Under review as a conference paper at ICLR 2025

SKDREAM: CONTROLLABLE MULTI-VIEW AND 3D
GENERATION WITH ARBITRARY SKELETONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Controllable generation has achieved substantial progress in both 2D and 3D do-
mains, yet current conditioning methods still face limitations in describing de-
tailed shape structures. Skeletons can effectively represent and describe object
anatomy and pose. Unfortunately, past studies are often limited to human skele-
tons. In this work, we generalize skeletal conditioned generation to arbitrary
structures. First, we design a reliable mesh skeletonization pipeline to generate
a large-scale mesh-skeleton paired dataset. Based on the dataset, a multi-view
and 3D generation pipeline is built. We propose to represent 3D skeletons by
Coordinate Color Encoding as 2D conditional images. A Skeletal Correlation
Module is designed to extract global skeletal features for condition injection. Af-
ter multi-view images are generation, 3D assets can be obtained by incorporat-
ing a large reconstruction model, followed with a UV texture refinement stage.
As a result, our method achieves instant generation of multi-view and 3D con-
tents which are aligned with given skeletons. The proposed techniques largely
improve the object-skeleton alignment and generation quality. Project page at
https://github.i0/skdream3d. Dataset, code and models will be released in public.

1 INTRODUCTION

In view of representation dimension, 2D image generation (Ho et al.,|2020; [Song et al.||2020; Rom-
bach et al.| 2022), multi-view (2.5D) generation (Shi et al.l 2023} Liu et al.| [2023), and 3D gen-
eration (Hong et al., 2023} L1 et al.l 2023a; |Xu et al., [2024) have been promoted and made great
progress successively. To realize more flexible and controllable generation, conditions beyond text
have drawn considerable attention. 2D image conditions (e.g., edge maps, human skeletons, and
concept references) (Zhang et al., 2023 |Ruiz et al., 2023 have been well studied. Similarly in 3D
generation, analogous 2D conditions have also been studied (Li et al., [2023d). Additionally, 3D
conditions like simple shapes (Dong et al,|2024) have also been explored.

Although the aforementioned conditions in controllable generation complement text descriptions,
they still struggle in precisely describing shape structures. In contrast, skeletons, among various
types of conditions, exhibit superior ability to depict shape structures: (i) Representation of object
anatomy. A skeleton can efficiently represent various 3D structures with sparse joints and bones.
It would be cumbersome for other conditions to represent anatomy. (ii) Articulation into different
poses. Skeletons are widely used for character animation in computer graphics (Kavan et al., 2007}
Baran & Popovic, 2007) due to their simplicity and efficiency. Other conditions such as rough
shapes (Dong et al., 2024) are inconvenient to deform into different poses. (iii) Freedom of editing.
Given an initial skeleton, users can freely add new structures or modify joint positions and bone
sizes to create their ideal shapes. Examples for demonstration are in Fig.

Despite these advantages, previous studies (Zhang et al., 2023 [Mou et al., 2024} Ju et al., 2023
Zhang et al., 2024b; Huang et al., [2024) on skeletal conditioned generation are limited to human
skeletons. From the perspective of generalization, we would like to ask: Is it possible to use arbi-
trary skeletons as conditions to generate any creatures or even general objects?

Towards this aim, we believe that two main issues hinder the use of arbitrary skeletal conditions
for generation: (i) Lack of large-scale object-skeleton pairs for training. Extensive studies (Cao
et al., 2017;|Fang et al.| 2022} Martinez et al.,[2017) on 2D/3D human pose estimation make human-
skeleton paired data easy to obtain. However, when skeletal structures are unknown, estimating
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(b) Skeleton-based editing for Accurate Anatomy and Pose Controlling

Figure 1: Demonstration of skeletal conditions for controllable generation. We argue that skele-
tons and text provide complimentary description for shape and appearance respectively, as shown
in (a). Moreover, flexible and accurate controlling of object anatomy and pose can be realized by
editing the joints and bones in skeletons, as shown in (b). Arbitrary skeletal structures are supported
in our framework. Multiple views are generated and only front view images are shown.

arbitrary skeletons from 2D images or videos becomes challenging due to its ill-posedness. (ii)
Insufficiency of 2D information to describe arbitrary skeletons. Human skeletons are simple and
can be described by a fixed set of 2D joints. However, complex skeletons suffer from self-occlusion
and ambiguity, which necessitates 3D information to fully determine their anatomy and pose.

