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Abstract

Concept Bottleneck Models (CBMs) enhance the interpretability of deep learning1

networks by aligning the features extracted from images with natural concepts.2

However, existing CBMs are constrained in their ability to generalize beyond a3

fixed set of predefined classes and the risk of non-concept information leakage,4

where predictive signals outside the intended concepts are inadvertently exploited.5

In this paper, we propose Multimodal Concept Bottleneck Model (MM-CBM) to6

address these issues and extend CBMs into CLIP. MM-CBM utilizes dual Concept7

Bottleneck Layers (CBLs) to align both the image and text embeddings into8

interpretable features. This allows us to perform new vision tasks like classification9

with unseen classes or image retrieval in an interpretable way. Compared to existing10

methods, MM-CBM achieves up to 43.96% accuracy improvement on average11

across four standard benchmarks. Our method maintains high accuracy, staying12

within 5% of black-box model performance while offering greater interpretability.13

Code is provided at https://anonymous.4open.science/r/Multimodal-CBM-B0BC.14

1 Introduction15

The opacity and lack of interpretability of deep learning models hinder their deployment in real-16

world applications. To mitigate this, numerous post-hoc neuron-level explanation methods have17

been proposed, aiming to understand the semantics of individual neurons [10, 23, 1, 11, 14, 27, 3].18

However, these methods often struggle with polysemanticity, where a single neuron encodes multiple,19

potentially unrelated concepts, limiting their reliability.20

Evaluation Flexibility Interpretability
Method Zero-shot Sparse Flexible Free text Control on Multimodal

generalization explanation backbone input information leakage interpretability

Baselines:
LF-CBM[24] × △ ✓ × △ △
LaBo[37] × × × × × △
LM4CV[35] × × × × ✓ △
VLG-CBM[29] × ✓ ✓ × ✓ △
This work:
MM-CBM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparative analysis of methods based on evaluation, flexibility, and interpretability.
Here, ✓ denotes the method satisfies the requirement, △ denotes the method partially satisfies the
requirement, and × denotes the method does not satisfy the requirement. We compare with SOTA
methods including LF-CBM [24], Labo [37], LM4CV [35] and VLG-CBM [29].
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Figure 1: A. Previous work can compensate for uncertain concept bottlenecks by adjusting the linear
layer. B. Our MM-CBM makes predictions based solely on concept responses. C. The inference
process of MM-CBM.

As an alternative, researchers have developed intrinsically interpretable models such as Concept21

Bottleneck Models (CBMs) [16, 24, 35, 29, 37], which introduce a human-interpretable concept22

bottleneck layer (CBL) before the classifier. This ensures that predictions are grounded in semantically23

meaningful concepts. Despite their promise, existing CBMs rely on linear classification layers,24

which introduce two key limitations: (1) Restriction to predefined labels: Due to their inference25

mechanism, conventional CBMs can only handle a fixed set of output categories and do not support26

natural language queries. (2) Information redundancy and leakage: Prior work [35, 29] has shown27

that CBMs may suffer from information leakage, where the classifier can learn to bypass concept28

activations—making accurate predictions even when the CBL weights are randomly initialized.29

These issues raise a fundamental question: Can we design a more flexible and expressive architecture30

that supports arbitrary inputs and labels, while maintaining full interpretability throughout the31

decision-making process?32

To address this, we propose a new framework called Multimodal Concept Bottleneck Model33

(MM-CBM). Unlike existing CBMs that use a single CBL, MM-CBM introduces dual CBLs—one34

for the image modality and one for the text modality—ensuring that the same conceptual semantics35

are aligned across both. The text encoder converts arbitrary textual inputs into concept responses,36

while the image encoder maps visual inputs into the same concept space as shown in Fig 1B.37

During inference, predictions are made by computing the similarity between concept responses38

from both modalities. Additionally, by leveraging the pretrained architectures and knowledge of39

Vision-Language Models (VLMs), MM-CBMs can achieve performance close to state-of-the-art40

zero-shot VLMs while providing interpretability.41

Our key contributions are summarized as follows:42

• We propose the first CBM architecture with dual concept bottleneck layers across modalities,43

enabling more complex tasks such as zero-shot generalization and image retrieval.44

• We introduce a fully transparent and interpretable decision-making process that inherently45

avoids information leakage and improves faithfulness.46

• Our framework surpasses previous CBMs under ANEC-5 (accuracy under NEC = 5), and47

achieves task performance comparable to black-box models in both fine-tuned and zero-shot48

settings.49
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2 Related work50

Global neuron-level explanations. Recent advances in representation-based post-hoc explanation51

methods have provided new insights into understanding neural network behavior at a global level.52

