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ABSTRACT

In the present era of deep learning, continual learning research is mainly focused
on mitigating forgetting when training a neural network with stochastic gradient
descent (SGD) on a non-stationary stream of data. On the other hand, there is a
wealth of research on sequential learning in the more classical literature of statis-
tical machine learning. Many models in this literature have sequential Bayesian
update rules that yield the same learning outcome as the batch training, i.e., they
are completely immune to catastrophic forgetting. However, they suffer from un-
derfitting when modeling complex distributions due to their weak representational
power. In this work, we introduce a general meta-continual learning (MCL) frame-
work that combines neural networks’ strong representational power and simple
statistical models’ robustness to forgetting. In our framework, continual learning
takes place only in a statistical model in the embedding space via a sequential
Bayesian update rule, while meta-learned neural networks bridge the raw data and
the embedding space. Since our approach is domain-agnostic and model-agnostic,
it can be applied to a wide range of problems and easily integrated with exist-
ing model architectures. Compared to SGD-based MCL methods, our approach
demonstrates significantly improved performance and scalability.

1 INTRODUCTION

Continual learning (CL), acquiring new knowledge or skills without forgetting existing ones, is
an essential ability of intelligent agents. Despite recent advances in deep learning, CL remains a
significant challenge, and there is a compelling reason for this difficulty. Knoblauch et al. (2020)
rigorously proves that, in general, CL is an NP-hard problem. This implies that building a universal
CL algorithm effective for all scenarios is impossible as long as P̸=NP. To effectively tackle a CL
problem, there must be some inherent structure in the problem, and the algorithm should possess
prior knowledge to leverage it. Even in the case of humans, our CL abilities are specialized for
specific tasks, such as learning new faces, and are not as effective for others, like memorizing random
digits. This specialization results from the evolutionary process that has optimized our CL abilities
for survival and reproduction.

From this perspective, meta-continual learning (MCL) emerges as a highly promising avenue of
research. Rather than manually crafting a CL algorithm based on human knowledge, MCL aims
to meta-learn the CL ability in a data-driven manner. Therefore, it is often described as learning
to continually learn. Like meta-learning, which encompasses multiple learning episodes, the MCL
problem setting involves numerous CL episodes. Each of these episodes can be likened to the
lifecycle of an organism in an evolutionary process. MCL also follows the bi-level optimization
structure of meta-learning: in the inner loop, a CL algorithm produces a model trained on a CL
episode, while in the outer loop, the CL algorithm is optimized across multiple episodes.

Since stochastic gradient descent (SGD) is the primary optimization method for neural networks,
most CL research focuses on mitigating forgetting the previous knowledge when training neural
networks on a non-stationary data stream. As such, several approaches in MCL (Javed & White,
2019; Beaulieu et al., 2020) incorporate SGD as the primary update rule in the inner loop.

Meanwhile, the bi-level optimization structure of MCL offers the flexibility to combine meta-learned
neural networks with inner update rules other than SGD. In this context, the sequential Bayesian
update stands out as the most promising candidate, providing an ideal framework for updating a
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knowledge state. While there have been a significant number of CL approaches based on the idea
of updating the posterior belief of neural network parameters (Kirkpatrick et al., 2016; Zenke et al.,
2017; Chaudhry et al., 2018; Nguyen et al., 2018; Farquhar & Gal, 2019), various approximations are
necessary to ensure computational tractability, which sets them apart from the ideal Bayesian update.
On the other hand, we bring the Fisher-Darmois-Koopman-Pitman theorem (Fisher, 1934; Darmois,
1935; Koopman, 1936; Pitman, 1936) into the scope to point out that the exponential family is the
only family of distributions that are capable of efficient and lossless sequential Bayesian update
(more precise description in §2.2). Instead of dealing with the intractable posterior of complex
neural networks, we consider the sequential Bayesian inference of simple statistical models that
inherently come with an exponential family posterior, yielding a result identical to batch inference.
While these models are immune to catastrophic forgetting by design, they are often too simple for
modeling complex, high-dimensional data. Fortunately, the MCL setting offers meta-learned neural
networks that can work as bridges between complex real-world and a streamlined embedding space
where the statistical models can thrive.

We distill this idea of combining simple statistical models and meta-learned neural networks into a
general MCL framework, which we call Sequential Bayesian Meta-Continual Learning (SB-MCL)
Since SB-MCL is domain-agnostic and model-agnostic, it can be applied to a wide range of problem
domains and integrated with existing model architectures with minimal modifications. SB-MCL
encompasses several prior works (Banayeeanzade et al., 2021; Snell et al., 2017; Harrison et al.,
2018) as special cases and supports both supervised and unsupervised learning scenarios.

2 BACKGROUND

2.1 META-CONTINUAL LEARNING

We start by describing the problem setting of MCL. We denote an example (x, y) where x is an
input variable, and y is an output variable, assuming a supervised setting by default. One can
replace (x, y) with x for unsupervised learning settings. A CL episode (D, E) consists of a training
stream D = ((xt, yt))

T
t=1 and a test set E = {(x̃n, ỹn)}Nn=1. The training stream is an ordered

sequence of length T , and its examples can only be accessed sequentially and cannot be accessed
more than once. It is assumed to be non-stationary and typically constructed as a concatenation of
K distinct task streams. Naively training a neural network on such a non-stationary stream with
SGD will result in catastrophic forgetting of the knowledge from the previous part of the stream.
The test set consists of examples of the tasks appearing in the training stream, such that the model
needs to retain knowledge of all the tasks to obtain a high score in the test set. In MCL, multiple
CL episodes are split into meta-training and meta-test sets. During the meta-training phase, a CL
algorithm is optimized across multiple episodes in the meta-training set to produce a competent
model from a training stream. The algorithm’s CL capability is then measured on the meta-test
set. Note that meta-training and meta-test sets typically do not share any underlying tasks since the
meta-test set aims to measure the learning capability, not the knowledge of specific tasks that appear
during meta-training.

We emphasize that MCL and CL are two distinct problem settings with different underlying assump-
tions and objectives. While the goal of CL is to produce a model for a single episode, MCL aims to
learn a CL algorithm that can produce models for various CL episodes. There are numerous other
approaches that combine meta-learning and CL (Finn et al., 2019; Riemer et al., 2019; Jerfel et al.,
2019; Gupta et al., 2020; to name a few) but differ in problem settings.