To address these challenges, we focus on multi-view and 3D generation with skeletal conditions. For
data scarcity problem, we construct a large-scale dataset Objaverse-SK containing mesh-skeleton
pairs. Textured meshes are selected from Objaverse (Deitke et al.,[2023)) by semantic classes to form
a subset. In order to realize reliable mesh skeletonization, we propose a new pipeline to generate
skeletons with sparse joints from meshes. The pipeline mainly consists of curve skeleton extraction
and curve simplification. Our pipeline achieves 80% success rate, largely outperforming previous
deep learning based method RigNet (15% success rate).

To fully control object anatomy and pose, we build the skeletal conditioned generation model in
a multi-view manner. We represent a 3D skeleton with conditional skeleton images by Coordinate
Color Encoding (CCE) to reduce ambiguity. Joints and bones are encoded with unique colors ac-
cording to their 3D positions. For condition injection, we designed a Skeletal Correlation Module
(SCM) to extract features from these conditional images and then generate multi-view images for
the object. Later, a Large Reconstruction Models (LRM) is employed to produce 3D assets from the
multi-view images. To address potential blurriness due to the low-resolution inputs and reconstruc-
tion inaccuracies, we enhance appearance quality using a texture refinement stage that up-samples
the multi-view images to higher resolutions and refines the original texture in UV space.

The experimental results indicate that our framework achieves instant generation of multi-view and
3D contents which are aligned with given skeletons. The proposed coordinate color encoding and
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the skeletal correlation module significantly improve the object-skeleton alignment score, and ac-
celerates model convergence by 5x. 3D assets conforming to the given skeleton can be generated
in ~20s and refined in ~60s. To the best of our knowledge, this work is a pioneer in achieving
arbitrary skeletal conditioned generation with following contribution:

 Constructing the first large-scale dataset, Objaverse-SK, containing mesh and skeleton pairs that
cover diverse skeletal structures. We developed a new pipeline for generating sparse skeletons
from meshes with a high success rate.

* Proposing a multi-view and 3D generation pipeline for arbitrary skeletal conditions. This in-
cludes coordinate color encoding for compact condition representation and the skeletal correlation
module for effective condition injection.

2 RELATED WORK

Controllable 2D Generation. Based on image diffusion models like Stable Diffusion (Rombach
et al.|, [2022), versatile controlling conditions have been studied. In terms of spatial controlling,
ControlNet (Zhang et al, [2023) and other similar works (Mou et al., [2024; [Zhao et al., [2024) train
a side network for spatial conditions such as edge maps, normal maps and human skeletons. Some
works focus on human image generation from skeletons (Ju et al., |2023} [Wang et al., |2024a; Hul
2024). Box-based instance controlling is also concerned in some works (Zheng et al., 2023} [Li
et al., 2023c; Zhou et al.| 2024). As for content controlling, (Ruiz et al.,|2023) finetunes the model
to bind the given subject with an identifier in text prompt. (Ye et al. 2023; (Chen et al.| 2024b)
train an adapter to inject styles or concepts to the model. Some works (Liang et al.| [2024; Wang
et al.,|2024b; L1 et al., 2024) also focus on human ID control. Besides, some methods (Meng et al.
20215 Bansal et al., 2023; Mo et al., 2024; |Ohanyan et al.,|2024)) can achieve conditional generation
without additional modules or fine-tuning.

Controllable 3D Generation. Content controlling in 3D generation can be easily realized by image-
to-3D generation, which has been studied by plenty of works (Hong et al.| 2023} |Tang et al.| 2024;
Li et al.}|2023a} | Xu et al.| 2024)). However, in the image-to-3D paradigm, spatial controlling for 3D
generation is not as easy as content controlling. Coin3D (Dong et al., [2024) presents a framework
to control the multi-view diffusion and 3D generation by shape proxies, i.e. combination of simple
basic shapes. Sculpt3D (Chen et al.,[2024a) enhances text-to-3D generation with retrieved 3D priors.
Sherpa3D (Liu et al., 2024) proposes to generate a coarse shape with a 3D diffusion model and
refine the shape with SDS (Poole et al., [2022). Clay (Zhang et al., [2024a)) designs a transformer-
based (Vaswanil 2017} [Peebles & Xie, 2023)) 3D diffusion framework and various conditions like
images and point clouds can be injected through cross-attention layers. Some works for 3D human or
avatar generation (Liao et al.| 2024; Huang et al.,[2024;|Zhang et al.| |2024b)) uses human skeleton as
the condition in 2D or 3D space. A recent work (L1 et al.|[2023d)) realizes 3D generation with single-
view 2D spatial conditions like normal maps and edge maps by conditional multi-view generation
and 3D reconstruction. Our work shares the similar workflow, but we focus on general skeleton
conditioned generation, which has never been studied by previous works.