Bau et al. [1] aligned neuron activations with human-labeled image regions using manually annotated53

datasets, thereby assigning semantic concepts to individual neurons. Kalibhat et al. [13], Hernandez54

et al. [11] identified highly activated image regions through predefined submodules or image cap-55

tioning models to generate neuron-level explanations. More recently, Oikarinen and Weng [23, 22]56

introduced a concept activation matrix to quantify the similarity between neuron activations and57

predefined concepts, either through direct computation or predictive modeling, enabling a more58

structured and scalable interpretation framework. The inherent polysemanticity of neurons in modern59

neural networks forms the foundation upon which we build our CBL: by linearly combining neuron60

activations, we are able to synthesize clear, human-aligned concepts.61

Concept bottleneck models (CBMs). CBMs [16] aim to build intrinsically interpretable models62

by aligning intermediate representations with human-understandable concepts. A typical CBM63

consists of two components: a concept predictor and a label predictor. Given an input x ∈ X64

and a feature extractor ϕ, the model first maps extracted features ϕ(x) to concept activations c =65

WCϕ(x) ∈ R|C| via a projection matrix WC , where C denotes the set of candidate concepts. Each66

dimension in c corresponds to a specific interpretable concept. The final prediction is then obtained67

by applying a linear classifier parameterized by WF on top of the concept space. In some variants68

of CBMs [38, 28, 7], a residual fitting is introduced to improve task performance by allowing the69

model to retain task-relevant information that may not be fully captured by the concept bottleneck70

alone, albeit at the cost of reduced interpretability. This yields a modified prediction formulation of71

the form:72

ŷ = WFWCϕ(x) +R(ϕ(x)), (1)

where R(·) denotes a residual function (e.g., a small neural network) that operates on the original73

features ϕ(x) to capture complementary, potentially non-interpretable information.74

This formulation supports modular reasoning, enabling inspection, intervention, and editing of75

intermediate concept activations to enhance interpretability and controllability. With the rise of vision-76

language models (VLMs), recent works [24, 37, 35] have extended CBMs to support automatic77

concept labeling across modalities. However, as pointed out in [35, 29], when the dimensionality78

of the concept layer is sufficiently large, even randomly projected features can suffice for a linear79

classifier to approximate the original prediction. That is, given any projection WC—even a randomly80

initialized one—it is possible to analytically recover a classifier WF such that ŷ ≈ Wϕ(x), where W81

is the original classifier, as shown in Fig 1A. This undermines the faithfulness and constraint role of82

the bottleneck layer. Moreover, existing CBMs often generalize poorly, being restricted to pre-trained83

classes and struggling under distribution shifts [7]. In contrast, our approach incorporates an additional84

text CBL, enabling responses to arbitrary textual descriptions and generating corresponding class85

weights—effectively extending concept coverage beyond fixed pre-training categories. A detailed86

comparison between our method and prior CBMs is provided in Table 1.87

CLIP and its interpretability. CLIP [26] is a large-scale vision-language model trained on extensive88

image-text pairs using natural language supervision. It achieves strong zero-shot classification perfor-89

mance by encoding both images and text into a shared embedding space and computing similarity90

scores for prediction. Due to its strong generalization and semantic understanding capabilities, CLIP91

representations have been widely adopted in tasks such as semantic segmentation, object detection,92

visual question answering (VQA), and prompt generation for generative models. Numerous variants93

have been developed to enhance generalization [31, 39] and computational efficiency [18].94

Several efforts have also been made to interpret CLIP’s internal representations. Goh et al. [10]95

revealed the presence of multimodal polysemantic neurons within CLIP, showing that individual96

neurons can encode multiple abstract visual and textual concepts. Bhalla et al. [2] used dictionary97

learning to decompose CLIP representations into interpretable semantic components. Menon and98

Vondrick [20] proposed a training-free approach that leverages large language models (LLMs) to99

interpret CLIP’s predictions, thereby improving both transparency and performance.100
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Figure 2: Overview of MM-CBM. A. Extracting high-quality concept annotations for each modality.
B. Using an auxiliary dataset to train dual CBLs, jointly optimizing interpretability alignment and
task performance.

3 Method: MM-CBM101

In this section, we introduce Multimodal Concept Bottleneck Models (MM-CBM), a novel102

framework designed to improve the transparency and interpretability of multimodal reasoning by103

establishing dual Concept Bottleneck Layers (CBLs). Unlike traditional CBMs that rely on a final104

linear classification head, MM-CBM operates entirely within the concept space, thereby eliminating105

the dependence on the linear classifier and enabling fully transparent inference.106

By incorporating text-based concept encodings, our approach supports a wider variety of natural107

language inputs, removing the limitation of fixed N-way classification and enabling open-vocabulary108

image-text matching and zero-shot generalization. MM-CBM is composed of three main stages:109

(1) Collecting concept activation data, (2) Training dual concept bottleneck layers, and (3)110

Performing inference at test time.111

3.1 Collecting concept activation data112

Let EI : X → I denote the image encoder and ET : Y → T denote the text encoder of CLIP, which113

map input images and texts into a unified latent representation space. Here, X = RH×W×3 represents114

the image space, and Y denotes the text space. The shared latent space is I, T = Rd, where d is115

the dimensionality. We denote the original dataset used for training CBLs as D = {(xi, yi)}, where116

xi ∈ X is the i-th image, yi ∈ Y is its corresponding textual label. For a fixed-label classification task,117

let Y be the set of all possible class labels. The label index of yi is denoted by li ∈ {0, 1, . . . , |Y |−1},118

such that Yli = yi.119

Concept set generation. Following recent works [24, 37, 35], we adopt a fully automated pipeline120

that queries an LLM for each class label y ∈ Y to generate a candidate concept set Cy, with final121

concept set C =
⋃

y∈Y Cy, reducing annotation cost and avoiding reliance on scarce datasets with122

human-defined concepts. For zero-shot classification, we leverage the task-agnostic concept set from123

