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Self-Supervised Visual Preference Alignment
Anonymous Authors

ABSTRACT
This paper makes the first attempt towards unsupervised preference
alignment in Vision-Language Models (VLMs). We generate chosen
and rejected responses with regard to the original and augmented
image pairs, and conduct preference alignment with direct pref-
erence optimization. It is based on a core idea: properly designed
augmentation to the image input will induce VLM to generate
false but hard negative responses, which helps the model to learn
from and produce more robust and powerful answers. The whole
pipeline no longer hinges on supervision from GPT-4 or human
involvement during alignment, and is highly efficient with few
lines of code. With only 8k randomly sampled unsupervised data,
it achieves 90% relative score to GPT-4 on complex reasoning in
LLaVA-Bench, and improves LLaVA-7B/13B by 6.7%/5.6% score on
complex multi-modal benchmark MM-Vet. Visualizations shows
its improved ability to align with user-intentions. A series of abla-
tions are firmly conducted to reveal the latent mechanism of the
approach, which also indicates its potential towards further scaling.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural lan-
guage generation.

KEYWORDS
Vision-Language Models, Self-Supervised, Direct Preference Opti-
mization

1 INTRODUCTION
Large Vision-Language Models have recently emerged and greatly
advanced current researches [2, 27, 36, 41]. Representative methods
in this family, such as MiniGPT4 [47], LLaVA [27] and Instruct-
BLIP [8], try to properly align vision signals to Large LanguageMod-
els (LLMs) to better conduct multi-modal comprehension. These
methods usually undergo a pretraining stage with abundant image-
text pairs for modality alignment before supervised finetuned (SFT)
with academic [8] or GPT-4 generated [4, 43] SFT data. There are
variants of them (e.g., LLaVA-based) that try to improve the VLMs’
instruction following ability by leveraging high quality pretraining
pairs [4, 24] or scaling up SFT database [23, 38, 43].

Despite their success [4] in boosting the comprehension skills
of current VLMs, these models are not properly aligned with user-
intentions. As a result, they lack the ability to reject samples and
could induce more unintended output. For instance, Instruct4V [38]
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Figure 1: Illustration of the baseline LLaVA-13B (its 1.5 ver-
sion) and the proposed SeVa-13B paradigm. Here we demon-
strate three variants of SeVa with different sampled seed to
obtain the un-labeled dataset (the image-text pairs used for
DPO sample generation, cf. Alg. 1).

construct 220k SFT data from GPT-4, but still struggle on halluci-
nation benchmark POPE [21]. The same can be observed in Fig. 7,
where LLaVA failed to follow user instructions and provide mean-
ingless information. Recently, there are few trials that incorpo-
rate alignment techniques into vision-language fields [20, 37, 44].
However, we found that they only emphasize on quite limited
task domains [44], and, more importantly, their data construction
pipeline requires extra knowledge source either from GPT-4 or human
feedbacks. This might hinder them from further data scaling, as
preference data is not cheap (e.g., a 10k collected human-evaluated
instances requires a cost of 3000$ [22]).

In this paper, we propose a self-supervised paradigm that can
freely obtain arbitrary number of preference samples with minimal
code implementation (cf. Alg. 1). Simply but, we have enjoyed the
advantage of this pipeline and observed a significant improvement
in the capabilities of current VLMs from various aspects: stronger
chain-of-thought skills, better OCR [30] ability, proper alignment
with user-intentions, less hallucinations, etc (cf. Fig. 7).

Our motivation came from an interesting discovery in Fig. 2,
where we apply commonly adopted image augmentations in visual
contrastive learning [13, 48, 49] during LLaVA inference. The effect
of all these test-time augmentations are evaluated on three common
multi-modal benchmarks (MMVet [40], MMBench [28], POPE [21]).
It is not surprising to observe in Fig. 2 that vision-language models
are quite sensitive to data-augmentations and, slightly distortion
will induce the model to output different semantic tokens. Then,
an natural question arises: are the original and distorted responses
valuable to construct preference data for DPO training? Since this will
totally free the data construction from any extra source, and might
relieve the difficulty of scaling up preference data as well [42].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Algorithm 1 Pseudocode of SeVa in a PyTorch style.

# Q, I: question set, image set
# model: the SFT vision-language model
# C, R: chosen and rejected answer set
# T: sampled data augmentation

# randomly sample data pair, generate answer
Q, I = random.sample(data)
C, R = model(I, Q), model(T(I), Q)

# filtering equal answers
idx = (C != R)
C𝑡, R𝑡 = C[idx], R[idx]
Q𝑡, I𝑡 = Q[idx], I[idx]

# DPO training, omit reference model for simplicity
DPOTrain(model, (Q𝑡, I𝑡), (C𝑡, R𝑡))

Our motivation was then firmly verified by quantitative experi-
ments in Table 1, in which we randomly sampled 8k image-question
pairs from the subset of LLaVA665k [26] (cf. Sec. 4.1 for details),
and choose 5 augmentations to generate the preference data us-
ing LLaVA-7B. All these self-generated data are again fed into the
same LLaVA-7B model for DPO training. As Table 1 shows, all the
augmentations are helpful for model comprehension, especially
on GPT-4 evaluated benchmark MM-Vet, which makes our moti-
vation valid. In the meanwhile, we found that either too strong
(e.g., Diffusion-S) or too weak data augmentation (e.g., RandFlip)
are sub-optimal for the whole pipeline, and medium is the best
(e.g., Diffusion-W, MOCO). Our final conjecture is: self-generated
augmentation pairs are suitable preference sample to improve multi-
modal abilities, and hard negatives are most preferred.