Mesh Skeletonization. Various algorithms were designed for extracting skeletons from 3D
meshes. (Tagliasacchi et al., 2012)) and (Barentzen & Rotenberg| 2021)) compute curve skeletons
(C-S) via iterative mesh contraction operations. (Dou et al., 2022; [Wang et al., 2024c) proposed to
extract skeletons medial axis transformation skeleton (MAT-S) by point selection and connection
prediction. C-S and MAT-S can serve as shape representation, while human-made skeletons (H-S)
are often different from them. Since the main purpose is animation, H-S only contain sparse joints
and bones. Some works (Xu et al.l 2019b; 2020) propose data-driven approaches to learn mesh
skeletonization from human annotated data. In this work, we have tried learning-based method (Xu
et al., 2020) but found the results were not satisfactory. Therefore, we develop a new pipeline to
generate skeletons which are as sparse as H-S while keep the shape of C-S.

3 DATASET CONSTRUCTION

3.1 DATA PREPARATION

The largest existing open dataset containing mesh-skeleton pairs is ModelResources (Xu et al.,
2019b). There are around 3,000 3D meshes without textures. The scale is not sufficient to train
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Figure 2: Ilustration of the pipeline for mesh-skeleton pair generation (§3.2)). Curve skeleton is
first extracted from the given mesh, followed by simplification of parted curves. The curve graph is
converted to a tree as final skeleton.

a text-driven generative model, and it lacks textures for appearance modeling. To address these
limitations, we construct a dataset with 8§x larger scale with color textures. Our dataset, named
Objaverse-SK, is built upon a large-scale 3D dataset Objaverse (Deitke et al., 2023)). Although our
data generation pipeline is applicable to a broad range of object categories, we focus on three main
categories including “Animals”, “Human Shapes” and “Plants”, as they can typically be represented
by tree-structured skeletons. Category labels are obtained from G-Objaverse (Qiu et al., [2024).
Consequently, our dataset contains 24,000 3D meshes, consisting of 15,000 animals, 6,000 human
shapes and 3,000 plants. Text prompts of these models are generated by Cap3D (Luo et al., [2024).

3.2 SKELETON GENERATION

In order to obtain mesh-skeleton pairs, a proper method for generating skeletons from meshes is
crucial. There are two concerns: the skeleton structure and success rate. The skeleton structure
should properly describe the object anatomy and be able to used for posing. Moreover, an ideal
method should generate reasonable skeleton structures with a high success rate. We tested a learning-
based method RigNet (Xu et al.} 2020). Although the generated skeleton structures can be close to
human annotations in its training data, it tends to be unstable on diverse anatomies and it only
produces symmetric skeletons (results are in Sec. [5.1).

Skeleton extraction. To enhance flexibility and robustness, we design a new reliable pipeline,
utilizing curve skeletons as the intermediate representation. Illustration of the pipeline is in Fig. [2|
Considering the structural inconsistency between curve skeletons and human-made skeletons, we
further convert dense curves into sparse joints and bones. The detailed pipeline is elaborated below.
1) Initially, Mean Curvature Flow (MCF) (Tagliasacchi et al., [2012) is employed to generate curve
skeletons from meshes robustly. 2) Next, we build a graph from the set of curves generated from the
mesh, consisting of dense nodes and edges. Intersection nodes (degree>1) are recognized and the
graph is divided into several parts by these nodes. 3) In each part, the curve does not contain any
branch so it can be simplified by Douglas-Peucker algorithm (DP) (Douglas & Peucker} |1973)) into
line segments with fewer points.

