM performance on both balanced parentheses and arithmetic
reasoning tasks, our study conducted using synthetic data may have exaggerated its effec-
tiveness. Additionally, our method also relies on simple heuristics: components are ranked
using recall, precision, and F1-score, and promoted via fixed scalar multipliers. Future
work could explore more sophisticated techniques for both ranking and promotion. Lastly,
rather than reconstructing full mechanisms or circuits, we focus on steering components
that directly influence the final logit. We believe that this form of functional interpretability,
centered on understanding high-impact LM components for practical applications, remains
underexplored.
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A Related Work

LMs for Code Generation and Syntactic Failures Recent advances in LMs have led to
significant improvements in their code generation capability (Grattafiori et al., 2024; Achiam
et al., 2023; Nijkamp et al., 2023; Li et al., 2023b; Fried et al., 2022; Roziere et al., 2023).
However, LMs are still prone to a range of semantic and syntactic errors, including balanced
parentheses, and indentations (Dou et al., 2024; Wang et al., 2024). To investigate these
findings, our work focuses on the balanced parentheses task as a representative task to
study the internal mechanisms of LMs for the syntactic task. Furthermore, we also explore
whether we can leverage understanding from our interpretability study to mitigate these
failures without harming overall model performance on broader code generation tasks.

Mechanistic Interpretability (MI) MI is a subfield of interpretability that aims to reverse-
engineer the algorithms learned by a model (Lindsey et al., 2025; Bricken et al., 2023;
Elhage et al., 2021; Olah et al., 2020; Rai & Yao, 2024). In our study, we employ techniques
and insights from MI to identify and study LM components that implement the balanced
parentheses task. However, in our work, we do not aim to fully reconstruct the underlying
algorithm or circuit responsible for this behavior. This is primarily because our analysis
in Section 3 indicated that the model does not rely on a single mechanism, but rather on a
large number of components, making it impractical to interpret each mechanism in detail,
in line with recent work findings that LMs often employ multiple mechanisms for tasks
such as arithmetic reasoning (Nikankin et al., 2025) and factual recall (Chughtai et al., 2024).

LM Generation Steering Steering LM generation has recently emerged as a popular
lightweight approach for controlling model behavior at inference time (Rimsky et al., 2024;
Turner et al., 2023; Zou et al., 2023; Liu et al., 2024). Most approaches use steering vectors
to elicit high-level traits like honesty (Zou et al., 2023), truthfulness (Li et al., 2023a), syco-
phancy (Rimsky et al., 2024), or sentiment (Tigges et al., 2023), and have been applied to
enhance capabilities (Wu et al., 2024; Liu et al., 2024; van der Weij et al., 2024) and support
red-teaming (Arditi et al., 2024; Rimsky, 2023). In our work, we do not use the steering
vectors approach, as it is not clear what vectors to look for a multi-class, position-sensitive
task like balancing parentheses. Instead, we focus on identifying and promoting specific
model components that contribute reliably to correct predictions. While activation steering
has been extensively studied, steering generation through the promotion of individual
model components remains relatively underexplored (Geva et al., 2022).
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B Model Performance on Balanced Parentheses Task

Table 3: Accuracy of LMs on the balanced parenthesis task, LM when the ground-truth
token includes one, two, three, and four closing parentheses, respectively.

Model One-Paren Two-Paren Three-Paren Four-Paren
GPT-2 Small 100.00% 100.00% 49.00% 0.00%

GPT-2 Medium 100.00% 100.00% 93.00% 0.00%

GPT-2 Large 100.00% 100.00% 88.00% 0.00%

GPT-2 XL 100.00% 100.00% 0.00% 0.00%

Llama2-7b 100.00% 100.00% 100.00% 1.00%

CodeLlama-7b 99.00% 100.00% 98.00% 87.00%

Pythia-6.9b 100.00% 100.00% 100.00% 83.00%

C Additional Results of LM Components Analysis

C.1 Accuracy Distributions of Attention Heads across Sub-tasks

The accuracy distribution of the attention heads for GPT-2 Small, GPT-2 Medium, GPT-2
Large, Llama2-7b, and Pythia-6.9b is shown in Figure 4.