We name our methodology as: Self-supervised Visual prefer-
ence alignment (SeVa), and summarize its whole pipeline in Alg. 1.
Though being embarassingly simple with few lines of code to imple-
ment, we mathematically showcase its strong relation with visual
contrastive learning in maxmizing a preference distribution, where
SeVa could probably be viewed as a special form of contrastive learn-
ing with one negative sample. This makes SeVa easily extendable if
more negatives are involved (cf. appendix).

Experiments in common multi-modal benchmarks demonstrate
the effectiveness of our method, where SeVa improves the VLM’s
comprehension ability by a large margin (e.g., SeVa-7B even sur-
passes LLaVA-1.5-13B by 1.8% in MMVet). In addition, we carefully
design detailed ablations to reveal the latent mechanism of SeVa
from different angles. We found that SeVa shows surprisingly re-
sults like detailed descriptions, less hallucinations, stronger OCR
skills and chain-of-thought ability, etc. Our contributions are:

• For the first time, we conduct visual preference alignment in
an un-supervised manner. The whole pipeline do not require
any GPT-4 or costly human annotated data.

• We found such an alignment pipeline have numerous benefits
such as enhanced multi-modal comprehension ability, better
alignment with user-intentions, etc. Visualizations in Fig. 7
and ablations firmly verify our hypothesis as well.

• Our method, SeVa, enjoys efficiency in pipeline and simplic-
ity in implementation, which pavesway for future preference
alignment in visual-language domain.

2 RELATEDWORKS
Large Vision-Language Models (VLMs). The great development
of Large Language Models (LLMs) has facilitated the community in
both academics [2, 8, 19, 26, 47] and industries [1, 7, 36, 46]. Recently,
large vision-languagemodels (VLMs) emerged, aiming to extend the
reasoning brain of LLM to vision modality. The majority of VLMs
undergo a two-stage training manner, with the pretraining period
focusing on aligning the vision and text signals before finetuned
with instruction following data in the second stage. LLaVA [27], as
one of its representatives, has attracted numerous researchers [4,
22, 23, 38, 39] since it provide a valuable opportunity for them
to reproduce and built upon. Subsequent works based on LLaVA
try to leverage more image-text data pairs of higher quality [4] or
to construct more abundant instruction following database [38].
Despite their achievements, these model are not preference aligned
with user intentions neither implicitly nor explicitly, which might
limit their further deployment. Therefore, an suitable alignment
technique is of great importance.

Preference alignment in LLM/VLM. Training an LLM to align
with human or user preference is called RLHF [31], which usu-
ally happens after the instruction following stage. The core con-
cept of RLHF is to reduce un-intented or toxic output produced
by LLMs [10, 50]. Variants of RLHF include, but not limited to,
DPO [33], PPO [34] and RLAIF [3]. Alignment has been fruitfully
researched in natural language processing (NLP) domains [3, 12],
but relatively less visited in vision-language fields. There are some
latest attempts [20, 37, 44] that integrate alignment techniques in
vision-language domains. However, they only emphasize on task
specific ability (e.g. hallucinations in HA-DPO [44]), and, more
importantly, it requires tedious GPT-4 or human interventions to
construct the preference data, which could diminish the pipeline
efficiency. In this paper, we propose an unsupervised data construc-
tion pipeline that not only solve the data hungry issue in preference
alignment, but also greatly boosts the comprehension ability of cur-
rent VLMs, as well.

Contrastive learning. Self-supervised learning (SSL) of visual
representation are popularized in the past years [5, 11, 13, 48]. Tradi-
tional SSL are mostly contrastive based, where strongly augmented
positive views of the same image will share similar deep semantic
in the hidden space that the model could capture. Nevertheless, we
found that a similar augmentation pipeline does not holds true in
VLMs. Inspired by unsupervised property of SSL, we design an self-
supervised pipeline to construct the preference data, and empower
the current VLM with improved capability.

3 METHOD
We will first show the preliminaries of language modeling and
direct preference optimization, then move onto the procedure of
the proposed SeVa pipeline. Finally, we discuss its strong relation
with visual contrastive learning.

3.1 Preliminaries
Language modeling. We start from the vison-language modeling
perspective and take LLaVA [27] as an example for illustration.
Given an image input 𝐼 , it is first passed through a vision encoder
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Figure 2: The test-time image augmentation (TTA) plugged into LLaVA-1.5 on three benchmarks. We involve standard strategies:
RandFlip, RandomResizedCrop (‘RRCrop’), RandCrop, CenterCrop, RandomAffine, RandomInvert and AutoAugmentation;
diffusion noise: Diffusion-Weak (‘W’) and Diffusion-Strong (’S’); mixtures: augmentations adopted in MOCO, BYOL and SimCLR.

Table 1: Six data augmentations selected to generate preference data for DPO training (w/ LLaVA-1.5). Each strategy was adopted
to distort the image (together with the questions) to produce rejected response, which is paired with the chosen response
from the original image input (cf. Alg. 1). The models after DPO training with these preference pairs are then evaluated on
MMVet [40], MMBench [28] (in english ‘en’ and chinese ‘cn’) and POPE [21] benchmarks, respectively (cf. Sec. 3.2 for details).