Tree conversion. At this stage, the basic shape of the skeleton is established, but the root position
and the bone direction between joints still need to be determined. The problem can be regarded as
graph to tree conversion. First, a spanning tree is build from the graph to eliminate cycles. We then
identify high-degree intersection nodes as candidates for the root. To ensure an efficient structure,
the skeleton is configured by selecting the tree with the minimum height among these candidates.
This approach ensures that the root node is located at a significant intersection, minimizing the dis-
tances between the root and other joints. More details of the full pipeline can be found in appendix.

4 METHOD

4.1 SKELETAL CONDITIONED MULTI-VIEW GENERATION

As the dataset is constructed, we consider to build the conditional generative model based on it.
Since unconditional multi-view diffusion models have been well studied, we directly start from
a base model MVDream (Shi et al.l 2023) and focus on the conditional generation. Mainly two
problems are concerned: how the skeleton is represented and how it is injected into the model.
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Figure 3: Illustration of the pipeline for skeletal conditioned multi-view and 3D generation
(§4). The 3D skeleton is projected into 2D images and represented by coordinate color encoding.
The correlation of skeletal images are extracted by skeletal correlation module, and then fused with
the noise latent. Multi-view images are first generated and then 3D textured mesh is reconstructed.
The texture is further refined via UV-space optimization.

Skeletal condition representation. As we want to generate images which aligns with the given
skeletons, using spatial guidance for the diffusion model is a reasonable way. Similar to 3D meshes,
skeletons can also be projected onto image planes as 2D conditions. However, depth information is
lost during the projection, posing a significant challenge for spatial guidance. Unlike meshes, skele-
tons only consist of joints and bones, which can easily cause both semantic and spatial ambiguity as
illustrated in Fig.[8] Thus, incorporating richer information is crucial to mitigate such ambiguities.

Coordinate Color Encoding (CCE). In order to preserve 3D information, we encode joint coordi-
nates using spatial colors. While prior works (L1 et al.,[2023b;|Wang et al.,2019) use canonical color
map for shape representation, our approach focuses on representing skeletons with sparse joints and
bones. We begin by normalizing skeletons within a canonical cube [0, 1]3. Each position in this
cube corresponds to a unique color, with RGB values precisely matching the positional coordinates.
As a result, the 2D conditional image can represent the 3D spatial positions of the skeleton. For
bones, we assign the color based on their midpoint. Additionally, we incorporate normalized values
of view-dependent inverse depth of the skeleton as the alpha channel (CCE-D). With the absolute
spatial coordinates and relative depth encoded in the conditional images, there will be more precise
and richer guidance information for generation.

Skeletal condition injection. Spatial conditions like canny edges and normal maps have been in-
vestigated in 2D image diffusion models. In ControlNet (Zhang et al., 2023), the conditional image
is encoded by convolution blocks, resulting in an output spatial size that matches the latent size.
Then, the condition features are added to the latent features. The encoder of the original diffusion
model is copied as a side network to produce guidance features, which are fused with the original
features in the decoder. Our pipeline adopts this paradigm from ControlNet, and we further enhance
it with a more effective condition feature extraction module.

Skeletal Correlation Modeling (SCM). For a skeleton in 3D space, we first project it into multi-
view images as 2D conditions. Given the sparse nature of skeletal conditions in the spatial di-
mension, convolution blocks lack global modeling capacity. To address this, we design a Skeletal
Correlation Module (SCM) to enhance the condition features by modeling the anatomy correlation
among different parts of a skeleton, and the view correlation for different projection views. The
structure of the module is in Fig. 3| (i) First, anatomy correlation is extracted by a self-attention
layer, which constructs the global skeleton features for each view. (ii) Then, the cross-view cor-
relation is modeled by a cross-attention layer, allowing the extraction of correspondences among
skeleton images from multiple views. This enables the model to recognize identical joints in differ-
ent views. In addition, we use adaptive layer normalization (Xu et al., 2019a) to fuse the camera
pose embedding with the skeletal features. Associating each skeleton image with a camera pose
aids in generating view-dependent object shapes. Although similar attention layers exist in the U-
Net, adding correlation modeling layers during condition encoding significantly accelerates model
training, achieving convergence 5 times faster (Fig. [I0).