SpLiCE [2].124

Collecting concept labels. With the candidate concept set C in place, we construct a concept125

activation dataset D′ = {(xi, yi, a
vis
i , atxti )} by augmenting each image-text pair with two additional126

labels as shown in Fig 2A:127

• avisi ∈ {0, 1}|C|, a binary vector indicating which concepts appear in the image xi,128

• atxti ∈ R|C|, quantifies how strongly each concept in C relates to the text label yi.129

To equip the model with interpretable supervision, we first extract binary concept labels for each130

image based on OWLv2’s open-source object detection results [21]. The image concept label [avisi ]j131
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for concept cj is defined as:132

[avisi ]j =

{
1, if concept cj appears in image xi,

0, otherwise.
(2)

For each training image xi, we prompt OWLv2 with the class-specific concept set Cyi
. The model133

predicts a set of bounding boxes B = {(b, f, c)}, where b represents the box coordinates, f is the134

confidence score, and c ∈ Cyi
is the detected concept. If the confidence f exceeds a predefined135

threshold T , we consider the concept c to be present in image xi.136

To compute atxti , the text-concept similarity vector, we define each entry [atxti ]j as the semantic137

similarity between the text label yi and concept cj :138

[atxti ]j = sim(yi, cj). (3)
For the similarity function, we follow the Automatic Concept Scoring (ACS) method from CB-139

LLM [30], where similarity is defined as:140

sim(yi, cj) = E(yi) · E(cj), (4)
with E(·) denoting the text embedding generated by a language model. In our implementation, we141

use the all-mpnet-base-v2 model [34] as the text encoder.142

3.2 Training dual concept bottleneck layers143

Given the concept activation dataset D′, we train a pair of Concept Bottleneck Layers (CBLs): one for144

identifying concept presence in images, and the other for capturing the association between concepts145

and textual labels. Our training objective consists of two components: an interpretability loss LINT146

and a classification loss LACC as shown in Fig 2B.147

Interpretability loss LINT. To explicitly align the outputs of the concept bottleneck layers (CBLs)148

with human-interpretable concepts, we define an interpretability loss that supervises both the image149

and text sides using binary and soft labels, respectively. Let gI : I → R|C| and gT : T → R|C|150

denote the image and text CBLs, respectively, where |C| is the number of concepts. These CBLs151

project image and text features into a shared concept space. To enforce consistency between predicted152

concept activations and ground-truth annotations in D′, we define the interpretability loss as:153

LINT =
1

|D′|

|D′|∑
i=1

LI(gI ◦ EI(xi), a
vis
i )+

LT (gT ◦ ET (yi), a
txt
i ),

(5)

Here, EI and ET are the image and text encoders introduced in Section 3.1, and avisi , atxti ∈ R|C|154

are the concept label vectors for image and text respectively. We adopt binary cross-entropy (BCE)155

for the image-side loss LI and negative cosine similarity for the text-side loss LT , reflecting the156

discrete and continuous nature of the constructed concept labels.157

Task loss LACC. To maintain the model’s performance on downstream task, we introduce a task-158

specific classification loss based on the representations in the concept space. Let Ie = gI ◦ EI(x)159

and Te = gT ◦ ET (y) denote the image and text representations in the concept space.160

To ensure interpretability and promote sparsity—i.e., encouraging the prediction rely on a small161

subset of semantically meaningful concepts—we draw inspiration from the number of effective162

concepts (NEC) [29]. Specifically, we compute the similarity between Ie and Te as the sum of the163

element-wise products of their top-n responding dimensions. To further enhance interpretability and164

reduce the influence of negatively activated concepts, we set all negative elements in the concept165

vectors to zero before computing the similarity: I+e = ReLU(Ie) and T+
e = ReLU(Te). More details166

are provided in Appendix A.3. In this case, the classification loss is defined as:167

LACC = LCE

(∑
top-n(I+e ⊙ T+

e )

∥I+e ∥2∥T+
e ∥2

· eτ , l
)
, (6)

where LCE denotes the cross-entropy loss, ⊙ represents element-wise multiplication, τ is a learnable168

temperature parameter, and l is the index of the ground-truth label.169
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Final objective To jointly optimize both interpretability and task performance, we integrate the170

interpretability loss and discriminative loss into a unified objective. Notably, our model can also171

be trained without ground-truth labels, achieving classification accuracy comparable to CLIP; see172

Appendix A.4 for details. This combined loss function enables the model to learn concept-aligned173

representations while maintaining strong classification performance, thereby mitigating the risk of174

the linear layer overfitting to the task and compensating for a poorly interpretable concept space:175