DPO data MMVet MMBench POPE
All rec ocr know gen spat math en cn All rand pop adv

N/A 30.5 35.7 21.9 17.4 19.7 24.7 7.7 64.3 58.3 85.9 89.5 86.7 81.7
RandFlip 33.7 37.2 26.4 21.8 23.9 29.1 7.7 64.4 58.3 86.7 89.2 87.1 83.9
RRCrop 33.8 39.2 23.2 21.9 24.5 27.7 7.7 65.5 59.5 86.8 89.4 87.4 83.6
AutoAug 35.0 38.5 26.8 22.9 24.4 29.3 15.0 65.4 59.6 86.5 88.8 86.8 83.9
Diffusion-W 37.2 40.2 29.9 21.8 23.9 34.3 11.2 65.6 59.2 86.7 89.4 87.1 83.6
MOCO 37.0 40.9 29.0 21.3 25.6 32.5 15.0 65.2 59.8 86.6 89.1 87.1 83.7
Diffusion-S 34.6 38.8 26.5 20.5 23.4 32.0 11.5 65.2 58.2 86.6 89.2 87.5 83.3

(e.g., ViT-L [32]) to get:

𝒉 = 𝑔(𝐼 ) , (1)

where 𝑔 denotes a combination of vision encoder and projection
layer. 𝒉 represents a sequence of deep image embeddings. The
embeddings before the last transformer layer are considered in
LLaVA-1.5 [26], which are then concatenated with the question
token 𝑞 and fed into the auto-regressive LLM 𝜋 that sequentially
generates the next target token 𝑦:

𝜋𝜃 (𝑦 |𝑥) =
𝐿∏
𝑖=1

𝜋𝜃 (𝑦𝑖 |𝑦<𝑖 , 𝑥) , (2)

where 𝑥 = (𝒉, 𝑞), and is considered as prompt sent to the LLM
parameterized by 𝜃 . 𝑦<𝑖 is the generated token before the current
prediction 𝑦𝑖 , and 𝐿 is the length of the produced token sequece.
We denote the LLM trained with SFT data as 𝜋SFT for clarity.

Direct preference optimization. DPO is first proposed in [33],
and can be viewed a new parameterization of the reward model in
RLHF [31] that can directly optimize the policy (the LLM’s parame-
ter 𝜃 ). Here we start with RLHF for better illustrations. In RLHF, a
Bradley-Terry (BT) reward model is often adopted, which stipulates

the human preference distribution as:

𝑝∗ (𝑦𝑐 ≻ 𝑦𝑟 |𝑥) =
exp (𝑟∗ (𝑥,𝑦𝑐 ))

exp (𝑟∗ (𝑥,𝑦𝑐 )) + exp (𝑟∗ (𝑥,𝑦𝑟 ))
. (3)

The 𝑦𝑐 and 𝑦𝑟 are the chosen and rejected response conditioned on
the LLM’s prompt 𝑥 . The reward model 𝑟𝜙 (·) is paramerized by 𝜙
and can be obtained with maximum likelihood using preference
database D annotated by human [33]:

D = {𝑥 ( 𝑗 ) , 𝑦 ( 𝑗 )𝑐 , 𝑦
( 𝑗 )
𝑟 }𝑁𝑗=1 . (4)

Then we maximize the a preference policy as follows:

max
𝜃 ′
E𝑥,𝑦

{
𝑟𝜙 (𝑥,𝑦) − 𝛽DKL [𝜋𝜃 ′ (𝑦 |𝑥) |𝜋ref (𝑦 |𝑥)]

}
. (5)

The reference model 𝜋ref are initialized by 𝜋SFT, which prevents
the learned parameter 𝜃 ′ from much deviation. The finally learned
policy 𝜋𝜃 ′ (·) are better equipped with human or user intentions.

DPO uses a closed form [33] derived from Eq. 5 to represent the
optimal reward 𝑟∗ model by the learned optimal preference model
𝜋∗ as (with 𝐾 the constant factor):

𝑟∗ (𝑥,𝑦) = 𝛽 log 𝜋∗ (𝑦 |𝑥)
𝜋ref (𝑦 |𝑥)

+ 𝐾 . (6)



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Image 𝐼

Q: What is the end of this movie?

The ending of this movie is a romantic and tragic 
one, as the couple, Jack and Rose, are seen 
standing on the bow of the ship, looking out at the 
ocean. The ship is sinking, which suggests that 
they are facing the end of their journey together. 

The ending of this movie is a romantic and 
tragic one, as the man and woman are shown 
falling off the boat into the ocean. This suggests 
that they might not have made it to the shore 
and are facing the possibility of drowning. 

“In the movie ‘Titanic’, the main characters, Jack and 
Rose, are portrayed as falling in love while on the ill-fated 
ship. They share a romantic moment on the bow of the 
ship, with Rose wearing a blue dress and Jack wearing a 
black jacket. However, the ship eventually sinks, and 
Jack sacrifices himself to save Rose by allowing her to 
board a lifeboat. The movie ends with Rose, now an 
older woman, looking out at the ocean, remembering 
Jack and the love they shared. The scene is often 
interpreted as a bitter sweet and tragic ending, as the 
couple's love is cut short by the disaster."

Data Collection
& DPO Training

𝐷𝑒𝑝𝑙𝑜𝑦

Q: What is the end of this movie?

Figure 3: The pipeline of SeVa. For each image 𝐼 in the selected dataset, we transform it with data augmentation 𝑇 to obtain the
distorted one, while keeping a copy of the original image to form a pair. The shared questions are acted on the paired images to
get the chosen and rejected responses, respectively, which undergo a data collection (e.g., filtering) process before the DPO
training. In the left part, incorrect words or sentences are red color coded, while in the right part (the improved version of the
model), we highlight excellent content with bold phase. Note that in the picture, we show the same image both for training and
for testing, but actually the data distribution between them are different (cf. Sec. 4.1). This figure is best viewed in color.