Under review as a conference paper at ICLR 2025

4.2 MULTI-VIEW IMAGES TO 3D GENERATION

Instant reconstruction. Given the generated multi-view images, we use a Large Reconstruction
Model (LRM), specifically InstantMesh (Xu et al., 2024) for fast textured mesh reconstruction.
However, the reconstructed textures often appear blurry. On the one hand, the resolution of generated
images is 2562, which struggles in capture fine details. On the other hand, the appearance quality
also degrades during reconstruction. In order to recover and further enrich the appearance, we
introduce a new refinement stage.

Appearance refinement. First, the generated multi-view images are up-scaled 4 times into 10242
by Stable Diffusion with ControlNet-Tile (Zhang et al.,|2023)). In order to keep multi-view appear-
ance consistency, we perform view-concatenated inference, allowing attention layers to be shared
by multiple views in a training-free manner. In addition, ControlNet-Edge (Zhang et al.| [2023)) is
used to maintain the shape consistency during tiling. Canny edges (Ding & Goshtasby| 2001)) are
extracted as the additional condition. Once tiled, the high resolution images are used to refine the
reconstructed texture. A learnable 2D texture u in UV space is created and initialized as the recon-
structed texture ug, and then images are rendered through differentiable rendering for given camera
views c;. The MSE loss is optimized between the rendered images and tiled high-res images. More-
over, a regularization term is added to maintain consistency in UV space:

Lo = |1 = R(u,ci)ll5 + X * [Ju — uolf3. (1)

R(u, c;) is the image rendered from the mesh by differentiable rendering, and I!* is the correspond-
ing high-res image. Since the high-res images can not cover every position on the mesh, some
regions of x will not be optimized, e.g. bottom of the object. We found these regions are not stable
during optimization and may produce unexpected artifacts (see Fig. [[T). The regularization term
will help the optimized texture maintain the appearance from wu in these regions. Consequently, the
high-frequency details can be learned in covered regions while the global consistency can also be
achieved in uncovered regions. The optimization could be finished within 15 seconds.

4.3 OBJECT-SKELETON ALIGNMENT EVALUATION

Contrastive alignment. In order to measure how much an object is aligned with a skeleton, we
develop a new evaluator, named as Contrastive Object-Skeleton Alignment (COSA). We use the
self-supervised DINOv2 (Oquab et al.|[2023) as the backbone F' to extract both object and skeleton
features. Then, the alignment adapter Gy consisting of several self-attention layers is used to mod-
ulate the features. The adapter ends with a average pooling layer to aggregate the aligned features
into a vector. Similar to CLIP (Radford et al.,|2021), we train the adapter with contrastive learning
by InfoNCE loss (Sohn, |2016; |Oord et al., [2018)). Finally, the skeleton alignment score (SKA) can
be calculated by cosine similarity between the features from an object image x and a skeleton image

y as Sska (z,y) = cos(G(F(x)), G(F(y))).

COSA guided diffusion. Based on COSA, another conditional generation pipeline can also be
realized, following the approach proposed in (Bansal et al.,|2023). On each denoising time step ¢, the
approximate clean image Z is estimated from the predicted noise €; as in DDIM (Song et al.,[2020).
The estimated clean image and skeleton condition are fed into COSA to calculate the alignment loss
Lcosa(Zo,y) = 1 — Sska(Zo,y). Then the predicted noise is modified by the gradient of the
alignment loss for actual denoising:

é = et + s(t) - VLcosa (2o, 9) )
where s(t) controls the guidance strength. With the additional guidance of the alignment loss, the
generated object will tend to follow the conditional skeleton y.

5 EXPERIMENTS

5.1 RESULTS OF MESH SKELETONIZATION

We compare our method with a learning-based method RigNet (Xu et al.,|2020), and the results are
shown in Fig. 4 RigNet only produces symmetric skeletons so the flexibility is limited, resulting in
a success rate around 15%. On the contrary, our method runs without limitation of symmetry and
achieves better joint/bone alignment. It produces more reliable results with 80% success rate. More
details and results can be found in appendix.
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Method\SKA Score Training‘MeanImt, Meang;,ss ‘A imals H Plants‘Apodes Bipeds Quadrupeds Arthropods Wings
SDEdit (Meng et al.[[2021} O 48.90 4551 5481 47.33 3540 50.17 60.76 57.45 37.83 52.27
SDEdit+COSAG » 51.80 4782 | 5891 4257 41.99]53.53 6281 @ 6222 5000 59.84
Ours [ J \ 81.13 72.63 \ 9290  80.19 44.80\ 93.92 88.56 95.98 91.45 93.76

Table 1: Quantitative comparison of object-skeleton alignment (SKA) score (. Alignment
scores are calculated over three classes (blue) and five sub-classes of animal (green). The average
score over all instances and three classes (pink) are also shown. Highest scores among all methods
are bold and highest score among baseline methods are underlined.

