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ABSTRACT

Conformal Prediction (CP) is a widely used technique for quantifying uncertainty
in machine learning models. In its standard form, CP offers probabilistic guaran-
tees on the coverage of the true label, but it is agnostic to sensitive attributes in the
dataset. Several recent works have sought to incorporate fairness into CP by ensur-
ing conditional coverage guarantees across different subgroups. One such method
is Conformal Fairness (CF). In this work, we extend the CF framework to the Fed-
erated Learning setting and discuss how we can audit a federated model for fair-
ness by analyzing the fairness-related gaps for different demographic groups. We
empirically validate our framework by conducting experiments on several datasets
spanning multiple domains, fully leveraging the exchangeability assumption.

1 INTRODUCTION

Ensuring model fairness is a critical thrust of trustworthy machine learning (ML). ML models, when
not calibrated for fairness, are prone to developing biases at each stage of an ML pipeline, as re-
flected by their predictions Mehrabi et al. (2021). We define bias as disparate performance (i.e.,
accuracy for classification) between different sub-populations. In the data collection phase, mea-
surement bias may occur due to disproportionate data collection on sub-populations, while repre-
sentation bias manifests from a lack of training data on specific strata. During training, these biases
are inductively learned by the model–leading to incorrect predictions in safety-critical tasks. These
models are also susceptible to algorithmic bias, resulting from regularization and optimization tech-
niques during model training, which incorrectly generalize for marginalized groups. To mitigate
these risks, many ML models must adhere to regulations placed by local governing bodies (Hirsch
et al., 2023). Towards model compliance, Komala et al. (2024); Agrawal et al. (2024); Jones et al.
(2025) have proposed approaches to enhance model fairness in varying tasks, including federated
graph learning and representation learning.

Developing robust ML frameworks with mathematically rigorous guarantees is also essential for
building actionable, trustworthy ML models for safety-critical tasks. In this frontier, researchers
have increasingly explored Conformal Prediction (CP)–an uncertainty quantification (UQ) technique
that only assumes statistical exchangeability–to develop trustworthy ML models (Vovk et al., 2005).
Unlike traditional point-wise prediction in ML, CP guarantees that the correct outcome will be in
a prediction set with a user-specified property. Practitioners have adopted CP due to its model-free
assumption and post-hoc application (Cherian & Bronner, 2020). Additionally, users can apply
CP to structured data (such as graphs), which cannot be used with traditional IID-based methods
(Maneriker et al., 2025). However, vanilla CP is not calibrated for fairness and can be inherently
unfair Cresswell et al. (2025).

Several approaches have been proposed at the intersection of fairness and CP–each catering to differ-
ent tasks and notions of fairness. Romano et al. (2020a) developed a CP approach for the regression
setting to ensure equalized coverage across protected groups. Lu et al. (2022) considers equalized
coverage in a classification task for medical imaging. Zhou & Sesia (2024) extends Romano et al.
(2020a) and provides an algorithm adaptive to sensitive groups to increase the predictive power
of the CP sets when several sensitive attributes are present, and focuses on the classification task.
Lastly, Vadlamani et al. (2025) provides a framework to ensure fair coverage of positive outcomes,
without requiring protected attributes at inference time, unlike prior work. Orthogonally, CP has
been used to enhance the fairness of other tasks. To mitigate bias in LLM-based recommender
systems, Fayyazi et al. (2025) explores iteratively using fairness-aware CP.
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While there are several approaches to integrating fairness into CP, these methods are not considered
when the training data is decentralized (i.e., available only to clients) and the ML model is stored
on a centralized server. Extending these CP methods to the federated learning (FL) setting is essen-
tial because tasks that benefit from fair uncertainty quantification (such as those in healthcare and
finance) also often have privacy considerations, making it infeasible to keep data on a centralized
server. Thus, we extend the work of Vadlamani et al. (2025) using recent literature in Federated CP
(Lu et al., 2023).

Key Contributions: We develop Federated Conformal Fairness (FedCF) and extend the Conformal
Fairness (CF) framework (Vadlamani et al., 2025) to the FL setting while maintaining the theoretical
fairness guarantees provided by CF.

Extending CF Theory to FL. We discuss how to bound conditional coverage according to a user-
specified fairness notion when data is decentralized. To facilitate this, we provide a sufficient set
of terms that a client can compute using local data, how the server should aggregate these terms to
bound the conditional coverage, and theoretically prove the validity of our approach.

Descent-Based CF Formulation. We revise the original CF algorithm to reduce the number of
communication rounds required to construct a fair conformal predictor. We do this by reformulating
the original iterative approach presented in Vadlamani et al. (2025) into a descent-based optimization
framework. This allows FedCF to be embedded directly into an FL-style algorithm and to integrate
naturally with existing FL systems.

Flexible Aggregation Protocols. We consider the client-server communication overhead and its
tradeoff with preserving data privacy. Specifically, we propose two approaches, with one having
less communication overhead and the other being more privacy-preserving of client data.

Real-World Empirical Validation. We evaluate FedCF on several datasets with naturally induced
data heterogeneity, including tabular, graph, and image datasets, and for multiple popular fairness
metrics, and observe that FedCF can control for a particular coverage gap level while maintaining
the original CP coverage guarantee.

2 BACKGROUND

2.1 CONFORMAL PREDICTION

Conformal Prediction (CP) (Vovk et al., 2005) is a widely used framework for quantifying predictive
uncertainty in ML. CP provides rigorous statistical guarantees without imposing assumptions on the
model, requiring only that the data are exchangeable–a broader condition than IID and compatible
with non-IID or structured settings (e.g., graphs).

We focus on split (inductive) CP in the classification setting. Let xi ∈ X = Rd and yi ∈ Y =
{0, . . . , C − 1} denote features and labels. Given a calibration dataset, Dcalib = {(xi, yi)}ni=1, our
goal is to construct a set-valued predictor C such that, for an exchangeable test point (xtest, ytest),

1− α ≤ Pr[ytest ∈ C(xtest)] ≤ 1− α+ 1
|Dcalib| , (1)

where 1−α ∈ (0, 1) is the target coverage level. We refer to Equation 1 as the coverage guarantee.
Concretely, given a non-conformity score s : X × Y → R, define the conformal quantile as

q̂(α) = Quantile
(

⌈(n+1)(1−α)⌉
n ; {s(xi, yi)}ni=1

)
.

The resulting prediction set Cq̂(α)(xtest) = {y ∈ Y : s(xtest, y) ≤ q̂(α) } satisfies the guarantee in 1.

Evaluating CP: Two standard metrics are used: (1) Coverage, the estimated test-time probability,
Pr

[
ytest ∈ Cq̂(α)(xtest)

]
; and (2) Efficiency, the average prediction set size,

∣∣Cq̂(α)(xtest)
∣∣. These are

typically in tension as achieving a higher desired coverage often necessitates larger sets.

2.2 FEDERATED LEARNING

A key contributor to developing strong deep learning models is providing a large amount of qual-
ity training data (Kaplan et al., 2020). However, in certain domains, such as healthcare and fi-
nance, collecting large amounts of data may be prohibitive due to privacy concerns. Federated
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learning (FL) McMahan et al. (2017) is a framework for collaborative learning that keeps train-
ing data decentralized and private. Given K clients that will participate in training, each client
has its own training data that it wants to keep private. The goal is to optimize a global loss func-
tion, L, that is the weighted average of local risk functions, ℓk. Formally, FL finds weights θ∗

s.t. θ∗ = argminθ

{
L(θ) =

∑K
k=1 wk · E(x(k),y(k))∼Pk

[
ℓk
(
θ;x(k), y(k)

)]}
, where Pk is client k’s local

distribution and w ∈ ∆k are weights (Lu et al., 2023).