By substituting the 𝑟∗ in Eq. 3 with Eq. 6, we get the final optimized
loss function of DPO as follows (cf. [33]):

Ld = −ED
[
log𝜎

(
𝛽 log

𝜋𝜃 ′ (𝑦𝑐 |𝑥)
𝜋ref (𝑦𝑐 |𝑥)

− 𝛽 log 𝜋𝜃 ′ (𝑦𝑟 |𝑥)
𝜋ref (𝑦𝑟 |𝑥)

)]
(7)

The trainable parameter Eq. 7 is 𝜃 ′, which is the same with RLHF.
But it do not need any online optimization process like PPO [34].
Instead, DPO samples (𝑥,𝑦𝑐 , 𝑦𝑟 ) from preference database D and
optimize the VLM’s parameters 𝜃 ′ with a simple classification loss.

3.2 Visual preference alignment
This section will introduce our pipeline: self-supervised visual pref-
erence alignment (SeVa). For a languagemodel 𝜋SFT after supervised
finetuning stage, we feed it with the original and augmented image
input as (for simplicity, we omit the generated token as conditional
input shown in Eq. 2):

𝑦
( 𝑗 )
𝑐 = 𝜋SFT (𝑔(𝐼 𝑗 ), 𝑞 𝑗 ) , (8)

𝑦
( 𝑗 )
𝑟 = 𝜋SFT (𝑔(T (𝐼 𝑗 )), 𝑞 𝑗 ) . (9)

The 𝑦 ( 𝑗 )𝑐 and 𝑦 ( 𝑗 )𝑟 are regarded as a pair of raw chosen and rejected
response. For each image 𝐼 𝑗 and its question 𝑞 𝑗 , we generate only
one paired preference data (𝑦 ( 𝑗 )𝑐 , 𝑦

( 𝑗 )
𝑟 ). Suppose there are total𝑀

image-question pairs and its corresponding generated preference
pairs, we simply filter those equaled responses to get remained
preference data pairs (supposed 𝑁𝑑 ), which constitute the final
preference database DSeVa for DPO training (cf. Alg. 1 and Eq. 7).

DSeVa = {𝐼 𝑗 , 𝑞 𝑗 , 𝑦 ( 𝑗 )𝑐 , 𝑦
( 𝑗 )
𝑟 }𝑁𝑑

𝑗=1 , (10)

s.t. ∀𝑗, 𝑦 ( 𝑗 )𝑟 ! = 𝑦 ( 𝑗 )𝑟 . (11)

We choose 6 different data augmentation strategies to construct
our database and conduct DPO training. As shown in Table 1, all

self-constructed preference data are helpful for multi-modal com-
prehension, showing the validity of this pipeline. What surprises us
is that training samples built from ‘RandFlip’ are quite helpful (e.g.,
an increase of 3.2% score on MMVet). We conjecture that this might
derive from the natural property of the text data we used, since
flipped images can make OCR and recognition harder and induce
potential negative responses (cf. appendix for more details). Besides,
all models have seen a noticeable improvement in adversarial set-
tings of POPE, indicating the models trained by our self-supervised
pipeline might be less inferior to potential interruptions.

3.3 Connection with contrastive learning
In contrastive learning, augmented views of the same image will
share similar semantic in its deep embeddings, which optimize the
following InfoNCE loss:

Lin = − log
exp (𝑞 · 𝑘+/𝜏)

exp (𝑞 · 𝑘+/𝜏) +
∑𝑛
𝑖 exp (𝑞 · 𝑘𝑖−/𝜏)

, (12)

in which 𝑞, 𝑘+ are the positive embeddings from augmented views
of the same image, while 𝑘− could be negatives embeddings from
other images [5] or memory bank [13]. If we consider only one
negative, and denote 𝑓 (𝑞, 𝑘) = (𝑞 · 𝑘)/𝜏 as the scoring function, we
can reformulate Eq. 12 as:

L′
in = − log

exp (𝑓 (𝑞, 𝑘+))
exp (𝑓 (𝑞, 𝑘+)) + exp (𝑓 (𝑞, 𝑘−))

. (13)

It is not hard to find that the optimzed loss function derived from
Eq. 3 are quite similar with Eq. 13. The main difference lies in
the definition of negative samples. Unlike contrastive learning, the
predicted tokens from the augmented views of the same image will
be counted as negatives, but not positives. If we imitate traditional
InfoNCE loss in Eq. 12, we could inject multiple negative reward
terms in Eq. 3 (by augmenting multiple views of the same image to
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Table 2: Comparison with state-of-the-art methods on 9 benchmark datasets. SeVa consistently improves LLaVA-1.5-7B/13B on 8
out of 9 benchmarks, namely, MMVet [40], LLaVAW [27], MMBench [28], MMBench-Chinese [28], POPE [21], SEED-Image [18],
SHR [44], SQA [15], GQA [15]. Among them, SHR are newly proposed [44] to evaluate the hallucination ratio of VLMs.