LCBL = (1− λ)LINT + λLACC, (7)

where λ ∈ [0, 1] controls the trade-off between interpretability and task accuracy.176

3.3 Performing inference at test time177

During inference, given any image x and text y, the model outputs two modality-specific concept178

embeddings: an image concept embedding Ie = (ci1, ci2, · · · , cim) and a text concept embedding179

Te = (ct1, ct2, · · · , ctm), where each element cj reflects the degree to which the j-th concept is180

present in the image or related to the text, m is the number of candidate concepts, m = |C|.181

To assess the semantic consistency between the image and text, we compute the similarity between182

the two concept embeddings:183

z =

(∑
top-n(I+e ⊙ T+

e )

∥I+e ∥2∥T+
e ∥2

)
× eτ ,

where z denotes the similarity score (logits), ⊙ represents element-wise multiplication. Since both184

embeddings are aligned with human-interpretable concepts and the inference depends solely on these185

vectors, the inference process of MMCBM is fully transparent as shown in Fig 2B.186

The resulting similarity score reflects the alignment of the image and text with respect to the shared187

concept space. Furthermore, in contrast to traditional CBMs that rely on a linear classifier to associate188

concepts with categorical labels, our text CBL directly produces concept activations from natural189

language descriptions. This not only simplifies the inference pipeline but also enables flexible support190

for diverse textual inputs.191

4 Experiment192

In this section, we evaluate our method and perform an ablation study. Section 4.1 outlines the193

experimental setup. In Section 4.2, we compare MM-CBM with existing CBMs and the black-box194

CLIP used in our method, demonstrating its effectiveness. Section 4.3 presents ablation studies on the195

interpretability enhancement techniques described in Appendix A.3. Section 4.4 shows quantitative196

interpretability results obtained through interactions with VLMs.197

4.1 Experimental setup198

Datasets: We conduct experiments on seven datasets covering diverse task types: (1) General image199

classification: CIFAR-10, CIFAR-100 [17], and ImageNet [9]; (2) Fine-grained classification:200

Food-101 (Food) [4], CUB [33], and Oxford-IIIT Pets (OxfordPets) [25]; (3) Texture classification:201

Describable Textures Dataset (DTD) [8]. Additionally, we trained MM-CBM on multimodal dataset202

(CC12M [6]) to test the generalization ability. We follow the standard train/test splits, as detailed in203

Appendix A.5, and use classification accuracy as the evaluation metric.204

Baselines: We compare MM-CBM with four interpretable baselines: LF-CBM [24], LaBo [37],205

LM4CV [35], and VLG-CBM [29], as well as the CLIP-ViT-L/14 backbone using both zero-shot and206

linear-probe settings.207

Implementation: We use gpt-3.5-turbo-instruct to generate candidate concept sets for208

datasets. Unless otherwise specified, the trade-off parameter between interpretability and task209

performance is set to λ = 0.2, and the NEC is fixed at 5. To ensure fair comparison with prior CBMs,210

we use CLIP-RN50 as the backbone. All other evaluations are conducted using models trained with211

CLIP-ViT-L/14. We use the Adam optimizer [15] during training. For each batch, we randomly select212

one sentence from those generated by VLMs as the text input for each category.213
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For the fine-tune scenario, where target datasets are used, we compare MM-CBM to CLIP-ViT-L/14214

with linear probing. For the zero-shot scenario, we compare with the zero-shot performance of CLIP.215

To accelerate training and reduce computational overhead under the zero-shot scenario, we omit the216

NEC constraint and directly use the inner product I+e ⊙ T+
e instead of the top-n summation.217

4.2 Results218

Comparison with existing CBMs: Table 2 shows accuracy under NEC = 5 (ANEC-5). Since219

SpLiCE [2] controls sparsity via an L1 penalty, it cannot be explicitly set to NEC=5; thus, we report220

the number of effective concepts alongside accuracy. MM-CBM achieves performance comparable221

to the strongest baseline, VLG-CBM, and surpasses others by over 10% accuracy on ImageNet. This222

suggests that MM-CBM benefits from the rich semantic knowledge embedded in the CLIP backbone,223

particularly on large-scale datasets.

Table 2: Comparison with other CBMs on ANEC-5 using CLIP RN50. Best results for each
benchmark are in bold; second-best are underlined.

Method Dataset

ANEC=5 CIFAR10 CIFAR100 ImageNet CUB Average

LF-CBM 84.05 56.52 52.88 31.35 56.45
LM4CV 53.72 14.64 3.77 3.63 26.99
LaBo 78.69 44.82 24.27 41.97 43.97
VLG-CBM 88.55 65.73 59.74 60.38 68.85
SpLiCE 63.73(5.76) 28.62(5.63) 0.13(6.43) 4.13(5.96) 24.15
MM-CBM(Ours) 86.80 64.96 70.23 58.79 70.95

224

Comparison with CLIP backbone: Table 3 compares MM-CBM under both fine-tune and zero-225

shot scenarios with CLIP’s linear-probe and zero-shot performance. Across six datasets, MM-CBM226

achieves comparable results. However, on the CUB dataset, performance drops notably in the zero-227

shot setting. This may be attributed to the poor performance of the original CLIP model on CUB,228

likely due to insufficient semantic representations of bird-related concepts, which limits its ability229

to distinguish fine-grained categories. Additionally, the candidate concept set may lack coverage of230

bird-specific attributes. Nonetheless, the results remain non-trivial and demonstrate that MM-CBM231

can still generalize reasonably even in challenging scenarios.