2.3 FEDERATED CONFORMAL PREDICTION (FCP)

Setting: In FL, the development and calibration datasets are partitioned over K clients. Meaning,
each client k ∈ {1, . . . ,K} = K retains a private calibration set D(k)

calib =
{(

x
(k)
i , y

(k)
i

)}nk

i=1
drawn

from an unknown local distribution Pk. The goal is to still construct a prediction set function C such
that for any test point (xtest, ytest) ∼ Qtest, where Qtest =

∑K
k=1 γkPk is the mixutre distribution

with weights γk ∝ (nk + 1) (Lu et al., 2023), Equation 1 is satisfied. This is done while respecting
the communication and privacy constraints of FL.

Partial exchangeability and the FCP algorithm. Lu et al. (2023) introduce partial exchangeability:

within each client, the multiset
{
s
(
x
(k)
1 , y

(k)
1

)
, . . . , s

(
x
(k)
nk , y

(k)
nk

)
, s(xtest, ytest)

}
is exchangeable

with probability γk. Under this assumption, the FCP method aggregates all non-conformity scores,
orders them, and selects the (1− α)(N +K)-th statistic as follows

q̂(α) = Quantile
(
⌈(N +K)(1− α)⌉

N
;
{(

x
(k)
i , y

(k)
i

)}
k,i

)
where N =

∑K
k=1 nk. The prediction set Cα(x) = {y : S(x, y) ≤ q̂α} then satisfies

1− α ≤ Pr[ytest ∈ Cα(xtest)] ≤ 1− α+ K
N+K . (2)

Communication-efficient quantile sketches. To preserve privacy, instead of transmitting all N
scores to the server, each client can send a mergeable sketch (e.g., using T-Digest (Dunning, 2021)
or DDSketch (Masson et al., 2019)). Doing so will loosen the guarantee given in Equation 2.

2.4 CONFORMAL FAIRNESS

While CP provides marginal coverage guarantees, it is agnostic to sensitive attributes within the
data. So different groups can receive systematically different coverages. The Conformal Fairness
(CF) framework (Vadlamani et al., 2025) formalizes the notion of fairness for prediction sets by
considering the disparity in conditional coverage between sensitive groups, all while retaining the
validity based on the CP exchangeability. At a high level, CF adapts group-fairness notions (e.g.,
Demographic Parity and Equal Opportunity) to the set-valued outputs of CP and then tunes a score
threshold to satisfy a user-specified “closeness” criterion , c, on inter-group disparities. Using the
exchangeability assumption, CF can be applied to non-IID/structured data.

From point predictions to set-based fairness. Let Cλ(x) = {y ∈ Y : s(x, y) ≤ λ} denote
the CP prediction set at score threshold λ. CF adapts classical group-fairness metrics by replacing
point-prediction events (i.e., ỹ = Ŷ ) with set-membership events (i.e., ỹ ∈ Cλ(X)) and evaluating
disparities across groups G and, when appropriate, advantaged labels Y+. For example, a set-based
Demographic Parity-style constraint can be written as,∣∣Pr[ỹ ∈ Cλ(X) | X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X) | X ∈ gb

]∣∣ ≤ c ∀ ga, gb ∈ G, ỹ ∈ Y+,

with analogous set-based forms for other common group-fairness metrics.

Conditional coverage as the fairness control knob. To evaluate a chosen fairness notion, CF filters
the calibration data to the relevant subpopulation (e.g., a group or a group-and-label slice) via a filter
function, Fm, and uses conditional coverage estimates under that filter. It then searches a threshold
space Λ to identify λopt that satisfies the closeness criterion across groups (and labels, if required)
while maintaining CP validity. A key technical ingredient is that CP coverage holds when labels are
fixed to a particular ỹ, which underpins group- and class-conditional control in CF.

Guarantees and trade-offs. CF provides a theoretically grounded procedure to bound fairness
disparities (as defined above) without sacrificing CP’s finite-sample coverage guarantees, which is
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Table 1: Important notation used for coverage gap calculation.

Notation Definition Notation Definition

nk

∣∣∣D(k)
calib

∣∣∣ D(k)
calib Client k’s calibration dataset.

n
(g,ỹ)
k

∣∣∣S(g,ỹ)
k

∣∣∣ S(g,ỹ)
k

{
(xi, yi) ∈ D(k)

calib | FM (xi, yi, g, ỹ) = 1
}

γk Pr[Ek] Ek The event xtest is exchangeable with D(k)
calib.

π(g,ỹ) Point estimate
for Term IV
in Equation 3.

L(g,ỹ), U (g,ỹ) Bounds for Term IV in Equation 3.
α
(g,ỹ);λ
k

∑
(xi, )∈S(g,ỹ)

k

1[s(xi, ỹ) ≤ λ]

empirically backed by CF reducing fairness violations across several metrics and remains effec-
tive with multiple sensitive attributes (intersectional groups). In practice, satisfying stricter fairness
closeness c increases the average prediction set size, reflecting the fairness–efficiency trade-off.

Practical advantages. Unlike many conditional-CP baselines that require group membership at
inference time or are model-specific, CF’s set-based metrics and thresholding procedure do not
require protected attributes at test time and apply across different non-conformity scores and data
modalities, making it compatible with downstream deployment constraints.

3 FEDCF THEORY AND METHODOLOGY

In this section, we begin by establishing the theoretical and methodological foundations. We first
redefine the concept of the coverage gap (3.1) and introduce a descent-based reformulation of the
CF Framework (3.2), both within the federated setting. Following this, we present the Federated
Conformal Fairness (FedCF) Framework.

3.1 FEDCF: EXTENDING COVERAGE GAP TO THE FEDERATED SETTING

Let FM be a filter function for some fairness metric. Then, we define the fairness-specific coverage
level for positive label ỹ ∈ Y+ in group g ∈ G as Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1]. In
the federated setting, since the data is decentralized, we cannot directly estimate this quantity. To
address this, we rewrite the quantity–using notation in Table 1–as,

Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1] =

K∑
k=1

(
Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek]︸ ︷︷ ︸

I

· Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek]︸ ︷︷ ︸
II

·Pr[Ek]︸ ︷︷ ︸
III

)
·
(
Pr[FM (xtest, ytest, g, ỹ) = 1]︸ ︷︷ ︸

IV

)−1

. (3)

With this reformulation, we can estimate different terms individually—either locally on each client
or globally on the server. The following theorem presents two types of fairness-specific conditional
coverage estimates: (1) interval bounds and (2) point estimates. The estimates for the individual
terms are provided in Lemmas B.1, B.2, and B.3 in Appendix B. For clarity, Table 1 summarizes the
primary notation used in our main theorem. A full notations table can be found in Appendix A.

Theorem 3.1. The fairness-specific coverage level (Equation 3) can be bounded as

Lcov(λ, FM , g, ỹ) ≤ Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1] ≤ Ucov(λ, FM , g, ỹ),

where

Lcov(λ, FM , g, ỹ) =
K∑

k=1

γkα
(g,ỹ);λ
k n

(g,ỹ)
k

(n
(g,ỹ)
k +1)(nk+1)U(g,ỹ)

and Ucov(λ, FM , g, ỹ) =
K∑

k=1

γk(α
(g,ỹ);λ
k +1)

(nk+1)L(g,ỹ) . (4)
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If the data is IID, using MLE estimates for each term, we get the following estimate for the fairness-
specific coverage level

Πcov = Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1] =

K∑
k=1

γkα
(g,ỹ);λ
k

nkπ(g,ỹ)
. (5)

Theorem 3.1 gives us bounds for the coverage level, which we can convert into bounds for the
coverage gap between groups for fairness evaluation. The interval bounds provide finite sample
guarantees that are typically seen in the CP literature, at the cost of being a more conservative
estimate. Conversely, point estimates provide tight coverage estimates, but assume IID data, and
may violate those guarantees.