2.2 SEQUENTIAL BAYESIAN LEARNING AND THE EXPONENTIAL FAMILY

The Bayes rule offers a principled way to update knowledge incrementally by using the posterior
at the previous time step as the prior for the current time step (Bishop, 2006; Murphy, 2022), i.e.,
p(z|x1:t) ∝ p(xt|z)p(z|x1:t−1). Therefore, the Bayesian perspective has been widely adopted in CL
research (Kirkpatrick et al., 2016; Zenke et al., 2017; Chaudhry et al., 2018; Nguyen et al., 2018;
Farquhar & Gal, 2019). However, prior works have focused on sequentially updating the posterior
of neural network parameters, which are generally intractable to compute. Therefore, they must rely
on various approximations, resulting in a wide gap between the ideal Bayesian update and reality.
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(a) Supervised MCL.
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(b) Unsupervised MCL.

Figure 1: Graphical models of
MCL. For each episode e, exam-
ples (xet , y

e
t ) (or just xet ) are pro-

duced conditioned on the time
step t and the episode-wise latent
variable ze.
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Figure 2: Schematic diagram of our SB-MCL in a single super-
vised CL episode. In SB-MCL, CL is formulated as the sequen-
tial Bayesian update of the variational posterior of the latent vari-
able z. Since the neural network components (the learner and the
model) are meta-learned and remain fixed during training, they
are protected from catastrophic forgetting.

Then, what kind of models are suitable for efficient sequential Bayesian updates? According to the
Fisher-Darmois-Koopman-Pitman theorem (Fisher, 1934; Darmois, 1935; Koopman, 1936; Pitman,
1936), the exponential family is the only family of distributions where the dimension of the sufficient
statistic remains fixed, regardless of the number of examples. This theorem has significant impli-
cations for CL; if the model’s posterior is not a member of the exponential family (as in the case
of neural networks) and does not have a large enough memory system to store the ever-growing
sufficient statistics, forgetting becomes inevitable. From this perspective, employing a replay buffer
(Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019) is an approach that aids in partially preserving
sufficient statistics.

On the flip side, the theorem suggests an alternative approach; by embracing an exponential family
distribution, we can store sufficient statistics within a fixed dimension, enabling efficient sequen-
tial Bayesian updates without any compromises (see also Banayeeanzade et al. (2021)). Although
the exponential family’s expressivity is limited, this challenge can be effectively addressed in MCL
settings by employing meta-learned neural networks to translate complex data into simplified em-
beddings and vice versa.

3 SEQUENTIAL BAYESIAN META-CONTINUAL LEARNING

3.1 THE VARIATIONAL BOUND

Fig. 1 shows the graphical models of our MCL settings. In both supervised and unsupervised set-
tings, there are E CL episodes. Each CL episode e has a training stream De of length T and a test
set Ee of size N . In supervised CL settings (Fig. 1a), each example is a pair of input x and target
y, and the goal is to model the conditional probability p(y|x). In unsupervised settings (Fig. 1b),
an example is simply x, without distinction of input and target, and the goal is to model p(x). For
each CL episode e, we assume an episode-specific latent variable ze that governs the entire episode.
The training stream’s non-stationarity, a key characteristic of CL, is expressed by the time variable
t affecting the generation of x. In practice, the training stream is often constructed by concatenating
multiple task streams, each of which is a stationary stream sampled from a distinct task distribution.
Note that ze is shared by all examples inside an episode regardless of the tasks they belong to. Under
this framework, the CL process is to sequentially refine the belief state of ze.

The objective is to maximize the (conditional) log-likelihood of the test set E after continually
learning from the training stream D (we will now omit the superscript e for brevity). Assum-
ing a model parameterized by θ, this objective can be summarized as log pθ(ỹ1:N |x̃1:N ,D) =∑N

n=1 log pθ(ỹn|x̃n,D) in supervised settings and as log pθ(E|D) = log pθ(x̃1:N |D) =∑N
n=1 log pθ(x̃n|D) in unsupervised settings, where x̃∗ and ỹ∗ are the test data in E , and θ is the

model parameter. Since computing these objectives is generally intractable due to the latent variable
z, we instead introduce a variational distribution qϕ parameterized by ϕ and derive the variational
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lower bounds. For the supervised and unsupervised cases, the bounds are derived as follows:

log pθ(ỹ1:N |x̃1:N ,D) = log pθ(ỹ1:N |x̃1:N , x1:T , y1:T )

≥ Ez∼qϕ(z|D)

[
N∑

n=1

log pθ(ỹn|x̃n, z) +

T∑
t=1

log pθ(yt|xt, z)

]
−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)︸ ︷︷ ︸

const.

(1)

log pθ(x̃1:N |D) = log pθ(x̃1:N |x1:T )

≥ Ez∼qϕ(z|D)

[
N∑

n=1

log pθ(x̃n|z) +
T∑

t=1

log pθ(xt|z)

]
−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)︸ ︷︷ ︸

const.

(2)

Note that Garnelo et al. (2018b) employ a similar derivation for neural processes, with an objective
akin to our supervised settings. However, they introduce an additional approximation in the middle,
resulting in an improper bound (Volpp et al., 2021; Le et al., 2018). In contrast, we refrain from
making such an approximation and instead derive a proper bound. For a more detailed explanation,
please refer to Appendix A.

3.2 SEQUENTIAL BAYESIAN UPDATE OF THE VARIATIONAL POSTERIOR

In Eq. 1 and 2, the CL process is abstracted inside the variational posterior qϕ(z|D), which should
be obtained through sequential Bayesian updates:

qϕ(z|x1:t, y1:t) ∝ qϕ(xt, yt|z)qϕ(z|x1:t−1, y1:t−1), qϕ(z|x1, y1) ∝ qϕ(x1, y1|z)qϕ(z) (3)
qϕ(z|x1:t) ∝ qϕ(xt|z)qϕ(z|x1:t−1), qϕ(z|x1) ∝ qϕ(x1|z)qϕ(z) (4)

where Eq. 3 and 4 are respectively for supervised and unsupervised CL. As previously explained
in §2.2, the Fisher-Darmois-Koopman-Pitman theorem implies that only exponential family dis-
tributions can perform such updates without consistently increasing the memory and compute re-
quirement proportional to the number of examples. This property makes them ideal candidates for
our variational posterior. In the following, we will assume the posterior as a factorized Gaussian
distribution, but similar derivations apply to other exponential family distributions.

First, we define the variational prior qϕ(z) = N (z;µ0,Λ
−1
0 ). We then employ a neural network

parameterized by ϕ to produce qϕ(xt, yt|z) or qϕ(xt|z), which we refer to as the learner. In the case
of the Gaussian variational posterior, which has the form of N (z;µt,Λ

−1
t ), the learner outputs ẑt

and Pt for each (xt, yt), where Pt is a diagonal matrix. We consider ẑt a noisy observation of z with
a Gaussian noise of precision Pt similarly to Volpp et al. (2021), i.e., qϕ(xt, yt|z) = N (ẑt; z, P

−1
t ).