Method Language model MMVet LLaVAW MMB MMBCN POPE SEED𝐼 SHR (↓) SQA GQA

BLIP-2 FLAN-T5 22.4 38.1 – – 85.3 46.4 – 61.0 41.0
InstructBLIP Vicuna-7B 26.2 60.9 36.0 23.7 – 53.4 - 60.5
InstructBLIP Vicuna-13B 25.6 58.2 – – 78.9 – 51.2 63.1 49.5
Shikra Vicuna-13B – – 58.8 – – – – – –
IDEFICS-9B LLaMA-7B – – 48.2 25.2 – – – – 38.4
IDEFICS-80B LLaMA-65B – – 54.5 38.1 – – – – 45.2
Qwen-VL Quen-7B – – 38.2 7.4 – 56.3 – 67.1 59.3
Qwen-VL-chat Quen-7B – – 60.6 56.7 – 58.2 – 68.2 57.5
LLaVA Vicuna-7B 26.7 63.0 34.1 14.1 – 25.5 – 38.5 –

LLaVA-1.5 Vicuna-7B 30.5 63.4 64.3 58.3 85.9 65.7 36.7 66.8 62.0
SeVa-7B Vicuna-7B 37.2 72.2 65.6 59.2 86.7 65.8 34.9 67.5 60.7

LLaVA-1.5 Vicuna-13B 35.4 70.7 67.7 63.6 85.9 68.2 37.2 71.6 63.3
SeVa-13B Vicuna-13B 41.0 80.1 68.7 64.8 87.4 68.6 36.6 71.2 63.4

produce multiple responses), and thus derive a more general form
of DPO. Please refer to appendix for more details, and we will leave
this as future work.

4 EXPERIMENT
In this section, we conduct experiments to verify the effectiveness
of the proposed SeVa pipeline. Firstly, we provide the experimental
settings (e.g., the data construction process). Then we show the
results on multi-modal comprehension benchmarks. Finally, we
provide fruitful ablations and visualizations to analyze SeVa with
more details. For simplicity, we name LLaVA-1.5-7B/13B trained with
SeVa pipeline as SeVa-7B, SeVa-13B, respectively.

4.1 Settings
Data construction. The source data we obtained are from LLaVA-
665k SFT dataset [26], and we choose image-question pairs from
TextVQA and OCRVQA [30, 35] (denoted as ‘text+ocr’) in 665k
to generate the DPO preference data. This setting is kept by de-
fault throughout all the experiment unless otherwise noted. For each
data instance in ‘text+ocr’ of LLaVA665k, we randomly choose 2
questions in its multi-turn dialogue, and pair each question with
the image. We treat each image-question pair as one data instance,
which leads to nearly doubled instance as the original ‘text+ocr’.
Then we randomly choose 8k such image-question pairs in ‘text’
and ‘ocr’ each, to form the original data source of 16k. Finally, these
16k image-question instances will go through SeVa pipeline to pro-
duce preference data with filtering (cf. Alg. 1), which are cut down
by half to about 8k. For clarity in our later ablations, we denote data
nums as those unfiltered preference pairs instead of the filtered
ones (e.g., 16k but not 8k), since the num of raw unfiltered data is
fixed and immune to filtering process (cf. appendix).

Data augmentation choice. As verified in Table 1, all the se-
lected data augmentations are all helpful for multi-modal compre-
hension. In our later experiment, we choose diffusion noise as the
default augmentation in SeVa pipeline, since it can easily control
the intensity of distorted level, which is helpful for ablations (cf.

Fig. 6). The noise steps for training SeVa-7B and SeVa-13B are set
as 800 and 500, respectively. As MOCO augmentation strategy is
also highly effective as shown in Table 1, we are glad to verify more
data augmentation strategies in our future work.

Training details. Following previous works [4, 22, 23, 38], we
choose LLaVA-1.5-7B/13B as our base models in all our experiments.
The LLaVA’s weights are pretrained and SFT tuned before our
DPO training, which is the by default pipeline as in many previous
literatures [12, 33, 34, 44]. We adopt deepspeed ZeRO stage-3 [26]
during DPO training and use Vicuna-7B/13B, CLIP-VIT-L-336px as
our LLM and vision encoder, respectively. The total epoch, batch
size, learning rate and weight decay are set as 1, 128, 2e-6 and 0,
respectively, following previous work [44]. The hyper-parameters
of lora 𝑟 are set as 1024, and the scale parameter 𝛽 in DPO is fixed
as 0.1. DPO optmization are conducted with 8-A800 GPU, with
LLaVA-7B/13B tuned for about 0.7/1.3 hours.

4.2 Compare with state-of-the-art
Firstly, we compare the proposed SeVa with state-of-the art VLMs.
A total of 9 benchmarks are included, with multi-modal bench-
marks as: MMVet [40], LLaVA-Bench-in-the-wild [26] (LLavaW),
MMBench [28] (MMB), MMBench-Chinese (MMBCN), POPE [21],
SEED-Bench-Image [18] (SEED𝐼 ) and SHR [44], and traditional
Question-Answer benchmarks ScienceQA [29] (SQA) and GQA [15].
Among them, MMVet, LLaVAW are two GPT-4 evaluated bench-
marks. MMB and MMBCN are multiple choice question answer
dataset that requires minimal GPT-4 involvement (e.g., answer
choice aligning [28]). POPE and SHR are two hallucination bench-
marks, and SQA & GQA are two traditional QA benchmarks.