Table 3: Test accuracy comparison with black-box CLIP.

Method Dataset

CIFAR-10 CIFAR-100 CUB Food OxfordPets DTD ImageNet

Zero-shot
CLIP ViT-L/14 96.2 77.9 62.3 92.9 93.5 55.3 75.3
MM-CBM(Ours) 94.2 75.2 39.2 85.7 80.1 49.6 67.4

Finetuned
CLIP linear probe 98.0 87.5 84.5 95.2 95.1 82.1 83.9
MM-CBM(Ours) 97.0 84.5 74.1 93.6 91.9 73.4 82.1

232

4.3 Ablation study233

We assess the effect of the non-negative concept space introduced in Appendix A.3. Alternatives such234

as sigmoid, squaring activations, and removing this module are evaluated. The L1 norm is used to235

measure the sparsity of concept responses.236

Given a non-negative vector v of length |S| (number of candidate concepts), and ∥v∥2 = 1, we have237

1 ≤ ∥v∥1 ≤
√
|S|. Lower ∥v∥1 implies higher sparsity, which improves interpretability. We report238

the average L1 norm of visual (Ie) and textual (Te) activations, and average alignment score across239

validation samples.240
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Table 4 shows that our approach yields nearly 20× smaller L1 norm for visual activations and 2×241

smaller for text, compared to other methods. Our alignment score also improves by 5×, suggesting242

higher prediction confidence. Importantly, increased sparsity does not degrade accuracy but enhances243

reliability. Additionally, since visual supervision uses binary targets and text uses real-valued244

similarity scores, visual concept activations are expected to be sparser. Our method preserves this245

property, while others reverse it, potentially introducing redundant activations.246

Table 4: Ablation study of non-negative setting. Visual and language correspond to the average L1

norm of image and text concept activation; Score means the average highest alignment score, the
image and prediction alignment score.

Function Visual Language Alignment Accuracy
activation activation score

Sigmoid 59.52 25.74 0.06 77.87
x2 44.77 15.91 0.10 81.82
None 59.52 39.67 0.01 80.79
ReLU 2.39 7.84 0.47 82.07

4.4 Interpretability result - comparison with VLMs247

Vision-Language Models (VLMs) are highly capable of understanding the overall semantics of248

images and generating natural language explanations. This appears similar to the goal of CBMs, so249

we directly compared explanations from our MM-CBM (ImageNet) with those from VLMs.250

Specifically, we prompted each model with the template: "why cls is what appears in the image", and251

collected 5,000 explanation pairs from imagenet dataset. To evaluate which explanation contained252

more informative visual concepts, we leveraged the VQA capabilities of VLMs themselves by asking:253

"Which description has more informative visual concepts in this image?" Notably, to reduce model-254

specific bias and avoid self-preference in scoring, we separated the roles of evaluator and competitor255

across models—using different VLMs to act as the "judge" and the "explainer." In our experiments,256

we used LLaVA-v1.5-7B [19] and Llama-3.2-11B-Vision-Instruct [32], alternating their roles257

to ensure fairness and robustness. MM-CBM explanations were preferred over Llava 1.5 in 4,433258

(88.7%) out of 5,000 cases, and over LLaMA 3.2 in 3,292 (65.8%) cases. These findings suggest that259

although VLMs are adept at generating high-level semantic interpretations, they tend to overlook260

fine-grained visual concepts that are central to CBM-style interpretability.261

Although it is technically possible to guide VLMs toward generating better explanations by designing262

elaborate prompt templates, such approaches are prohibitively inefficient. In our measurements,263

these carefully prompted baselines were up to 1,000× slower than MM-CBM, requiring significant264

computational resources and longer inference times. In contrast, MM-CBM achieves high-quality,265

concept-centric explanations in a highly efficient and scalable manner—making it practical for266

deployment at scale.267

5 Case study: image retrieval268

We replace the fixed linear classifier with a text encoder, enabling flexible and unrestricted text inputs.269

In this section, we evaluate our model via an image retrieval task: given arbitrary text, the model270

selects the image with the highest alignment score. This allows us to assess the model’s semantic271

consistency and generalization ability. To systematically analyze retrieval performance, we define272

five types of textual queries:273

• Type-A: Ground-truth label queries – Direct retrieval using exact class labels (e.g.,274

uniform, popsicle, crane).275

• Type-B: Concept-based queries – Retrieval based on key concepts (e.g., striped fur, spotted276

fur, uniformed fur), allowing us to test fine-grained concept understanding.277

• Type-C: Hybrid label-concept queries – Queries that combine class labels and specific278

concepts (e.g., crane with machine, or cat with striped fur to resemble a tiger).279
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• Type-D: Out-of-distribution queries – Texts containing unseen labels or novel concepts280

not present in the training set (e.g., toothpaste, linked to cleanliness or washing; stable,281

associated with safety or defense).282

• Type-E: Polysemous or abstract queries – Phrases involving ambiguity or abstraction283

(e.g., give me a hand, which could refer to a physical hand or the act of helping; danger,284

suggested by an open safe filled with gold bars; fun, evoked by entertainment devices).285

Figure 3: Image Retrieval on five different types of queries.