This allows an efficient sequential update rule for the variational posterior as follows (Bishop, 2006):

Λt = Λt−1 + Pt, µt = Λ−1
t (Λt−1µt−1 + Ptẑt) . (5)

3.3 META-TRAINING AND META-TESTING

Let us begin by explaining the meta-test phase to provide an overall understanding of how a fully
trained SB-MCL operates. Fig. 2 illustrates SB-MCL functions in a supervised CL episode during
the meta-test phase. As each example (xt, yt) in the training stream D becomes available sequen-
tially, the learner processes it into qϕ(xt, yt|z), which is then incorporated into the variational pos-
terior qϕ(z|x1:t, y1:t) by Eq. 3. After training, the final posterior qϕ(z|x1:T , y1:T ) is passed on to the
test phase. During testing, the model produces outputs conditioned on the test input x̃n and z. It
would be ideal if we could analytically compute Ez∼qϕ(z|x1:T ,y1:T )[pθ(ỹn|x̃n, z)]. But if this is not
the case, we may sample multiple z’s from qϕ(z|x1:T , y1:T ) and ensemble the outputs conditioned
on each z, or feed the maximum a posteriori estimation zMAP to the model. A similar procedure is
performed in unsupervised settings as well.

There are some crucial differences compared to SGD-based MCL. First, while SGD-based methods
execute the model on the training examples to produce the loss and update its parameters with
gradient descent, SB-MCL utilizes separate learner and sequential Bayesian updates to learn the
training stream. Note that although we conceptually introduce a separate learner, the learner and the
model may share components to promote parameter efficiency or generalization. Additionally, SB-
MCL does not involve any gradient descent during training; the learner performs only the forward
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passes to process the training examples for sequential Bayesian updates. However, this necessitates
a meta-training phase, since the learner and the model must be trained beforehand.

During the meta-training phase, the model and the learner are meta-updated to maximize the Eq. 1
or 2 for each CL episode. For each episode, the first step is to perform the inner loop: going through
the training stream to compute the variational posterior qϕ(z|D). In contrast to SGD-based MCL,
our approach does not need to process the training stream sequentially. If all the training examples
are available, which is generally true during meta-training, we can feed them to the learner in parallel
and combine the results with a batch inference rule instead of the sequential update rule. For the
Gaussian posterior, we can use the following formula instead of Eq. 5 to produce an identical result:

ΛT =

T∑
t=0

Pt, µT = Λ−1
T

T∑
t=0

Ptẑt (6)

Compared to SGD-based approaches requiring forward-backward passes for each example sequen-
tially, the meta-training of our approach can benefit from parallel processors such as GPUs or TPUs.

Once the variational posterior qϕ(z|D) is obtained, we use Monte Carlo approximation for the ex-
pectation w.r.t. qϕ(z|D) (Kingma & Welling, 2014). For our Gaussian posterior, we utilize the
reparameterization trick (Kingma & Welling, 2014) to sample z that allows backpropagation.

z = µT + Λ
−1/2
T ϵ, ϵ ∼ N (0, I) (7)

Conditioned on this z, we run the model on the training and test examples to compute the first term
in Eq. 1 or 2. This term encourages the cooperation between the model and the learner to increase
the likelihood of the data. The second term is the Kullback-Leibler (KL) divergence between the
variational posterior qϕ(z|D) and the prior pθ(z), which can be regarded as a regularization term. We
set the prior to be the same exponential family distribution, e.g., the unit Gaussian for the Gaussian
posterior, which enables an analytical computation of the KL divergence. Finally, the last term
log pθ(D) is a constant that can be ignored for optimization purposes.

After Eq. 1 or 2 is computed for an episode or a batch of episodes, we perform a meta-update on the
model and the learner with an SGD algorithm, backpropagating through the entire episode. Unlike
existing SGD-based MCL methods (Javed & White, 2019; Beaulieu et al., 2020), we do not need to
calculate any second-order gradients, which is a significant advantage for scalability.

3.4 SPECIAL CASES OF SB-MCL

GeMCL (Banayeeanzade et al., 2021). GeMCL can be regarded as a specific instance of our
framework in the image classification domain. It utilizes a meta-learned neural network encoder to
extract an embedding vector for each image. During the training process, it maintains a Gaussian
posterior for each class in the embedding space. Each Gaussian posterior is updated by the sequen-
tial Bayesian update rule as each example belonging to the corresponding class becomes available.
These Gaussians collectively form a Gaussian mixture model (GMM) within the embedding space.
At test time, each test image is converted into an embedding vector by the same encoder, and a class
is predicted by inferring the mixture component of the GMM. To view GeMCL as an instance of
SB-MCL, we can consider the encoder as serving two roles: one as the learner and the other as a
component of the model. During training, the encoder is used as the learner to update the poste-
rior qϕ(z|x1:t, y1:t) where z is the parameters of the GMM. At test time, the encoder transforms
the test inputs into embeddings as a model component, and the GMM classifies the embeddings
with its parameters produced from the training phase. Banayeeanzade et al. (2021) also propose
an MAP variant, which simply produces pθ(ỹn|x̃n, zMAP) as the output. This variant has simpler
computation without significant performance drops.

Prototypical Networks (Snell et al., 2017). While GeMCL is a special case of SB-MCL, it can
also be seen as a generalization of the Prototypical Network (PN), which was originally proposed
as a meta-learning approach for few-shot classification. Therefore, PN also falls under the SB-MCL
family. While GeMCL takes a fully Bayesian approach, PN simply averages the embeddings of each
class to construct a prototype vector. Since the average operation can be performed sequentially, PN
can be readily applied to MCL settings. We can simplify GeMCL to PN by assuming isotropic
Gaussian posteriors and an uninformative prior (Banayeeanzade et al., 2021).
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Table 1: Summary of the special cases of SB-MCL

Method Model structure Learner structure qϕ(z|D)

GeMCL x-encoder + GMM x-encoder (shared) Per-class Gaussian
PN x-encoder + GMM x-encoder (shared) Per-class isotropic Gaussian
ALPaCA x-encoder + linear model x-encoder (shared) Matrix normal
SB-MCL (supervised) x-encoder + y-decoder xy-encoder Factorized Gaussian
SB-MCL (unsupervised) Deep generative model x-encoder Factorized Gaussian

ALPaCA (Harrison et al., 2018). Originally proposed as a meta-learning approach for online
regression problems, ALPaCA attaches a linear model on top of a meta-learned neural network
encoder, symmetrical to PN or GeMCL that attaches a GMM for classification. In ALPaCA, the
latent variable z is the weight matrix of the linear model, whose posterior is assumed to have the
matrix normal distribution. Due to the similar streaming settings of online and continual learning,
we can apply ALPaCA to MCL regression settings with minimal modifications.

