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Abstract

Concept Bottleneck Models (CBMs) enhance the interpretability of deep learning
networks by aligning the features extracted from images with natural concepts.
However, existing CBMs are constrained in their ability to generalize beyond a
fixed set of predefined classes and the risk of non-concept information leakage,
where predictive signals outside the intended concepts are inadvertently exploited.
In this paper, we propose Multimodal Concept Bottleneck Model (MM-CBM)
to address these issues and extend CBMs into CLIP. MM-CBM utilizes dual
Concept Bottleneck Layers (CBLs) to align both the image and text embeddings
into interpretable features. This allows us to perform new vision tasks like zero-
shot classification or image retrieval in an interpretable way. Compared to existing
methods, MM-CBM achieves up to 51.26% accuracy improvement on average
across four standard benchmarks. Our method maintains high accuracy, staying
within 5% of black-box performance while offering greater interpretability.

1 Introduction

The opacity and lack of interpretability of deep learning models hinder their deployment in real-
world applications. To mitigate this, numerous post-hoc neuron-level explanation methods have
been proposed, aiming to understand the semantics of individual neurons [[10} 23} [T, [11} [14} |27} [3]].
However, these methods often struggle with polysemanticity, where a single neuron encodes multiple,
potentially unrelated concepts, limiting their reliability.

I Evaluation | Flexibility | Interpretability

Method Zero-shot Sparse Flexible  Free text Control on Multimodal
generalization explanation | backbone input information leakage interpretability

Baselines:
LF-CBM[24] X A v X A A
LaBo[37] X X X X X A
LM4CV[35] X X X X v A
VLG-CBM][29] X v v X v A
This work:
MM-CBM v v v v v v

Table 1: Comparative analysis of methods based on evaluation, flexibility, and interpretability.
Here, v denotes the method satisfies the requirement, A denotes the method partially satisfies the
requirement, and x denotes the method does not satisfy the requirement. We compare with SOTA
methods including LF-CBM [24], Labo [37], LM4CV [35] and VLG-CBM [29].

'Our Code Repo: https://github.com/Trustworthy-ML-Lab/Multi-Modal-CBM,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.
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Figure 1: A. Previous work can compensate for uncertain concept bottlenecks by adjusting the linear
layer. B. Our MM-CBM makes predictions based solely on concept responses. C. The inference
process of MM-CBM.

As an alternative, researchers have developed intrinsically interpretable models such as Concept
Bottleneck Models (CBMs) [16 24} 35 29, [37]], which introduce a human-interpretable concept
bottleneck layer (CBL) before the classifier. This ensures that predictions are grounded in semantically
meaningful concepts. Despite their promise, existing CBMs rely on linear classification layers,
which introduce two key limitations: (1) Restriction to predefined labels: Due to their inference
mechanism, conventional CBMs can only handle a fixed set of output categories and do not support
natural language queries. (2) Information redundancy and leakage: Prior work [35|[29]] has shown
that CBMs may suffer from information leakage, where the classifier can learn to bypass concept
activations—making accurate predictions even when the CBL weights are randomly initialized.
These issues raise a fundamental question: Can we design a more flexible and expressive architecture
that supports arbitrary inputs and labels, while maintaining full interpretability throughout the
decision-making process?

To address this, we propose a new framework called Multimodal Concept Bottleneck Model
(MM-CBM). Unlike existing CBMs that use a single CBL, MM-CBM introduces dual CBLs—one
for the image modality and one for the text modality—ensuring that the same conceptual semantics
are aligned across both. The text encoder converts arbitrary textual inputs into concept responses,
while the image encoder maps visual inputs into the same concept space as shown in Fig [IB.
During inference, predictions are made by computing the similarity between concept responses
from both modalities. Additionally, by leveraging the pretrained architectures and knowledge of
Vision-Language Models (VLMs), MM-CBMs can achieve performance close to state-of-the-art
zero-shot VLMs while providing interpretability.

Our key contributions are summarized as follows:

* We propose the first CBM architecture with dual concept bottleneck layers across modalities,
enabling more complex tasks such as zero-shot generalization and image retrieval.

* We introduce a fully transparent and interpretable decision-making process that inherently
avoids information leakage and improves faithfulness.

* Our framework surpasses previous CBMs under ANEC-5 (accuracy under NEC = 5), and
achieves task performance comparable to black-box models in both fine-tuned and zero-shot
settings.



2 Related work

Global neuron-level explanations. Recent advances in representation-based post-hoc explanation
methods have provided new insights into understanding neural network behavior at a global level.
Bau et al. [1]] aligned neuron activations with human-labeled image regions using manually annotated
datasets, thereby assigning semantic concepts to individual neurons. Kalibhat et al. [13]], Hernandez
et al. [L1] identified highly activated image regions through predefined submodules or image cap-
tioning models to generate neuron-level explanations. More recently, Oikarinen and Weng [23}, 22]]
introduced a concept activation matrix to quantify the similarity between neuron activations and
predefined concepts, either through direct computation or predictive modeling, enabling a more
structured and scalable interpretation framework. The inherent polysemanticity of neurons in modern
neural networks forms the foundation upon which we build our CBL: by linearly combining neuron
activations, we are able to synthesize clear, human-aligned concepts.