This evaluation setup helps us validate the semantic alignment of our model and its ability to286

generalize beyond predefined labels or fixed concepts. We use the model trained on ImageNet for all287

experiments. For each query type, representative examples are chosen as described above. Retrieval288

results (Figure 3) show that our model’s semantic understanding is, to a large extent, consistent with289

human interpretation. Notably, it is capable of summarizing and refining concepts based on context.290

However, some inconsistencies remain due to noise introduced during training, which may affect291

interpretability and reliability in certain edge cases. Full retrieval results and additional examples can292

be found in Appendix A.10.293

6 Conclusion294

In summary, we propose MM-CBM, a flexible framework that enables interpretable modeling across295

both image and text modalities using arbitrary inputs. By leveraging the expert knowledge embedded296

in existing vision-language foundation models, MM-CBM simultaneously learns interpretable con-297

cepts from both modalities and introduces simple yet effective strategies to enhance interpretability.298

Our approach achieves competitive performance compared to existing Concept Bottleneck Models299

(CBMs) and even black-box baselines, while maintaining transparency in the inference process. We300

believe MM-CBM presents a new paradigm for building interpretable multimodal models, with the301

potential to benefit a broad range of applications in multimodal learning, such as image retrieval,302

captioning, and visual question answering.303
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A Appendix407

A.1 Overview408

The appendix covers: A.2concept set generation; A.3 interpretability enhancement strategies; A.4 un-409

supervised adaptation via knowledge distillation; A.5 experimental configurations; A.6–A.7 ablations410

on effective concepts and non-negative transformations; A.8 human intervention; A.9 alternative411

backbones; and A.10 image retrieval examples.412

A.2 Concept set generation413

Let C denote a fine-grained concept set that semantically explains the images and their corresponding414

labels in D. Such a set can be manually curated by domain experts or automatically generated415

using large language models (LLMs) [32, 5]. Following recent studies [24, 37, 35], we adopt a fully416

automated approach in which, for each class label y ∈ Y , an LLM is queried to produce a candidate417

concept set Cy . Under the label-free CBM setting [24], the LLM is prompted as follows:418

• List the most important features for recognizing something as a {class}:419

• List the things most commonly seen around a {class}:420

• Give superclasses for the word {class}:421

Here, {class} refers to the class name in the target classification task. The final concept set is obtained422

as the union of all class-specific sets:423

C =
⋃
y∈Y

Cy.

We further refine C using the filtering strategy proposed in label-free CBM, with the following steps:424

1. Concept length: Discard concepts exceeding 30 characters to maintain simplicity and425

interpretability.426

2. Similarity to target classes: Remove concepts overly similar to target class names, as they427

undermine the explanatory role of the CBM. Similarity is measured via cosine similarity in428

a joint text embedding space, combining features from the CLIP ViT-B/16 text encoder and429

the all-mpnet-base-v2 sentence encoder. Concepts with similarity greater than 0.85 to any430

target class are excluded.431

3. Redundancy removal: Eliminate duplicate or near-synonymous concepts to ensure diversity432

in the bottleneck layer. Using the same embedding space, any concept with cosine similarity433

above 0.9 to an already retained concept is removed.434

This automated generation and filtering process substantially reduces the reliance on manual annota-435

tion while enabling scalable construction of rich concept sets, even for datasets lacking human-defined436

concept annotations.437

A.3 Strategies to enhance interpretability438

In this section, we introduce three strategies designed to enhance the interpretability of our multimodal439

CBM model.440

Generation of rich textual information. In many vision-language datasets, there exists a significant441

imbalance between the number of images and the granularity of their associated textual labels—where442

hundreds or even thousands of images may share the same class name. Repeatedly using identical443

textual inputs during training can introduce undesirable biases and restrict model generalization.444

To address this issue, we leverage the capabilities of the state-of-the-art multimodal large language445

model LLaVA 3.2-Vision to generate diverse, semantically rich label descriptions. Specifically,446

we prompt the model with the following template: "If I had to describe this image using only one447

sentence with the words class, it would be: " For each class label, we randomly select images448

belonging to that class and generate at least 50 unique textual descriptions. During training, one of449

these alternative descriptions is randomly sampled for each iteration, thereby improving diversity in450

the language modality and reducing overfitting to fixed textual patterns.451
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Table A.1: Examples of generated sentence.

Generated sentence

The image shows a hand holding tench.
This is a close-up of a goldfish.

The image depicts a jay with its wings spread.
It would be a smooth newt with a smooth skin.

The peafowl is pecking at the ground.
The macaw is a vibrant and colorful bird.

The image features a Bluetick Coonhound.