Unlocking General Domains with Generic SB-MCL Architectures. All these prior works share
a similar architecture: a meta-learned encoder followed by a simple statistical model. This config-
uration can be ideal if the output type is suitable for the statistical model since it allows analytic
computation of Ez∼qϕ(z|D)[pθ(ỹn|x̃n, z)] without expansive Monte Carlo approximation. However,
it is hard to apply such architectures to domains with more complex output formats or unsupervised
settings where the output variable does not exist. Our SB-MCL offers a solution to this problem,
allowing the combination of simple statistical models and general deep learning architecture. Since
the only modification required for the model is to accept additional input z, we can apply SB-MCL
to almost any existing model architectures or domains. The specific instantiations of SB-MCL are
summarized in Table 1 for better understanding.

4 RELATED WORK

SGD-Based MCL Approaches. In contrast to the simple statistical models of our special cases
in §3.4, OML (Javed & White, 2019) employs a small multi-layer perceptron (MLP) with MAML
(Finn et al., 2017) on top of a meta-learned encoder. MAML is a meta-learning approach that
optimizes the initial parameters of a model by meta-gradient descent, computing the second-order
gradient through the inner loop. In the inner loop of OML, the encoder remains fixed while the MLP
is updated by sequentially learning each training example via SGD. After training the MLP in the
inner loop, the entire model is evaluated on the test set to produce the meta-loss. Then, the gradient
of the meta-loss is computed w.r.t. the encoder parameters and the initial parameters of the MLP to
update them. Inspired by OML, ANML (Beaulieu et al., 2020) is another MCL method for image
classification that introduces a separate component called neuromodulatory network. Its sigmoid
output is multiplied to the encoder output to adaptively gate some features depending on the input.

Neural Processes (Garnelo et al., 2018a;b). While motivated by different objectives, intriguing
similarities can be identified between the supervised version of SB-MCL (Eq. 1) and the neural
process (NP) literature. NP was initially proposed to solve the limitations of Gaussian processes,
such as the computational cost and the difficulties in the prior design. It can also be considered
a meta-learning approach that learns a functional prior and has been applied as a solution to the
meta-learning domain (Gordon et al., 2019). Since NPs are rooted in stochastic processes, one of
their primary design considerations is exchangeability: the model should produce the same result
regardless of the order of the training data. NPs typically comprise an encoder and a decoder, analo-
gous to the learner and the model in our framework. To achieve exchangeability, NPs independently
encode each example and aggregate them into a single variable with a permutation-invariant oper-
ation, such as averaging, and pass it to the decoder. While our sequential Bayesian update of an
exponential family posterior is initially inspired by the Fisher-Darmois-Koopman-Pitman theorem,
it also ensures exchangeability. Volpp et al. (2021) propose an aggregation scheme for NPs based
on Bayesian principles and even suggest the possibility of sequential update, but they do not con-
nect it to CL. To the best of our knowledge, the only connection between NPs and MCL is CNAP
(Requeima et al., 2019), but it is a domain-specific architecture designed for image classification.
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5 EXPERIMENTS

We now demonstrate the efficacy of our framework on multiple domains, including both super-
vised and unsupervised tasks. We also provide PyTorch (Paszke et al., 2019) code, ensuring the
reproducibility of all experiments. Due to page limitations, we present only the most essential infor-
mation; for further experimental details, please refer to the code.

5.1 METHODS

The SB-MCL Family. We test the special cases of SB-MCL in Table 1 for their respective domains,
i.e., GeMCL for image classification, ALPaCA for simple regression, and the generic supervised and
unsupervised variants for others. GeMCL and ALPaCA support the analytic calculation of posterior
predictive distribution during testing. For the generic cases, we impose 512-dimensional factorized
Gaussian on qϕ(z|D) and sample z five times to approximate Ez∼qϕ(z|D)[pθ(ỹn|x̃n, z)]. In the
appendix, we also test its MAP variant that simply produces pθ(ỹn|x̃n, zMAP).

Baselines. Due to its simplicity and generality, we test OML (Javed & White, 2019) as a repre-
sentative baseline of SGD-based MCL. Although it was originally proposed for classification and
simple regression, we can implement the core idea of having a MAML MLP block working in the
embedding space to other domains. For models with encoder-decoder architectures, we insert a
MAML MLP between the meta-learned encoder and decoder. For comparison, we also test vanilla
MAML (Finn et al., 2017), which updates the entire model in the inner loop and meta-optimizes its
initialization. Additionally, we test Reptile (Nichol et al., 2018), which is a first-order approxima-
tion of MAML that does not involve expensive computation of second-order derivatives. We also
compare a reptile variant of OML, which replaces the MAML MLP with a Reptile MLP. The results
of MAML and Reptile, which are generally worse than OML, are provided in Appendix C.

Without Meta-Learning. Although our work is an MCL work, a significant number of non-meta-
CL methods have been proposed. To provide a reference point to them, we report the standard
and online learning scores, which are generally considered the upper bound of CL and online CL
performance (Zenke et al., 2017; Farajtabar et al., 2020). For standard learning, we train a model
from scratch for an unlimited number of steps with mini-batches uniformly sampled from the entire
training stream. Since the model usually overfits to the training set, we report the best test score
achieved during training. For online learning, we randomly shuffle the training stream to be a
stationary stream, train a model from scratch for one epoch, and measure the final test score. Note
that MCL methods can outperform standard and online learning since they can utilize a large meta-
training set.

5.2 BENCHMARKS

As a popular meta-learning or MCL dataset, Omniglot (Lake et al., 2015) comprises 1,623 classes
with 32K images. However, since there are only 20 images for each class, it can only test few-
shot settings. The small number of examples also seems to cause meta-overfitting, which becomes
especially severe when we use it for more complex tasks other than classification. Other popular
datasets such as CIFAR-100 (Krizhevsky, 2009) and MiniImageNet (Vinyals et al., 2016; Deng
et al., 2009) consist of several hundred images per class but offer only 100 classes.

As an alternative, we suggest utilizing the CASIA Chinese handwriting dataset (Liu et al., 2011) in
MCL. It contains 3.9M handwriting images of 7,356 classes, which are mostly Chinese characters.
While the number of examples varies across classes, the minimum count per class stands at 279.
With its richness in both class diversity and examples per class, it enables comprehensive evalua-
tions in many-shot scenarios and substantially rules out meta-overfitting issues. Except for the sine
regression, the following benchmarks are built upon the CASIA dataset, using each class as a task.

