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Abstract
The visibility of brand logos on packaging plays a crucial role in shaping consumer perception, directly influencing 
the product’s success. Analyzing eye-tracking data across large groups of individuals is both costly and time-intensive. 
Therefore, there is a growing need to develop models that capture human visual attention behavior effectively. This 
paper introduces a framework that models attention in the human visual system to brand logos on packaging designs, 
to measure brand logo visibility and its impact on consumer perception. The proposed method consists of three main 
steps. The first step leverages YOLOv8 for logo detection across well-known datasets. The second step involves introduc-
ing a novel saliency prediction model tailored for the packaging context to model human visual attention. In the third 
step, by integrating logo detection with a saliency map generation, the framework provides a brand attention score. The 
effectiveness of the proposed method is assessed module by module, ensuring a thorough evaluation of each compo-
nent. Comparing logo detection and saliency map prediction with SOTA models shows the superiority of the proposed 
methods. To investigate the robustness of the proposed brand attention score, we collected a dataset to examine previ-
ous psychophysical hypotheses related to brand visibility. The results show that the brand attention score is in line with 
all previous studies. Also, we introduced seven new hypotheses to check the impact of position, orientation, and other 
visual elements on brand attention. This research marks a stride in the intersection of cognitive psychology, computer 
vision, and marketing.

Article highlights

•	 Provides a framework to assess logo prominence on packaging and its impact on viewer focus.
•	 Introduces a new model to predict where people look in commercials and packaging images.
•	 Explores 12 consumer insights, including effects of logo position and orientation on visibility.
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1  Introduction

In today’s dynamic business world, having a strong brand presence is crucial. The visibility of the brand is incredibly 
important for keeping up with consumer trends and staying competitive. Consumers often shape their perceptions 
of brands by considering factors such as visual attractiveness, functionality, and the social significance they convey, 
predominantly relying on visual cues [1]. For companies striving to establish and maintain a strong market presence, 
the packaging of their products, as an interface between the brand and the consumer, significantly influences the 
purchasing process [2].

The visual appeal of packaging, along with the prominent display of design elements, contributes to creating a 
lasting impression on the consumer and nurturing brand recognition. As consumers navigate the diverse market 
landscape, a well-designed package captures attention and effectively conveys the brand’s values and identity, play-
ing a key role in influencing the purchasing decision [3].

Several studies in marketing and consumer behavior have emphasized the role of effective packaging design in 
promoting brand recognition [4]. A well-designed packaging has been shown to significantly enhance brand aware-
ness, purchase intent, and sales [5]. These investigations thoroughly explore various aspects of packaging design, 
conducting a detailed examination of elements such as packaging’s shape, texture, and color [6–10]. Additionally, 
they explore the strategic considerations of precise positioning of design elements such as logos, aiming to uncover 
the subtle interactions between these factors and their impact on consumer perception and brand recognition.

Recognizing the impact of visual elements in packaging, particularly logos, on shaping brand recognition and 
recall is crucial [11, 12]. This visual aspect influences consumer responses, ultimately playing an important factor in 
determining the success of a product [13]. Logo, as a fundamental visual element, plays an essential role in packaging 
design, significantly influencing how consumers perceive and remember a brand [14]. A visually appealing pack-
age not only captures the consumer’s attention but also enhances the visibility of the brand logo. On the flip side, 
weaknesses in design can hinder logo visibility, diminishing its potential impact on consumer awareness [15, 16].

Understanding the crucial influence of logo visibility on brand awareness highlights the importance of implement-
ing effective methods to enhance logo visibility. Enhancing logo visibility is linked to understanding its strategic 
placement on the packaging. The positioning of a logo profoundly impacts its visibility, influencing its interaction 
with other design elements and resonance with consumers. Thus, it is imperative to focus on optimizing logo place-
ment through strategic positioning on packaging. To this end, implementing advanced machine vision techniques 
to measure logo visibility becomes crucial to amplifying visibility. Identifying the logo’s position within an image is 
the initial stage in assessing logo visibility [17]. The pursuit of brand visibility does not conclude with knowing the 
location of the logo; it extends to understanding the attention it commands within the consumer’s visual field. This 
is where saliency prediction [18] emerges as a pivotal metric. Saliency prediction involves forecasting the perceptual 
prominence of the logo within the overall visual composition of packaging. Understanding the saliency prediction 
of the logo enables us to quantify its presence and visual impact, offering a detailed understanding of how much 
attention the brand attracts on the visual journey of consumers.

While there have been numerous studies on logo detection and saliency prediction, to the best of our knowledge, 
there is currently no specialized method for modeling human visual attention specifically for logos on packaging. 
The proposed method is positioned to provide a comprehensive framework for modeling human attention to brand 
logos in various packaging scenarios including automated logo detection and a novel saliency prediction algorithm. 
This approach is crafted to provide businesses with actionable insights aimed at optimizing logo visibility and cre-
ating engaging packaging designs that effectively connect with their target audience. It is composed of three key 
modules. The initial module of our design is brand logo detection, leveraging the cutting-edge YOLOv8, a state-of-
the-art (SOTA) object detection model developed by Ultralytics [19]. This crucial step helps identify and precisely 
locate brand logos in visual content. Subsequently, the second module, utilizing a CNN-Transformer-based model 
generates saliency maps, a crucial element of our methodology. These maps highlight specific regions within the 
visuals that command the highest visual attention. These insights provide valuable information regarding viewer 
perception and cognitive responses. The third and concluding module efficiently integrates the outcomes of both 
logo detection and saliency map generation. This integration yields a score that quantifies the attention that the 
brand logo attracts within packaging or advertising visuals. Furthermore, it is noteworthy to mention that this 
approach has been validated against existing psychophysical studies related to brand logos in packaging. This vali-
dation underscores the capability of the model to simulate human visual attention on brand logos within packaging 
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and advertising imagery accurately. Consequently, this positions our model as a tool for investigating unexplored 
experiments regarding brand logos in packaging and advertising contexts. Through this approach, the proposed 
model provides a comprehensive analysis of brand visual attention, enabling businesses to make informed decisions 
to enhance their brand presence and impact. Our main contributions are as follows:

•	 An innovative framework that models human visual attention to brand logos on packaging.
•	 A new saliency prediction model, specifically designed for advertising images and packaging considering text maps, 

surpasses SOTA models in saliency prediction.
•	 Introduced a brand attention dataset explores 12 hypotheses from cognitive perspectives.
•	 Validated the effectiveness of the brand attention score through extensive comparisons with existing psychophysical 

studies.
•	 Introduced seven new hypotheses to understand the impact of logo position, orientation, and other design elements 

on brand visibility.

The rest of this work is organized into four sections. Section 2 delves into related work in the field, specifically focusing 
on optimizing logo placement through eye-tracking, brand logo detection, and saliency map prediction. Section 3 out-
lines the materials, methods, and modeling procedures employed in the research. Section 4 is dedicated to discussing 
the experiments conducted and the results obtained. Finally, Sect. 5 presents the main conclusions of the work, while 
proposing future directions and potential enhancements for the introduced architecture.

2 � Related works

In this section, we will go through the domain of artificial intelligence (AI) and its applications in the field of marketing, 
specifically focusing on logo placement design in advertising images and packaging. We will also explore the techniques 
of brand logo detection and saliency map prediction, discussing their relevance to enhancing brand recognition and 
optimizing advertising effectiveness.

2.1 � Optimizing logo placement with eye‑tracking

Neuromarketing, an increasingly influential field of study, uniquely utilizes neuroscience knowledge to directly assess 
product packaging, eliminating the need to depend on consumers’ self-reported preferences [20]. By incorporating 
advanced methodologies like neuroimaging and physiological measurements, neuromarketing employs a more direct 
and objective approach to assessing consumer responses. This represents a notable shift away from traditional survey-
based approaches. A key methodology in neuromarketing is eye tracking [21], providing a detailed examination of 
visual attention patterns. By studying where and how consumers focus their gaze, researchers gain valuable insights 
into elements that capture attention and drive perception, uncovering processes beyond conscious awareness [22, 23].

Specific parameters govern visual behavior, with fixations playing a central role in this context. Fixations, characterized 
by eye movement, represent moments when the visual system actively acquires information [24]. Numerous studies 
exploring eye movements, the attention mechanism, and consumer behavior have consistently emphasized the impor-
tance of analyzing fixations based on their frequency and duration [25]. By understanding the patterns and characteristics 
of fixations, researchers gain insights into how individuals allocate their visual attention and engage with stimuli. This 
knowledge proves particularly valuable in fields such as neuromarketing, where assessing consumer responses relies 
on a detailed understanding of visual attention dynamics.

Employing eye-tracking techniques, previous researches underscore the critical role of packaging design, investigating 
the influence of specific attributes like color, shape, and labeling on consumer perceptions of the product[26].

Strategic positioning of packaging design components is central to practical marketing efforts [27]. Inadequate place-
ment may cause crucial design elements to go unnoticed, impacting product evaluation [15, 16]. An important study 
reveals a consumer preference for high-power brands when the brand logo is positioned on the upper side of the packag-
ing, contrasting with diminished appeal when placed on the lower side [6, 7]. The effectiveness of capturing participants’ 
attention by placing packaging content at the top is emphasized by Rebollar et al. [8]. Building on existing research, 
Piqueras-Fiszman et al. [9] explored the impact of packaging shape and images on consumer attention, with a focus 
on the logo. Their findings showed that squared-shaped packaging significantly heightened attention toward the logo. 
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Additionally, the study demonstrated the substantial influence of incorporating images on capturing consumer atten-
tion. This highlights the complex balance required in packaging design to ensure that attention is not only captured but 
also sustained, emphasizing the need for strategic placement and thoughtful integration of visual elements to prevent 
essential components from being marginalized.