Concept bottleneck models (CBMs). CBMs [[16] aim to build intrinsically interpretable models
by aligning intermediate representations with human-understandable concepts. A typical CBM
consists of two components: a concept predictor and a label predictor. Given an input z € X
and a feature extractor ¢, the model first maps extracted features ¢(z) to concept activations ¢ =
Weo(x) € RIC! via a projection matrix W, where C' denotes the set of candidate concepts. Each
dimension in ¢ corresponds to a specific interpretable concept. The final prediction is then obtained
by applying a linear classifier parameterized by Wr on top of the concept space. In some variants
of CBMs (38} 128, [7]], a residual fitting is introduced to improve task performance by allowing the
model to retain task-relevant information that may not be fully captured by the concept bottleneck
alone, albeit at the cost of reduced interpretability. This yields a modified prediction formulation of
the form:

§=WrWeé(z) + R(¢(x)), (M

where R(-) denotes a residual function (e.g., a small neural network) that operates on the original
features ¢(x) to capture complementary, potentially non-interpretable information.

This formulation supports modular reasoning, enabling inspection, intervention, and editing of
intermediate concept activations to enhance interpretability and controllability. With the rise of vision-
language models (VLMs), recent works [24} 137, |35] have extended CBMs to support automatic
concept labeling across modalities. However, as pointed out in [35,[29], when the dimensionality
of the concept layer is sufficiently large, even randomly projected features can suffice for a linear
classifier to approximate the original prediction. That is, given any projection W-—even a randomly
initialized one—it is possible to analytically recover a classifier Wg such that § ~ W¢(x), where W
is the original classifier, as shown in Fig[TJA. This undermines the faithfulness and constraint role of
the bottleneck layer. Moreover, existing CBMs often generalize poorly, being restricted to pre-trained
classes and struggling under distribution shifts [7]]. In contrast, our approach incorporates an additional
text CBL, enabling responses to arbitrary textual descriptions and generating corresponding class
weights—effectively extending concept coverage beyond fixed pre-training categories. A detailed
comparison between our method and prior CBMs is provided in Table [T}

CLIP and its interpretability. CLIP [26] is a large-scale vision-language model trained on extensive
image-text pairs using natural language supervision. It achieves strong zero-shot classification perfor-
mance by encoding both images and text into a shared embedding space and computing similarity
scores for prediction. Due to its strong generalization and semantic understanding capabilities, CLIP
representations have been widely adopted in tasks such as semantic segmentation, object detection,
visual question answering (VQA), and prompt generation for generative models. Numerous variants
have been developed to enhance generalization [31}/39] and computational efficiency [18].

Several efforts have also been made to interpret CLIP’s internal representations. Goh et al. [10]
revealed the presence of multimodal polysemantic neurons within CLIP, showing that individual
neurons can encode multiple abstract visual and textual concepts. Bhalla et al. [2] used dictionary
learning to decompose CLIP representations into interpretable semantic components. Menon and
Vondrick [20] proposed a training-free approach that leverages large language models (LLMs) to
interpret CLIP’s predictions, thereby improving both transparency and performance.
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Figure 2: Overview of MM-CBM. A. Extracting high-quality concept annotations for each modality.
B. Using an auxiliary dataset to train dual CBLs, jointly optimizing interpretability alignment and
task performance.

3 Method: MM-CBM

In this section, we introduce Multimodal Concept Bottleneck Models (MM-CBM), a novel
framework designed to improve the transparency and interpretability of multimodal reasoning by
establishing dual Concept Bottleneck Layers (CBLs). Unlike traditional CBMs that rely on a final
linear classification head, MM-CBM operates entirely within the concept space, thereby eliminating
the dependence on the linear classifier and enabling fully transparent inference.

By incorporating text-based concept encodings, our approach supports a wider variety of natural
language inputs, removing the limitation of fixed N-way classification and enabling open-vocabulary
image-text matching and zero-shot generalization. MM-CBM is composed of three main stages:
(1) Collecting concept activation data, (2) Training dual concept bottleneck layers, and (3)
Performing inference at test time.

3.1 Collecting concept activation data

Let E; : X — T denote the image encoder and Er : Y — 7T denote the text encoder of CLIP, which
map input images and texts into a unified latent representation space. Here, X = R *W >3 represents
the image space, and ) denotes the text space. The shared latent space is Z, 7 = R¢, where d is
the dimensionality. We denote the original dataset used for training CBLs as D = {(x;,y;)}, where
x; € X is the i-th image, y; € ) is its corresponding textual label. For a fixed-label classification task,
let Y be the set of all possible class labels. The label index of y; is denoted by [; € {0,1,...,|Y|—-1},
such that Y}, = y,.

Concept set generation. Following recent works [24} 37} 35]], we adopt a fully automated pipeline
that queries an LLM for each class label y € Y to generate a candidate concept set C,,, with final
concept set C' = Uy cy Oy, reducing annotation cost and avoiding reliance on scarce datasets with
human-defined concepts. For zero-shot classification, we leverage the task-agnostic concept set from
SpLiCE [2].

Collecting concept labels. With the candidate concept set C' in place, we construct a concept
activation dataset D' = {(z;, y;,a?"*, at**)} by augmenting each image-text pair with two additional
labels as shown in Fig 2JA:

e a¥®® € {0, 1}1€1, a binary vector indicating which concepts appear in the image x;,
e al*t e RI€!, quantifies how strongly each concept in C relates to the text label y;.