3.2 FEDCF: REVISITING THE CONFORMAL FAIRNESS ALGORITHM

Algorithm 1 Descent-Based CF Optimization
1: procedure FAIR OPT DESCENT(ỹ, λ0, G, c,

FM , num rounds, η, µ)
2: λopt = 1
3: for (t = 0; t++; t < num rounds) do
4: cgt = coverage gap(λ0, Fm, ỹ,G)
5: if cgt ≤ c and t = 0 then
6: return λ0

7: else if cgt ≤ c and λt < λopt then
8: λopt = λt

9: end if
10: bt+1 = µ · bt + (cgt − c)
11: ∆λ = (λopt − λt)1[bt+1≥0]

+(λt − λ0)1[bt+1<0]
12: pt = max

{⌈
log2

(
η

∆λ

)⌉
, 0
}

13: ηt = update lr(η, pt, bt+1)
14: λt+1 = λt + ηtbt+1

15: end for
16: return λopt
17: end procedure

One drawback of the original Conformal Fair-
ness algorithm is that it creates a sampled, dis-
cretized search space and iterates to find the
minimal λ satisfying the fairness specification.
This process requires computing the coverage
gap every iteration and for each positive label,
which becomes even more inefficient in the fed-
erated setting, where coverage gap computation
requires client-server communication.

Algorithm 1 describes the core descent-based
CF algorithm. 1 The algorithm takes as input
the calibration set for each client,

{
D(k)

calib

}
k∈K,

the set of (positive) labels, the set of sensitive
groups, G, a closeness criterion, c, and a filter-
ing function, FM . Additionally, we initialize a
threshold, λ0, as the q̂ value given by the FCP
algorithm (Lu et al., 2023), to ensure 1−α cov-
erage is still satisfied.

For a given threshold λt, we can compute the
coverage gap cgt and evaluate whether it ad-

heres to our fairness constraint. FedCF solves, λopt = minλ∈Λ λ, subject to cgt − c ≤ 0. We
solve this using a framework analogous to Gradient Descent (GD) with Momentum (Polyak, 1964).
Let η and µ be the initial learning rate and momentum constant, respectively. The update rule for λt

is, λt+1 = λt + ηt · bt+1 = λt + η · (1/2)pt · bt+1 ∈ [λ0, λopt],

where bt+1 = µ · bt + (cgt − c) is the modified step size, pt = max
{⌈

log2
(

η
∆λ

)⌉
, 0
}

determines
the scaling factor to update η by and ensure λt+1 ∈ [λ0, λopt] where ∆λ = (λopt − λt)1[bt+1≥0] +
(λt − λ0)1[bt+1<0].

We do not stop immediately once a satisfactory λ is found; instead, we continue exploring to check
whether a smaller λ exists. This algorithm directly applies to the federated setting, with one impor-
tant consideration: the computation of the coverage gap in Line 4.

3.3 FEDCF: THE END-TO-END FEDERATED CONFORMAL FAIRNESS FRAMEWORK

Having established the sufficient terms to compute the fairness-specific coverage gap, we now
present the FedCF framework. We discuss FedCF in the context of the interval-bounds esti-
mates from Theorem 3.1, noting the discussion also applies to the point-estimate case by setting

1We omit the iteration over the positive labels for brevity and present just the core optimization.
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Lcov = Ucov = Πcov. The fairness-specific coverage gap is given by,
cg(λ, FM , ỹ,G) := max

ga∈G
{Ucov(λ, FM , ga, ỹ)} − min

gb∈G
{Lcov(λ, FM , gb, ỹ)} (6)

= max
ga,gb∈G

{Ucov(λ, FM , ga, ỹ)− Lcov(λ, FM , gb, ỹ)}. (7)

While equations 6 and 7 are mathematically equivalent, their formulations lead to two different com-
munication and aggregation strategies demonstrating the tradeoff between communication over-
head and privacy. We present the communication efficient protocol in the main paper and the
enhanced privacy protocol in Appendix D. In Appendix D, we also present a hybrid protocol, where
clients select whether to use the communication efficient or enhanced privacy protocol. We include
FedCF extensions concerning differential privacy in Appendix F.

Note that Ucov and Lcov depend on L(g,ỹ) and U (g,ỹ), respectively. Since these quantities are also
computed in a federated manner on the server, we compute them prior to computing the coverage
gap for any particular λ2. Given that these priors are available on the server, we can compute the
fairness-specific coverage gap. From Theorem 3.1, each client computes and sends two values for

each (g, ỹ) ∈ G × Y+ pair: α
(g,ỹ);λ
k ·n(g,ỹ)

k(
n
(g,ỹ)
k +1

)
·(nk+1)

and α
(g,ỹ);λ
k +1

nk+1 . Once the server receives these pairs

from each client, it proceeds to aggregate these quantities to derive Lcov and Ucov for each (g, ỹ).
Ucov is limited 1 to reconcile Pr[ · ] ≤ 1 for any event. The final coverage gap is determined as per
Equation 6. Algorithms 2 and 3 describe the federated coverage gap algorithm.

Communication Complexity and Privacy Implications. Each client is responsible for sending
messages of size totaling O(2 · |G||Y+|) to the server per server round. While this is linear in terms
of the number of (g, ỹ) pairs, we note that with enough λs, the server can learn the distribution of
Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek].

Algorithm 2 Server-side Aggregation for
Coverage Gap

1: procedure SERVERCG(λ, FM , ỹ,G,K)
2: n list = [0]K
3: l list = [0]K×G , u list = [0]K×G
4: for client k ∈ K in parallel do
5: (l list[k], u list[k], n list[k])

= CLIENTCG(k, λ, FM , ỹ,G)
6: end for
7: N =

∑
k∈K n list[k], K = |K|

8: Ucov = [0]G , Lcov = [0]G
9: for client k ∈ K do

10: γk = ((n list[k] + 1)/(N +K))

11: Ucov +=
(
γk/L

(g,ỹ)
)
· u list[k]

12: Lcov +=
(
γk/U

(g,ỹ)
)
· l list[k]

13: end for
14: Ucov = element wise min(Ucov, [1]G)
15: cov gap = max

g∈G
Ucov[g]−min

g∈G
Lcov[g]

16: return cov gap
17: end procedure

Algorithm 3 Client-Side Computation for
Coverage Gap

1: procedure CLIENTCG(k, λ, FM , ỹ,G)
2: lk = [0]G
3: uk = [0]G
4: for g ∈ G do
5: if use mle then
6: lk[g]←

α
(g,ỹ);λ
k
nk

7: uk[g]←
α
(g,ỹ);λ
k
nk

8: else
9: lk[g]←

α
(g,ỹ);λ
k

·n(g,ỹ)
k(

n
(g,ỹ)
k

+1
)
·(nk+1)

10: uk[g]←
α
(g,ỹ);λ
k

+1

(nk+1)

11: end if
12: end for
13: return lk, uk, nk

14: end procedure

4 EXPERIMENTS

4.1 SETUP.

Datasets. We evaluate the FedCF framework on four multi-class datasets in different domains: (1,
2) ACSIncome and ACSEducation (Ding et al., 2021), (3) Pokec-{n, z} (Takac & Zabovsky, 2012),
(4) Fitzpatrick Groh et al. (2021). These datasets were not originally for FL, so we partitioned them
to form our clients. For the ACS datasets, we use state and territory data to partition the information

2The algorithm for computing the prior is similar to that of the coverage gap, so we omit it here
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into clients. We consider six different partitioning schemes, based on common regional definitions
in the U.S., which result in 4 (small), 8 (large), and 51 (all) clients. We also consider equivalent
schemes for just the continental U.S.. For Pokec-{n, z}, each graph is treated as a separate client,
as they originate from distinct partitions of the larger Pokec social network. Finally, for Fitzpatrick,
since there is no predetermined partitioning scheme, we use a Dirichlet partitioner (Yurochkin et al.,
2019) with concentration parameter of 0.5 to split Dtrain/Dvalid/Dcalib for K ∈ {2, 4, 8} clients.
We use a 30%/20%/25%/25% stratified split for the fullDtrain/Dvalid/Dcalib/Dtest. We elaborate
more on the datasets and experimental setup in Appendix C.