2.2 � Brand logo detection

Logo detection, a subfield of object detection, has witnessed substantial advancements over the years. In its initial stages, 
logo detection heavily relied on manually crafted visual attributes, including the Scale-Invariant Feature Transform (SIFT) 
and the Histogram of Oriented Gradients (HOG), combined with traditional classification models like Support Vector 
Machines (SVM) [28–30]. However, these approaches faced notable constraints. They were time-consuming because of 
their region-selective search method using sliding windows. They also struggled to handle different types of logos and 
were not very efficient at adapting to new situations [17]. In recent years, deep learning has emerged as the prevailing 
paradigm for logo detection. These approaches can be categorized into different strategies, including Region-based 
Convolutional Neural Network (R-CNN) models and YOLO-based models. R-CNN models [31], Fast R-CNN [32], and Faster 
R-CNN [33] have made noteworthy contributions to the field of logo detection. Hoi et al. [34] introduced the Deep Logo-
DRCN scheme, which investigated various techniques within the field of deep region-based convolutional networks 
(DRCN) for improved logo detection. Similarly, Oliveira et al. [35] proposed an automatic graphic logo detection system 
based on Fast R-CNN, known for its robustness under unconstrained imaging conditions. Their approach involved uti-
lizing transfer learning and data augmentation to train a CNN model, enabling multiple detection of potential regions 
containing objects. Additionally, Li et al. [36] developed Faster R-CNN for logo detection, incorporating transfer learning, 
data augmentation, and clustering to optimize hyper-parameters and anchor precision in the Region Proposal Network 
(RPN), resulting in a significant improvement in detection accuracy.

Feature Pyramid Networks (FPN) are crucial in addressing the multi-scale problem in object detection [37]. FPN nota-
bly enhances small object detection without escalating computational demands. Recent works have employed FPN to 
improve logo detection. Meng et al. [38] proposed OSF-Logo, incorporating the Regulated Deformable Convolution 
(RDC) module in a specific layer of FPN. This integration allows adaptive adjustments of convolution kernel positions, 
facilitating geometric adaptations to logos. In addition, Jin et al. [39] developed Brand Net, utilizing FPN to extract multi-
scale features for logo recognition. To enhance small object detection in the context of logo recognition, FPN have also 
been integrated into Detection Transformers (DETR) [40]. Velazquez et al. [41] integrated FPN into DETR, enhancing small 
object detection. Nevertheless, this approach results in an increased computational load during backward propagation. 
More recently, Hou et al.[42] proposed the Multi-Scale Feature Decoupling Network (MFDNet) to distinguish between 
multiple logo categories. MFDNet incorporates a Balanced Feature Pyramid (BFP) for merging multi-scale features and a 
Feature Offset Module (FOM) with an anchor region proposal network for the optimal selection of logo features.

Driven primarily by the compelling demand for speed and real-time object detection applications, You Only Look Once 
(YOLO) was developed [43]. YOLO models, known as single-stage detectors, have played a central role in revolutionizing 
object detection for their ability to achieve both accuracy and speed. Early versions of YOLO, such as YOLOv2 [44] and 
YOLOv4 [45], set new benchmarks in the field. More recent iterations, including YOLOv7 [46] and YOLOv8 [19], represent 
the current SOTA in object detection. YOLO models are widely employed, particularly in the domain of logo detection. 
Palecek et al. [47] presented Scaled YOLOv4, outperforming traditional two-stage models such as Faster R-CNN in both 
speed and accuracy. It achieved a relative improvement of up to 46%, running up to twice as fast. Notably, logo detectors 
utilizing YOLOv7 and YOLOv8 remain unexplored, presenting an opportunity for potential improvements in balancing 
accuracy and speed, potentially reaching the SOTA in logo detection.

2.3 � Saliency map prediction

Saliency prediction in computer vision involves the identification and anticipation of the most significant or salient 
regions within an image or video frame, likely to capture human attention. This process holds practical utility in various 
applications. CNNs are commonly used for saliency prediction tasks. Kroner et al. [48] introduced an encoder-decoder 
framework that incorporates several convolutional layers, each set at various dilation rates, to effectively grasp features 
on multiple scales. Jia et al. [49] used deep CNN models to extract more useful visual features for saliency prediction. 
TempSal [50] enables sequential saliency map generation through a temporal information-based model, astutely exploit-
ing human temporal attention patterns. The incorporation of transfer learning principles amplifies the potential of CNN 
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models in the domain of saliency prediction [51, 52]. The fusion of RNN with CNN represents a hybrid approach in the 
field of both image and video saliency prediction, as introduced by Droste et al. [53].

Researchers have been inspired by the achievements of attention in natural language processing (NLP) and have 
started applying these models to computer vision tasks such as saliency prediction. Cao et al. [54] proposed a saliency 
prediction method named VGG-SSM. Their pipeline consists of three parts: feature extraction, multi-level integration, and 
a self-attention module. They demonstrated that refining global information from deep layers through a self-attention 
mechanism, in coordination with fine details in distant portions of a feature map, yields a comprehensive data enhance-
ment process. Additionally, Lou et al. [55] developed a transformer-based method with both DenseNet and ResNet 
backbones.

The works mentioned earlier were created for general use, while numerous other works have been suggested spe-
cifically for advertising purposes. Lévêque et al. [56] collected an eye-tracking database of video advertising and evalu-
ated their analysis with SOTA deep learning-based saliency models. Liang et al. [57] compiled an eye-tracking dataset 
comprising 1000 advertising images. Subsequently, they introduced a method that incorporates text features within 
advertising images, which considers the interaction between text region and pictorial region. Kou et al. [58] proposed 
confidence scores fusion for saliency prediction in advertising images, which is helpful to improve the robustness and 
performance. Another study, conducted by Jiang et al. [59], introduces the concept of salient Swin-Transformers. In this 
work, the researchers initially curated a dataset of e-commerce images for saliency prediction tasks. Subsequently, they 
proposed a novel multi-task learning framework that demonstrated SOTA performance in e-commerce scenarios.

3 � Proposed method

The primary aim of our research is to design a system for a comprehensive evaluation of the visual prominence of 
brand logos within the context of packaging or advertising images. To achieve this objective, the proposed methodol-
ogy encompasses three closely related main steps as illustrated in Fig. 1. The first module is brand logo detection and 
is supported by the SOTA object detection model, YOLOv8. This module identifies and locates brand logos within the 
imagery, forming the foundational basis for subsequent analysis. Then, the second module focuses on generating saliency 
maps, a critical aspect of our approach. The saliency maps illuminate the regions within the image that command the 
highest degree of visual attention, providing valuable insights into viewer perception and cognition. The final module 
consolidates the outcomes of the brand logo detection and saliency map generation modules. This approach gives a 
score that measures how much attention the brand logo gets in the packaging or advertising image. This combination 
of techniques offers valuable insights for businesses aiming to optimize the visual prominence of their brand logos in 
marketing materials.

3.1 � Brand logo detection

In the initial stage of the proposed method, our focus lies on brand logo detection. For this task, we employ the YOLOv8 
model, specifically trained for logo detection purposes. When presented with an input image I with spatial dimensions 
H ×W  and C color channels, our Logo YOLOv8 model processes this image. The output of this model consists of a 1D 

Fig. 1   Overview of the 
proposed brand-attention 
method Brand-Logo

Detection Module
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Brand-Logo Bounding Boxes
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list of bounding boxes, denoted as B, where each bounding box (b) is represented as a tuple containing the coordinates 
(xmin, ymin, xmax, ymax)

The number of logo boxes detected in the image is represented by n. This detection is the first fundamental step in our 
brand attention system.

3.2 � Saliency map prediction

Our primary objective in the second stage is to generate saliency maps for images, with a specific focus on advertising 
and packaging designs. We introduce a novel saliency map prediction model tailored to address the unique require-
ments of both advertisements and packaging images (Fig. 2). This model is inspired by the TranSalNet network [55], with 
major improvements made to boost its efficiency and performance. One component of the proposed method involves 
incorporating the influence of text into the saliency map. Previous studies have shown that text is just as important as 
other visual elements in packaging and advertising. These studies found that text is instrumental in capturing people’s 
attention, and they used eye-tracking data to confirm this [57, 59].

In the proposed model, we initiate the process by detecting text within the image. To achieve this, the text detec-
tion model proposed by Lia et al. [60] is employed, which outputs a text map. The text map and the original image are 
subsequently processed through a CNN decoder, resulting in multiple feature maps. To efficiently capture and process 
information from feature maps, we apply transformation through Transformer encoders. This enables the model to 
consider complex relationships and dependencies within visual content. To ensure a seamless integration of these ele-
ments, we introduce a pivotal component of the model: the Fusion Block. This block is strategically designed to merge the 
feature maps derived from both the text map and the original image. By doing so, it enables the simultaneous utilization 
of visual and text-map features, thereby enhancing the overall interpretative capabilities of the proposed model. After 
the fusion block, we use a CNN decoder, which is supported by skip connections coming from the encoder section. This 
integrated process ensures the restoration of long-range context-enhanced feature maps obtained from the fusion 
block. These enhanced feature maps serve as the foundation for constructing the final saliency map, capturing the 
regions of the image that attract the most visual attention. Figure 2 illustrates the proposed saliency model, providing a 
visual representation of its architecture and the various components that comprise our refined saliency map prediction 
system. As depicted, the model comprises five principal components, each of which will be explained in more detail in 
subsequent sections of this paper.