To equip the model with interpretable supervision, we first extract binary concept labels for each
image based on OWLv2’s open-source object detection results [21]. The image concept label [a}"*],



for concept ¢; is defined as:

@

[ ?’is] o {1, if concept c; appears in image x;,
v 0, otherwise.

For each training image z;, we prompt OWLv2 with the class-specific concept set C,;,. The model
predicts a set of bounding boxes B = {(b, f,c)}, where b represents the box coordinates, f is the
confidence score, and ¢ € Cy, is the detected concept. If the confidence f exceeds a predefined
threshold 7", we consider the concept c to be present in image z;.

To compute a‘*, the text-concept similarity vector, we define each entry [a!™*

similarity between the text label y; and concept c;:

]; as the semantic

[ai™"]; = sim(y;, ¢;). (3)

For the similarity function, we follow the Automatic Concept Scoring (ACS) method from CB-
LLM [30], where similarity is defined as:

sim(y;, ¢;) = E(yi) - £(c5), ©)
with £(-) denoting the text embedding generated by a language model. In our implementation, we
use the all-mpnet-base-v2 model [34] as the text encoder.

3.2 Training dual concept bottleneck layers

Given the concept activation dataset D’, we train a pair of Concept Bottleneck Layers (CBLs): one for
identifying concept presence in images, and the other for capturing the association between concepts
and textual labels. Our training objective consists of two components: an interpretability loss Linr
and a classification loss Lacc as shown in Fig[2B.

Interpretability loss Lint. To explicitly align the outputs of the concept bottleneck layers (CBLs)
with human-interpretable concepts, we define an interpretability loss that supervises both the image
and text sides using binary and soft labels, respectively. Let g; : Z — RI®l and g7 : T — RIC]
denote the image and text CBLs, respectively, where |C| is the number of concepts. These CBLs
project image and text features into a shared concept space. To enforce consistency between predicted
concept activations and ground-truth annotations in D’, we define the interpretability loss as:

1 |D’|

Lint = m ; Li(gr o Er(z;),ai"" )+ 5)

Lr(gr o Er(y;), ai™"),

Here, E; and Er are the image and text encoders introduced in Section and a?**, at** € RIC!
are the concept label vectors for image and text respectively. We adopt binary cross-entropy (BCE)
for the image-side loss L; and negative cosine similarity for the text-side loss Ly, reflecting the

discrete and continuous nature of the constructed concept labels.

Task loss Lacc. To maintain the model’s performance on downstream task, we introduce a task-
specific classification loss based on the representations in the concept space. Let I, = g7 o Er(z)
and T, = gr o E7(y) denote the image and text representations in the concept space.

To ensure interpretability and promote sparsity—i.e., encouraging the prediction rely on a small
subset of semantically meaningful concepts—we draw inspiration from the number of effective
concepts (NEC) [29]. Specifically, the similarity between I, and T is computed as the sum of the
top-n responding dimensions over element-wise products. To further enhance interpretability and
reduce the influence of negatively activated concepts, we set all negative elements in the concept
vectors to zero before computing the similarity: 77 = ReLU(I,) and Tt = ReLU(T.). More details
are provided in Appendix In this case, the classification loss is defined as:

S top-n(IF ©T.F)
Lacc = Lce < e ),
[ 2172

where Lcg denotes the cross-entropy loss, © represents element-wise multiplication, 7 is a learnable
temperature parameter, and [ is the index of the ground-truth label.

6)



Final objective To jointly optimize both interpretability and task performance, we integrate the
interpretability loss and discriminative loss into a unified objective. Notably, our model can also
be trained without ground-truth labels, achieving classification accuracy comparable to CLIP; see
Appendix[A.4]for details. This combined loss function enables the model to learn concept-aligned
representations while maintaining strong classification performance, thereby mitigating the risk of
the linear layer overfitting to the task and compensating for a poorly interpretable concept space:

Lege = (1 — X) Lint + A Laces @)

where \ € [0, 1] controls the trade-off between interpretability and task accuracy.

3.3 Performing inference at test time

During inference, given any image x and text y, the model outputs two modality-specific concept
embeddings: an image concept embedding . = (¢;1, ¢ia, - -+ , Cim) and a text concept embedding
T. = (ci,¢i2,- - Cum), Where each element c¢; reflects the degree to which the j-th concept is
present in the image or related to the text, m is the number of candidate concepts, m = |C/|.

To assess the semantic consistency between the image and text, we compute the similarity between
the two concept embeddings:

top-n(It © TF
Z<20p+n<e§> >>
[ (12| Te" (|2

where z denotes the similarity score (logits), ® represents element-wise multiplication. Since both
embeddings are aligned with human-interpretable concepts and the inference depends solely on these
vectors, the inference process of MMCBM is fully transparent as shown in Fig[2B.

The resulting similarity score reflects the alignment of the image and text with respect to the shared
concept space. Furthermore, in contrast to traditional CBMs that rely on a linear classifier to associate
concepts with categorical labels, our text CBL directly produces concept activations from natural
language descriptions. This not only simplifies the inference pipeline but also enables flexible support
for diverse textual inputs.

4 Experiment

In this section, we evaluate our method and perform an ablation study. Section {.T] outlines the
experimental setup. In Section[4.2] we compare MM-CBM with existing CBMs and the black-box
CLIP used in our method, demonstrating its effectiveness. Section[d.3]presents ablation studies on the
interpretability enhancement techniques described in Appendix Section shows quantitative
interpretability results obtained through interactions with VLMs.