\ PickScore \ CLIP Score
Method Training | Vi Rate Animals H Plants | Mean;,., Animals H Plants
SDEdit (Meng et al 2021} O 23.10 2285 2277 2437 ‘ 26.87 2709 2776 2494
SDEdit+COSAG ) 2578 2442 2768  27.50 | 2665 27.11 2735 2418
Ours ® | s5L12 5273 4955 4813 | 2751 2810 2824 2463

Table 2: Quantitative comparison of PickScore and CLIP Score (§5.2). Scores are calculated
over three classes (blue) and averaged over all instances (red). Highest scores among all methods
are bold and highest score among baseline methods are underlined.

5.2 RESULTS OF MULTI-VIEW GENERATION

Evaluation protocols. We select 56 skeletons Symmetry/orient. flexibility ! Joint/bone alignment
from our dataset for evaluation. The evaluation n |

set covers three main classes: animals, human and \/\/
plants. As animals include diverse skeleton struc- ~

tures, we further divide it into more detailed sub- [
classes (examples are shown behind): Apodes (fish,
snakes), Bipeds (ducks, penguins), Quadrupeds
(dogs, bears), Arthropods (scorpions, crabs), Wings
(birds, dragons). Three evaluation metrics are con-
sidered for multi-view generation: SKA Score for
skeletal alignment, PickScore for image quality and
CLIP Score for textual alignment. The evaluation re-

sults of other categories in ShapeNet (Chang et al.l . gure 4. Comparison of skeletons gener-
2015) are provided in appendix. ated from 3D meshes by RigNet (Xu et al.|

Baseline methods. Since there is no prior work [2020) and our method (§5.T).

that can achieve arbitrary skeletal conditioned gen-

eration, we implement two methods for comparison. The first baseline is SDEdit (Meng et al.,
2021). The process starts from condition images, followed by adding noise on them with a time
step (set as 0.7). Then clean images are generated by denoising steps. The method is totally unsu-
pervised. The second baseline is the COSA Guidance (COSAG) derived from (Bansal et al., 2023)),
which is elaborated in Section The guidance strength is set as s(t) = 7.5y/1 — . Since we
found it can not achieve stable results, it is combined with SDEdit. The method requires an extra
model so it is partially supervised. Ours is fully supervised on object-skeleton pairs.

RigNet

Ours

Qualitative comparison. The qualitative results are shown in Fig. |5} Given skeleton images in four
views as condition, SDEdit can produce images following the skeleton. However, limited by the
editing capacity, the generated objects often have wrong anatomy. For example, the snake body is
apart, and the donkey body is generated as wood. When it is enhanced by the COSAG, the quality
of generated contents is improved in some cases but still not satisfactory. Compared with them, our
results show superior quality and are more consistent with both the skeletal and textual conditions.

Quantitative comparison. Comparison results of skeleton alignment are shown in Table
Training-free methods have around 50 SKA scores, while ours is around 80. Among three classes,
animals tend to have higher alignment scores while plants have lower scores. Since the plants may
have more complex structures and sometimes are hard to be represented by skeletons. For five
sub-classes, our method achieves constantly higher alignment scores.
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Figure 5: Qualitative comparison of skeletal conditioned multi-view generation (§5.2). Condi-
tional skeletons are shown in left. Four views are generated and two views are shown for simplicity.
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5.3 RESULTS OF 3D GENERATION

Texture refinement. Results of 3D reconstruction from multi-view images are shown in Fig.[6] The
raw reconstructed results and refined results are compared. The raw textures are blurry and lack
details, while the proposed refinement stage can significantly enhance the texture quality.