Classification. We conduct image classification experiments with the Omniglot and CASIA
datasets, following the setups of Banayeeanzade et al. (2021). Using the CASIA dataset, we also
analyze the performances in many-shot settings. All the methods share the same CNN encoder while
using different output mechanisms, i.e., GMM for GeMCL and PN, and MLP for others. GeMCL is
compared as an instantiation of SB-MCL.
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Sine Regression. Inspired by the synthetic sine wave regression problem from Javed & White
(2019), we design a more challenging variant. We test ALPaCA as an instance of SB-MCL. A
sine wave, denoted as a function ω(τ), is characterized by amplitude A, frequency ν, and phase ψ.
We define the target signal y, as the set of values of the sine wave at 50 fixed time points: y =
[ω(τ1), . . . , ω(τ50)]. In each task, all y values share the same frequency and phase, while varying in
amplitudes. We build the input x by corrupting y with a phase shift and Gaussian noise. The amount
of phase shift is randomly sampled and shared for each task. We use the same MLP encoder for all
the methods, followed by method-specific output modules: a linear model for ALPaCA, and another
MLP for others.

Image Completion. Compared to the sine regression problem, this is a significantly more challeng-
ing high-dimensional regression problem. In this problem, x and y are an image’s top and bottom
halves, and each class is defined as a task. We use convolutional encoder-decoder architecture for the
model. In the case of SB-MCL, we use the generic architecture for supervised settings and introduce
another convolutional encoder for the learner, which produces qϕ(x, y|z) from a full training image.
The model’s decoder is also slightly modified to take the concatenation of the encoder’s output and
z as input.

Rotation Prediction. In this problem, a model is given a randomly rotated image x and tasked
to predict the rotation angle y. Although the rotation angle is not high-dimensional, we use the
generic supervised SB-MCL architecture as in the image completion benchmark. This is due to the
objective function, which is defined as 1−cos(y− ŷ) and cannot be used for analytically computing
the posterior of the linear model in ALPaCA. For the model architecture, we use a convolutional
encoder followed by an MLP output module. For the learner in SB-MCL, we share the same encoder
in the model for encoding x and introduce a new MLP to encode y. These two encoders’ output is
concatenated and fed to another MLP to produce qϕ(x, y|z).
Deep Generative Modeling. Lastly, we evaluate unsupervised learning performances with two
types of deep generative models: variational autoencoder (VAE; Kingma & Welling, 2014) and de-
noising diffusion probabilistic models (DDPM; Ho et al., 2020). We use a simple convolutional
encoder-decoder architecture for VAE and a U-Net encoder-decoder architecture for DDPM follow-
ing Ho et al. (2020). In SB-MCL, we use a separate convolutional encoder for the learner, and z
is injected into the model by concatenating it with the decoder’s input. For OML, we replace the
encoder’s last MLP and the decoder’s first MLP with MAML MLP.

Evaluation Scheme. In all MCL experiments, we meta-train the methods in 10-task 10-shot set-
tings. We primarily evaluate their performance in a meta-test set with the same task-shot setting,
while also measuring the extrapolation capability on other meta-testing setups, which vary in the
number of tasks or shots. The hyperparameters are tuned to maximize the performance in the 10-
task 10-shot settings. For each MCL experiment, we report the average and the standard deviation
of five runs. Within each MCL run, we calculate the average score from 512 CL episodes sampled
from the meta-test set. For standard and online learning, which involve only one episode, we sample
an episode from the meta-test set, train the model on the training set, and measure the test score.
Subsequently, we provide the average and standard error of the mean for ten runs.

5.3 RESULTS

We present our main experimental results in Table 2 and Fig. 3. For qualitative examples and more
extensive results, please refer to Appendix B and C. We mainly compare the SB-MCL family against
OML, an SGD-based baseline, and standard learning, the upper bound of CL without meta-learning.
The SB-MCL family consistently outperforms all the other approaches by a significant margin,
demonstrating the efficacy of our framework. In the following, we discuss several important char-
acteristics of our framework that can be observed in the experiments.

Robustness to Many-Shot Settings. Interestingly, the performance of SGD-based approaches can
degenerate as we increase the number of shots per task (the 10-task X-shot plots in Fig. 3). This may
seem counterintuitive, as providing more information about a task should generally be beneficial.
In SGD-based MCL, however, the lengthening of the training stream exposes models to more SGD
updates, which can exacerbate catastrophic forgetting of previous tasks. On the other hand, the SB-
MCL family demonstrates a remarkable level of robustness in many-shot settings. As the number
of shots increases, their performance even shows a slight improvement. This observation aligns
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Table 2: 10-task 10-shot MCL experiments. We report classification errors for the classification
benchmarks while reporting losses for others.

Method Classification Regression Generation
Omniglot CASIA Sine Completion Rotation VAE DDPM

Standard .225±.075 .340±.060 .012±.001 .147±.013 .571±.063 .675±.029 5.070±.243

Online .850±.052 .950±.032 .495±.053 .333±.038 1.187±.110 .851±.013 13.797±.349

OML-Reptile .136±.005 .057±.003 .027±.001 .104±.000 .050±.002 .454±.000 3.531±.010

OML .046±.002 .015±.001 .016±.001 .105±.000 .053±.002 .442±.003 3.530±.018

SB-MCL .008±.000 .002±.000 .001±.000 .100±.001 .039±.001 .428±.001 3.448±.010
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Figure 3: Extrapolation experiments of image completion, rotation prediction, and deep genera-
tive modeling. Each method is meta-trained with 10-task 10-shot episodes and tested on meta-test
episodes with different length configurations. All scores are better when lower. Best viewed in color.

with our formulation. Since our posterior follows an exponential family distribution with sufficient
statistics of fixed size, maintaining a fixed number of tasks while increasing the number of shots
only serves to enhance the accuracy of the variational posterior.

Forgetting vs. Underfitting. Although SB-MCL is robust to many-shot settings, its performance
degrades as it encounters more tasks, which can be observed in the X-task 10-shot plots. However,
since SB-MCL will yield the same results even if all the tasks are provided at once (multi-task learn-
ing), the degradation should be considered underfitting rather than forgetting. Therefore, increasing
the CL performance in SB-MCL becomes an architectural problem. In other words, improving the
representational capacity of the overall architecture (including the model, the learner, and the varia-
tional posterior) entails improved CL performance. This is a crucial difference from the SGD-based
MCL, where the CL performance is not necessarily aligned well with the model capacity.

6 CONCLUSION

This work introduces a general MCL framework that combines simple statistical models’ robustness
to forgetting and the flexibility of neural networks. Its superior performance is also empirically
demonstrated in diverse domains. Unifying several prior works under the same framework, we aim
to establish a solid foundation for the future sequential Bayesian approaches in the field of MCL.
As discussed in §5.3, our framework transforms CL’s forgetting issue into an underfitting problem.
This allows us to approach MCL as an architectural problem, designing neural architectures that can
effectively interact with statistical models, which can be an exciting avenue for further research.
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REPRODUCIBILITY STATEMENT

We are fully committed to ensuring the complete reproducibility of our research. We have included
the PyTorch (Paszke et al., 2019) code and specific commands in the supplementary material, al-
lowing anyone to easily replicate every single experiment, including the baselines. All the datasets
used in our experiments are publicly available on the web, and our code is designed to automatically
download the necessary datasets before starting the experiments. We believe that our code will serve
as a valuable resource for the community, particularly for newcomers in the field of MCL, providing
them with a solid foundation for their research endeavors.