4.1 Experimental setup

Datasets: We conduct experiments on seven datasets covering diverse task types: (1) General image
classification: CIFAR-10, CIFAR-100 [17], and ImageNet [9]]; (2) Fine-grained classification:
Food-101 (Food) [4], CUB [33]], and Oxford-IIIT Pets (OxfordPets) [25]]; (3) Texture classification:
Describable Textures Dataset (DTD) [8]]. Additionally, we trained MM-CBM on multimodal dataset
(CC12M [a]) to test the generalization ability. We follow the standard train/test splits, as detailed in
Appendix [A.5] and use classification accuracy as the evaluation metric.

Baselines: We compare MM-CBM with four interpretable baselines: LF-CBM [24]], LaBo [37],
LMA4CV [335]], and VLG-CBM [29], as well as the CLIP-ViT-L/14 backbone using both zero-shot and
linear-probe settings.

Implementation: We use gpt-3.5-turbo-instruct to generate candidate concept sets for
datasets. Unless otherwise specified, the trade-off parameter between interpretability and task
performance is set to A = 0.2, and the NEC is fixed at 5. To ensure fair comparison with prior CBMs,
we use CLIP-RNS50 as the backbone. All other evaluations are conducted using models trained with
CLIP-ViT-L/14. We use the Adam optimizer [15] during training. For each batch, we randomly select
one sentence from those generated by VLMs as the text input for each category.



For the fine-tune scenario, where target datasets are used, we compare MM-CBM to CLIP-ViT-L/14
with linear probing. For the zero-shot scenario, we compare with the zero-shot performance of CLIP.
To accelerate training and reduce computational overhead under the zero-shot scenario, we omit the
NEC constraint and directly use the inner product 7.7 @ T." instead of the top-n summation.

4.2 Results

Comparison with existing CBMs:  Table[2]shows accuracy under NEC = 5 (ANEC-5). MM-CBM
achieves performance comparable to the strongest baseline, VLG-CBM, and surpasses others by over
10% accuracy on ImageNet. This suggests that MM-CBM benefits from the rich semantic knowledge
embedded in the CLIP backbone, particularly on large-scale datasets.

Table 2: Comparison with other CBMs on ANEC-5 using CLIP RN50. Best results for each
benchmark are in bold; second-best are underlined.

Method Dataset

ANEC=5 CIFARIO CIFAR100 ImageNet CUB  Average
LF-CBM 84.05 56.52 52.88 3135 56.20
LM4CV 53.72 14.64 3.77 3.63 18.94
LaBo 78.69 44.82 24.27 4197 4744
VLG-CBM 88.55 65.73 59.74 60.38 68.60
MM-CBM(Ours) 86.80 64.96 70.23 58.79 70.20

Comparison with CLIP backbone: Table [3|compares MM-CBM under both fine-tune and zero-
shot scenarios with CLIP’s linear-probe and zero-shot performance. Across six datasets, MM-CBM
achieves comparable results. However, on the CUB dataset, performance drops notably in the zero-
shot setting. This may be attributed to the poor performance of the original CLIP model on CUB,
likely due to insufficient semantic representations of bird-related concepts, which limits its ability
to distinguish fine-grained categories. Additionally, the candidate concept set may lack coverage of
bird-specific attributes. Nonetheless, the results remain non-trivial and demonstrate that MM-CBM
can still generalize reasonably even in challenging scenarios.

Table 3: Test accuracy comparison with black-box CLIP.

Method Dataset
CIFAR-10 CIFAR-100 CUB Food OxfordPets DTD ImageNet

Zero-shot

CLIP ViT-L/14 96.2 77.9 623 929 93.5 55.3 75.3
MM-CBM(Ours) 94.2 75.2 392 857 80.1 49.6 67.4
Finetuned

CLIP linear probe 98.0 87.5 84.5 952 95.1 82.1 83.9
MM-CBM(Ours) 97.0 84.5 74.1  93.6 91.9 73.4 82.1

4.3 Ablation study

We assess the effect of the non-negative concept space introduced in Appendix[A.3] Alternatives such
as sigmoid, squaring activations, and removing this module are evaluated. The .; norm is used to
measure the sparsity of concept responses.

Given a non-negative vector v of length |S| (number of candidate concepts), and ||v||2 = 1, we have
1 < ||v]l1 £ +/|S|- Lower ||v||; implies higher sparsity, which improves interpretability. We report
the average L1 norm of visual (/) and textual (7) activations, and average alignment score across
validation samples.

Table ] shows that our approach yields nearly 20 x smaller L; norm for visual activations and 2x
smaller for text, compared to other methods. Our alignment score also improves by 5 x, suggesting



higher prediction confidence. Importantly, increased sparsity does not degrade accuracy but enhances
reliability. Additionally, since visual supervision uses binary targets and text uses real-valued
similarity scores, visual concept activations are expected to be sparser. Our method preserves this
property, while others reverse it, potentially introducing redundant activations.

Table 4: Ablation study of non-negative setting. Visual and language correspond to the average L,
norm of image and text concept activation; Score means the average highest alignment score, the
image and prediction alignment score.

Function Visual Language Alignment Accuracy

activation activation score
Sigmoid 59.52 25.74 0.06 77.87
x? 44.77 1591 0.10 81.82
None 59.52 39.67 0.01 80.79
ReLU 2.39 7.84 0.47 82.07

4.4 Interpretability result - comparison with VLMs

Vision-Language Models (VLMs) are highly capable of understanding the overall semantics of
images and generating natural language explanations. This appears similar to the goal of CBMs, so
we directly compared explanations from our MM-CBM (ImageNet) with those from VLMs.