C.2 Precision vs. Recall Analysis Across Models

Figure 5 shows the precision vs recall analysis across all sub-tasks for both attention head
and neurons. For all models, most components exhibit both low precision and low recall. A
small subset achieves high recall, but notably, we observe an absence of components with
high precision—highlighting a widespread lack of selectivity across models.

C.3 Analysis of Generalizable Attention Heads

In Table 4, we list the attention heads that generalize to one or more sub-tasks and FF
neurons that generalize to more than one sub-task for each model. In Table 5, we present
the attention visualization of three heads, two generalizable and one not.
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Table 4: List of attention heads that generalize to one or more sub-tasks and FF neurons that
generalize to more than one sub-task.

Model Generalizable Attention Heads Generalizable FF Neu-
rons

GPT-2 Small L1H1 (1-paren), L1H4 (2-paren), L2H6 (1-paren), L4H5 (2-paren),
L5H3 (2-paren), L6H3 (3-paren), L7H6 (4-paren), L8H5 (1-paren),
L10H3 (2-paren), L10H5 (3-paren), L11H8 (1-paren), L9H10 (1-
paren, 2-paren)

N/A

GPT-2 Medium L1H7 (1-paren), L9H8 (3-paren), L13H10 (2-paren), L14H7 (2-
paren), L16H0 (2-paren), L16H3 (4-paren), L19H3 (2-paren),
L19H9 (3-paren), L21H1 (1-paren), L23H8 (3-paren), L17H5 (1-
paren, 3-paren), L18H6 (1-paren, 2-paren)

N/A

GPT-2 Large L1H3 (1-paren), L2H5 (1-paren), L3H11 (1-paren), L4H17 (1-
paren), L5H17 (1-paren), L6H19 (1-paren), L8H11 (2-paren),
L10H4 (3-paren), L11H3 (4-paren), L12H8 (4-paren), L12H15 (4-
paren), L13H10 (4-paren), L14H3 (4-paren), L15H14 (2-paren),
L18H11 (2-paren), L23H6 (2-paren), L27H3 (2-paren), L30H9 (4-
paren), L22H15 (1-paren, 2-paren), L24H3 (1-paren, 4-paren),
L25H4 (1-paren, 2-paren), L26H8 (2-paren, 3-paren)

L29N1354 (1-paren, 2-
paren)

GPT-2 XL L1H24 (1-paren), L2H13 (1-paren), L3H10 (1-paren), L4H2 (1-
paren), L7H16 (4-paren), L7H22 (4-paren), L14H3 (4-paren),
L14H18 (1-paren), L15H9 (3-paren), L16H22 (4-paren), L18H13
(2-paren), L18H23 (4-paren), L19H4 (2-paren), L19H6 (4-paren),
L21H0 (4-paren), L21H5 (3-paren), L21H11 (4-paren), L22H13
(4-paren), L22H18 (4-paren), L23H3 (2-paren), L23H6 (4-paren),
L24H15 (4-paren), L24H24 (2-paren), L25H0 (2-paren), L26H16
(3-paren), L26H18 (4-paren), L27H7 (2-paren), L27H10 (2-paren),
L29H3 (4-paren), L29H12 (2-paren), L30H14 (2-paren), L31H18
(4-paren), L32H0 (1-paren), L33H11 (2-paren), L34H14 (2-paren),
L35H22 (2-paren), L41H19 (2-paren), L42H5 (1-paren), L13H17
(1-paren, 4-paren), L32H1 (2-paren, 3-paren), L42H16 (2-paren,
3-paren), L30H16 (1-paren, 2-paren, 3-paren)