Base Models. For the ACS datasets, we use XGBoost (Chen & Guestrin, 2016). For Pokec-{n,z},
we use GraphSAGE (Hamilton et al., 2017) with GCN aggregation. For Fitzpatrick, we use ResNet-
18 (He et al., 2016). Each of these models is trained using FedAvg (McMahan et al., 2017).

Baseline. We construct a federated fairness-agnostic conformal predictor targeting a coverage
level of 1 − α = 0.9 using FCP Lu et al. (2023) with T-Digest Dunning (2021). For the non-
conformity score, we adopt APS (Romano et al., 2020b) and RAPS (Angelopoulos et al., 2022) for
all datasets, as well as DAPS (H. Zargarbashi et al., 2023), a graph-specific method, for Pokec-{n,z}.
We then assess fairness using λ = q̂(α) for three popular group-fairness metrics, reformulated in
Table 2–Demographic Parity, Equal Opportunity, and Predictive Equality.

Table 2: Formulations for Conformal Fairness Metrics.

Metric Definition

Demographic (or Statistical) Parity
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Equal Opportunity
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y = ỹ, X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y = ỹ, X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Predictive Equality
∣∣∣Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y ̸= ỹ, X ∈ ga

]
− Pr

[
ỹ ∈ Cλ(X)

∣∣∣ Y ̸= ỹ, X ∈ gb

]∣∣∣ < c, ∀ga, gb ∈ G, ∀ỹ ∈ Y+

Evaluation Metrics: We report two key metrics: (1) efficiency, and (2) worst-case fairness dis-
parity. The latter captures the largest difference in conditional coverage across groups, under the
chosen fairness metric. For example, under Demographic Parity, we report:

max
ỹ∈Y+

max
ga,gb∈G

∣∣Pr[ỹ ∈ Cλ(xtest) | xtest ∈ ga
]
− Pr

[
ỹ ∈ Cλ(xtest) | xtest ∈ gb

]∣∣. (8)

More details on the experimental setup can be found in Appendix C.

4.2 RESULTS

In each figure, we use a solid line to represent the average efficiency of the base federated con-
formal predictors across different thresholds and a dashed line to represent the corresponding
average worst-case fairness disparity. The bar plot shows the efficiency and worst-case fairness dis-
parity using FedCF, while the dots indicate the desired fairness disparity. We report the average base
performance for clarity and readability. In all experiments, FedCF achieves an actual fairness dis-
parity within the specified closeness criterion, c, which may not be the case with the base federated
conformal predictor.

Preserves Key Characteristics of CF. Two important characteristics of the CF framework are
that it is (1) agnostic to the specific non-conformity score function and (2) supports intersectional
fairness. We demonstrate that our FedCF framework preserves these two characteristics via the
Pokec-{n, z} dataset. Pokec-{n, z} each have two sensitive attributes: region and gender. In addition
to considering each attribute individually, we can treat each pair of attributes as distinct and apply
FedCF. Furthermore, Pokec-{n, z} is a graph dataset. Recently, several developments have been
made in graph CP research on non-conformity scores that utilize the graph structure. In addition
to two standard CP methods–APS and RAPS–we also provide results using DAPS. Figure 1 shows
how the FedCF framework can achieve the desired fairness criterion with minimal cost to efficiency
for different non-conformity scores and when considering multiple groups.

Robust Performance with Different Numbers of Clients. An important trade-off in trustworthy
FL is between predictive utility and maintaining fairness/privacy guarantees for each of its clients,

7
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Figure 1: Pokec-{n, z} using both sensitive attributes. The top plots present the efficiency results, while the
bottom plots are for the fairness disparities for (a) APS, (b) DAPS, and (c) RAPS. In all cases, FedCF achieves
the desired closeness criteria better than the base federated conformal predictors.

which becomes increasingly challenging as the number of clients increases (Wen et al., 2023). To
demonstrate how our framework can adapt to a varying number of clients, we use a Dirichlet parti-
tioner with the Fitzpatrick dataset to evaluate performance with K ∈ {2, 4, 8} clients in addition to
a centralized setup with a single client. We see in Table 3 that as the number of clients increases, the
baseline performance worsens, but the FedCF framework can still control for the necessary close-
ness criterion. We omit Equal Opportunity for Fitzpatrick as it is not meaningful in the context
of this dataset, which aims to predict a skin condition, and the sensitive attribute is the skin type.
People with certain skin types are known to be more likely to develop certain skin conditions, so the
true positive rates of a classifier will typically not equalize, resulting in a degenerate (meaningless)
solution. Finally, Fitzpatrick is a relatively small dataset with fewer than 17K points. Splitting the
dataset into different splits and clients will result in a small number of points per (g, ỹ) pair, making
the interval bounds from Theorem 3.1 quite large.

Table 3: Fitzpatrick using RAPS. Each entry is of the form, efficiency/fairness disparity. We bold the lower
fairness disparity value for each comparison. This table contains the results for K ∈ {1, 2, 4, 8} clients. We
observe that FedCF consistently matches or outperforms the base federated conformal predictor and is below
the desired closeness criterion, c.

(a) c = 0.1

1 client 2 clients 4 clients 8 clients

Metric Base Ours Base Ours Base Ours Base Ours

Dem Parity 2.356 / 0.151 3.647 / 0.103 2.565 / 0.163 4.149 / 0.153 2.844 / 0.293 4.684 / 0.099 3.502 / 0.166 5.214 / 0.089
Pred Eq 2.356 / 0.111 3.647 / 0.109 2.543 / 0.177 4.140 / 0.177 2.837 / 0.287 4.564 / 0.102 3.502 / 0.171 5.293 / 0.083

(b) c = 0.15

1 client 2 clients 4 clients 8 clients

Metric Base Ours Base Ours Base Ours Base Ours

Dem Parity 2.356 / 0.151 2.356 / 0.151 2.565 / 0.163 2.793 / 0.163 2.837 / 0.291 3.347 / 0.114 3.498 / 0.166 3.859 / 0.088
Pred Eq 2.356 / 0.111 2.356 / 0.111 2.543 / 0.177 2.778 / 0.177 2.844 / 0.289 3.296 / 0.144 3.496 / 0.170 3.867 / 0.087

(c) c = 0.2

1 client 2 clients 4 clients 8 clients

Metric Base Ours Base Ours Base Ours Base Ours

Dem Parity 2.356 / 0.151 2.356 / 0.151 2.541 / 0.161 2.541 / 0.161 2.844 / 0.293 3.260 / 0.164 3.500 / 0.166 3.528 / 0.146
Pred Eq 2.356 / 0.111 2.356 / 0.111 2.541 / 0.177 2.541 / 0.177 2.837 / 0.287 3.256 / 0.167 3.501 / 0.171 3.524 / 0.150

8
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Efficiency vs Fairness Trade-Off. To make FedCF an actionable framework, it is essential to un-
derstand the utility trade-off when imposing fairness constraints. Using the interval-based approach
to estimate the fairness-specific coverage gap gives a finite-sample guarantee for controlling fairness
gaps. However, sometimes imposing fairness may result in a severe cost to utility. For example, a de-
generate conformal predictor (one with near-full efficiency) is “fair,” but completely impractical for
use. By relaxing the theoretical guarantees, we can improve the efficiency by considering a tighter
estimate for the coverage gap, using point estimates through MLE. Figure 2 compares the efficiency
and fairness disparities when using the interval bounds vs the point estimate on the ACSEducation
dataset. We observe that with the interval bounds, we always get within the closeness criterion, but
the efficiencies are quite high. Alternatively, using point estimates may exceed the desired closeness
criterion, but be more fair than the baseline and not sacrifice as much efficiency.
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Figure 2: ACSEducation using RAPS. The left two plots are the efficiency plots for (a) using the
interval bounds and (b) using the MLE estimate. Similarly, the two right (c) using the interval bounds
and (d) using the MLE estimate. We observe that with the MLE estimates, FedCF achieves lower
efficiency at the cost of a higher worst-case fairness disparity. Both the interval bounds and MLE
estimates outperform the base federated conformal predictor in controlling for fairness disparity.