Number of effective concepts (NEC). NEC, originally proposed by [29], is a metric that helps452

prevent information leakage by constraining model reliance on a limited set of semantically meaning-453

ful features. We adapt this approach to our multimodal CBM when computing the alignment score454

between an input image xi and its corresponding label yi using interpretable encodings. Specifically,455

we select the top-n dimensions from the element-wise similarity between image and text encodings456

and use their sum as the final similarity score:457

logits =
(∑

top-n(Ie ⊙ Te)

∥Ie∥2∥Te∥2

)
× eτ (A.1)

Here, ⊙ denotes element-wise multiplication. Our method dynamically identifies the top-n most458

relevant concepts for each image-text pair, making the reasoning process more interpretable and459

supporting better downstream interventions.460

Non-negative concept representation space. In our concept representation space, each dimension461

reflects the similarity between the input (image or text) and a specific concept. To improve inter-462

pretability, we enforce a non-negative constraint on these activations by applying a ReLU function463

to both image and text embeddings: I+e = ReLU(Ie) and T+
e = ReLU(Te). This design improves464

interpretability in the following three aspects:465

1. Disambiguating negative responses. As discussed in [30], it is often unclear whether a466

negative activation implies the negation of a concept or its complete absence. By removing467

negative values, we avoid this ambiguity.468

2. Amplifying relevant concept activations. Since similarity computations involve normaliza-469

tion, weak activations in high-dimensional spaces can lead to dilution of important signals.470

By zeroing out irrelevant (negative) dimensions, we strengthen the contribution of mean-471

ingful concepts. In the worst-case scenario, each dimension has a value of at most
√

1
|C| ,472

where |C| is the number of candidate concepts; thus, filtering noise is crucial.473

3. Improving inference reliability and efficiency. Without non-negativity, the product of two474

negative activations (from image and text encodings) may yield a misleadingly high similarity475

score, falsely indicating semantic alignment. Enforcing non-negativity eliminates this issue476

and also simplifies the computation and sorting steps during inference.477

A.4 Unsupervised setting via knowledge distillation478

When ground-truth class labels are unavailable, we adopt the predictions of the backbone VLM479

(e.g., CLIP) as soft supervision. This unsupervised learning strategy enhances the flexibility of our480

framework, enabling the use of large-scale unlabeled images from the target domain together with481

only the labels of interest, thereby fully exploiting CLIP’s representation capabilities.482

Inspired by prior work on knowledge distillation [12, 36], we align the output distributions of483

our model with those of the VLM in both image-to-text and text-to-image directions. Let Mij =484

cos((Ie)i, (Te)j) denote the similarity matrix in the concept space, and Nij = cos(EI(xi), ET (yj))485

the similarity matrix from CLIP. All embeddings are L2-normalized. The corresponding softmax-486

normalized distributions are:487
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pT = softmax(N), pS = softmax(N⊤) (A.2)

pS = softmax(M), qS = softmax(M⊤) (A.3)

We then minimize the Kullback–Leibler (KL) divergence between the teacher (CLIP) and student488

(CBL) distributions:489

LKDI→T = DKL(pT ∥pS) =
∑
i

pT (i) log
pT (i)

pS(i)
, (A.4)

LKDT→I = DKL(qT ∥qS) =
∑
i

qT (i) log
qT (i)

qS(i)
, (A.5)

LKD =
1

2
(LKDI→T + LKDT→I) . (A.6)

Additionally, we treat CLIP’s top-1 prediction as a pseudo-label l̂ to supervise the classification head:490

LKD
ACC = LCE

(
Ie · Te

∥Ie∥2∥Te∥2
· eτ , l̂

)
+ LKD. (A.7)

This unsupervised task-performance loss can be directly incorporated into the final objective in491

Equation 7, replacing the supervised loss, thereby enabling end-to-end training of an interpretable492

CLIP without requiring labeled data.493

As shown in Table A.2, the knowledge-distilled MM-CBM largely preserves task performance across494

the other six datasets. In contrast, its performance on the DTD dataset is noticeably weaker. A495

plausible explanation is that the black-box model itself performs poorly on DTD, resulting in soft496

labels that lack sufficiently informative latent knowledge, which in turn limits the effectiveness of the497

distilled model. This result demonstrates the strong scalability of our approach: given an image and498

an associated category of interest, it can achieve performance close to that of the black-box model,499

thereby greatly broadening the range of potential applications for MM-CBM.500

Table A.2: Knowledge distillation accuracy comparison with black-box CLIP.

Method Dataset

CIFAR-10 CIFAR-100 CUB Food OxfordPets DTD ImageNet

CLIP ViT-L/14
Zero-shot 96.2 77.9 62.3 92.9 93.5 55.3 75.3
MM-CBM w/ KD 91.7 73.3 61.7 92.5 88.9 34.7 74.7

A.5 Experimental configurations501

Tables A.3 and A.4 summarize the datasets and training configurations used in our experiments.502

Tables A.3 lists the number of classes and the train/test split for each dataset, where we retain the503

original splits. Table A.4 presents the dataset-specific hyperparameters, including batch size, training504

epochs, and the number of concepts in the concept set. For all datasets, the trade-off weight was fixed505

at w = 0.2, the temperature was initialized as τ = 0.07, and the NEC parameter was set to 5.506

A.6 Ablation study: number of effective concepts507

We evaluate the model under NEC = 5 and when using all concept activations to compute alignment508

scores. Specifically, we measure the contribution ratio of the top five highest responses to the total509

score. As noted in [29], CBMs trained with sparse concept activation labels tend to base their510

decisions on a few key activations, improving robustness to changes in NEC. Our results show a511
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Table A.3: Dataset Details about number of classes and train/test set split.