L36N1149 (1-paren,
3-paren), L36N5870 (1-
paren, 3-paren)

CodeLlama-7b L0H0 (1-paren), L1H6 (1-paren), L1H7 (4-paren), L8H29 (1-paren),
L15H16 (1-paren), L16H12 (4-paren), L18H20 (1-paren), L18H21
(1-paren), L21H22 (2-paren), L22H4 (1-paren), L24H18 (1-paren),
L24H23 (1-paren), L25H5 (1-paren), L26H6 (1-paren), L27H4 (3-
paren), L28H22 (4-paren), L28H29 (3-paren), L29H7 (1-paren),
L29H12 (1-paren), L29H29 (1-paren), L30H11 (1-paren), L30H13
(1-paren), L31H4 (1-paren), L31H8 (4-paren), L31H10 (1-paren),
L31H14 (1-paren), L31H18 (1-paren), L17H17 (1-paren, 2-paren),
L27H15 (1-paren, 2-paren), L27H24 (1-paren, 2-paren), L28H13
(1-paren, 2-paren), L29H0 (1-paren, 2-paren), L31H22 (3-paren,
4-paren), L30H0 (1-paren, 2-paren, 3-paren, 4-paren)

L19N11 (1-paren, 4-
paren), L20N3998
(1-paren, 4-paren),
L22N8326 (1-paren,
2-paren), L27N9695 (2-
paren, 3-paren), L29N8515
(1-paren, 2-paren)

Llama2-7b L1H30 (1-paren), L3H3 (1-paren), L17H17 (1-paren), L18H21 (1-
paren), L20H25 (3-paren), L22H4 (1-paren), L24H18 (1-paren),
L25H5 (2-paren), L25H24 (4-paren), L27H24 (2-paren), L28H13
(1-paren), L28H29 (4-paren), L29H0 (1-paren), L31H4 (1-paren),
L31H5 (4-paren), L31H8 (2-paren), L31H21 (1-paren), L31H22 (4-
paren), L27H15 (1-paren, 2-paren), L30H0 (2-paren, 3-paren)

L15N6063 (1-paren, 3-
paren), L19N11 (1-paren,
4-paren), L20N3998
(1-paren, 4-paren),
L27N5474 (2-paren,
4-paren), L30N9014 (1-
paren, 2-paren)

Pythia-6.9b L4H21 (1-paren), L9H20 (3-paren), L10H14 (1-paren), L10H21
(1-paren), L12H12 (3-paren), L13H7 (1-paren), L13H26 (2-paren),
L14H9 (1-paren), L14H11 (2-paren), L15H9 (1-paren), L16H12
(1-paren), L17H10 (1-paren), L18H6 (4-paren), L19H27 (1-paren),
L22H10 (1-paren), L23H8 (4-paren), L26H10 (2-paren), L26H13
(1-paren), L27H1 (1-paren), L27H3 (3-paren), L27H18 (1-paren),
L28H17 (1-paren), L29H15 (1-paren), L10H0 (1-paren, 2-paren),
L10H7 (1-paren, 2-paren), L29H17 (1-paren, 2-paren), L30H22 (2-
paren, 3-paren)

L21N13821 (1-paren,
4-paren), L25N2012 (1-
paren, 4-paren)
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(a) One-Paren (b) Two-Paren (c) Three-Paren (d) Four-Paren

Figure 4: The plots illustrate how attention head accuracy varies across sub-tasks across six
models. Each row corresponds to a different model: top to bottom—GPT-2 Small, GPT-2
Medium, GPT-2 Large, GPT-2 XL, Llama2-7b, CodeLlama, and Pythia-6.9b. Attention heads
with accuracy below 0.01 are excluded to avoid distortion of the distribution due to their
high frequency.
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(a) GPT-2 Medium (b) GPT-2 Large (c) GPT-2 XL (d) Llama2-7b