As shown in Table 2, SeVa consistently improve the LLaVA-1.5
7B/13Bmodels on 8 out of 9multi-modal benchmarks. Specifically, it
improve its 7B/13B models by 6.7%/5.6% on the most complex multi-
modal dataset MMVet, showing the great power of the proposed
pipeline. The same can be observed in LLaVAW, where SeVa-13B
achieves a 80% relatively score to GPT-4, boosting LLaVA-1.5-13B by
a large margin of 9.4%. The great boost on GPT-4 evaluated datasets
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Table 3: Comparison with continual (‘cont.’) SFT in a 7B setting. We randomly select 15k (2%), 66k (10%) and 132k (20%) out of
LLaVA665k to apply SFT. ‘Unsupervised’ means no answering labels are required. We also sample all the TextVQA and OCRVQA
data in LLaVA665k for comparison (since SeVa utilize its unsupervised data version). ∗ means the unfiltered preference instances
(the actually kept DPO data are mostly by half, cf. Sec. 4.1). Training cost are all evaluated in a same experiment settings.

Method Unsupervised data source data scale MMVet MMB POPE Training cost

LLaVA-1.5 — — — 30.5 64.3 85.9 —
cont. SFT (2%) ✗ LLaVA665k 15k 31.9 63.7 86.0 0.1h
cont. SFT (10%) ✗ LLaVA665k 66k 32.8 64.9 86.0 1.2h
cont. SFT (20%) ✗ LLaVA665k 132k 33.9 64.2 86.1 2.4h
cont. SFT ✗ text+ocr 102k 32.5 65.2 86.7 1.2h

SeVa (ours) ✓ text+ocr 8k∗ 34.8 65.3 86.2 0.3h
SeVa (ours) ✓ text+ocr 16k∗ 37.2 65.6 86.7 0.7h

Table 4: MMVet evaluation score with different data (image-
question) pairs and scale to conduct the SeVa-7B pipeline.
The highest score in each dataset are highlighted with bold
symbol. In SeVa pipeline, we choose TextVQA+OCRVQA by
default. All the data listed are sourced from LLaVA665k [26].

Unspervised data Data Scale
2k 4k 8k 16k

TextVQA [35] 31.8 32.1 34.8 35.8
OCRVQA [30] 32.1 32.3 32.8 34.5
GQA [15] 31.4 31.8 34.1 35.9
COCO [25] 31.7 31.2 34.2 34.4

Visual Genome [16] 31.4 32.0 33.4 34.1

suggested a better alignment with user-intentions, as demonstrated
in Fig. 5 and Fig. 7. We also observe a consistent improvement
on POPE and SHR, which indicates the effect of SeVa to relieve
object hallucinations, and thus we may not resort to specialized
hallucination methods [17, 44]. Please note that the improvement
on hallucinations are not marginal, since previous work that con-
structed huge amount of SFT data can lead to decreased performance
on POPE (e.g., LVIS-Instruct4V [38]). There is also a higher mul-
tiple choices accuracy in MMB, MMBCN and SEED𝐼 , showing the
broad adaptability of SeVa. In Table 2, a little bit drop was found
on traditional benchmarks SQA/GQA. We conjecture that this phe-
nomenon might arise from a trade-off between stronger instruction
following ability in traditional QA and better comprehension ability
in modern VLMs benchmarks, which is also pointed out in [12] that
stronger instruction following do not guarantee a more helpful and
better VLMs. In fact, how to better trade-off between benchmarks
remains a discussing issue [4] and is out-of-scope of this paper.

4.3 Ablations
Now we ablate the factors in our pipeline, to help readers better
understand the success behind SeVa and its generalized ability. We
choose SeVa-7B as the default model unless otherwise noted.

Compare with SFT.We start from comparing with continual
SFT, as this is the most straight forward method to verify its ef-
fectiveness with supervised training (note SeVa do not need target
answer labels). We conduct three different types of SFT: a random

Representative questions in each dataset:

Question textvqa:

- Provide a one-sentence caption for the provided image. 

Reference OCR token: [task-specific prompt]

Question ocrvqa:

- Who is the author of this book?

- What is the title of this book?

Question gqa:

- Is the cheese to the left of the food on the plate?

- Which kind of furniture are the cups hanging on?

Question coco:

- Where is the cat positioned in the image?

- Please provide a short description for this region: 

[task-specific prompt]

Question vg:

- Please provide a short description for this region: 

[task-specific prompt]

- Provide the bounding box coordinate of the region

this sentence describes. [task-specific prompt]

Figure 4: Illustration of representative questions in five
databases from LLaVA665k. In our main experiment, we
adopt a combination of ‘textvqa’ and ‘ocrvqa’. The results of
applying the other 3 question types can be found in Table 4.

selection of 2%/10%/20% in LLaVA665k and a collection of TextVQA
and OCRVQA in 665k (denoted as ‘text+ocr’). We evaluate its down-
stream performance on MMVet, MMB and POPE, which can be
found in Table 3. For a fair comparison, we strictly follow LLaVA-
1.5’s SFT settings during experiments. It can be observed that all
SFT data are helpful for multi-modal comprehension. Specifically,
text related data are more helpful for dealing with model hallucina-
tions (e.g., on POPE). In comparison, our SeVa achieves the overall
best results on all benchmarks with both less training time cost and
data usage. More importantly, SeVa enjoys its unsupervised nature,
making it more generalizable in reality.