Dataset Classes Train size Test size

CIFAR-10 10 50,000 10,000
CIFAR-100 100 50,000 10,000

CUB 200 5,994 5,794
Food 101 75,750 25,250

OxfordPets 37 3,680 3,669
DTD 47 3,760 1,880

ImageNet 1000 1,281,167 50,000

Table A.4: Hyperparameter for each dataset used for training the model.

Dataset Batch size # of epochs # of concepts

CIFAR-10 128 50 141
CIFAR-100 64 50 795

CUB 8 50 604
Food 128 50 755

OxfordPets 8 50 205
DTD 4 50 365

ImageNet 256 12 4553

similar pattern (Figure A.1): even when all concept activations are used during training and inference,512

the top two remain dominant. Setting NEC = 5 concentrates activations further and increases their513

variance, indicating that the concepts involved in decision-making are more distinct. This property514

can be exploited to refine the candidate concept set, making the model’s explanations more concise515

and interpretable.516

Figure A.1: Contribution of each concept used as explanation.

A.7 Ablation study: non-negative concept representation space517

We assess the impact of enforcing non-negative responses by introducing alternative transformation518

methods beyond the ReLU baseline in Section A.3. In particular, we explore a squared activation519

function to ensure all responses are non-negative. To quantify how these transformations affect520

activation magnitudes, we examine the cumulative distribution function (CDF) of response values521

across three categories: visual activations, text activations, and decision concept activations. As522

shown in Figure A.2, ReLU yields the highest response values among the compared methods. Text523

activations, supervised by text similarity, exhibit a more concentrated distribution (lower variance)524
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during inference, whereas visual activations, trained with one-hot supervision, display a more525

dispersed distribution (higher variance), enhancing interpretability. Furthermore, the dot product526

operation effectively suppresses redundant text information, enabling decision concept activations527

to retain higher variance—facilitating the identification and selection of highly interpretable, task-528

relevant concepts.529

Figure A.2: Non-zero concept activation cumulative distribution function of final prediction(top),
visual activation(middle) and language activation(bottom).

A.8 Human Intervention530

We further analyze the model’s decision process and demonstrate how manual adjustments based on531

expert knowledge can improve predictions, inspired by [24]. Figure A.3 shows a misclassification532

where the model predicts “barbershop” due to a strong activation of the concept “a sign that says533

barbershop,” which is not visually present. This can be corrected by manually setting Te[pred, concept] =534

0.535

Another error occurs when “barbershop” is incorrectly favored due to a higher response to “a536

customer,” despite “barber chair” being the correct label. Equalizing the activation between both537

classes for that concept (Te[gt, concept] = Te[pred, concept]) corrects 5 predictions and introduces 2 new538

errors—shifting predictions from “barbershop” to “barber chair.” This leads to a 3% accuracy539

17



Figure A.3: A sample of correcting model prediction by deleting the wrong concept.

improvement in a 100-sample subset. Such errors stem from response bias on shared concepts,540

which hinders fine-grained classification when dominant but insufficient features overshadow more541

specific ones.542

The source of this error is traceable: since Ie is identical, the difference lies in Te. Using the label543

generation model all-mpnet-base-v2 [34], we find that the similarity score between “barbershop”544

and “a customer” is 0.3618, compared to 0.3070 for “barber chair.” This discrepancy reflects a545

language-model-induced bias during training.546

The Figure A.4 result of manually editing the text concept activation Te[gt, concept] = Te[pred, concept] for547

the case in Figure A.3548

Figure A.4: A sample of correcting model prediction by setting the common concept to the same
value

A.9 Other Backbone549

To evaluate the generalization capability of our approach, we conducted experiments not only with550

multiple variants of CLIP, but also with flexible combinations of diverse and unrelated image–text551

encoders. The results demonstrate that our method can be seamlessly adapted and extended to other552

architectures with similar designs, rather than being limited to interpretable versions of CLIP.553

Image encoder SigLIP EVA-CLIP SigLIP SigLIP2
Text encoder SigLIP EVA-CLIP MiniLM SigLIP2
Original accuracy 82.1 79.8 82.1 83.1
Ours 84.8 76.9 84.9 70.1

Table A.5: Performance using different backbones.
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A.10 Image Retrieval554

In Section 5, we define 5 different levels of queries and provide corresponding examples. In this555

section, we provide more cases and offer interpretable predictions in Figure A.5.556

Figure A.5: Image Retrieval on five different types of queries. The top of the module shows the query
statement we use, and the right side shows the most relevant concepts.
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