Specifically, we prompted each model with the template: "Why is this image categorized as {cls}?",
and collected 5,000 explanation pairs from imagenet dataset. To evaluate which explanation contained
more informative visual concepts, we leveraged the VQA capabilities of VLMs themselves by asking:
"Which description has more informative visual concepts in this image?" Notably, to reduce model-
specific bias and avoid self-preference in scoring, we separated the roles of evaluator and competitor
across models—using different VLMs to act as the "judge" and the "explainer." In our experiments,
we used LLaVA-v1.5-7B [[19] and L1ama-3.2-11B-Vision-Instruct [32], alternating their roles
to ensure fairness and robustness. MM-CBM explanations were preferred over LLaVA 1.5 in 4,433
(88.7%) out of 5,000 cases, and over Llama 3.2 in 3,292 (65.8%) cases. These findings suggest that
although VLMs are adept at generating high-level semantic interpretations, they tend to overlook
fine-grained visual concepts that are central to CBM-style interpretability.

Although it is technically possible to guide VLMs toward generating better explanations by designing
elaborate prompt templates, such approaches are prohibitively inefficient. In our measurements,
these carefully prompted baselines were up to 1,000x slower than MM-CBM, requiring significant
computational resources and longer inference times. In contrast, MM-CBM achieves high-quality,
concept-centric explanations in a highly efficient and scalable manner—making it practical for
deployment at scale.

5 Case study: image retrieval

We replace the fixed linear classifier with a text encoder, enabling flexible and unrestricted text inputs.
In this section, we evaluate our model via an image retrieval task: given arbitrary text, the model
selects the image with the highest alignment score. This allows us to assess the model’s semantic
consistency and generalization ability. To systematically analyze retrieval performance, we define
five types of textual queries:

* Type-A: Ground-truth label queries — Direct retrieval using exact class labels (e.g.,
uniform, popsicle, crane).

* Type-B: Concept-based queries — Retrieval based on key concepts (e.g., striped fur, spotted
fur, uniformed fur), allowing us to test fine-grained concept understanding.

» Type-C: Hybrid label-concept queries — Queries that combine class labels and specific
concepts (e.g., crane with machine, or cat with striped fur to resemble a tiger).

* Type-D: Out-of-distribution queries — Texts containing unseen labels or novel concepts
not present in the training set (e.g., foothpaste, linked to cleanliness or washing; stable,
associated with safety or defense).



* Type-E: Polysemous or abstract queries — Phrases involving ambiguity or abstraction
(e.g., give me a hand, which could refer to a physical hand or the act of helping; danger,
suggested by an open safe filled with gold bars; fun, evoked by entertainment devices).

Query: Give me a popsicle

The concepts most related to query:

The concepts most related to the image

This image is a popsicle because it has:

a colorful, icy coating (0.42)
dessert (0.10)
a colorful, icy exterior (0.02)
flavorful filling (0.02)
a topping (0.01)

Type-A

a colorful, icy coating (0.49)
afreezer (0.27)
dessert (0.25)
ice (0.21)
flavorful filling (0.21)

a colorful, icy coating (0.87)
dessert (0.41)
a topping (0.20)
a colorful, icy exterior (0.15)
flavorful filling (0.11)

Query: Give me a spotted fur picture

This image is a machine crane because it has:

rig (0.17)

a construction site (0.12)
extends over water (0.04)
weights (0.03)
attached to a long shaft (0.02)

Type-C

,_-In This image is spotted fur because it has: a spo(tjtg: (%0230.31) a spo(tjtg: (%0.23071)
3 spotted fur (0.26) a thin, stretchy surface (0.30)
= a Sp"ét:; (%O?:)(o‘zz) often has a soft, padded feel often has a soft, padded feel
often has a soft, padded feel (0.06) (0.26) (0.25)
Query: The image shows crane, the machine
rig (0.65)

a lift arm on the side (0.27)
rig (0.26)
a central axle or shaft (0.25)
a construction site (0.24)

a construction site (0.52)
extends over water (0.35)
weights (0.33)
abanner (0.21)

Query: This image depicts something easy to break

This image is breaking tool because it has:

Type-D

tool (0.08)
screws (0.06)
pliers (0.05)

a kitchen (0.22)
saw (0.17)
tool (0.16)
a piece of wood (0.15)
a bike lock (0.15)

screws (0.52)
tool (0.47)
pliers (0.46)
kit (0.38)
used for pounding nails (0.28)

Query: Give me a hand

F| This image is a helping scene because it has:

a paramedic (0.08)
four handles or handholds (0.08)
a soldier (0.07)

Type-E

an operating system (0.23)
a soldier (0.20)
four handles or handholds (0.19)
hands (0.187)

a paramedic (0.68)
four handles or handholds (0.41)
a soldier (0.37)
a front sight (0.30)
a patient (0.26)

Figure 3: Image Retrieval on five different types of queries.