(e) GPT-2 Medium (f) GPT-2 Large (g) GPT-2 XL (h) Llama2-7b

Figure 5: Scatter plots of average precision vs. recall across all sub-tasks for attention heads
(Top) and FF neurons (Bottom)

Sub-Task L30H0 (CodeLlama) L30H16 (GPT-2 XL) L30H2 (CodeLlama)

One-Paren

Two-Paren

Three-Paren

Table 5: Attention visualization of attention heads. L30H0 of CodeLlama generalizes to all
four sub-tasks. L30H16 of GPT-2 XL generalizes to one-, two-, and three-paren. L30H2 of
CodeLlama does not generalize to any sub-task.
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D Details and Results of Circuit Discovery

We follow the same activation patching approach of Nikankin et al. (2025) to discover
circuits for each sub-task. We only localize important attention heads while retaining all FF
layers in the circuit to mitigate the high computational cost of the circuit experiments. In
our preliminary exploration, computationally efficient approaches that try to approximate
activation patching, such as edge attribution patching (Syed et al., 2024; Hanna et al., 2024),
did not yield circuits with reasonable faithfulness scores.

Methodology Activation patching requires three forward passes—a clean run, a corrupt
run, and a patched run, to evaluate an LM component’s effect on the performance of a
sub-task, where the predicted next-token of the clean run is the sub-task’s correct target
label and the corrupt run results in the prediction of a token that isn’t the correct target label.
In a noising-based approach (Rai et al., 2024; Heimersheim & Nanda, 2024), the patched
run takes the input of the clean run, i.e., the clean prompt, as its input and “patches” in the
associated cached activation from the corrupted run for an LM component to determine
how important that component is for the successful performance of the sub-task. Following
Nikankin et al. (2025), we define the effect score of an LM component as in Equation 4,
where Pclean and Ppatched represent the probability distribution of the next-token predictions
for the clean and patched runs, respectively, and r and r′ represent the target token of the
clean prompt and the counterfactual prompt, respectively. This metric assigns a high effect
score to components whose “patched” runs result in a large decrease of the correct token
label’s probability and/or a large increase of a counterfactual closing parentheses token’s
probability.

E(r, r′) =
1
2

[
Ppatched(r′)− Pclean(r′)

Pclean(r′)
+

Pclean(r)− Ppatched(r)
Ppatched(r)

]
(4)

Counterfactual Prompts in Corrupt Runs The corruption strategy used for the corrupt
runs was resampling ablation (Nikankin et al., 2025; Chan et al., 2022). This corruption
strategy requires the construction of counterfactual prompts to be utilized in corrupt
runs. We constructed these counterfactual prompts for each sub-task by taking its as-
sociated clean prompts and increasing its number of open parentheses by one. This was
done by replacing a single open-parenthesis token contained in the clean prompt with
a token containing two open parentheses for each possible open-parenthesis token posi-
tion. For example, for the clean prompt under the two-paren sub-task, “#print the string
160\nprint(str(160”→ “))”, we create its corresponding counterfactual prompt as: “#print
the string 160\nprint(str((160”→ “)))”. For the four-paren sub-task, this token replace-
ment strategy resulted in counterfactual prompts that were unable to be completed within a
single-token prediction. In this case, we consider the subsequent token as r′. For example,
for CodeLlama-7b, the counterfactual prompt for the four-paren sub-task can be “#print the
string 615\nprint((str(str(str(615”→ “))”.