REFERENCES

Mohammadamin Banayeeanzade, Rasoul Mirzaiezadeh, Hosein Hasani, and Mahdieh Soleymani.
Generative vs. discriminative: Rethinking the meta-continual learning. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 21592–21604, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/b4e267d84075f66ebd967d95331fcc03-Abstract.html.

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley, Jeff Clune, and
Nick Cheney. Learning to continually learn. In Giuseppe De Giacomo, Alejandro Catalá, Bistra
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A VARIATIONAL BOUND DERIVATION

The derivation of the variational bound for supervised learning setup (Eq. 1) is as follows:

log pθ(ỹ1:N |x̃1:N ,D)

= − log pθ(z|ỹ1:N , x̃1:N ,D) + log pθ(ỹ1:N , z|x̃1:N ,D)

= Ez∼qϕ(z|D) [log qϕ(z|D)− log pθ(z|ỹ1:N , x̃1:N ,D) + log pθ(ỹ1:N , z|x̃1:N ,D)− log qϕ(z|D)]

= DKL (qϕ(z|D) ∥ pθ(z|ỹ1:N , x̃1:N ,D)) + Ez∼qϕ(z|D) [log pθ(ỹ1:N , z|x̃1:N ,D)− log qϕ(z|D)]

≥ Ez∼qϕ(z|D) [log pθ(ỹ1:N , z|x̃1:N ,D)− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log pθ(z|x̃1:N ,D)− log qϕ(z|D)] (8)

= Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log pθ(D|z, x̃1:N ) + log pθ(z|x̃1:N )− log pθ(D|x̃1:N )

− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log pθ(D|z) + log pθ(z)− log pθ(D)− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log pθ(D|z)]−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)

= Ez∼qϕ(z|D)

[
N∑

n=1

log pθ(ỹn|x̃n, z) +
T∑

t=1

log pθ(yt|xt, z)

]
−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)︸ ︷︷ ︸

const.

We can derive a similar bound for unsupervised settings (Eq. 2):

log pθ(x̃1:N |D)

= − log pθ(z|x̃1:N ,D) + log pθ(x̃1:N , z|D)

= Ez∼qϕ(z|D) [log qϕ(z|D)− log pθ(z|x̃1:N ,D) + log pθ(x̃1:N , z|D)− log qϕ(z|D)]

= DKL (qϕ(z|D) ∥ pθ(z|D)) + Ez∼qϕ(z|D) [log pθ(x̃1:N , z|D)− log qϕ(z|D)]

≥ Ez∼qϕ(z|D) [log pθ(x̃1:N , z|D)− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(x̃1:N |z,D) + log pθ(z|D)− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(x̃1:N |z) + log pθ(D|z) + log pθ(z)− log pθ(D)− log qϕ(z|D)]

= Ez∼qϕ(z|D) [log pθ(x̃1:N |z) + log pθ(D|z)]−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)

= Ez∼qϕ(z|D)

[
N∑

n=1

log pθ(x̃n|z) +
T∑

t=1

log pθ(xt|z)

]
−DKL (qϕ(z|D) ∥ pθ(z))− log pθ(D)︸ ︷︷ ︸

const.

It is noteworthy that Neural Process (Garnelo et al., 2018b) instead approximates log pθ(z|x̃1:N ,D)
of Eq. 8 with log qϕ(z|x̃1:N ,D):

Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log pθ(z|x̃1:N ,D)− log qϕ(z|D)]

≈ Ez∼qϕ(z|D) [log pθ(ỹ1:N |z, x̃1:N ) + log qϕ(z|x̃1:N ,D)− log qϕ(z|D)]

= Ez∼qϕ(z|D)

[
N∑

n=1

log pθ(ỹn|x̃n, z)

]
−DKL (qϕ(z|D)∥qϕ(z|x̃1:N ,D))

Since we can use the Bayes rule to convert log pθ(z|x̃1:N ,D) into log pθ(D|z, x̃1:N ) +
log pθ(z|x̃1:N ) − log pθ(D|x̃1:N ), which is subsequently reduced to log pθ(D|z) + log pθ(z) −
log pθ(D) by conditional independence, such an approximation is not necessary.

B QUALITATIVE EXAMPLES OF DEEP GENERATIVE MCL

In Fig. 4-7, we present qualitative examples of the deep generative model experiments from Fig. 3.
For each meta-trained MCL method, we train a VAE and a DDPM on the 5-task 10-shot training
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Figure 5: VAE reconstruction samples.

stream in Fig. 4, which is sampled from the meta-test set. Then, we extract 20 generation samples
for the VAE (Fig. 6) and the DDPM (Fig. 7). For the VAE, we also visualize the reconstructions of
the test images in Fig. 5.

Although the scores of OML and OML-Reptile are much worse than SB-MCL in Fig. 3, the recon-
struction results in Fig. 5 do not show a much difference except that the SB-MCL produces slightly
better reconstructions. However, the generation results of OML and OML-Reptile are not properly
structured, showing that OML and OML-Reptile have difficulty in training VAE on a non-stationary
stream. On the other hand, the VAE with SB-MCL produces significantly better samples, demon-
strating the effectiveness of our approach.

All the DDPM samples in Fig. 7 are of much higher quality compared to VAE and are hard to
distinguish from real images. Since the DDPMs meta-learn general concepts of CASIA images
from the large-scale meta-training set, they can produce high-fidelity images. The key difference to
notice is whether the DDPM has learned new knowledge from the training stream. Since the training
stream is from the meta-test set, it cannot produce the classes in the training stream unless it actually
learns from it. Among the samples from OML and OML-Reptile, it is hard to find the classes in the
training stream, suggesting that they are producing samples from the meta-training distribution. On
the other hand, the DDPM with SB-MCL produces samples remarkably similar to the ones in Fig. 4.
This experiment confirms that SB-MCL can be an effective solution for modern deep generative
models.