This evaluation setup helps us validate the semantic alignment of our model and its ability to
generalize beyond predefined labels or fixed concepts. We use the model trained on ImageNet for all
experiments. For each query type, representative examples are chosen as described above. Retrieval
results (Figure[3) show that our model’s semantic understanding is, to a large extent, consistent with
human interpretation. Notably, it is capable of summarizing and refining concepts based on context.
However, some inconsistencies remain due to noise introduced during training, which may affect
interpretability and reliability in certain edge cases. Full retrieval results and additional examples can
be found in Appendix [A.T0}

6 Conclusion

In summary, we propose MM-CBM, a flexible framework that enables interpretable modeling across
both image and text modalities using arbitrary inputs. By leveraging the expert knowledge embedded
in existing vision-language foundation models, MM-CBM simultaneously learns interpretable con-
cepts from both modalities and introduces simple yet effective strategies to enhance interpretability.
Our approach achieves competitive performance compared to existing Concept Bottleneck Models
(CBMs) and even black-box baselines, while maintaining transparency in the inference process. We
believe MM-CBM presents a new paradigm for building interpretable multimodal models, with the
potential to benefit a broad range of applications in multimodal learning, such as image retrieval,
captioning, and visual question answering.
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A Appendix

A.1 Overview

The appendix covers: [A.2] concept set generation; [A.3] interpretability enhancement strategies;
[A.4unsupervised adaptation via knowledge distillation; [A.5|experimental configurations;
ablations on effective concepts and non-negative transformations; [A.§] human intervention; [A.9)
alternative backbones; and [A.10]image retrieval examples.

A.2 Concept set generation

Let C denote a fine-grained concept set that semantically explains the images and their corresponding
labels in D. Such a set can be manually curated by domain experts or automatically generated
using large language models (LLMs) [32,15]. Following recent studies [24, 37, 135]], we adopt a fully
automated approach in which, for each class label y € Y, an LLM is queried to produce a candidate
concept set C,. Under the label-free CBM setting [24], the LLM is prompted as follows:

* List the most important features for recognizing something as a {class}:
e List the things most commonly seen around a {class}:

* Give superclasses for the word {class}:

Here, {class} refers to the class name in the target classification task. The final concept set is obtained
as the union of all class-specific sets:
c=Ja,.

yey
We further refine C' using the filtering strategy proposed in label-free CBM, with the following steps:

1. Concept length: Discard concepts exceeding 30 characters to maintain simplicity and
interpretability.

2. Similarity to target classes: Remove concepts overly similar to target class names, as they
undermine the explanatory role of the CBM. Similarity is measured via cosine similarity in
a joint text embedding space, combining features from the CLIP ViT-B/16 text encoder and
the all-mpnet-base-v2 sentence encoder. Concepts with similarity greater than 0.85 to any
target class are excluded.

3. Redundancy removal: Eliminate duplicate or near-synonymous concepts to ensure diversity
in the bottleneck layer. Using the same embedding space, any concept with cosine similarity
above 0.9 to an already retained concept is removed.

This automated generation and filtering process substantially reduces the reliance on manual annota-
tion while enabling scalable construction of rich concept sets, even for datasets lacking human-defined
concept annotations.

A.3 Strategies to enhance interpretability

In this section, we introduce three strategies designed to enhance the interpretability of our multimodal
CBM model.

Generation of rich textual information. In many vision-language datasets, there exists a significant
imbalance between the number of images and the granularity of their associated textual labels—where
hundreds or even thousands of images may share the same class name. Repeatedly using identical
textual inputs during training can introduce undesirable biases and restrict model generalization.
To address this issue, we leverage the capabilities of the state-of-the-art multimodal large language
model Llama 3.2-Vision to generate diverse, semantically rich label descriptions. Specifically,
we prompt the model with the following template: "If I had to describe this image using only one
sentence with the words class, it would be: " For each class label, we randomly select images
belonging to that class and generate at least 50 unique textual descriptions. During training, one of
these alternative descriptions is randomly sampled for each iteration, thereby improving diversity in
the language modality and reducing overfitting to fixed textual patterns.
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Table A.1: Examples of generated sentence.

Generated sentence

The image shows a hand holding tench.
This is a close-up of a goldfish.

The image depicts a jay with its wings spread.
It would be a smooth newt with a smooth skin.
The peafowl is pecking at the ground.
The macaw is a vibrant and colorful bird.
The image features a Bluetick Coonhound.

Number of effective concepts (NEC). NEC, originally proposed by [29]], is a metric that helps
prevent information leakage by constraining model reliance on a limited set of semantically meaning-
ful features. We adapt this approach to our multimodal CBM when computing the alignment score
between an input image x; and its corresponding label y; using interpretable encodings. Specifically,
we select the top-n dimensions from the element-wise similarity between image and text encodings
and use their sum as the final similarity score:

. Ztop'n(le @Te)>
logits = ( x e” (A1)
([ Le|2]|Tell2

Here, © denotes element-wise multiplication. Our method dynamically identifies the top-n most
relevant concepts for each image-text pair, making the reasoning process more interpretable and
supporting better downstream interventions.

Non-negative concept representation space. In our concept representation space, each dimension
reflects the similarity between the input (image or text) and a specific concept. To improve inter-
pretability, we enforce a non-negative constraint on these activations by applying a ReLU function
to both image and text embeddings: I;F = ReLU(I,) and 7" = ReLU(7%). This design improves
interpretability in the following three aspects:

1. Disambiguating negative responses. As discussed in [30], it is often unclear whether a
negative activation implies the negation of a concept or its complete absence. By removing
negative values, we avoid this ambiguity.