Dataset Construction We utilized the same training set as RASTEER for each sub-task when
finding circuits (also described in Section 5.1). Specifically, we collected positive prompts for
the sub-task (e.g., prompts demanding “)” as the true token in the one-paren sub-task) as the
clean prompts, and additionally filtered out prompts where the model cannot successfully
predict the true token. This additional constraint of a clean prompt resulting in a correct
target token prediction was imposed to reduce the amount of unintended noise contained
in the LM components’ effect scores; the same strategy was also adopted by Nikankin et al.
(2025). To ensure equal training dataset sizes between RASTEER and the circuit discovery
baseline, additional clean prompts that fulfilled this constraint were sampled using the
respective sub-task’s prompt template, on the condition that the three-digit integer contained
in these prompts did not overlap with the three-digit integers contained in the sub-task’s
test-set prompts. This additional sampling of clean prompts was exclusive to the sub-task’s
training datasets and was not performed on the sub-task’s test datasets to maintain a fair
comparison between the methods.
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Subsequently, the respective clean prompts were used to generate counterfactual prompts,
where we replaced a single open-parenthesis token in the clean prompt with a two-
parenthesis token, varying the position of this replacement and optionally replacing the
integer number to increase the number of candidate counterfactual prompts. These candi-
date prompts were then filtered on the constraint that the logit of the clean prompt’s target
token (e.g., “))” in two-paren) is less than the logit of the corrupt token (e.g., “)))” for cor-
rupt prompts in two-paren) under the counterfactual prompt. The resulting counterfactual
prompts for each sub-task were used to form the final dataset for activation patching. This
filtering step was relaxed for model/sub-task combinations, which resulted in an empty
filtered counterfactual-prompt set, to allow for a baseline comparison for all model/sub-task
combinations where the model could successfully perform the sub-task.

Finally, in order to understand the quality of each discovered circuit, we applied the same
dataset construction strategy to sample clean prompts and generate counterfactual prompts
for examples on the test set of each sub-task. Note that we created this modified test set
only for the purpose of evaluating circuits, whereas in our main evaluation (Section 5.2), all
approaches were evaluated on exactly the same test sets.

Results of Circuit Discovery We define the faithfulness of a circuit as how much of
the model’s performance on each sub-task, more specifically, the logit value of the clean
prompt’s correct target token, can be accounted for by the circuit (Wang et al., 2023; Nikankin
et al., 2025). To evaluate the faithfulness of a prospective circuit, a circuit run, a model run,
and a corrupted run are required for every clean and counterfactual prompt pair in the
test dataset. For the circuit and model runs, the clean prompt is used as the input, while
for the corrupted run, the counterfactual prompt is used as the input. In a circuit run, the
output activations of all non-circuit LM components are “patched” with their associated
activations from a cached corrupted run. No interventions are required for the model and
corrupted runs. Following Nikankin et al. (2025), we measure faithfulness using the metric in
Equation 5, where NLcircuit(correct), NLmodel(correct), and NLcorrupt(correct) represent the
logit value of the correct target token normalized by the maximal logit. This metric has an
upper bound of 1.0 for all model/sub-task combinations and a lower bound of −1.0 when
the counterfactual prompts for a model/sub-task combination meet the above-mentioned
filtering criteria. We consider a circuit faithful if it achieves an average faithfulness score of
0.9 across the test dataset.

F(circuit) =
NLcircuit(correct)− NLcorrupt(correct)
NLmodel(correct)− NLcorrupt(correct)

(5)

Table 6 presents the faithfulness scores of circuits when only top-K attention heads (sorted
by their effect scores) are retained. We only present the result of K when the model achieves
a high faithfulness score.

Table 6: Faithfulness scores of circuits found for model/sub-task combinations, where the
circuit consists of all FF components and the top-K position-dependent attention heads,
in terms of their effect scores. Note that for sub-tasks that a model is unable to achieve
non-zero accuracy, activation patching cannot be applied; as a result, we skip finding circuits
for them.