C EXTENDED EXPERIMENTAL RESULTS

Table 3: CASIA Classification 10-task X-shot (Error)

Shots 5 10 20 50 100 200

Standard 0.540±0.057 0.340±0.060 0.335±0.035 0.090±0.033 0.037±0.016 0.040±0.018

Online 0.875±0.073 0.950±0.032 0.825±0.051 0.850±0.052 0.800±0.092 0.550±0.116

OML-Reptile 0.049±0.002 0.057±0.003 0.066±0.002 0.083±0.004 0.101±0.002 0.121±0.003

OML 0.012±0.001 0.015±0.001 0.019±0.001 0.026±0.002 0.031±0.002 0.039±0.001

PN 0.003±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.001±0.000

GeMCL-MAP 0.003±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.001±0.000

GeMCL 0.003±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000 0.002±0.000
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Figure 6: VAE generation samples.
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Figure 7: DDPM generation samples.
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Figure 8: Extrapolation experiments of image classification and sine wave regression. Each method
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score is reported as SB-MCL for the sine wave regression. All scores are better when lower. Best
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Table 4: Sine Regression 10-task X-shot (Loss)

Shots 5 10 20 50 100 200

Standard 0.011±0.001 0.012±0.001 0.008±0.002 0.005±0.001 0.004±0.001 0.004±0.000

Online 0.595±0.052 0.495±0.053 0.487±0.038 0.407±0.047 0.291±0.028 0.244±0.034

OML-Reptile 0.028±0.002 0.027±0.001 0.027±0.001 0.027±0.002 0.027±0.002 0.027±0.002

OML 0.028±0.001 0.016±0.001 0.018±0.001 0.017±0.001 0.017±0.001 0.018±0.001

ALPaCA 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000
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Table 5: Omniglot Classification X-task 10-shot (Error)

Tasks 5 10 20 50 100 200 500

Standard 0.189±0.034 0.225±0.075 0.237±0.051 0.495±0.043 0.637±0.045 0.537±0.059 0.575±0.067

Online 0.828±0.057 0.850±0.052 0.963±0.018 0.975±0.015 0.975±0.016 0.994±0.006 1.000±0.000

OML-Reptile 0.071±0.005 0.136±0.005 0.223±0.006 0.400±0.006 0.573±0.005 0.736±0.003 0.880±0.002

OML 0.021±0.003 0.046±0.002 0.103±0.002 0.215±0.004 0.343±0.005 0.522±0.004 0.767±0.002

PN 0.004±0.001 0.008±0.000 0.014±0.000 0.026±0.001 0.042±0.000 0.065±0.000 0.117±0.000

GeMCL-MAP 0.005±0.000 0.008±0.001 0.014±0.000 0.027±0.001 0.043±0.001 0.068±0.001 0.121±0.002

GeMCL 0.004±0.000 0.008±0.000 0.014±0.000 0.027±0.000 0.043±0.000 0.068±0.001 0.120±0.002

Table 6: CASIA Classification X-task 10-shot (Error)

Tasks 5 10 20 50 100 200 500

Standard 0.254±0.061 0.340±0.060 0.412±0.055 0.487±0.069 0.831±0.048 0.844±0.041 0.906±0.033

Online 0.725±0.120 0.950±0.032 0.950±0.032 1.000±0.000 1.000±0.000 0.988±0.012 0.995±0.005

OML-Reptile 0.025±0.002 0.057±0.003 0.104±0.002 0.215±0.004 0.359±0.002 0.559±0.005 0.796±0.003

OML 0.007±0.001 0.015±0.001 0.033±0.001 0.085±0.001 0.159±0.001 0.286±0.002 0.564±0.001

PN 0.001±0.000 0.002±0.000 0.003±0.000 0.007±0.000 0.012±0.000 0.019±0.000 0.036±0.001

GeMCL-MAP 0.001±0.000 0.002±0.000 0.003±0.000 0.007±0.000 0.012±0.000 0.019±0.000 0.036±0.000

GeMCL 0.001±0.000 0.002±0.000 0.003±0.000 0.007±0.000 0.012±0.000 0.019±0.000 0.036±0.000

Table 7: Sine Regression X-task 10-shot (Error)

Tasks 5 10 20 50 100 200 500

Standard 0.017±0.007 0.012±0.001 0.007±0.002 0.006±0.001 0.014±0.003 0.094±0.032 0.210±0.036

Online 0.520±0.049 0.495±0.053 0.544±0.046 0.615±0.040 0.510±0.044 0.580±0.030 0.567±0.020

OML-Reptile 0.013±0.001 0.027±0.001 0.054±0.002 0.115±0.003 0.201±0.004 0.335±0.005 0.559±0.003

OML 0.009±0.001 0.016±0.001 0.034±0.002 0.082±0.001 0.153±0.002 0.270±0.000 0.484±0.002

ALPaCA 0.001±0.000 0.001±0.000 0.002±0.000 0.007±0.000 0.020±0.000 0.065±0.001 0.228±0.001

Table 8: Completion 10-task X-shot (Loss)

Shots 5 10 20 50 100 200

Standard 0.144±0.007 0.147±0.013 0.139±0.004 0.142±0.006 0.135±0.009 0.135±0.010

Online 0.499±0.032 0.333±0.038 0.204±0.012 0.155±0.009 0.155±0.013 0.175±0.011

Reptile 0.125±0.001 0.126±0.000 0.127±0.000 0.129±0.000 0.130±0.000 0.132±0.001

MAML 0.125±0.003 0.108±0.000 0.108±0.001 0.108±0.000 0.109±0.000 0.110±0.000

OML-Reptile 0.105±0.000 0.104±0.000 0.104±0.000 0.105±0.000 0.106±0.000 0.107±0.000

OML 0.107±0.000 0.105±0.000 0.105±0.000 0.105±0.000 0.106±0.000 0.106±0.000

SB-MCL (MAP) 0.101±0.001 0.100±0.001 0.100±0.001 0.100±0.001 0.100±0.002 0.100±0.002

SB-MCL 0.101±0.001 0.100±0.001 0.100±0.001 0.100±0.001 0.100±0.002 0.100±0.002

Table 9: Rotation 10-task X-shot (Loss)

Shots 5 10 20 50 100 200

Standard 0.657±0.054 0.571±0.063 0.507±0.070 0.428±0.080 0.307±0.075 0.330±0.057

Online 0.957±0.101 1.187±0.110 0.775±0.062 0.932±0.115 0.765±0.084 0.779±0.126

Reptile 0.136±0.010 0.171±0.006 0.209±0.010 0.317±0.011 0.401±0.008 0.472±0.014

MAML 0.968±0.024 0.965±0.024 0.959±0.024 0.964±0.013 0.969±0.010 0.959±0.012

OML-Reptile 0.050±0.002 0.050±0.002 0.050±0.001 0.047±0.001 0.046±0.001 0.045±0.000

OML 0.051±0.001 0.053±0.002 0.051±0.001 0.052±0.003 0.053±0.001 0.050±0.001

SB-MCL (MAP) 0.040±0.001 0.040±0.001 0.039±0.001 0.036±0.001 0.036±0.001 0.035±0.001

SB-MCL 0.040±0.001 0.039±0.001 0.038±0.001 0.036±0.001 0.035±0.001 0.035±0.001

Table 10: VAE 10-task X-shot (BPD)