3.2.1 � Text detector

We employ the cutting-edge DBNet++ network [60], which has emerged as a front-runner in the domain of text detec-
tion, consistently achieving SOTA accuracy across a spectrum of five scene text detection benchmarks. These benchmarks 
cover a diverse range of challenges, from handling horizontal and multi-oriented text to curved text, demonstrating 
the versatility and performance of DBNet++. The DBNet++ operates on images with spatial dimensions of H ×W  and C 

(1)B = LOGO_YOLOv8(I) = [b1, b2,… , bn]

Fig. 2   The block diagram of 
the proposed saliency model
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channels, allowing it to accurately identify text regions within these images. By deploying this innovative network, we can 
precisely extract and isolate text from non-textual information, ultimately generating text maps. Given an input image 
I ∈ ℝ

H×W×C , the DBNet++ detects text regions denoted as R. As a consequence, a text map, denoted as tmap ∈ ℝ
H×W×C , 

is generated as follows:

3.2.2 � CNN encoder

A CNN encoder is designed as our feature extractor. The primary objective of this CNN encoder is to extract essential 
features from both the image and the text-map while ensuring that the spatial information is distinctly preserved. To 
achieve this, three sets of convolutional layers are used, each designed to capture features at different spatial scales. 
Specifically, we extract feature maps with spatial dimensions of (w∕8, h∕8) , (w∕16, h∕16) , and (w∕32, h∕32) . For the image 
and text-map image feature extraction, the ResNet-50 architecture is used [61]. This backbone is efficient, using fewer 
parameters than deeper architectures. It balances depth and performance, effectively extracting detailed features for 
saliency prediction [55].

3.2.3 � Transformer encoder

After the initial CNN Encoder stage, which focuses on enhancing long-range and contextual information within our data, 
we designed three distinct transformer encoders to efficiently capture and process this enriched information. In the 
proposed pipeline, transformer encoders are integrated to handle the unique characteristics of both original images and 
text-maps. Specifically, three sets of multi-scale feature maps, denoted as i1 , i2 , and i3 , are derived from the image data. 
These sets have spatial dimensions of (w/32, h/32), (w/16, h/16), and (w/8, h/8), respectively. Each set is then fed into its 
respective transformer encoder. To adapt the input size of the transformer encoder and reduce computational complex-
ity, we employ 1 × 1 convolution layers (conv1× 1) with a stride of one. These convolution layers are applied to the input 
tensors, including i1 , i2 , and i3 , to decrease their channel dimensions while preserving spatial dimensions. The conv1× 1 
operation specifically reduces the dimensions of i1 , i2 , and i3 from 2048, 1024, and 512 to 768, 768, and 512, respectively. 
This dimension reduction streamlines the data for subsequent processing within the transformer encoder, aligning it 
with the required input dimensions and optimizing computational efficiency. Likewise, the textual components of the 
data, denoted as t1 , t2 , and t3 , undergo dimension reduction through conv1× 1 layers employing the same filter size and 
stride. This process ensures their alignment with the reduced dimensions of the visual components.

To facilitate position awareness and optimize the transformer encoders for effective processing of spatial informa-
tion within these feature maps, we integrate position embeddings (PE) [62] into the input before feeding it into the 
transformer encoders. Each transformer encoder in the proposed model consists of two identical layers featuring Multi-
Head Efficient Attention (MEA) [63] and multi-layer perceptron (MLP) blocks. Notably, the model’s design deviates from 
Transalnet regarding the number of heads and layers in each transformer encoder. Specifically, transformer encoders 
employ one efficient attention head and a 2-layer MLP. These tailored configurations are designed to meet the specific 
requirements of our model, ensuring the efficient processing of the enriched feature maps. Additionally, the MLP block 
in each transformer encoder consists of two layers with a GELU activation function. Layer normalization (LNorm) and 
residual connections are applied before and after each block, ensuring stable and effective feature processing.

The introduced methodology distinguishes itself through the adoption of efficient attention, as proposed by Shen 
et al. [63], diverging from the conventional self-attention mechanism. Traditional self-attention is mathematically rep-
resented as

In this formula, Q , K  , and V  are the query, key, and value vectors, while dk is the embedding dimension. However, this 
approach is limited by its O(N2) computational complexity, which presents major challenges when processing high-
resolution images.

(2)tmap(x, y, c) =

{
I(x, y, c) if (x, y, c) ∈ R

0 otherwise

(3)s(Q, K , V ) = softmax

�
QKT

√
dk

�
V
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Efficient attention, on the other hand, optimizes this process by normalizing the keys and queries before their interaction. 
Represented as,

where �q and �k are normalization functions. This approach addresses the redundancy in the context matrix generation 
of standard self-attention. It reduces the computational complexity to O(d2n) , with a memory complexity of O(dn + d2) , 
assuming dv = d and dk = d∕2 . Here, d represents the embedding dimension. This model’s efficient attention mechanism 
prioritizes a comprehensive understanding of the input feature, avoiding the computation of pairwise similarities. By 
treating keys as attention maps kT

j
 and focusing on semantic information rather than positional similarities, it achieves 

a significant computational efficiency improvement without sacrificing representation richness. The diagram depicting 
the efficient attention mechanism discussed above is presented in Fig. 3 [63].

It can be summarized that for a given sample input m consisting of t1 to t3 (representing textual content) and i1 to i3 (repre-
senting image-based features), the transformer encoder process can be mathematically described as follows:

where zl represents the output feature maps of the l-th layer in the transformer encoder. The feature maps that go through 
transformer encoders 1, 2, and 3 are contextually enhanced and are referred to as i∗

j
 for j = 1 to 3 for image and t∗

j
 for j = 1 

to 3 for text map image.

3.2.4 � Fusion block

After generating enhanced visual features for the image and text map image, it is imperative to merge these features effec-
tively. The proposed fusion process involves assigning weights to the visual and textual modalities. We introduce weighting 
factors, denoted as � , which determine the influence of visual and textual data, respectively.

In this equation, i∗j
f

 represents the final feature representation after the fusion process. The selection of the � parameter 
is of paramount importance since it governs the equilibrium between the visual and textual modalities. In the proposed 
model, we treat � as a learnable parameter, enabling the model to determine the optimal value for this factor. This 
dynamic approach allows the model to adapt and effectively combine visual and textual information based on the unique 
demands of the task at hand, thereby enhancing the overall performance and versatility of the model. To ensure that � 
remains within the valid range [0, 1] after optimization, a sigmoid function is applied. The sigmoid function, denoted as 
�(⋅) , maps real-valued inputs to the interval [0, 1], making it an ideal choice for constraining the � parameter.

(4)E(Q, K , V ) = �q(Q)(�k(K )
TV )

(5)z0 = conv1×1(m)⊕ PE

(6)z
�

l
= MEA(LNorm(zl−1)⊕ zl−1)

(7)zl = MLP(LNorm(z
�

l
)⊕ z

�

l
)

(8)i∗
fj
= �(�) ⋅ i∗

j
+ (1 − �(�)) ⋅ t∗

j

Fig. 3   Architecture of dot-
product and efficient atten-
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3.2.5 � CNN decoder

The CNN decoder plays a key role in integrating and restoring long-range context-enhanced feature maps obtained 
from the fusion block. Its primary objective is to reconstruct the saliency maps while restoring the original image 
resolution. The proposed CNN decoder is designed to facilitate efficient and effective pixel-level classification, ena-
bling the prediction of saliency maps. Within the network, several key operations are performed to enhance the 
model’s performance. After each 3 × 3 convolution operation (Conv3×3), the batch normalization (BNorm) is applied 
to promote convergence. Besides, the activation function ReLU is used in all blocks, with Sigmoid employed in the 
final block. After initial down-sampling of the input image to a 32-scale by the encoder network, a pivotal process in 
the CNN Decoder involves a 2-scale up-sampling. This method uses nearest-neighbor interpolation and happens in 
the first five decoding stages. It creates the saliency map that has the same size as the original input image.

To improve the feature map’s long-range and multi-scale context during the decoding process, the up-sampled 
feature map is fused with the output from the fusion blocks, denoted as i∗

fj
 for j = 1 to 3 . This fusion is acquired through 

the corresponding skip-connection, using an element-wise product operation, and ensures that the model benefits 
from comprehensive contextual information at different scales. The operations within each CNN decoder block can 
be represented as follows.

where Oi refers to the output of the i-th decoding stage before the convolution operation, O∗
i
 refers to the output after 

applying the convolution, batch normalization, and ReLU operations, and S represents the final saliency map predicted 
by the proposed model.

3.2.6 � Loss function and evaluation metrics

Drawing inspiration from established conventions in the domain of saliency map prediction models and referenc-
ing other saliency prediction frameworks [53, 55, 64], our model employs a composite loss function. This function 
combines three metrics: Kullback-Leibler divergence (KL), Linear Correlation Coefficient (CC) and Mean Squared 
Error (MSE) loss.

Let gs represent the ground truth of the saliency map, gf  denote the ground truth of the saliency fixation map, and 
S denote the network’s predicted saliency map. The overarching loss function is defined as:

where each component is elucidated as follows:

•	 KL divergence: A standard measure of dissimilarity between probability distributions, is expressed as: 

 Here, � serves as a regularization constant, set to 2.2 × 10−16 as used in previous studies [55].
•	 CC: CC is defined as the ratio of the covariance between gs and S to the product of their standard deviations, sig-

nifying similarity. The formula is presented as: 
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 Here, �(.) designates the standard deviation, and cov(.) stands for the covariance.
The objective of this loss function is to minimize the KL and MSELoss while concurrently maximizing the value of CC. 
This dynamic balance is achieved through the fine-tuning of the coefficients �i , where i  ranges from 1 to 3. By employ-
ing the Optuna framework [65], we have systematically determined the values for these coefficients to achieve optimal 
training. Based on the achieved experiments, these coefficients have been chosen to optimize the model’s performance, 
with a specific focus on reducing KL while concurrently enhancing CC, aligning closely with the intended outcome of 
the proposed model.