Generalize to other datasets. Since we adopt the questions
in TextVQA and OCRVQA as a default fashion, we now ablate
on more dataset selection on top of these two dataset. For more
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Table 5: GPT-4 evaluated consistency score from 1-10. Q-
consistency measures how the model’s answers are aligned
with the asked question, while A-consistency measures how
answers (𝑡 > 0) are aligned with its generated tokens without
sampling (𝑡 = 0). We adopt 1.5 version of LLaVA.

temp (𝑡 ) Q-Consistency (↑) A-Consistency (↑)
LLaVA SeVa LLaVA SeVa

0.2 7.30 7.75 6.45 6.95
0.4 7.11 7.98 6.28 7.32
0.5 7.39 7.93 6.52 7.29
0.7 7.81 8.18 7.10 7.64
0.9 8.43 8.53 7.87 7.98
50 7.75 8.47 6.94 8.03
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(b) results on MMVet

Figure 5: The pair-wise competition and output sentence
length (by token) in LLaVAW and MMVet. We compare be-
tween SeVa and LLaVA-1.5 models in 7B and 13B settings.

clarity, we choose other part of LLaVA665k including GQA [15],
COCO [25] and Visual Genome [16] to form image-question pairs.
We randomly select 2k-16k these data and conduct SeVa-7B training
pipeline. The results are then evaluated on MMVet. As shown in
Table 4, all the choosen dataset lead to consistent improvement over
LLaVA-1.5-7B (30.5% score), showing the generalized ability of SeVa
to different image and question domains. Besides, involving more
unsupervised data leads to consistent better performance, which
indicates the great power of SeVa towards further scaling.

Why SeVa works? Attentive readers might have a natural ques-
tion: why rejecting inferior answers lead to better model output than
the original? Here, we conduct a detailed experiment to show that,
SeVa can be viewed as a special form of model calibration and reject-
ing negatives does help. Specifically, we collect image-question pairs
from LLaVAW to prompt LLaVA and SeVa with higher sampling
temperature 𝑡 . Note that 𝑡=0 means no sampling in token genera-
tion, which is the default and most stable evaluation settings. Then
we utilize GPT-4 (cf. appendix for prompt) to evaluate the its output
consistency with scoring from 1 to 10, namely Q-consistency (how
the model’s answer are aligned with the input questions) and A-
consistency (how the model’s answer are aligned with its generated
tokens w/o sampling). As shown in Table 5, the consistency score
of both models fluctuates as 𝑡 grows. However, SeVa has seen an

Table 6: The effect of hyper-parameter in LoRA [14] during
DPO training. We range the rank of 𝑟 from 64 to 2048, while
keeping the weight ratio fixed as 2 (𝛼 is always twice as 𝑟 ).

LoRA 𝑟 LoRA 𝛼 MMVet MMB POPE

— — 30.7 64.3 86.8
64 128 32.8 64.7 86.5
128 256 33.9 65.0 86.4
256 512 34.0 65.1 86.6
512 1024 35.5 65.5 86.8
1024 2048 37.2 65.6 86.7
2048 4096 33.5 65.0 84.5
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Figure 6: Exploration of hard-negatives. We plot DPO train-
ing margin between chosen and rejected samples generated
fromdifferent noise steps (cf. 6(a)), and evaluate theirmodel’s
MMVet score after DPO training (cf. 6(b)).

consistent better score in all different 𝑡s, especially when tempera-
ture becomes higher. Since VLMs are easily affected by randomness
in generating tokens [20], SeVa has potentially made a calibrating
effect by reducing the sampled probability of those bad tokens, thus
being more tolerable to interruption. As a result, the model trained
with SeVa can produce more robust and correct answers.

Besides, we also observed a longer response in LLaVAW and
MMVet (cf. Fig. 5). This indicates that models trained with SeVa
pipeline could potentially produce more detailed and meaningful
responses that greatly benefits multi-modal comprehension.

Hard negatives matter. As we previously observed the phe-
nomenon of hard negatives in Table 1, we now design a controllable
experiment to study how strength of data augmentation affect the
final training performance. Specifically, diffusion gaussian noise
with different steps are chosen to generate preference data for DPO
training, which are then evaluated onMMVet benchmark. As shown
in Fig. 6(a), larger noise steps will increase the reward margin (cf.
DPO [33] for more details) during training, indicating the increased
preference divergence. In the meanwhile, a trade-off exists in the
noise steps (possibly between 500 and 800), as shown in Fig. 6(b). We
thus attribute the preference samples produced within this regime
as hard negatives that are most valuable for DPO training.

Effect of Lora. For completeness, the hyper-parameters of LoRA
are ablated on three multi-modal comprehension benchmarks, as
shown in Table 6. In PETL [9], this parameter can be quite im-
portant, as it decides how much new knowledge the model can
be absorbed during finetuning. As shown in the table, a relatively
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SeVa-13B: To determine how many 
gallons of supreme gasoline you can 
get with $50, we need to know the 
current price per gallon at the gas 
station. In the image, the price of 
supreme gasoline is $3.65 per gallon. 
With $50, you can buy:

$50 / $3.65 per gallon = 13.7 gallons of 
supreme gasoline

So, you can get approximately 13.7 
gallons of supreme gasoline with $50.

Q: How many gallons of 
supreme gasoline can I get 
with $50?

Q: Should I add sugar 
when mixing egg and 
milk?

LLaVA-1.5-13B: Based on the image, 
you can get 3.6 gallons of supreme 
gasoline with $50. The price per 
gallon is $1.36, and $50 is enough to 
purchase 3.6 gallons.

SeVa-13B: No, you should not add 
sugar when mixing egg and milk in the 
chocolate cake recipe. The sugar is 
typically added later in the process, 
during the mixing of the dry ingredients, 
such as flour, cocoa powder, and 
baking powder. Mixing sugar with egg 
and milk at this stage can result in a 
runny, unstable batter that may not 
hold its shape well during baking. It is 
essential to follow the recipe steps in 
the correct order to achieve the desired 
texture and consistency of the cake 
batter.