Model One-Paren Two-Paren Three-Paren Four-Paren

GPT-2 Small 0.96 (K=1) 0.91 (K=1) 0.90 (K=1264) –
GPT-2 Medium 0.98 (K=15) 0.91 (K=11) 0.96 (K=3454) –
GPT-2 Large 0.96 (K=18) 0.91 (K=4902) 0.95 (K=6748) –
GPT-2 XL 0.97 (K=10) 0.90 (K=8179) – –
Llama2-7b 0.92 (K=9) 0.96 (K=24) 0.92 (K=50) –
CodeLlama-7b 0.94 (K=31) 0.95 (K=23) 0.97 (K=5) 0.91 (K=152)
Pythia-6.9b 0.95 (K=6) 0.90 (K=5) 0.93 (K=146) 0.90 (K=157)
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E Additional Results of RASTEER

E.1 Results of RASTEER When Steering Both Attention Heads and FF Neurons using F1
Ranking Metric

As shown in Figure 6, steering both attention heads and FF neurons yields better perfor-
mance than steering either component alone, indicating a complementary effect.

(a) Three-Paren (b) Four-Paren

Figure 6: Performance of the model after steering both attention heads and FF neurons
using RASTEER on the three-paren sub-task (left) and the four-paren sub-task (right).

E.2 Results of RASTEER using Recall and Precision for Component Ranking

As shown in Figure 7, while both RASTEER with precision- or recall-based ranking metrics
showed improved performance, the recall-based metric shows slightly better performance
on the four-paren sub-task for GPT-2 Large.

(a) RASTEER on Three-Paren (b) RASTEER on Four-Paren

(c) RASTEER on Three-Paren (d) RASTEER on Four-Paren

Figure 7: Comparison of RASTEER performance using recall-based (top) and precision-based
(bottom) ranking metrics when steering attention heads on the three-paren and four-paren
sub-tasks.
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Figure 8: Percentage overlap of the top-k RASTEER attention heads, where k=5 for GPT-2 XL,
CodeLlama-7b, and Pythia-6.9b and k=10 for GPT-2 Medium and Llama2-7b, with the top-60
attention heads from the respective circuit baseline, for models where the steering of a small
number of RASTEER attention heads resulted in most of the performance improvement on
the four-paren sub-task. For example, the 0.2 overlap percentage for top-10 circuit attention
heads indicates 1 shared head with RASTEER’s top-5 heads.

F Additional Analysis of RASTEER

F.1 Why Does the Circuit Baseline Underperform RASTEER?

As shown in Figure 3, the circuit baseline performs comparably to RASTEER for larger LMs
(over 1B parameters), but fails to show a consistent correlation between steering important
attention heads and performance improvement in smaller LMs. To better understand
this performance gap, we examine the differences in the attention heads selected by each
method—both in settings where the circuit baseline is effective and where it underperforms.
We first investigate whether the performance gains in the circuit baseline come from steering
the same set of attention heads as RASTEER for the larger LMs. Specifically, we compare
the top heads identified by the circuit baseline with the top-k heads identified by RASTEER,
with k selected to be the minimal number of heads that raise a model’s accuracy to ∼ 100%
when steered (referred to as “minimal effective heads” onwards). As shown in Figure 8,
the degree of overlap varies between 20− 100%, which shows that the two approaches
can identify different sets of important heads. To further isolate the contribution of shared
heads on performance improvement, we perform a minimal steering experiment, where
for CodeLlama, Pythia, and Llama2, we steer the shared minimal effective heads between
the two approaches. For example, for CodeLlama, both approaches need only top-5 heads
for steering the model to achieve a 100% accuracy, and we steer the 3 heads overlapped
between them (i.e., 0.6 percentage when x = 5 in Figure 8). We skip GPT2-XL because of
the high overlap. We observe that steering only this minimal shared effective heads led
to a similar ∼100% accuracy for Llama2 and CodeLlama but no improvement for Pythia.
This indicates that the overlapping heads are generally a smaller subset of necessary heads
for steering, but not always. This is especially evident in Pythia-6.9b, where steering two
disjoint sets of four heads (excluding the shared one) from each method independently
achieves ∼100% accuracy, highlighting the redundancy of useful mechanisms within the
model.