2. Amplifying relevant concept activations. Since similarity computations involve normaliza-
tion, weak activations in high-dimensional spaces can lead to dilution of important signals.
By zeroing out irrelevant (negative) dimensions, we strengthen the contribution of mean-

ingful concepts. In the worst-case scenario, each dimension has a value of at most , / %,
where |C' is the number of candidate concepts; thus, filtering noise is crucial.

3. Improving inference reliability and efficiency. Without non-negativity, the product of two
negative activations (from image and text encodings) may yield a misleadingly high similarity
score, falsely indicating semantic alignment. Enforcing non-negativity eliminates this issue
and also simplifies the computation and sorting steps during inference.

A.4 Unsupervised setting via knowledge distillation

When ground-truth class labels are unavailable, we adopt the predictions of the backbone VLM
(e.g., CLIP) as soft supervision. This unsupervised learning strategy enhances the flexibility of our
framework, enabling the use of large-scale unlabeled images from the target domain together with
only the labels of interest, thereby fully exploiting CLIP’s representation capabilities.

Inspired by prior work on knowledge distillation [[12, 36]], we align the output distributions of
our model with those of the VLM in both image-to-text and text-to-image directions. Let M;; =
cos((Ie)s, (Te);) denote the similarity matrix in the concept space, and NV;; = cos(E;(z;), Er(y;))
the similarity matrix from CLIP. All embeddings are Ls-normalized. The corresponding softmax-
normalized distributions are:

14



pr = softmax(N), pg = softmax(N ") (A2)

ps = softmax(M), gs = softmax(M ") (A.3)

We then minimize the Kullback-Leibler (KL) divergence between the teacher (CLIP) and student
(CBL) distributions:

1
Lip, .+ = Dxw(prlps) ZpT )log 2 Té; (A4)
1
Lkp, ,, = Dx(grlas) = ZqT )log & Zi, (A5)
1
Lxp = 5 (Lkpir + Lkpry) (A.6)

Additionally, we treat CLIP’s top-1 prediction as a pseudo-label [ to supervise the classification head:

I.-T A
I =T, (H-eT, z) + Lxp. (A7
ace = bee \ I KD )

This unsupervised task-performance loss can be directly incorporated into the final objective in
Equation[7] replacing the supervised loss, thereby enabling end-to-end training of an interpretable
CLIP without requiring labeled data.

As shown in Table[A.2] the knowledge-distilled MM-CBM largely preserves task performance across
the other six datasets. In contrast, its performance on the DTD dataset is noticeably weaker. A
plausible explanation is that the black-box model itself performs poorly on DTD, resulting in soft
labels that lack sufficiently informative latent knowledge, which in turn limits the effectiveness of the
distilled model. This result demonstrates the strong scalability of our approach: given an image and
an associated category of interest, it can achieve performance close to that of the black-box model,
thereby greatly broadening the range of potential applications for MM-CBM.

Table A.2: Knowledge distillation accuracy comparison with black-box CLIP.

Method Dataset

CIFAR-10 CIFAR-100 CUB Food OxfordPets DTD ImageNet
CLIP ViT-L/14
Zero-shot 96.2 77.9 623 929 93.5 553 75.3
MM-CBM w/ KD 91.7 73.3 61.7 925 88.9 34.7 74.7

A.5 Experimental configurations

Tables [A.3] and [A.4] summarize the datasets and training configurations used in our experiments.
Tables lists the number of classes and the train/test split for each dataset, where we retain the
original splits. Table[A.4] presents the dataset-specific hyperparameters, including batch size, training
epochs, and the number of concepts in the concept set. For all datasets, the trade-off weight was fixed
at w = 0.2, the temperature was initialized as 7 = 0.07, and the NEC parameter was set to 5.

A.6 Ablation study: number of effective concepts

We evaluate the model under NEC = 5 and when using all concept activations to compute alignment
scores. Specifically, we measure the contribution ratio of the top five highest responses to the total
score. As noted in [29], CBMs trained with sparse concept activation labels tend to base their
decisions on a few key activations, improving robustness to changes in NEC. Our results show a
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Table A.3: Dataset Details about number of classes and train/test set split.

Dataset Classes Train size Test size
CIFAR-10 10 50,000 10,000
CIFAR-100 100 50,000 10,000
CUB 200 5,994 5,794
Food 101 75,750 25,250
OxfordPets 37 3,680 3,669
DTD 47 3,760 1,880

ImageNet 1000 1,281,167 50,000

Table A.4: Hyperparameter for each dataset used for training the model.

Dataset Batch size  # of epochs  # of concepts

CIFAR-10 128 50 141
CIFAR-100 64 50 795
CUB 8 50 604
Food 128 50 755
OxfordPets 8 50 205
DTD 4 50 365
ImageNet 256 12 4553

similar pattern (Figure[A.T): even when all concept activations are used during training and inference,
the top two remain dominant. Setting NEC = 5 concentrates activations further and increases their
variance, indicating that the concepts involved in decision-making are more distinct. This property
can be exploited to refine the candidate concept set, making the model’s explanations more concise
and interpretable.

contribution of each concept

0.6
HEE NEC=5

All concepts

1 2 3 4 5 other

Figure A.1: Contribution of each concept used as explanation.