5 DISCUSSION

On Data Heterogeneity. In a practical federated setting, the data distribution will vary between
clients–resulting in data heterogeneity across the FL system, which can affect performance at infer-
ence time (Wen et al., 2023). To address these concerns, we evaluate FedCF on varying partitioning
schemes. For Fitzpatrick, we use a probabilistic partitioning scheme to ensure the data is distributed
in a particular manner. For the ACS and Pokec-{n, z} datasets, the partitioning is naturally induced
by state and region information in the datasets.

On Data Requirements. A major limitation of CP is that to achieve a desired coverage rate, practi-
cally, you require a large enough calibration dataset such that the interval width for the CP guarantee
is tight enough. This is exacerbated in the CF and FedCF framework as it requires sufficient calibra-
tion data for each group-positive label pair (for each client). If we consider intersectional fairness,
the multiplicative increase in the number of groups further increases the data requirements.

On Interval Bounds. We provide two ways of estimating the fairness-specific coverage level with
intervals and point estimates, but we can choose different intervals by considering the following.
Suppose the event s(xtest, ytest) ≤ λ (conditioned on FM ) is a Bernoulli random trial of some
unknown probability p. We want to estimate p as that is our fairness-specific coverage level. If we
also treat the calibration scores as Bernoulli trials (by exchangeability), we can estimate p using a
Binomial Proportion Confidence Interval. Several results provide tighter or looser bounds (Wallis,
2013), which can be used to get better efficiency vs. fairness trade-offs.

6 CONCLUSION

In this work, we extended the Conformal Fairness framework to a federated setting, introducing
the novel and comprehensive FedCF framework. We reformulated the CF framework to use a
descent-based approach to make it more efficient for FL applications. Additionally, we developed
theoretically grounded protocols to enable coverage gap calculations in a federated manner. The

9
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FedCF framework offers clients a choice of participation protocols, including communication effi-
cient and enhanced privacy options. We conducted experiments on various non-conformity scores
and datasets– including graph data where we leverage the exchangeability assumption from CP.

Extensibility and Future Work An important application of FedCF is that it can be used to audit
federated conformal predictors for fairness (discussed in Appendix G). In the future, we will explore
how FedCF can be extended to split learning (Gupta & Raskar, 2018). Unlike federated Learning,
which trains full models locally and aggregates updates, split learning divides the model across
clients and server, sharing only partial computations (enhanced privacy, reduced compute).
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Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and Jayashree Kalpathy-Cramer. Fair
conformal predictors for applications in medical imaging. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(11):12008–12016, Jun. 2022. doi: 10.1609/aaai.v36i11.21459.
URL https://ojs.aaai.org/index.php/AAAI/article/view/21459.

Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael Jordan, and Ramesh Raskar. Federated
conformal predictors for distributed uncertainty quantification. In International Conference on
Machine Learning, pp. 22942–22964. PMLR, 2023.

Pranav Maneriker, Codi Burley, and Srinivasan Parthasarathy. Online fairness auditing through
iterative refinement. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’23, pp. 1665–1676, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599454. URL
https://doi.org/10.1145/3580305.3599454.

11

https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://www.sciencedirect.com/science/article/pii/S1084804518301590
https://proceedings.mlr.press/v202/h-zargarbashi23a.html
https://proceedings.mlr.press/v202/h-zargarbashi23a.html
http://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2001.08361
https://ojs.aaai.org/index.php/AAAI/article/view/21459
https://doi.org/10.1145/3580305.3599454


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pranav Maneriker, Aditya T Vadlamani, Anutam Srinivasan, Yuntian He, Ali Payani, et al. Confor-
mal prediction: A theoretical note and benchmarking transductive node classification in graphs.
Transactions on Machine Learning Research, May 2025.

Charles Masson, Jee E. Rim, and Homin K. Lee. Ddsketch: a fast and fully-mergeable quantile
sketch with relative-error guarantees. Proc. VLDB Endow., 12(12):2195–2205, August 2019.
ISSN 2150-8097. doi: 10.14778/3352063.3352135. URL https://doi.org/10.14778
/3352063.3352135.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR,
20–22 Apr 2017. URL https://proceedings.mlr.press/v54/mcmahan17a.htm
l.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35, 2021.

New York City Council. Local law 4 of 2021: Fair chance act, 7 2021. URL https://www.ny
c.gov/site/cchr/law/fair-chance-act.page.

New York City Council. Local law 144 of 2021: Prohibiting automated employment decision tools.
New York City Register, 7 2023. URL https://www.nyc.gov/site/dca/about/aut
omated-employment-decision-tools.page.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. ISSN 0041-5553. doi:
https://doi.org/10.1016/0041-5553(64)90137-5. URL https://www.sciencedirect.co
m/science/article/pii/0041555364901375.

Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and Emmanuel Candès. With malice toward
none: Assessing uncertainty via equalized coverage. Harvard Data Science Review, 2020a.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
age. Advances in neural information processing systems, 33:3581–3591, 2020b.

Lubos Takac and Michal Zabovsky. Data analysis in public social networks. In International
scientific conference and international workshop present day trends of innovations, volume 1,
2012.

U.S. Equal Employment Opportunity Commission. Questions and answers to clarify and provide
a common interpretation of the uniform guidelines on employee selection procedures. Federal
Register, 44(43), 1979. URL https://www.eeoc.gov/laws/guidance/questions
-and-answers-clarify-and-provide-common-interpretation-uniform
-guidelines.

Aditya T. Vadlamani, Anutam Srinivasan, Pranav Maneriker, Ali Payani, and Srinivasan
Parthasarathy. A generic framework for conformal fairness. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum
?id=xiQNfYl33p.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Sean Wallis. Binomial confidence intervals and contingency tests: Mathematical fundamentals and
the evaluation of alternative methods. Journal of Quantitative Linguistics, 20(3):178–208, 2013.
doi: 10.1080/09296174.2013.799918. URL https://doi.org/10.1080/09296174.2
013.799918.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on
federated learning: challenges and applications. International journal of machine learning and
cybernetics, 14(2):513–535, 2023.

12

https://doi.org/10.14778/3352063.3352135
https://doi.org/10.14778/3352063.3352135
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://www.nyc.gov/site/cchr/law/fair-chance-act.page
https://www.nyc.gov/site/cchr/law/fair-chance-act.page
https://www.nyc.gov/site/dca/about/automated-employment-decision-tools.page
https://www.nyc.gov/site/dca/about/automated-employment-decision-tools.page
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.sciencedirect.com/science/article/pii/0041555364901375
https://www.eeoc.gov/laws/guidance/questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines
https://www.eeoc.gov/laws/guidance/questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines
https://www.eeoc.gov/laws/guidance/questions-and-answers-clarify-and-provide-common-interpretation-uniform-guidelines
https://openreview.net/forum?id=xiQNfYl33p
https://openreview.net/forum?id=xiQNfYl33p
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1080/09296174.2013.799918


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang,
and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks, 2019.
URL https://arxiv.org/abs/1905.12022.

Yanfei Zhou and Matteo Sesia. Conformal classification with equalized coverage for adaptively
selected groups. Advances in Neural Information Processing Systems, 37:108760–108823, 2024.

13

https://arxiv.org/abs/1905.12022


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATION TABLE

Table 4: Common notation used in FedCF.

Notation Defintion
G The set of all demographic groups.
Y,Y+ The set of labels and positive/advantaged labels, respectively.
g and ỹ The group g ∈ G and ỹ ∈ Y+ under consideration.
FM Filter function for fairness metric M .
c Closeness criterion for a fairness specification.
λ Threshold used for constructing test prediction sets.

K The set of clients, {1, . . . ,K}.
D(k)

train/D
(k)
valid/D

(k)
calib Client k’s train/validation/calibration dataset.

nk and N |D(k)
calib| and

K∑
k=1

nk, respectively.