Next, we investigate why the circuit baseline is not effective for smaller LMs. Since the circuit
analysis consists of heads that will not be discovered by RASTEER and are responsible for
intermediate computations such as inter-token information transfer and feature extraction,
we posit that these additional heads may introduce instability in steering. To test the effect
of steering these additional components, we steer the top-10 RASTEER heads in GPT-2
Medium, which has a performance of ∼ 100%, along with 5 circuit-identified heads from
non-final token positions (which cannot directly affect the output). This led to a decline
in accuracy from ∼ 100% to 4.00%, and adding 5 more (10 in total) such heads collapses
performance to near 0.00%. This indicates that not all task-relevant components are good
for steering. Specifically, components that are functionally important for the task but do not
directly affect the final logit may introduce instability when promoted.
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(a) GPT-2 Small (b) GPT-2 Medium

Figure 9: F1-score distributions of the top-60 RASTEER attention heads sorted by sub-task
F1-Score for GPT-2 Small and GPT-2 Medium.

F.2 Why Does RASTEER-Attention Heads Fail on the Four-paren for GPT-2 Small?

We attempt to answer this question by first examining whether GPT-2 Small lacks attention
heads to steer that are accurate for the four-paren sub-task compared to models where
RASTEER was successful. In Table 4, we find that while some of the models, i.e., GPT-2
Large, GPT-2 XL, CodeLlama-7b, and Llama2-7b, have a comparatively larger number of
attention heads that are accurate on the four-paren sub-task to GPT-2 Small’s one four-paren
accurate attention head, some models, i.e., GPT-2 Medium and Pythia-6.9b, have a similar
or equal number of four-paren accurate attention heads. Thus, it appears that GPT-2 Small’s
low number of four-paren accurate attention heads is not the sole reason for RASTEER’s
failure.

Following, we examine if GPT-2 Small has a dramatic weakness in terms of noisy promotion,
such that the ground-truth token is under-promoted or other candidate tokens are over-
promoted for the four-paren sub-tasks’ prompts, compared to models with a similar number
of four-paren accurate attention heads. We chose to directly compare the noisy promotion
of GPT-2 Small with GPT-2 Medium, instead of Pythia-6.9b, due to these models having
the same number of four-paren accurate attention heads and similar performance on the
four-paren sub-task before applying RASTEER. We examine the sub-task level F1-scores
of the top-60 RASTEER attention heads of each model for the three-paren and four-paren
sub-tasks. In Figure 9, we observe similar F1-score distributions for each model/sub-task
combination with closely matching counts of attention heads with low/high F1-scores.
Indicating that there is a similar number of attention heads across GPT-2 Small and GPT-2
Medium that will correctly promote the ground-truth token/incorrectly promote other
candidate tokens for the four-paren sub-tasks’ prompts. Thus, it appears that GPT-2 Small’s
lack of substantial performance increase after applying RASTEER is not due to a weakness
in its noisy promotion, but rather an unexplored factor.
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G Experiments compute resources

We conduct all experiments on an NVIDIA A100 GPU with 40GB of GPU memory and up
to 50GB of CPU memory.

H Licenses for existing assets

We use the following open-weight models for our experiments.

H.1 Models

• GPT-2 Models (Radford et al., 2019) (Modified MIT License at https://github.com/
openai/gpt-2/blob/master/LICENSE)

• Llama2-7b(Touvron et al., 2023): Special Llama-2 License at (https://www.llama.
com/license/)

• Llama-3 8b (Grattafiori et al., 2024): Special Llama-3 License at https://llama.meta.
com/llama3/license/

• CodeLlama-7b (Roziere et al., 2023): Special Llama-2 License at https://github.
com/meta-llama/llama/blob/main/LICENSE

• Pythia-6.9b (Biderman et al., 2023): Apache License 2.0 at https://github.com/
EleutherAI/pythia/blob/main/LICENSE
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