In our comprehensive evaluation framework, we use three additional metrics-Similarity (SIM), Normalized Scan-path 
Saliency (NSS) and Area under ROC Curve(AUC)-to provide an assessment of the model’s performance. While these 
metrics are not directly embedded within the training loss function, they play an important role in the evaluation phase.

•	 SIM: SIM gauges the linear relationship between the elements of gs and S , where the minimum value at each position 
is summed to calculate the coefficient: 

•	 NSS: NSS measures the similarity between the predicted S and gf  by comparing the fixations with the saliency map 
values: 

 where, �(.) designates the standard deviation, and �(.) , cov(.) stands for the mean and covariance, respectively.

3.3 � Brand‑attention score

After localizing brand bounding boxes (B) and generating the saliency maps for both packaging and advertising images, 
we can quantitatively assess the prominence of the brand within an image. The intuition involves converting the sali-
ency map image into a list of pixel probabilities, ensuring that the cumulative probability sums to 1. Subsequently, we 
calculate the sum of probabilities associated with pixels contained within the image region.

(14)CC(gs, S) =
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Algorithm 1   Brand-attention score calculation

The pseudo-code for calculating the brand attention score is presented in Algorithm 1. This pseudo-code outlines the 
procedure for computing the brand attention score based on the provided saliency map and bounding boxes. It involves 
removing saliency map values below a threshold, normalizing the remaining values to probabilities, and then calculating 
the score by summing the normalized values within the specified bounding box regions. Using the saliency map and this 
algorithm, we can obtain an attention score for every object or text (not only the brand logo) for which bounding boxes are 
provided or selected by users.

4 � Experiments and results

In this section, we go through the datasets, training setup, and result analysis for both logo detection and saliency prediction. 
Moreover, the outcomes underscore the enhanced efficacy of the proposed technique compared to leading-edge methods 
across diverse evaluation metrics. The following part introduces the brand attention module and the proposed dataset. The 
brand attention module is then validated based on earlier hypotheses, with results thoroughly analyzed using feedback 
from human participants. The section concludes by proposing and discussing new hypotheses regarding brand visibility in 
packaging. The computational tasks described in this section were executed using the PyTorch framework on a workstation 
equipped with an Intel Core i-9 CPU and an NVIDIA GeForce RTX3090 GPU.

4.1 � Logo detection

4.1.1 � Datasets

Recent advances in computer vision have led to the development of specialized datasets tailored to logo detection. In par-
ticular, the growing demand for robust logo recognition in packaging applications has motivated our selection of datasets 
that capture the variations in packaging design and branding [17]. Our research focuses on two logo detection datasets: 
FoodLogoDet-1500 [42] and LogoDet-3 K [66], selected for their unique attributes that make them well-suited for the com-
plexities of logo detection in product packaging. While these well-known datasets might initially seem limited in terms of 
packaging and brand design diversity, a closer examination reveals significant variation. As shown in Fig. 4, LogoDet-3 K 

Table 1   Summary of selected 
logo detection datasets

Dataset #Images #Objects #Logos

FoodLogoDet-1500 99,768 145,400 1500
LogoDet-3K 158,652 194,261 3000
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comprises nine super categories with numerous sub-categories, while FoodLogoDet-1500 includes 63 sub-categories cover-
ing a wide range of packaging types. A summary of the selected datasets is provided in Table 1, and Fig. 4 presents sample 
images from these datasets.

4.1.2 � Training setup

The dataset used for logo detection contains numerous classes, which are not essential for our specific case. Therefore, 
all classes have been aggregated into one for logo detection. Due to the inability of the proposed model to converge 
on large-scale datasets, a two-stage fine-tuning process has been implemented. In the first stage, the small version of 
the YOLOv8 model is fine-tuned, initially pre-trained on the COCO dataset, over the FoodLogoDet-1500 dataset. This 
initial fine-tuning serves as a crucial step to help the model adapt to the characteristics of the data and mitigate con-
vergence issues. The fine-tuning process in this stage is carried out using the Adam optimizer across 100 epochs, with a 

Fig. 4   Sample images from 
FoodLogoDet-1500, Logo-
Det-3 K, and SalECI datasets

Table 2   Metrics on models 
fine-tunned over Foodlogo-
det-1500

Values in bold denote the best-performing result for each metric

Method mAP50 mAP50–95 Precision Recall

Faster RCNN [33] 0.821 0.595 0.778 0.753
DETR [39] 0.849 0.640 0.806 0.781
MFDNet [42] 0.879 0.635 0.836 0.811
YOLOv7 [46] 0.932 0.698 0.90 0.866
YOLOv8 [19] 0.936 0.704 0.904 0.879
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batch size set to 32, and involves specifying a learning rate of 10−2 and a momentum of 0.9. During the second stage, we 
continued the fine-tuning process on both the FoodLogoDet-1500 and the larger LogoDet-3k datasets. This approach 
ensures that the model further adapts to a broader range of data patterns. The second-stage fine-tuning is conducted 
for 50 epochs with a batch size of 64, using the same hyperparameters as in the first stage. This two-stage fine-tuning 
strategy has proven effective in addressing the model convergence challenge. The entire process takes approximately 
60 hours to complete.

4.1.3 � Method comparison

We compared the proposed logo detection model with several SOTA methods. In addition to YOLOv7 [46] and MFDNet 
[42], we also evaluated Faster RCNN [33] and DETR [39] to provide a comprehensive performance comparison. Results are 
shown in Table 2 and Table 3. As can be observed, YOLOv8 significantly outperforms the other methods across various 
metrics, such as mAP50, mAP50–95, precision, and recall, in both stages of evaluation.

4.2 � Saliency map prediction

4.2.1 � Dataset

In the domain of saliency map prediction tasks, various general-purpose datasets, including SALICON [67], CAT2000 [68], 
MIT1003 [69], and MIT300 [70] have been established. However, this paper uniquely centers its focus on commercial 
and advertisement images. To address this specific focus, we leverage the Saliency E-commerce Images (SalECI) dataset 
introduced by Jiang et al. [59]. The SalECI dataset comprises 257,302 fixations obtained through eye-tracking experi-
ments involving 25 subjects. The dataset comprises 972 e-commerce images, each paired with corresponding fixation 
maps and text boundaries. This dataset acts as an important tool for exploring saliency within the realm of commercial 
and advertising stimuli.

Table 3   Metrics on models 
pretrained on FoodLogo and 
fine-tuned over FoodLogoDet-
1500+LogoDet3k dataset

Values in bold denote the best-performing result for each metric

Method mAP50 mAP50–95 Precision Recall

Faster RCNN [33] 0.80 0.57 0.76 0.74
DETR [39] 0.85 0.63 0.80 0.78
MFDNet [42] 0.87 0.62 0.82 0.80
YOLOv7 [46] 0.88 0.61 0.84 0.81
YOLOv8 [19] 0.94 0.71 0.91 0.88

Table 4   Comparing the 
saliency prediction accuracy 
for the proposed and nine 
other SOTA methods over 
SalECI. #Param indicates the 
number of parameters in the 
model

Values in bold denote the best-performing result for each metric

Method #Param CC ↑ KL ↓ AUC ↑ NSS ↑ SIM ↑

Contextual Encoder-
Decoder (CEC) [48]

20M 0.459±0.136 1.1346±0.23 0.76±0.066 0.925±0.268 0.373±0.06

DeepGazeIIE [52] 104M 0.561±0.124 0.995±0.215 0.842±0.055 1.327±0.318 0.399±0.065
UNISAL [53] 4M 0.6±0.15 0.768±0.262 0.845±0.056 1.574±0.522 0.514±0.094
EML-Net [49] 47M 0.510±0.16 1.227±0.903 0.807±0.062 1.232±0.407 0.536±0.103
VGGSAM [54] 42M 0.691±0.126 0.682±0.259 0.815±0.048 1.324±0.362 0.58±0.091
Transalnet [55] 72M 0.717±0.061 0.873±0.079 0.824±0.054 1.723±0.203 0.534±0.043
VGGSSM [54] 43M 0.728±0.121 0.599±0.237 0.829±0.043 1.396±0.359 0.611±0.089
Temp-SAL [50] 242M 0.719±0.065 0.712±0.126 0.813±0.077 1.768±0.182 0.629±0.048
SSwin transformer [59] – 0.687±0.175 0.652±0.478 0.868±0.072 1.701±0.497 0.606±0.101
Ours 66M 0.75±0.050 0.578±0.117 0.892±0.033 1.89±0.204 0.645±0.040
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4.2.2 � Training setup

The proposed method was trained over the SalECI dataset [59] using a step learning rate scheduler with a step size of 
4 and a gamma value of 0.1. The initial learning rate was set to 5 × 10−4 , and weight decay was applied at a rate of 10−4 . 
The Adam optimizer is used for training. Additionally, the optimal values for the loss function weighting coefficients, �i , 
were determined to be �1 = 10 , �2 = −3 , �3 = 5 . The initial starting value for � was set at 0.5, and it dynamically adjusts 
to 0.659 during the training process.

4.2.3 � Method comparison

Comparisons with SOTA methods: We compare our approach with ten SOTA saliency prediction models using the SalECI 
dataset (see Table 4). Our method outperforms the competing techniques across all evaluation metrics, including CC, KL, 
NSS, and SIM, while maintaining a competitive number of parameters. Notably, our model achieves superior performance 
compared to methods such as Transalnet [55], SSwin Transformer [59], and Temp-SAL [50], thereby establishing a new 
SOTA for commercial saliency prediction.