S(g,ỹ)k and n
(g,ỹ)
k

{
(xi, yi) ∈ D(k)

calib | FM (xi, yi, g, ỹ) = 1
}

and
∣∣∣S(g,ỹ)k

∣∣∣
α
(g,ỹ);λ
k

∑
(xi, )∈S(g,ỹ)

k

1[s(xi, ỹ) ≤ λ]

Ek and γk The event xtest is exchangeable with data from client k and Pr[Ek].

L(g,ỹ), U (g,ỹ) Bounds for prior (term IV ).
π(g,ỹ) Point estimate for prior (term IV ).

Lcov, Ucov Bounds for fairness-specific coverage level.
Πcov Point estimate for fairness-specific coverage level.

B PROOFS

B.1 PROOF OF THEOREM 3.1

Recall, since the data is distributed across clients in the federated setting, we reformulated the
fairness-specific coverage level as Equation 3. In doing so, the computation of the coverage level is
split between the clients and the server. We present bounds and point estimates for each of the terms
in Equation 3 across Lemmas B.1, B.2, and B.3, leading to a proof of Theorem 3.1.

B.1.1 CLIENT-SIDE ESTIMATES

Since each client operates independently with its own dataset, we can derive interval bounds for
terms I and II . For the point estimates approach, we use maximum likelihood estimators (MLEs)
for each term, providing the tightest estimates.
Lemma B.1. For each client k, group g, positive label ỹ, and threshold λ, we get the following
interval bounds:

α
(g,ỹ);λ
k

n
(g,ỹ)
k +1

≤ Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek] ≤
α

(g,ỹ);λ
k +1

n
(g,ỹ)
k +1

(9)

If the data are IID, then we can use an MLE point estimate, given by the following:

Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek] =
α

(g,ỹ);λ
k

n
(g,ỹ)
k

(10)

The proof of Lemma B.1 is as follows:

Proof. We first observe that,
Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek]

= Pr
xtest∼Pk

[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1],
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since exchangeability with the elements in k is true iff xtest is sampled from k’s local distribution,
Pk. The interval bounds follow from the conditional coverage guarantees given in CF (Vadlamani
et al., 2025).

For the point estimate, we can model the event that the predicted score s(xtest, ỹ) falls below λ as
a Bernoulli random variable with success probability p. We can treat the n

(g,ỹ)
k calibration points

as individual Bernoulli trials, to then construct a maximum likelihood estimate (MLE) for p, which

will be p̂ =
α

(g,ỹ);λ
k

n
(g,ỹ)
k

.

Lemma B.1 bounds the fair-conditional coverage for a particular group-label pair for the test co-
variate (xtest, ytest). We next bound the coverage of the test covariate satisfying the Fairness Metric
(FM ), conditioned on the test point being exchangeable with data from client k using Lemma B.2,
and provide the proof below.

B.1.2 SERVER-SIDE ESTIMATES

Terms III and IV require a global view of the clients’ data, so they are handled on the server.

For term III , we follow the setup by Lu et al. (2023), where given nk =
∣∣∣D(k)

calib

∣∣∣, γk := Pr[Ek] ∝

nk + 1 and
K∑

k=1

γk = 1. Finally, for term IV , we have that

Pr[FM (xtest, ytest, g, ỹ) = 1] =
K∑

k=1

Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek] · Pr[Ek].

Using Lemma B.2, we can get an interval-bound and point-estimate as shown in the following
lemma.

Lemma B.2. For each client k, group g, and positive label ỹ, we get the following interval bounds:
n
(g,ỹ)
k

nk+1 ≤ Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek] ≤
n
(g,ỹ)
k +1

nk+1 (11)

If the data are IID, then we can use an MLE point estimate, given by the following:

Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek] =
n
(g,ỹ)
k

nk
(12)

Proof. To demonstrate the finite sample guarantee, we note that FM (x, y, g, ỹ) = 1 for all (x, y) ∈
D(k)

calib are all exchangeable Bernoulli trials. Observe that conditioning on Ek implies Dcalib
(k)
+ :=

D(k)
calib ∪ {xtest} is an exchangeable sequence of length nk + 1. Treating this as a finite ’bag’ of

covariates, we have

∀
(x,y)∈Dcalib

(k)
+

, Pr[FM (x, y, g, ỹ) = 1 | Ek] =

∑
(xi,yi)∈Dcalib

(k)
+

FM (xi, yi, g, ỹ)

nk + 1
.

In other words, we have defined the probability of randomly selecting a covariate with
FM (x, y, g, ỹ) = 1. Since this applies to all points we know,

Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek] =

∑
(xi,yi)∈Dcalib

(k)
+

FM (xi, yi, g, ỹ)

nk + 1
. (13)

Since we implicitly condition on FM (x, y, g, ỹ), ∀(x, y) ∈ k (effectively making them determin-
istic), we can calculate the following bounds 13,∑

(xi,yi)∈D(k)
calib

FM (xi, yi, g, ỹ)

nk + 1
≤ Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek]

≤

∑
(xi,yi)∈D(k)

calib

FM (xi, yi, g, ỹ) + 1

nk + 1
, (14)
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where the +1 term comes from the unknown value of FM (xtest, ytest, g, ỹ). Substituting the sums
with n

(g,ỹ)
k , proves the interval bounds.

For the point estimate, the event that FM = 1 can be modeled as a Bernoulli random variable with
success probability p. We can use the full nk calibration points as nk Bernoulli trials to construct an

MLE for p, which will be p̂ =
n
(g,ỹ)
k

nk
.

Lastly, we use Lemma B.3, to bound Pr[FM (xtest, ytest, g, ỹ) = 1]. The proof of Lemma B.3 lever-
ages the result of Lemma B.2.
Lemma B.3. For each client k, group g, and positive label ỹ, we get the following interval bounds:

L(g,ỹ) =
K∑

k=1

γk
n
(g,ỹ)
k

nk+1 ≤ Pr[FM (xtest, ytest, g, ỹ) = 1] ≤
K∑

k=1

γk
n
(g,ỹ)
k +1

nk+1 = U (g,ỹ). (15)

If the data are IID, then we can use an MLE point estimate, given by the following:

Pr[FM (xtest, ytest, g, ỹ) = 1] =
K∑

k=1

γk
n
(g,ỹ)
k

nk
= π(g,ỹ). (16)

Proof. To achieve this result, we first use the law of total probability to separate
Pr[FM (xtest, ytest, g, ỹ)] into terms known by the server and the client:

Pr[FM (xtest, ytest, g, ỹ)] =

K∑
k=1

Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek] · Pr[Ek] (17)

Then, substituting the bounds for term II (see Lemma B.2), and γk = Pr[Ek] from term IV into
Equation 17, we complete the proof.

Having proved the Lemmas, we can move on to proving,
Theorem 3.1. The fairness-specific coverage level (Equation 3) can be bounded as

Lcov(λ, FM , g, ỹ) ≤ Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1] ≤ Ucov(λ, FM , g, ỹ),

where

Lcov(λ, FM , g, ỹ) =
K∑

k=1

γkα
(g,ỹ);λ
k n

(g,ỹ)
k

(n
(g,ỹ)
k +1)(nk+1)U(g,ỹ)

and Ucov(λ, FM , g, ỹ) =
K∑

k=1

γk(α
(g,ỹ);λ
k +1)

(nk+1)L(g,ỹ) . (4)

If the data is IID, using MLE estimates for each term, we get the following estimate for the fairness-
specific coverage level

Πcov = Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1] =

K∑
k=1

γkα
(g,ỹ);λ
k

nkπ(g,ỹ)
. (5)

Proof. Substituting the bounds for terms I , II , and IV which were established via Lemmas B.1,
B.2, B.3 respectively and the defintion of III into Equation 3 completes the proof.

On closer inspection, we observe that Terms I and II can be combined and bound together.