Rigging and animation. Since our framework can generate the textured mesh aligned with a given
skeleton, the mesh can directly be rigged for animation, as shown in Fig.[7] The motion sequence of
a skeleton could be made by artists or captured by Mocap methods. The mesh can be generated in
an aligned manner at the canonical pose by our method, and then rigged and skinned for animation.
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and normal images are shown. Local areas are enlarged for better viewing.
0 |
f/fg J/E I\"n A\ r %“ Eé | 3
I’ X ¥ g oo \
& 0 Gt B Sen (4

Figure 7: Demonstration of mesh rigging and animation (§5.3). The textured mesh are generated
from the skeleton (orange). Since they are aligned, the mesh can be directly articulated by the
skeleton (blue). Skinning weights of different joints/bones are visualized by different colors (left).

6 ABLATION STUDY

6.1 SKELETAL CONDITION REPRESENTATION

The skeletal condition representation we use consists of coordinate color encoding (CCE) with depth
alpha (D). The ablation results are shown in Fig.[8]and Fig.[9] Richer information in conditions can
help the model to determine the content better. As a result, higher image quality can be achieved.
In Fig. [§|right, the skeleton of a penguin is highly ambiguous. If CCE-D is used, the body pose and
orientation of the penguin can be successfully inferred from colors. From Fig.[9] the quantitative
results indicate that CCE-D brings greater improvement for complex skeletons of animals and plants
than simple skeletons of human shapes.

6.2 SKELETAL CORRELATION MODELING

With richer information encoded in the condition, how to extract features from the condition also
counts. The corresponding module in previous works (Zhang et al 2023} [Li et al.} 2023d) mainly
consists of convolution blocks. Different from them, since multi-view condition of sparse skeletons
is used in our setting, correlation modeling needs to be considered. We show the effect of skeletal
correlation module in Fig. SCM with layer normalization (LN) achieves 4 x faster convergence
speed, compared with original convolution blocks. Furthermore, if LN is replaced with the adaptive
LN (AdaLN), convergence can be further accelerated. The model can achieve a SKA score of 75
within 1k training steps. The results indicate that for spatial guidance, extracting global features
from conditional images are crucial for conditional learning.

6.3 3D APPEARANCE REFINEMENT

We show the ablation results of appearance refinement in Fig. [TT} The refined appearance contains
rich and clear details such as snake scales and wood grain, compared with the reconstructed results.
However, artifacts also appear in the regions which are not covered by high-res images. With the
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A polar bear, large body, black nose, large paws. A penguin, flipper-like wings, short legs, webbed feet.
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Figure 8: Ablation study of coordinate color encoding with depth alpha (CCE-D) (§6.1). Multi-
view images are generated by different models with different condition types.
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Figure 9: Comparison of PickScore among dif- Figure 10: Comparison of SKA Score among
ferent skeletal representation types (§6.1). CCE different conditional modules (§6.2). SCM with
with depth (CCE-D) achieves higher win rate. ~ AdaLLN achieves 5x faster convergence.

help of UV space regularization, the artifacts are effectively removed in uncovered regions. As a
result, natural and consistent colors are maintained from original textures during optimization.
w/o regularization with regularization

Bottom view UV Texture

Figure 11: Ablation study of UV space regularization (§6.3). Bottom views and UV textures are
shown. Front views of the snake and the tree stump can be found in the first column of Fig.

Bottom view UV Texture Bottom view UV Texture '  Bottom view

7 LIMITATION AND FUTURE WORK

Since our work is the first one achieving arbitrary skeletal conditioned generation, there are still
many problems can be further studied. The skeletons we currently use may have limited descrip-
tion ability for non-tree structured objects. More general yet efficient shape representations can be
studied as new conditions. In addition, our work only consider global skeletons without fine-grained
semantics. How to inject detailed semantics into the skeleton parts could also be a meaningful topic
to study. More discussion can be found in appendix.

8 CONCLUSION

In this work, we propose to use skeletons as the structural condition for controllable generation.
First, we construct a large-scale 3D mesh-skeleton paired dataset. We propose an effective mesh
skeletonization method to generate mesh-aligned sparse skeletons with a high success rate. Based
on the dataset, we present a skeletal conditioned multi-view generation pipeline. Coordinate color
encoding and skeletal correlation module are proposed to realize efficient condition representation
and injection. Furthermore, 3D meshes can be instantly reconstructed, followed by a refinement
stage to achieve better texture quality. In summary, our work achieves controllable multi-view and
3D generation with arbitrary skeletons as conditions.

10
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