Qualitative results: Figure 5 illustrates the visual quality of the predicted saliency maps. Our model’s predictions are 
notably closer to the ground truth when compared to other leading methods like Temp-SAL [50] and SSwin Transformer 
[59], further validating the quantitative improvements demonstrated in Table 4.

Efficiency analysis: Our proposed model achieves higher efficiency than existing SOTA methods by integrating opti-
mized attention mechanisms with fewer heads and layers, reducing computational complexity while maintaining superior 
performance. Despite incorporating a text detector and fusion block, our model maintains a lower parameter count than 
Transalnet and significantly reduces FLOPs, memory usage, and model size. As shown in Table 5, our model achieves the 
lowest FLOPs, smallest model size, reduced memory usage, and fastest inference time, making it highly efficient and 
well-suited for real-world applications. These results emphasize the effectiveness of our architectural improvements in 
enhancing saliency prediction for commercial images.

Fig. 5   Comparison of the sali-
ency maps of different models 
over SALECI

Table 5   Efficiency and 
complexity comparison across 
various saliency prediction 
SOTA methods

Bold values represent the best result

Method FLOPs (G) Model-params (M) Model-size (MB) Memory-
usage (MB)

Infer-
ence-
time (MS)

Temp-SAL [50] 35.81 116.21 443.30 679.67 24.04
DeepGazeIIE [52] 43.775 104.05 396.91 7167.92 536.50
Transalnet [55] 25.47 71.98 274.59 377.34 14.368
Ours 24.30 66.21 252.56 333.63 13.036
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4.2.4 � Ablation study

Effect of pre-trained feature extractor: We conducted an ablation study to examine the effect of using a pre-trained 
feature extractor. Three training strategies were compared: training from scratch (without pre-trained weights), 
using pre-trained weights with frozen parameters, and fine-tuning a pre-trained feature extractor during training. 
As shown in Table 6, the model performs best when fine-tuning is applied, while freezing still offers improvements 
over training from scratch.

Effect of using text feature map: We carried out an experiment comparing the model without text features against 
our full model with text feature maps. Table 7 shows that incorporating the text feature map improves performance 
across all metrics.

Effect of trainable fusion weight ( � ): The fusion weight � balances visual and text features. Fixed � values may not 
capture the varying importance of these modalities. Allowing � to be learnable lets the model adaptively adjust this 
balance, leading to improved performance. Table 8 shows that the learnable � outperforms fixed values.

Effect of different terms in loss function: We evaluate various loss combinations using CC, KL, and MSE to study their 
impact on model performance. Our experiments show that the KL term is essential for saliency prediction, CC further 
enhances performance, and including MSE improves generalization. Table 9 summarizes the results.

Table 6   Impact of the pre-
trained feature extractor

Values in bold denote the best-performing result for each metric

Training strategy CC ↑ KL ↓ NSS ↑ SIM ↑

Without pre-trained weights 0.648 0.772 1.551 0.549
Pre-trained (frozen) 0.738 0.5814 1.840 0.627
Pre-trained (fine-tuned) 0.750 0.578 1.890 0.645

Table 7   Effect of using text 
feature map

Values in bold denote the best-performing result for each metric

Method CC ↑ KL ↓ NSS ↑ SIM ↑

Ours (no text feature map) 0.721 0.696 1.860 0.624
Ours 0.750 0.578 1.890 0.645

Table 8   Effect of � in the 
fusion block

Values in bold denote the best-performing result for each metric

� Value CC ↑ KL ↓ NSS ↑ SIM ↑

0.5 0.713 0.636 1.760 0.608
0.6 0.720 0.620 1.810 0.617
0.65 0.726 0.612 1.809 0.614
Learnable 0.750 0.578 1.890 0.645

Table 9   Effect of different loss 
term combinations

Values in bold denote the best-performing result for each metric

KL CC MSE CC ↑ KL ↓ NSS ↑ SIM ↑

✓ 0.709 0.620 1.736 0.598
✓ 0.720 1.358 1.845 0.601

✓ ✓ 0.725 0.632 1.810 0.628
✓ ✓ 0.725 0.614 1.795 0.617

✓ ✓ 0.710 0.726 1.770 0.570
✓ ✓ ✓ 0.750 0.578 1.890 0.645
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4.3 � Brand attention

In this section, we evaluate the effectiveness of the proposed brand attention module by comparing it with the observa-
tions in psychophysical studies. To test the model, we have designed a dataset where each group of images is the same 
in every way, apart from one particular logo feature it is examining. Wrapping up this section, we introduce some new 
hypotheses in this field that have not been explored yet.

4.3.1 � Dataset

While aiming to validate various hypotheses concerning logo placement and packaging design, we have created a data-
set comprising 650 images. This collection is a systematically designed platform for testing various ideas connected to 
packaging design and how people perceive brands. To ensure a rich and varied base for our study, 95% of the images 
in this dataset are sourced from the Internet templates, complemented by those generated by DALL-E, an advanced AI 
image generation tool. Each image has been carefully modified to align with specific research questions, with alterations 
ranging from subtle logo repositioning to more substantial design transformations. Our dataset is organized into 12 
hypotheses, each examining different aspects of design and branding. For each hypothesis, we analyze 18 ± 3 images per 
hypothesis. In each hypothesis image set, all logo characteristics are fixed, except the one under experiment. This setup 
provides us with an in-depth insight into the influence of packaging design and logo placement on brand perception.

4.3.2 � Previous hypothesises analysis

We evaluate the effectiveness of our brand attention model by comparing its output to data from human observers 
who have studied logo attention. This comparison involves aligning the model’s predictions with findings from psycho-
physical studies, ensuring its accuracy in predicting how humans notice logos for real-world applications. The following 
subsequent items provide a summary of the studies that form the basis of this comparative analysis, showcasing their 
relevance in the context of brand logo attention:

1.	 Study 1: Piqueras-Fiszman et al. [9] examined the influence of packaging shape and the presence of an image on 
attention to different elements, like the logo. It was found that a squared shape, as opposed to a rounded one, drew 
more attention to the logo. They have also demonstrated that the photo element on product packaging was highly 
influential in drawing consumer interest rather than text. Additional studies have also suggested that geometric and 
pictorial cues can guide visual attention, although the extent of these effects may vary depending on context [1, 2]. 
Backing these ideas, our initial results, as displayed in Table 10, suggest that packaging with a squared shape indeed 
garnered more attention to the logo compared to rounded shapes. Notably, the obtained results generally align with 
existing research, indicating that while packaging shape and imagery seem to influence consumer attention, these 
effects should be interpreted cautiously given potential contextual variations [71]. Figure 6 showcases a sample of 
images created for testing this study.

2.	 Study 2: The findings from studies proposed by Dong et al. [7] and Riaz et al. [6] underscore a noteworthy connection 
between logo placement and consumer purchase intention. The research indicates that high-power brands tend to 

Fig. 6   Sample images 
illustrating the influence of 
packaging shape (left) and 
the presence of an image on 
directing attention to differ-
ent elements, such as the logo 
(right)

Horizontal-Vertical Packaging Oriantation Text vs Image

Square Round Text Image

Score: 27.33Score: 28.51
Score:  27.9 Score:  27.2
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benefit from having their logos placed at the top of packaging, while low-power brands may be favored when logos 
are positioned lower. This effect appears to be influenced by cultural reading patterns and the natural hierarchy of 
visual cues [71]. The study explores strategic logo placement using the concept of power metaphors, suggesting that 
top-of-packaging placement may enhance perceived brand power. It should be noted that these relationships are 
context-dependent and that variations in experimental conditions warrant a cautious interpretation of the results in 
practical settings. The results of our proposed model, as detailed in Table 10, generally support these observations, 
reinforcing their potential relevance for marketing and brand strategy. Figure 7 illustrates visual examples developed 
for this study.

4.3.3 � Proposed hypothesises

Similarly, as outlined in the preceding section, the proposed brand attention method serves as a robust foundation for 
exploring brand marketing and visual analytics. Beyond the ongoing studies, we have introduced several new hypoth-
eses that investigate aspects not extensively covered in the existing literature. These hypotheses represent unexplored 
territories as we strive for a comprehensive understanding of brand perception and consumer behavior. This exploration 
guides future psychophysical tasks, providing a framework for new investigations in the field.

•	 Positioning of brand logos: Previous studies have mostly examined logo placement at either the top or bottom of 
packaging [6, 7]. However, a research gap exists regarding the effects of central and off-center placements (e.g., upper-
left, upper-right, bottom-left, and bottom-right) on brand attention. Moreover, while many studies have documented 
that higher placements generally capture more attention due to reading patterns and visual hierarchy [72], few have 
systematically explored a broader range of placements in a controlled experimental setting. In our experiments, each 

Fig. 7   Testing images to 
demonstrate how logo posi-
tion impacts brand attention. 
Top-to-bottom logo position-
ing (top) and all-around logo 
positioning (bottom)

Top-to-Bottom Logo Positioning

Top Center Bottom

Score: 11.76 Score: 16.65 Score: 11.37

All-Around Logo Positioning

Score: 25.7 Score: 23.43 Score: 22.9 Score: 18.8 Score: 33.48

Top-Left Top-Right Bottom-Left Bottom-Right Center

Table 10   Comparing the 
impact of top-to-bottom logo 
positioning, text vs. image, 
and square-round packaging 
orientation hypotheses on 
brand attention score

Values in bold denote the best-performing condition

Hypothesis Position Mean SE

Top-to-bottom logo positioning Down 28.89 5.19
UP 34.05 5.64

Text vs image Image 31.71 4.61
Text 37.23 4.62

Square-round packaging orientation Round 25.82 4.86
Square 27.02 4.01
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placement condition was tested to ensure statistical robustness. The proposed model predicts that positioning the 
brand logo at the center of the packaging significantly enhances brand attention compared to other positions, as 
outlined in Table 11. Furthermore, our findings suggest that upper placements tend to attract more attention than 
lower placements, with the upper-left corner outperforming the upper-right corner-potentially due to the left-to-
right scanning habit in Western reading cultures [72]. Similarly, among the lower positions, the bottom-left appears 
more effective than the bottom-right.