Lemma B.4. Using the defintions of α(g,ỹ);λ
k and nk + 1 we have,

α
(g,ỹ);λ
k

nk + 1
≤ Pr

[
s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, xtest

exc.∼ k
]

· Pr
[
FM (xtest, ytest, g, ỹ) = 1 | xtest

exc.∼ k
]
≤

α
(g,ỹ);λ
k + 1

nk + 1
. (18)

Proof. First, observe that,
Pr[s(xtest, ỹ) ≤ λ | FM (xtest, ytest, g, ỹ) = 1, Ek] · Pr[FM (xtest, ytest, g, ỹ) = 1 | Ek]

= Pr[s(xtest, ỹ) ≤ λ, FM (xtest, ytest, g, ỹ) = 1 | Ek]

16
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Then consider the following Bernoulli random variables (R.V) 1[s(x, y) ≤ λ] · FM (x, y, g, ỹ)
for all (x, y) ∈ k ∪ {(xtest, ytest)} which form an exchangeable sequence (using the assumption
xtest

exc.∼ k). Additionally, observe α
(g,ỹ);λ
k =

∑
(xi,yi)∈k 1[s(x, y) ≤ λ] · FM (x, y, g, ỹ) is an

equivalent definition of α(g,ỹ);λ
k . The rest of the proof follows from the proof of Lemma B.2 by

using 1[s(x, y) ≤ λ] · FM (x, y, g, ỹ) as the Bernoulli R.V instead of FM (x, y, g, ỹ) and α
(g,ỹ);λ
k in

place of n(g,ỹ)
k .

Using the above result, we can tighten the lower-bound of Theorem 3.1.

Corollary B.1. Swapping terms I and II with the combined term in Lemma B.4, the lower bound
in Theorem 3.1 can be simplified and tightened to

Lcov(λ, FM , g, ỹ) =

K∑
k=1

γkα
(g,ỹ);λ
k

(nk + 1)U (g,ỹ)
(19)

Proof. Instead of substituting terms I and II into Equation 3 as in the proof of Theorem 3.1, we
can instead use Lemma B.4 to update the bounds. Observe that the upper bound remains the same
as Theorem 3.1 while the lower bound becomes tighter.

C ADDITIONAL EXPERIMENT DETAILS

C.1 DATASETS

We present a summary of common dataset statistics in Table 5 and go into more details on each
dataset in the following sections.

Table 5: Dataset Statistics. T refers to Tabular, G refers to Graph, and V refers to vision.
∗ACS datasets have six (6) groups if using the continental split schemes (see Section C.2).
ˆ Number of inputs after removing those with unknown group information

Name Type Size # Labeled # Groups # Classes

ACSIncome T 1, 664, 500 ALL race(9)∗ 4
ACSEducation T 1, 664, 500 ALL race(9)∗ 6

Fitzpatrick V 16, 012ˆ ALL skin type(6) 9

Name Type (|V|, |E|) # Labeled # Groups # Classes

Pokec-{n, z} G (133, 138, 1, 458, 258) 17, 594 region(2), gender(2) 4

C.2 FOLKTABLES DATASETS

In the fairness space, the American Community Services (ACS) datasets from the Folktables
library are a widely used set of tabular data (Ding et al., 2021). The data is taken across the 51 U.S.
states and territories. For our federated setup and each dataset below, we consider the following 6
partitioning schemes:

(1.) All: We consider each U.S. state and territory to be its own client

(2.) Large: We follow the U.S. Census Bureau’s division of the U.S. into the Northeast, the
Midwest, the South, and the West

(3.) Small: We follow the Bureau of Economic Analysis’s division of the U.S. into New Eng-
land, the Mideast, the Great Lakes, the Plains, the Southeast, the Southwest, the Rocky
Mountain, and the Far West.

(4-6.) Continental All, Continental Large, Continental Small: The same as 1 to 3, but we only
consider the continental U.S.–removing Alaska, Hawaii, and Puerto Rico.

17
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All Folktable datasets have a race attribute. When we partition the data using all the states and
territories, we use the full version of race, which has 9 groups. However, when partitioning just with
continental U.S., we combine some demographic groups–primarily those from Alaska, Hawaii, and
Puerto Rico–into the appropriate ‘Other’ categories, resulting in a total of 6 groups.

ACSIncome: We used the standard ACSIncome dataset from Folktables; however, we divided the
targets into four classes by evenly splitting the income into 4 brackets. The sensitive attribute in this
case is race, resulting in either 9 or 6 groups.

ACSEducation: This is a custom dataset. We used the ACSTravelTime data and selected Edu-
cation Level as the target. The education level was divided into 6 groups: {did not complete high
school, has a high school diploma, has a GED, started an undergrad program, completed an under-
grad program, and completed graduate or professional school}. ACSEducation also uses race as a
sensitive attribute.

C.3 NON-TABULAR DATASETS

Pokec-{n,z}: The Pokec-{n, z} dataset (Takac & Zabovsky, 2012) is a social network graph
dataset collected from Pokec, a popular social network in Slovakia. Since several rows in the
dataset are missing features, two commonly used subgraphs are the Pokec-z and Pokec-n datasets.
The graphs have four labels corresponding to the fieldwork and two sensitive attributes: gender (2
groups) and region (2 groups). Our experiments consider each attribute individually as well as in-
tersectional fairness by creating an attribute with 4 groups. For our federated setup, we use each
subgraph as a single client, resulting in 2 clients.

Fitzpatrick: The Fitzpatrick dataset (Groh et al., 2021) contains clinical images classified based
on the depicted skin condition. There are several levels of granularity regarding the skin condition la-
bel. We use a version with 9 skin conditions: {inflammatory, malignant epidermal, genodermatoses,
benign dermal, benign epidermal, malignant melanoma, benign melanocyte, malignant cutaneous
lymphoma, malignant dermal}. There are 6 demographic groups based on the Fitzpatrick skin type.
For our federated setup, we use a Dirichlet partitioner to split the data into K ∈ {2, 4, 8} clients.

C.4 HYPERPARAMETERS AND IMPLEMENTATION

To promote reproducibility, the source code for FedCF is provided in the supplementary material,
along with the configuration files containing the hyperparameters used.

The project was written using the Flower AI Federated Learning framework (Beutel et al., 2020) for
both base model training and the FedCF framework.

C.5 NON-CONFORMITY SCORES

Adaptive Prediction Sets (APS) The most popular CP method for classification problems is
APS (Romano et al., 2020b). The scoring function first sorts the softmax logits in descending order
and accumulates the class probabilities until the correct class is included. For tighter prediction sets,
randomization is introduced through a uniform random variable.

Formally, let π̂ be a trained classification model with softmaxed output. If π̂(x)(1) ≥ π̂(x)(2) ≥
· · · ≥ π̂(x)(K−1), u ∼ U(0, 1), and ry is the rank of the correct label, then

s(x, y) =

[
ry∑
i=1

π̂(x)(i)

]
− uπ̂(x)y.

APS has two major drawbacks that have led to it being surpassed by other methods in recent CP
literature. First, APS tends to produce large (less efficient) prediction sets. Second, it does not
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account for structure in its formulation. To address these issues, alternatives like RAPS and DAPS
have emerged3.

Regularized Adaptive Prediction Sets (RAPS) Angelopoulos et al. (2022) introduces a reg-
ularization approach for APS. Given the same setup and notation as APS, define o(x, y) =
|{c ∈ Y : π̂(x)y ≥ π̂(x)c}|. Then,

s(x, y) =

[
ry∑
i=1

π̂(x)(i)

]
− uπ̂(x)y + ν ·max{(o(x, y)− kreg), 0},

where ν and kreg ≥ 0 are regularization hyperparameters.