Shots 5 10 20 50 100 200

Standard 0.709±0.017 0.675±0.029 0.606±0.014 0.585±0.022 0.572±0.023 0.537±0.020

Online 0.921±0.010 0.851±0.013 0.787±0.016 0.743±0.035 0.748±0.023 0.713±0.022

Reptile 0.768±0.000 0.766±0.001 0.766±0.001 0.768±0.001 0.767±0.001 0.768±0.000

OML-Reptile 0.454±0.002 0.454±0.000 0.455±0.002 0.455±0.002 0.456±0.001 0.459±0.001

OML 0.444±0.003 0.442±0.003 0.440±0.003 0.440±0.003 0.440±0.002 0.440±0.003

SB-MCL (MAP) 0.428±0.001 0.428±0.001 0.427±0.001 0.428±0.001 0.428±0.001 0.428±0.001

SB-MCL 0.428±0.001 0.428±0.001 0.428±0.001 0.427±0.001 0.428±0.000 0.428±0.002
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Table 11: DDPM 10-task X-shot (Loss ×100)

Shots 5 10 20 50 100 200

Standard 4.927±0.254 5.070±0.243 4.162±0.138 3.657±0.234 3.814±0.138 3.713±0.275

Online 17.132±0.324 13.797±0.349 10.797±0.391 8.034±0.347 7.130±0.228 6.128±0.260

OML-Reptile 3.529±0.009 3.531±0.010 3.530±0.022 3.522±0.011 3.527±0.022 3.516±0.009

OML 3.538±0.015 3.530±0.018 3.524±0.023 3.532±0.026 3.520±0.006 3.513±0.017

SB-MCL (MAP) 3.454±0.011 3.454±0.009 3.449±0.009 3.447±0.004 3.443±0.011 3.459±0.012

SB-MCL 3.450±0.014 3.448±0.010 3.446±0.009 3.451±0.008 3.446±0.015 3.449±0.012

Table 12: Completion X-task 10-shot (Loss)

Tasks 5 10 20 50 100 200 500

Standard 0.158±0.007 0.147±0.013 0.146±0.009 0.151±0.008 0.138±0.008 0.134±0.007 0.146±0.004

Online 0.504±0.034 0.333±0.038 0.179±0.010 0.169±0.008 0.148±0.012 0.173±0.006 0.158±0.006

Reptile 0.124±0.000 0.126±0.000 0.127±0.000 0.128±0.000 0.128±0.000 0.129±0.000 0.129±0.000

MAML 0.123±0.002 0.108±0.000 0.108±0.000 0.110±0.000 0.110±0.000 0.110±0.000 0.111±0.000

OML-Reptile 0.104±0.000 0.104±0.000 0.106±0.000 0.107±0.000 0.108±0.000 0.108±0.000 0.109±0.000

OML 0.104±0.001 0.105±0.000 0.107±0.000 0.108±0.000 0.110±0.000 0.110±0.000 0.111±0.000

SB-MCL (MAP) 0.099±0.001 0.100±0.001 0.103±0.001 0.106±0.001 0.107±0.002 0.108±0.002 0.109±0.002

SB-MCL 0.099±0.001 0.100±0.001 0.103±0.001 0.106±0.001 0.107±0.002 0.108±0.002 0.109±0.002

Table 13: Rotation X-task 10-shot (Loss)

Tasks 5 10 20 50 100 200 500

Standard 0.684±0.039 0.571±0.063 0.569±0.055 0.672±0.075 0.538±0.028 0.523±0.067 0.308±0.048

Online 0.959±0.073 1.187±0.110 1.023±0.101 1.006±0.128 0.973±0.090 0.917±0.071 1.024±0.043

Reptile 0.135±0.002 0.171±0.006 0.221±0.011 0.341±0.015 0.467±0.013 0.557±0.010 0.609±0.017

MAML 0.962±0.025 0.965±0.024 0.964±0.023 0.973±0.013 0.976±0.009 0.978±0.008 0.977±0.007

OML-Reptile 0.048±0.003 0.050±0.002 0.050±0.001 0.052±0.001 0.053±0.001 0.055±0.001 0.056±0.001

OML 0.049±0.002 0.053±0.002 0.053±0.001 0.052±0.001 0.053±0.000 0.053±0.000 0.054±0.000

SB-MCL (MAP) 0.035±0.002 0.040±0.001 0.042±0.001 0.045±0.001 0.046±0.000 0.047±0.000 0.047±0.000

SB-MCL 0.036±0.001 0.039±0.001 0.042±0.000 0.045±0.001 0.046±0.000 0.047±0.000 0.047±0.001

Table 14: VAE X-task 10-shot (BPD)

Tasks 5 10 20 50 100 200 500

Standard 0.707±0.023 0.675±0.029 0.642±0.040 0.574±0.013 0.596±0.011 0.574±0.026 0.584±0.018

Online 0.915±0.016 0.851±0.013 0.781±0.018 0.771±0.024 0.776±0.023 0.748±0.011 0.749±0.008

Reptile 0.768±0.001 0.766±0.001 0.766±0.001 0.767±0.000 0.767±0.000 0.767±0.000 0.767±0.000

OML-Reptile 0.454±0.002 0.454±0.000 0.455±0.001 0.457±0.001 0.457±0.001 0.458±0.001 0.459±0.001

OML 0.443±0.003 0.442±0.003 0.441±0.003 0.440±0.003 0.440±0.003 0.440±0.003 0.439±0.003

SB-MCL (MAP) 0.427±0.001 0.428±0.001 0.428±0.001 0.429±0.001 0.429±0.001 0.429±0.001 0.429±0.001

SB-MCL 0.428±0.002 0.428±0.001 0.428±0.001 0.429±0.001 0.429±0.001 0.429±0.001 0.429±0.001

Table 15: DDPM X-task 10-shot (Loss ×100)

Tasks 5 10 20 50 100 200 500

Standard 4.989±0.280 5.070±0.243 4.187±0.201 3.786±0.158 3.685±0.180 3.821±0.173 3.710±0.109

Online 17.155±0.267 13.797±0.349 10.981±0.240 7.719±0.278 7.034±0.266 6.149±0.129 5.308±0.076

OML-Reptile 3.531±0.010 3.531±0.010 3.534±0.015 3.526±0.011 3.525±0.007 3.522±0.010 3.521±0.007

OML 3.530±0.018 3.528±0.010 3.521±0.007 3.529±0.005 3.529±0.009 3.525±0.008 3.528±0.006

SB-MCL (MAP) 3.450±0.022 3.454±0.009 3.481±0.004 3.496±0.007 3.510±0.005 3.520±0.004 3.525±0.006

SB-MCL 3.429±0.026 3.448±0.010 3.471±0.009 3.489±0.014 3.509±0.010 3.514±0.008 3.518±0.004
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