•	 Bold distinction in packaging: Many packaging designs incorporate bold text or objects, yet the impact of these ele-
ments on brand logo attention has been under-explored. To investigate this, we conducted experiments in which we 
selectively bolded or emphasized non-logo textual elements and graphical objects on the packaging, while keeping 
the logo constant. The proposed model predicts that when non-logo elements are visually enhanced (e.g., through 
bolding), they can act as competing focal points, potentially reducing the relative visual attention directed toward 
the brand logo. This finding aligns with theories of selective visual attention, which suggest that salient distractors 
can divert attention from a primary target [73, 74]. Moreover, research in design studies shows that the interplay of 
contrasting visual elements-such as bold versus regular typography-affects the overall perceptual hierarchy and may 
compromise brand identity consistency if not balanced properly [71, 75]. Table 11 details the experimental outcomes, 
demonstrating a measurable reduction in the brand attention score when non-logo elements are emphasized.

•	 Presence of person in packaging: It is well known that human faces instinctively capture visual attention [76]. However, 
their influence on brand attention within packaging contexts has received limited investigation. In our experiments, 
including a person or face in the packaging led to a measurable decrease in attention toward the brand logo, as 
shown in Table 11. This result aligns with previous observations that faces, due to their strong attentional pull, can 
divert gaze from other visual elements [77].

•	 Multi packaging: The influence of presenting multiple packages of a brand in a single image has received limited study, 
particularly regarding its impact on brand logo visibility and attention. In our experiments, each condition was tested 
using images, with the multi-packaging condition displaying between 2 to 4 packages of the same brand, compared 
to images with a single package. The proposed model predicts that images containing multiple packages are more 
effective at absorbing brand attention than single-package images, likely due to the increased opportunity for the 
brand logo to be detected in varied spatial configurations [1, 71]. These findings suggest that repetition may enhance 
visual attention; however, this effect should be interpreted cautiously, as factors such as shelf arrangement, ambient 
lighting, and overall brand identity may moderate the outcome [78].

•	 Multi objects in packaging: The effect of featuring multiple objects in packaging design (e.g., presenting a single orange 
versus 2 to 4 oranges) on brand logo attention remains underexplored. The proposed model predicts that packaging 
designs with multiple objects divert attention from the brand logo, as shown in Table 11. Our experimental results, 
comparing images with a single object against those with 2 to 4 objects, indicate that additional objects increase 
visual clutter and diminish the logo’s prominence [73, 74]. The achieved results imply that simpler packaging featur-
ing only one object is more effective in maintaining higher brand logo attention.

•	 Horizontal-vertical packaging orientation: The proposed model predicts that horizontally oriented packaging enhances 
brand logo attention more effectively than vertically oriented packaging. This may be because a horizontal layout 
offers a broader, more balanced visual field that can emphasize the logo’s scale and prominence [75, 79]. Experimental 
results in Table 11 indicate a clear preference for horizontal packaging designs. These findings are consistent with 
established visual processing principles and design theories.

•	 Horizontal-vertical brand logo orientation: We examine the influence of logo orientation on attention while keeping 
other packaging elements constant. The proposed model indicates that vertical logos capture more attention, possibly 
due to the additional processing required for vertical text [80]. This outcome is consistent with research suggesting 
that deviations from canonical orientations enhance visual salience by engaging additional attentional mechanisms 
[81]. Table 11 presents the corresponding increase in brand attention for vertical logos.

•	 Brand logo color: The influence of logo color on the capture of consumer attention has been a topic of interest in 
research on marketing and color psychology [10, 82]. However, comprehensive studies comparing a wide range of 
colors in the context of brand logos remain limited. In our study, we examined eight colors—red, blue, green, yellow, 
orange, purple, black, and white—to assess their impact on brand attention. Our experimental results (see Table 12) 
indicate that, under controlled conditions, logos rendered in red tend to attract higher attention scores. Nevertheless, 
this outcome should be interpreted with caution; while red’s associations with alertness and prominence [82] may 
enhance salience, design literature emphasizes that brand colors are chosen for long-term identity consistency and 
contextual relevance [75, 83].
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•	 Packaging color: Packaging color has a substantial impact on brand visual attention, yet there exists limited research 
comparing various colors systematically. In our experiments, we examined how different packaging colors affect the 
visibility of the brand logo. The proposed model predicts that packaging color significantly influences brand attention, 
with less intense, warmer, and simpler colors enhancing logo visibility. To ensure a robust evaluation, the packaging 
was modified exactly once for each color condition-red, blue, green, yellow, orange, purple, black, and white-thereby 

Multi PackagingMulti object in packaging

Logo Orientation EffectBold Distinction

Person in Packaging

Horizontal-Vertical Packaging Oriantation

SingleMulti

Score: 24.59 Score: 33.2

elgniSitluM

14:erocS9.64:erocS

No Person With Person

Score: 51.09 Score: 43.54

Not Bold Bold

Score: 18.25 Score: 16.94

lacitreVlatnoziroH

Score: 28.17 Score: 29.34

lacitreVlatnoziroH

Score: 52.71 Score: 49.42

Fig. 8   Sample images for assessing the proposed hypotheses: multi objects (top left), multiple packaging (top center), presence of a person 
(top right), bold distinction (bottom left), horizontal-vertical brand logo orientation (bottom center), and horizontal-vertical packaging ori-
entation (bottom right)

Table 11   Comparing the 
impact of top-to-bottom logo 
positioning, all-around logo 
positioning, bold distinction, 
horizontal-vertical brand logo 
orientation, horizontal-vertical 
packaging orientation, 
presence of person, multi-
object and multi packaging 
on brand attention score

Values in bold denote the best-performing condition

Hypothesis Position Mean SE

Top-to-bottom logo positioning Down 28.89 5.19
UP 34.05 5.64
Center 40.02 7.06

All-around logo positioning Down-Right 15.05 3.05
Down-Left 18.8 3.41
UP-Right 16.51 3.05
UP-Left 20.24 3.34
Center 24.92 4.12

Bold distinction Boldness 19.98 2.27
Not Bold 21.1 2.35

Horizontal-vertical brand logo orientation Horizontal 29.91 4.05
Vertical 34.54 4.8

Horizontal-vertical packaging orientation Vertical 27.92 4.92
Horizontal 36.92 5.59

Person in packaging With Person 32.26 5.76
No Person 36 6.16

Multi object in packaging Multi 32.5 5
One 40.95 5.29

Multi packaging Single 31.64 4.16
Multi 39.52 4.73
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isolating the impact of each color on consumer perception. The achieved results, as shown in Table 12, indicate that 
white, due to its neutral nature, allows the brand logo to stand out more effectively. This finding aligns with previous 
studies suggesting that neutral backgrounds can enhance logo salience by providing high contrast [10].

Figures 7, 8 and 9 present samples from the brand attention dataset, serving as empirical evidence for the evaluation 
of our proposed hypotheses.

5 � Conclusion and discussion

The importance of logos within packaging emerges as an influential visual cue, profoundly shaping consumer perception 
and promoting brand recognition. This paper introduces a module specifically designed to model human attention to 
brand logos in packaging. The module comprises three main components: fine-tuned YOLOv8 logo detection, a novel 
CNN-Transformer-based saliency map prediction model that outperforms existing methods in predicting visual attention, 

Fig. 9   Visualization of the 
brand-logo color and packag-
ing color influence on brand 
attention

Brand Logo Color

Green Black

WhiteOrange Red
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Brown
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Score: 61.82 Score: 62.31 Score: 62.37 Score: 61.86

Score: 56.11 Score: 56.5 Score:  65.37 Score: 57.31
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and a derived brand attention score. To validate our approach, we compared its predictions against established psycho-
physical studies, demonstrating that the proposed method aligns well with known trends in brand attention. Our study 
contributes to bridging a research gap by verifying established hypotheses while introducing seven new ones-such as 
the impact of multi-packaging, multiple objects, and color variations on brand attention. These contributions advance 
the literature by offering a quantifiable measure of brand salience that integrates both traditional design theories and 
computational methods. By utilizing the capabilities of this module, it becomes possible to simulate human visual atten-
tion to brand logos under controlled conditions, thereby opening new opportunities for testing unexplored hypotheses 
in branding. For example, our model suggests that positioning the brand logo at the center or upper left of the packaging 
increases its visibility, while it predicts that a red logo and white packaging can enhance the brand attention score under 
the tested conditions. While the practical utility of the proposed module is highlighted for designers in advertising and 
packaging, we acknowledge that design practice relies heavily on inductive approaches and visual intuition, as empha-
sized in semiotic frameworks [75]. Thus, our tool is best viewed as a complementary aid that provides data-driven insights 
rather than a prescriptive solution, allowing designers to refine their intuitions with empirical evidence. Moreover, our 
experimental dataset primarily consists of controlled and synthetic images, which ensures systematic evaluation but 
may not fully capture the complexities of real-world packaging-such as variations in shape, angle, and minor damage. 
Future work could focus on incorporating more diverse, real-world datasets and employing eye-tracking experiments 
to further validate and cross-validate the brand attention score. Such efforts will enhance the robustness and external 
validity of the model.
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Table 12   Comparing the 
impact of packaging color and 
brand logo color on brand 
attention score

Values in bold denote the best-performing condition

Hypothesis Position Mean SE

Packaging color Black 36.82 5.65
Brown 37.85 5.62
Orange 37.46 5.46
Yellow 37.45 5.61
Green 36.38 5.55
Blue 37.51 5.66
Red 38.23 5.73
White 40.84 5.89

Brand logo color White 31.08 4.33
Brown 34.54 4.4
Orange 33.2 4.63
Yellow 32.93 4.66
Green 32.16 4.93
Blue 33.13 4.87
Black 36.56 4.7
Red 37.44 4.79



Vol:.(1234567890)

Research	  
Discover Applied Sciences           (2025) 7:537  | https://doi.org/10.1007/s42452-025-07043-9

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which 
permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to 
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You 
do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

References

	 1.	 Bloch P. Seeking the ideal form: product design and consumer response. J Market. 1995;59:16–29. https://​doi.​org/​10.​2307/​12521​16.
	 2.	 Ampuero O, Vila N. Consumer perception of product packaging. J Consum Market. 2006;23:100–12. https://​doi.​org/​10.​1108/​07363​76061​

06550​32.
	 3.	 Méndez J, Oubiña J, Rubio N. The relative importance of brand-packaging, price and taste in affecting brand preferences. Br Food J. 