LLaVA-1.5-13B: Yes, you should add 
sugar when mixing egg and milk in the 
chocolate cake recipe. This is because 
sugar helps to balance the flavors and 
create a more harmonious taste in the 
final product. 

Q: Can you give a short
introduction to this movie?

LLaVA-1.5-13B: The image features two 
men in suits, standing close to each other 
and looking at each other intently. They 
appear to be having a conversation or 
sharing a moment of connection. The 
scene, suggests that it might be a social 
gathering or a formal event. The men's 
attire and the presence of other people in 
the room indicate that this could be a 
scene from a movie or a special occasion.

SeVa-13B: The image depicts a scene from 
the movie "Casablanca," featuring two 
main characters, played by Humphrey 
Bogart and Sidney Greenstreet, in a tender 
moment. Bogart's character, Rick Blaine, 
has his hand on Greenstreet's character, 
Victor Laszlo's, shoulder, with their faces 
close together. This scene captures the 
emotional connection between the two 
characters, as they share a moment of 
understanding and camaraderie amidst the 
turmoil of the World War II era in 
Casablanca.

Q: What are the meals 
that I can cook with 
these? 

LLaVA-1.5-13B:  With these ingredients 
available in the refrigerator, you can 
prepare a variety of meals. The refrigerator 
contains several carrots, which can be 
used as a healthy snack or incorporated 
into dishes like salads, stir-fries, or soups. 

SeVa-13B: With the variety of food items 
in the refrigerator, you can prepare a 
range of meals and snacks, including:
1. Fruit salad: Combine the strawberries 
and blueberries to create a refreshing 
fruit salad …
2. Yogurt parfait: Use the yogurt as a 
base for a delicious yogurt parfait, Layer 
the yogurt with granola, fresh fruit,…
3. Carrot sticks with dip, Slice the 
carrots into sticks and serve them with a 
healthy dip, like hummus, guacamole, or 
a yogurt-based dip.
4. Smoothie: Blend the yogurt, fruit, and 
any additional ingredients like nuts, 
seeds, or protein powder to create a 
nutritious and delicious smoothie.

Ability: OCR, Math, COT Ability: Hallucinations (↓), OCR Ability: Knowledge, Instruction Following Ability: Helpfulness, Details

Figure 7: Four examples to illustrate the improved ability of our SeVa, including chain of thought (COT), stronger OCR, less
hallucinations, world knowledge and more detailed and clearer responses. Since we built-on LLaVA-1.5, we directly make
comparison between them to show the effectiveness of our proposed method. For clarity, we highlight the incorrect response
in LLaVA with red color, and emphasize ours with blue italic character. This figure is best viewed in color.

higher 𝑟 is helpful to downstream tasks, showing the increased
acquired knowledge of the VLM. However, too large 𝑟 will decrease
performance, which can be attributed to the catastrophic forget-
ting in training a LLM (a similar point also pointed out in [4]). In
conclusion, we set 𝑟 as 1024 to seek a best trade-off, and always
keep the delta importance as 2 (the 𝛼 is always twice as 𝑟 ).

Aligning with user-intentions. Finally, we visualize the im-
proved VLM with SeVa. We selected image-question pairs from
MMVet and LLaVAW, which are sent to the original VLM (LLaVA-
1.5-7B) and the improved model (SeVa-7B), respectively. As shown
in Fig. 7, Our SeVa demonstrates superiority over LLaVA in various
aspects: stronger OCR ability, where SeVa could recognize the exact
number of the gas price; less hallucinations can be observed in
the second picture, where SeVa accurately comprehends the pro-
cess of ‘chocolate cake recipe’ and produces correct answers. It is
also surprising that SeVa could potentially recovers more world
knowledge after DPO training, as it gives detailed and accurately
response to the introduction of a movie (the third picture). Finally,
we found that through our DPO training, the models provide more
detailed and helpful answers, as suggested by the last picture of a
meal ordering. Following Vicuna [6], we also conduct a competition
game between SeVa and LLaVA-1.5 under 7B and 13B settings on
LLaVAW and MMVet, respectively. We introduce GPT-4 as judge to
evaluate the score of each model’s responses (similar to the evalua-
tion process in these two benchmarks) and calculate the statistics
of ‘win’ and ‘lose’. This could serve as a result that indicates how the

models are aligned with user-intentions [45]. Note we didn’t include
‘tie’ [6], since we observed a majority of meaningless ‘tie’, where
both SeVa and LLaVA achieves a a score of zero. As shown in Fig. 5,
SeVa has occupied most of the winning rounds in comparison with
LLaVA, across both model sizes and benchmark datasets. Together
with the visualizations in Fig. 7, we believe that our SeVa could
probably serve as a strong pipeline to improve current VLMs’ chat
ability, and makes them more suitable towards practical usage.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduce SeVa: Self-supervised visual preference
alignment, for multi-modal comprehension. It first went through a
data collection and filtering process with response from the original
and distorted image, respectively. Then, the standard DPO training
are applied to improve the model’s capability. Experiments in var-
ious benchmarks clear verify and efficiency of the approach. We
also conduct ablations and quantitative visualizations to reveal the
latent mechanism of SeVa, which demonstrate the great merit of
aligning large models in vision-language domains.

In the future, we might consider generalize SeVa to various do-
mains. We will study the effect of data scale: how the model will
benefit from DPO training if more unlabeled data are involved,
On top of that, we would investigate the potential to generalize
our SeVa pipeline RLHF [31] domain. (e.g., whether the generated
preference data could be helpful in building a reward model).
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