A.7 Ablation study: non-negative concept representation space

We assess the impact of enforcing non-negative responses by introducing alternative transformation
methods beyond the ReLU baseline in Section[A.3] In particular, we explore a squared activation
function to ensure all responses are non-negative. To quantify how these transformations affect
activation magnitudes, we examine the cumulative distribution function (CDF) of response values
across three categories: visual activations, text activations, and decision concept activations. As
shown in Figure[A.2] ReLU yields the highest response values among the compared methods. Text
activations, supervised by text similarity, exhibit a more concentrated distribution (lower variance)
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during inference, whereas visual activations, trained with one-hot supervision, display a more
dispersed distribution (higher variance), enhancing interpretability. Furthermore, the dot product
operation effectively suppresses redundant text information, enabling decision concept activations
to retain higher variance—facilitating the identification and selection of highly interpretable, task-
relevant concepts.
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Figure A.2: Non-zero concept activation cumulative distribution function of final prediction(top),
visual activation(middle) and language activation(bottom).

A.8 Human Intervention

We further analyze the model’s decision process and demonstrate how manual adjustments based on
expert knowledge can improve predictions, inspired by [24]. Figure[A.3]|shows a misclassification
where the model predicts “barbershop” due to a strong activation of the concept “a sign that says
barbershop,” which is not visually present. This can be corrected by manually setting T pred, concept] =
0.

Another error occurs when “barbershop” is incorrectly favored due to a higher response to “a
customer,” despite “barber chair” being the correct label. Equalizing the activation between both
classes for that concept (T¢g, concept] = Zefpred, concept]) €OTTECts 5 predictions and introduces 2 new
errors—shifting predictions from “barbershop” to “barber chair.” This leads to a 3% accuracy
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Prediction: barbershop —_— New prediction: barber chair

barbershop concept acivations barber chair concept acivations

a customer 0.22 a customer 0.17
a reception area 0.11 a large, upholstered chair 0.14
a razor 0.08 a razor 0.10
a sign that says "barbershop” 0.03| —> 0 a large, adjustable headrest 0.02
a waterproof surface 0.02 a waterproof surface 0.02

[l S

Intervention: set "barbershop" activation of "a sign that says barbershop" = 0

Figure A.3: A sample of correcting model prediction by deleting the wrong concept.

improvement in a 100-sample subset. Such errors stem from response bias on shared concepts,
which hinders fine-grained classification when dominant but insufficient features overshadow more
specific ones.

The source of this error is traceable: since I, is identical, the difference lies in 7,. Using the label
generation model all-mpnet-base-v2 [34], we find that the similarity score between “barbershop”
and “a customer” is 0.3618, compared to 0.3070 for “barber chair.” This discrepancy reflects a
language-model-induced bias during training.

The Figure @resnlt of manually editing the text concept activation T¢ g, concept] = 1 e[pred, concept] fOT
the case in Figure[AJ]

Prediction: barbershop —_— New prediction:

barber chair concept activation

a customer 0.17 |

barber chair concept activations

a large, upholstered chair 0.14 a customer 0.21

a razor | 0.10

a large, adjustable headrest |IIN0.02

a large, upholstered chair 0.13
a waterproof surface Jlll0.02

barbershop concept activations
a customer | 0.22 ‘

a razor 0.10

a reception area 011

a large, adjustable headrest 0.02

a razor | 0.08

a sign that says "barbershop" JII0.03 a waterproof surface 0.02

a waterproof surface Jli0.02 L} .\1|m“.<-4
Intervention: set "barber chair" activation of "a customer" = "barbershop" activation of "a customer".

Figure A.4: A sample of correcting model prediction by setting the common concept to the same
value

A.9 Other Backbone

To evaluate the generalization capability of our approach, we conducted experiments not only with
multiple variants of CLIP, but also with flexible combinations of diverse and unrelated image—text
encoders. The results demonstrate that our method can be seamlessly adapted and extended to other
architectures with similar designs, rather than being limited to interpretable versions of CLIP.

Image encoder SigLIP EVA-CLIP  SigLIP  SigLIP2

Text encoder SigLIP EVA-CLIP MiniLM  SigLIP2
Original accuracy 82.1 79.8 82.1 83.1
Ours 84.8 76.9 84.9 70.1

Table A.5: Performance using different backbones.
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A.10 Image Retrieval

In Section 5] we define 5 different levels of queries and provide corresponding examples. In this
section, we provide more cases and offer interpretable predictions in Figure[A.3]

This is a photo of uniform

Give me a popsicle

The image shows crane

a soldier
a graduation ceremony
a badge or insignia
a button-down shirt
a jacket

Type-A

a colorful, icy coating
dessert
a colorful, icy exterior
flavortful filling
a topping

other birds
a stamp
along, pointed bill pointed wings

Give me a striped fur picture

striped fur
acat
striking orange and
black fur

Type-B

The image shows crane, the machine

rig
a construction site
extends over water

Type-C

a spotted coat

dog
often has a soft, padded feel

a garment made from animal fur
a soldier
a sights

striped fur
acat

carnivore

azoo
striking orange and black fur

two dark lenses
a shore
a lotion or cream
consistency

o

q') wipes

Qo a lotion or cream
|2‘ consistency

breath

attached to a surface
barrier
afarm

parallel to each other

tool
screws
pliers

a paramedic
four handles or
handholds
a soldier

Type-E

Something fun

This image depicts something dangerous

speakers
a stereo

entertainment
surround sound

a security system
a locking mechanism
a large, cylindrical boiler

Figure A.5: Image Retrieval on five different types of queries. The top of the module shows the query
statement we use, and the right side shows the most relevant concepts.
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