2011;113:1229–51. https://​doi.​org/​10.​1108/​00070​70111​11776​65.
	 4.	 Stewart B. Packaging as an effective marketing tool. Pira Packaging Guide Series. Pira International, Surrey, UK 1995. https://​books.​google.​

com/​books?​id=​1Rro1​lZaGx​IC.
	 5.	 Shukla P, Singh J, Wang W. The influence of creative packaging design on customer motivation to process and purchase decisions. J Bus 

Res. 2022;147:338–47. https://​doi.​org/​10.​1016/j.​jbusr​es.​2022.​04.​026.
	 6.	 Riaz T, Ghafoor M. Strategic logo placement on packaging—using conceptual metaphors of power in packaging—evidence from pakistan. 

Procedia Comput Sci. 2019;158:582–9. https://​doi.​org/​10.​1016/j.​procs.​2019.​09.​092.
	 7.	 Dong R, Gleim M. High or low: the impact of brand logo location on consumers product perceptions. Food Qual Prefer. 2018. https://​doi.​

org/​10.​1016/j.​foodq​ual.​2018.​05.​003.
	 8.	 Rebollar R, Lidón I, Martin Vallejo F, Puebla M. The identification of viewing patterns of chocolate snack packages using eye-tracking 

techniques. Food Qual Prefer. 2015;39:251–8. https://​doi.​org/​10.​1016/j.​foodq​ual.​2014.​08.​002.
	 9.	 Piqueras-Fiszman B, Velasco C, Salgado-Montejo A, Spence C. Using combined eye tracking and word association in order to assess novel 

packaging solutions: a case study involving jam jars. Food Qual Prefer. 2013;28(1):328–38. https://​doi.​org/​10.​1016/j.​foodq​ual.​2012.​10.​
006.

	10.	 Raheem AR, Vishnu P, Ahmed AM. Impact of product packaging on consumer’s buying behavior. Eur J Sci Res. 2014;122(2):125–34.
	11.	 Clement J. Visual influence on in-store buying decisions: an eye-track experiment on the visual influence of packaging design. J Market 

Manag. 2007;23(9–10):917–28.
	12.	 Shimizu Y, Uleman JS. Attention allocation is a possible mediator of cultural variations in spontaneous trait and situation inferences: 

eye-tracking evidence. J Exp Soc Psychol. 2021;94(104115):10–1016.
	13.	 Riswanto AL, Kim S, Williady A, Ha Y, Kim H-S. How visual design in dairy packaging affects consumer attention and decision-making. 

Dairy. 2025;6(1):4.
	14.	 Girard T, Anitsal MM, Anitsal I. The role of logos in building brand awareness and performance: Implications for entrepreneurs. Entrepre-

neurial Executive. 2013;18:7.
	15.	 Krishna A, Cian L, Aydinoglu N. Sensory aspects of package design. J Retail. 2017;93:43–54. https://​doi.​org/​10.​1016/j.​jretai.​2016.​12.​002.
	16.	 Otterbring T, Shams P, Wästlund E, Gustafsson A. Left isn’t always right: placement of pictorial and textual package elements. Br Food J. 

2013. https://​doi.​org/​10.​1108/​BFJ-​08-​2011-​0208.
	17.	 Hou S, Li J, Min W, Hou Q, Zhao Y, Zheng Y, Jiang S. Deep learning for logo detection: a survey. ACM Trans Multimed Comput Commun 

Appl. 2023;20(3):1–23.
	18.	 Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell. 2012. https://​doi.​org/​10.​1109/​TPAMI.​2012.​

89.
	19.	 Jocher, G., Chaurasia, A., Qiu, J.: YOLO by ultralytics. https://​github.​com/​ultra​lytics/​ultra​lytics
	20.	 Hubert M, Baecke S, Kenning P. What they see is what they get? an fmri-study on neural correlates of attractive packaging. J Consum 

Behav. 2008;7:342–59. https://​doi.​org/​10.​1002/​cb.​256.
	21.	 Alvino L, Constantinides E, Lubbe RH. Consumer neuroscience: attentional preferences for wine labeling reflected in the posterior con-

tralateral negativity. Front Psychol. 2021;12: 688713.
	22.	 Maynard O, McClernon F, Oliver J, Munafò M. Using neuroscience to inform tobacco control policy. NicotineTobacco Res. 2018. https://​

doi.​org/​10.​1093/​ntr/​nty057.
	23.	 Gofman A, Moskowitz H, Fyrbjork J, Moskowitz D, Mets T. Extending rule developing experimentation to perception of food packages 

with eye tracking. Open Food Sci J. 2009;3:66–78. https://​doi.​org/​10.​2174/​18742​56400​90301​0066.
	24.	 Pertzov Y, Avidan G, Zohary E. Accumulation of visual information across multiple fixations. J Vis. 2009;9(10):2–2. https://​doi.​org/​10.​1167/9.​

10.2.
	25.	 Nagel R, Reutskaja E, Camerer C, Rangel A. Search dynamics in consumer choice under time pressure: an eye-tracking study. Am Econ 

Rev. 2011;101:900–26. https://​doi.​org/​10.​1257/​aer.​101.2.​900.
	26.	 Ares G, Deliza R. Studying the influence of package shape and colour on consumer expectations of milk desserts using word association 

and conjoint analysis. Food Qual Prefer. 2010;21:930–7. https://​doi.​org/​10.​1016/j.​foodq​ual.​2010.​03.​006.
	27.	 Rettie R, Brewer C. The verbal and visual components of package design. J Prod Brand Manag. 2000. https://​doi.​org/​10.​1108/​10610​42001​

03163​39.
	28.	 Boia R, Florea C, Florea L. Elliptical asift agglomeration in class prototype for logo detection. In: Proceedings of the British Machine Vision 

Conference, 2015;115–111512

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.2307/1252116
https://doi.org/10.1108/07363760610655032
https://doi.org/10.1108/07363760610655032
https://doi.org/10.1108/00070701111177665
https://books.google.com/books?id=1Rro1lZaGxIC
https://books.google.com/books?id=1Rro1lZaGxIC
https://doi.org/10.1016/j.jbusres.2022.04.026
https://doi.org/10.1016/j.procs.2019.09.092
https://doi.org/10.1016/j.foodqual.2018.05.003
https://doi.org/10.1016/j.foodqual.2018.05.003
https://doi.org/10.1016/j.foodqual.2014.08.002
https://doi.org/10.1016/j.foodqual.2012.10.006
https://doi.org/10.1016/j.foodqual.2012.10.006
https://doi.org/10.1016/j.jretai.2016.12.002
https://doi.org/10.1108/BFJ-08-2011-0208
https://doi.org/10.1109/TPAMI.2012.89
https://doi.org/10.1109/TPAMI.2012.89
https://github.com/ultralytics/ultralytics
https://doi.org/10.1002/cb.256
https://doi.org/10.1093/ntr/nty057
https://doi.org/10.1093/ntr/nty057
https://doi.org/10.2174/1874256400903010066
https://doi.org/10.1167/9.10.2
https://doi.org/10.1167/9.10.2
https://doi.org/10.1257/aer.101.2.900
https://doi.org/10.1016/j.foodqual.2010.03.006
https://doi.org/10.1108/10610420010316339
https://doi.org/10.1108/10610420010316339


Vol.:(0123456789)

Discover Applied Sciences           (2025) 7:537  | https://doi.org/10.1007/s42452-025-07043-9 
	 Research

	29.	 Sahbi H, Ballan L, Serra G, Bimbo A. Context-dependent logo matching and recognition. IEEE Trans Image Process. 2013;22(3):1018–31.
	30.	 Revaud J, Douze M, Schmid C. Correlation-based burstiness for logo retrieval. In: Proceedings of the 20th ACM International Conference 

on Multimedia, 2012;965–968.
	31.	 Girshick RB, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE 

Conference on Computer Vision and Pattern Recognition, 2014;580–587.
	32.	 Girshick RB. Fast r-cnn. In: IEEE International Conference on Computer Vision, 2015;1440–1448.
	33.	 Ren S, He K, Girshick RB, Sun J. Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal 

Mach Intell. 2015;39(6):1137–49.
	34.	 Hoi SCH, Wu X, Liu H, Wu Y, Wang H, Xue H, Wu Q. Logo-net: Large-scale deep logo detection and brand recognition with deep region-

based convolutional networks. arXiv preprint arXiv:​1511.​02462 2015.
	35.	 Oliveira G, Frazao X, Pimentel A, Ribeiro B. Automatic graphic logo detection via fast region-based convolutional networks. In: International 

Joint Conference on Neural Networks, 2016;985–991.
	36.	 Li Y, Shi Q, Deng J, Su F. Graphic logo detection with deep region-based convolutional networks. In: IEEE Visual Communications and 

Image Processing, 2017;1–4.
	37.	 Lin TY, Dollar P, Girshick RB, He K, Hariharan B, Belongie SJ. Feature pyramid networks for object detection. In: IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017;936–944.
	38.	 Meng Y, Hou S, Wang J, Jia W, Zheng Y, Karim A. An adaptive representation algorithm for multi-scale logo detection. Displays. 2021;70: 

102090.
	39.	 Jin X, Su W, Zhang R, He Y, Xue H. The open brands dataset: Unified brand detection and recognition at scale. In: IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, 2020;4387–4391.
	40.	 Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: European Confer-

ence on Computer Vision, 2020;213–229.
	41.	 Velazquez DA, Gonfaus JM, Rodríguez P, Roca FX, Ozawa S, Gonzalez J. Logo detection with no priors. IEEE Access. 2021;9:106–998107011.
	42.	 Hou Q, Min W, Wang J, Hou S, Zheng Y, Jiang S. Foodlogodet-1500: a dataset for large-scale food logo detection via multi-scale feature 

decoupling network. In: Proceedings of the 29th ACM International Conference on Multimedia, 2021;4670–4679.
	43.	 Redmon J, Divvala SK, Girshick RB, Farhadi A. You only look once: unified, real-time object detection. In: IEEE Conference on Computer 

Vision and Pattern Recognition, 2016;779–788.
	44.	 Redmon J, Farhadi A. Yolo9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition, 2017;6517–6525.
	45.	 Bochkovskiy A, Wang CY, Liao H. Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:​2004.​10934 2020.
	46.	 Wang C-Y, Bochkovskiy A, Liao H-YM. Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023.
	47.	 Paleček K, Chaloupka J. Logo detection and identification in system for audio-visual broadcast transcription. In: 2021 44th International 

Conference on Telecommunications and Signal Processing (TSP), 2021;357–360.
	48.	 Kroner A, Senden M, Driessens K, Goebel R. Contextual encoder-decoder network for visual saliency prediction. Neural Netw. 

2020;129:261–70.
	49.	 Jia S, Bruce ND. Eml-net: sn expandable multi-layer network for saliency prediction. Image Vis Comput. 2020;95: 103887.
	50.	 Aydemir B, Hoffstetter L, Zhang T, Salzmann M, Süsstrunk S. Tempsal-uncovering temporal information for deep saliency prediction. In: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023;6461–6470.
	51.	 Kümmerer M, Wallis TS, Bethge M. Deepgaze ii: Reading fixations from deep features trained on object recognition. arXiv preprint arXiv:​

1610.​01563 2016.
	52.	 Linardos A, Kümmerer M, Press O, Bethge M. Deepgaze iie: Calibrated prediction in and out-of-domain for state-of-the-art saliency 

modeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021;12919–12928.
	53.	 Droste R, Jiao J, Noble JA. Unified image and video saliency modeling. In: Computer Vision–ECCV 2020: 16th European Conference, 

Glasgow, UK, August 23–28, 2020, Proceedings, Part V 2020;16, 419–435. Springer
	54.	 Cao G, Tang Q, Jo K-h. Aggregated deep saliency prediction by self-attention network. In: Intelligent Computing Methodologies: 16th 

International Conference, ICIC 2020, Bari, Italy, October 2–5, 2020, Proceedings, Part III 2020;16, 87–97. Springer
	55.	 Lou J, et al. Transalnet: towards perceptually relevant visual saliency prediction. Neurocomputing. 2022;494:455–67.
	56.	 Lévêque L, Liu H. An eye-tracking database of video advertising. In: 2019 IEEE International Conference on Image Processing (ICIP), 

2019;425–429. https://​doi.​org/​10.​1109/​ICIP.​2019.​88029​89
	57.	 Liang S, Liu R, Qian J. Fixation prediction for advertising images: dataset and benchmark. J Vis Commun Image Represent. 2021;81: 103356.
	58.	 Kou Q, Liu R, Lv C, Jiang H, Cheng D. Advertising image saliency prediction method based on score level fusion. IEEE Access. 2023;11:8455–

66. https://​doi.​org/​10.​1109/​ACCESS.​2023.​32368​07.
	59.	 Jiang L, Li Y, Li S, Xu M, Lei S, Guo Y, Huang B. Does text attract attention on e-commerce images: A novel saliency prediction dataset and 

method. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022;2088–2097.
	60.	 Liao M, et al. Real-time scene text detection with differentiable binarization and adaptive scale fusion. IEEE Trans Pattern Anal Mach Intell. 

2022;45(1):919–31.
	61.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR), 2016;770–778.
	62.	 Dosovitskiy A, Beyer L, Kolesnikov A, al. An image is worth 16x16 words: Transformers for image recognition at scale. In: 2021 International 

Conference on Learning Representations (ICLR) 2021.
	63.	 Shen Z, al. Efficient attention: attention with linear complexities. In: Proceedings of the IEEE/CVF Winter Conference on Applications of 

Computer Vision 2021.
	64.	 Che Z, Borji A, Zhai G, Min X, Guo G, Callet PL. Why is gaze influenced by image transformations? dataset and model. IEEE Trans Image 

Process. 2020;29:2287–300.
	65.	 Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 

25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2019.

http://arxiv.org/abs/1511.02462
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1610.01563
http://arxiv.org/abs/1610.01563
https://doi.org/10.1109/ICIP.2019.8802989
https://doi.org/10.1109/ACCESS.2023.3236807


Vol:.(1234567890)

Research	  
Discover Applied Sciences           (2025) 7:537  | https://doi.org/10.1007/s42452-025-07043-9

	66.	 Wang J, Min W, Hou S, Ma S, Zheng Y, Jiang S. Logodet3k: A large-scale image dataset for logo detection. ACM Trans Multimed Comput 
Commun Appl. 2022;18(1):1–19.

	67.	 Jiang M, Huang S, Duan J, Zhao Q. Salicon: Saliency in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2015;1072–1080.

	68.	 Borji A, Itti L. Cat2000: a large scale fixation dataset for boosting saliency research. 2015 arXiv preprint arXiv:​1505.​03581.
	69.	 Judd T, Ehinger K, Durand F, Torralba A. Learning to predict where humans look. In: 2009 IEEE 12th International Conference on Computer 

Vision, 2009;2106–2113. IEEE.
	70.	 Judd T, Durand F, Torralba A. A benchmark of computational models of saliency to predict human fixations. 2012.
	71.	 Underwood RL. The communicative power of product packaging: creating brand identity via lived and mediated experience. J Market 

Theory Pract. 2003;11(1):62–76.
	72.	 Lautenbacher OP. From still pictures to moving pictures. Eye-tracking in Audiovisual Translation, 2012;135–155.
	73.	 Wolfe JM. Guided search 2.0 a revised model of visual search. Psychonom Bull Rev. 1994;1: 202–238
	74.	 Gelade G. A feature-integration theory of attention. Visual perception: Essential Readings, 2001;347.
	75.	 Kress GR, Leeuwen T. Reading images: the grammar of visual design. Routledge, London; New York 1996. https://​books.​google.​com/​

books?​id=​vh07i​06q-​9AC
	76.	 Cerf M, Harel J, Einhäuser W, Koch C. Predicting human gaze using low-level saliency combined with face detection. Adv Neural Inf Process 

Syst. 2007;20.
	77.	 Vuilleumier P, Armony J, Clarke K, Husain M, Driver J, Dolan RJ. Neural response to emotional faces with and without awareness: event-

related FMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia. 2002;40(12):2156–66.
	78.	 Ampuero O, Vila N. Consumer perceptions of product packaging. J Consum Market. 2006;23(2):100–12.
	79.	 Ware C. Information visualization: perception for design. San Francisco, CA: Morgan Kaufmann; 2019.
	80.	 Yu D, Park H, Gerold D, Legge GE. Comparing reading speed for horizontal and vertical English text. J Vis. 2010;10(2):21–21.
	81.	 Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci. 2001;2(3):194–203.
	82.	 Singh S. Impact of color on marketing. Manag Decis. 2006;44(6):783–9.
	83.	 Wheeler A. Designing brand identity: an essential guide for the whole branding team. Hoboken, NJ: John Wiley & Sons; 2017.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1505.03581
https://books.google.com/books?id=vh07i06q-9AC
https://books.google.com/books?id=vh07i06q-9AC

	Brand visibility in packaging: a deep learning approach for logo detection, saliency-map prediction, and logo placement analysis
	Abstract
	Article highlights
	1 Introduction
	2 Related works
	2.1 Optimizing logo placement with eye-tracking
	2.2 Brand logo detection
	2.3 Saliency map prediction

	3 Proposed method
	3.1 Brand logo detection
	3.2 Saliency map prediction
	3.2.1 Text detector
	3.2.2 CNN encoder
	3.2.3 Transformer encoder
	3.2.4 Fusion block
	3.2.5 CNN decoder
	3.2.6 Loss function and evaluation metrics

	3.3 Brand-attention score

	4 Experiments and results
	4.1 Logo detection
	4.1.1 Datasets
	4.1.2 Training setup
	4.1.3 Method comparison

	4.2 Saliency map prediction
	4.2.1 Dataset
	4.2.2 Training setup
	4.2.3 Method comparison
	4.2.4 Ablation study

	4.3 Brand attention
	4.3.1 Dataset
	4.3.2 Previous hypothesises analysis
	4.3.3 Proposed hypothesises


	5 Conclusion and discussion
	References