Diffusion Adaptive Prediction Sets (DAPS) Graphs are rich with neighborhood information,
with nodes often exhibiting homophily. This suggests that the non-conformity scores of connected
nodes are likely to be related. To leverage this insight, DAPS H. Zargarbashi et al. (2023) incorpo-
rates a one-step diffusion update on the non-conformity scores. Formally, if s(x, y) is a point-wise
score function (e.g., APS), then the diffusion step yields a new score function

ŝ(x, y) = (1− δ)s(x, y) +
δ

|Nx|
∑

u∈Nx

s(u, y),

where δ ∈ [0, 1] is a diffusion hyperparamter and Nx is the 1-hop neighborhood of x.

D FEDCF WITH ENHANCED PRIVACY

Preserving data privacy is a fundamental pillar of FL mechanisms, as they typically interact with
sensitive client data. In this vein, we formulate an enhanced privacy version of FedCF.

D.1 ENHANCED PRIVACY

To better preserve privacy (compared to the communication efficient approach), we can offload more
of the computation to the client-side, making it harder for the server-side to reverse-engineer or infer
distributional information from the sent quantities. Expanding Equation 7, we get

Ucov(λ, Fm, ga, ỹ)− Lcov(λ, Fm, gb.ỹ)

=
K∑

k=1

γk

{
(α

(ga,ỹ);λ
k + 1)

(nk + 1)L(ga,ỹ)
−

α
(gb,ỹ);λ
k n

(gb,ỹ)
k

(n
(gb,ỹ)
k + 1)(nk + 1)U (gb,ỹ)

}
︸ ︷︷ ︸

Returned by the Client

. (20)

In this formulation, the client sends back the summand for each group, positive label pair, making
the space complexity of the client’s message O

(
|G|2|Y+|

)
–quadratic with respect to the number of

groups and linear with respect to positive labels.

The data privacy improves with this approach compared to the communication efficient version,
since the data sent to the server is the difference of client-level summary statistics, which obfuscates
individual distribution information from the server. However, unlike the communication efficient
approach, the upper-coverage term (Ucov) is not separable from the aggregated sum, thus preventing
us from enforcing Ucov < 1. In limited data settings, this results in more conservative coverage gap
estimates, which increases the prediction set size when using the enhanced privacy approach.

We provide a side-by-side comparison of the communication efficient and enhanced privacy version
of computing the federated coverage gap in Figure 3 in Appendix E.

3RAPS and DAPS have hyperparameters typically tuned on separate held-out data, but we fix them a priori
to preserve data for calibration and evaluation as well as to be consistent with what prior federated conformal
prediction works have done.
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D.2 HYBRID

In real-world scenarios, clients often have varying privacy and communication requirements. For
example, clients in resource-constrained areas may not have the network bandwidth to send the
necessary packets to the centralized server. In our proposed hybrid approach, a client may elect
to be communication efficient, without preventing the remaining clients from using the enhanced
privacy protocol. We present the full server-side algorithm, which combines the communication
efficient, enhanced privacy, and hybrid protocols for the federated coverage gap, in Algorithm 6 in
Appendix E.

D.3 EMPIRICAL COMPARISON

We conduct two experiments using the Fitzpatrick dataset and 8 clients, as well as the larger AC-
SIncome dataset with the continental all partition scheme–48 clients–to test the communication
efficient, enhanced privacy, and hybrid protocols. For the hybrid protocol, we randomly assign half
the clients to each protocol. From Table 6, we observe that all configurations control the fairness
disparity within the closeness criterion; however, if all clients agree upon the communication ef-
ficient protocol, FedCF achieves a better efficiency with a slightly worse fairness disparity, albeit
still within the closeness criterion. Though with more data, we observe that the efficiency gaps are
smaller as seen in Table 7.

Table 6: Fitzpatrick, 8 clients, APS. Each entry is of the form, efficiency/fairness disparity. We
bold the lower fairness disparity value for each comparison. We observe that the communication ef-
ficient approach produces the most efficient prediction sets, while having a similar or higher fairness
disparity. The enhanced privacy approach and hybrid approach have similar performance (w.r.t effi-
ciency and fairness disparity), with minor differences stemming from the stochasticity of FedCF, as
they default to the same coverage-gap aggregation protocol (see Algorithm 6). All methods improve
upon the baseline fairness disparity and control for the closeness criterion.

(a) Enhanced Privacy

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 3.671 / 0.136 7.041 / 0.047 3.671 / 0.136 4.978 / 0.101 3.672 / 0.136 3.940 / 0.111
Pred Eq 3.676 / 0.134 7.042 / 0.047 3.675 / 0.134 4.765 / 0.094 3.672 / 0.134 3.8803 / 0.106

(b) Hybrid (50-50)

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 3.674 / 0.136 6.871 / 0.066 3.670 / 0.136 4.967 / 0.103 3.670 / 0.136 3.939 / 0.111
Pred Eq 3.671 / 0.134 7.041 / 0.047 3.673 / 0.134 5.123 / 0.094 3.671 / 0.134 3.919 / 0.107

(c) Communication Efficient

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 3.674 / 0.137 6.053 / 0.104 3.674 / 0.136 4.890 / 0.103 3.672 / 0.136 3.935 / 0.111
Pred Eq 3.671 / 0.134 6.308 / 0.109 3.674 / 0.134 4.931 / 0.094 3.674 / 0.134 3.876 / 0.106
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Table 7: ACSIncome, Continental All, RAPS. Each entry is of the form, efficiency/fairness dis-
parity. We observe that with sufficient data, each protocol performs at a similar efficiency, and they
all decrease the baseline fairness disparity and control it within the closeness criterion. Our fairness
disparity values are bolded.

(a) Enhanced Privacy

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 2.609 / 0.148 3.037 / 0.086 2.610 / 0.148 2.634 / 0.138 2.613 / 0.148 2.613 / 0.148
Pred Eq 2.607 / 0.160 3.294 / 0.063 2.610 / 0.161 2.661 / 0.138 2.609 / 0.161 2.609 / 0.161

(b) Hybrid (50-50)

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 2.608 / 0.148 3.039 / 0.085 2.609 / 0.148 2.633 / 0.138 2.596 / 0.148 2.596 / 0.148
Pred Eq 2.606 / 0.160 3.277 / 0.079 2.606 / 0.160 2.657 / 0.138 2.595 / 0.161 2.595 / 0.161

(c) Communication Efficient

Metric c = 0.1 c = 0.15 c = 0.2

Base Ours Base Ours Base Ours

Dem Parity 2.608 / 0.148 3.037 / 0.086 2.611 / 0.148 2.634 / 0.138 2.601 / 0.149 2.601 / 0.149
Pred Eq 2.610 / 0.161 3.300 / 0.071 2.607 / 0.160 2.658 / 0.138 2.609 / 0.161 2.609 / 0.161

With these empirical results, note that under the hybrid setting, clients that optimize for communi-
cation efficiency still benefit from the fact that they can operate over a limited bandwidth network
connection. The required bandwidth for a particular client undergoes a factor of ≈ |G|

2 reduction–
i.e. O(|G2||Y+)→ O(2 · |G||Y+), when a client selects the communication efficient protocol while
ensuring the remaining clients benefit from the enhanced privacy protocol. For Fitzpatrick, this re-
sults in the communication overhead (in bytes) being reduced by a factor of three. (|G|/2 = 3, for
Fitzpatrick). For the ACS datasets using the small, large, or all client assignments, this reduction
corresponds to |G|/2 = 4.5
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E ALGORITHMS

Algorithm 4 More Communication Efficient Client-
Side Computation for Coverage Gap

1: procedure CLIENTCG COMM EFFICIENT(k, λ,
FM , ỹ, G)

2: lk = [0]G
3: uk = [0]G
4: for g ∈ G do
5: if use mle then
6: lk[g]←

α
(g,ỹ);λ
k

nk

7: uk[g]←
α

(g,ỹ);λ
k

nk

8: else
9: lk[g]←

α
(g,ỹ);λ
k ·n(g,ỹ)

k((
n
(g,ỹ)
k +1

)
·(nk+1)

)
10: uk[g]←

α
(g,ỹ);λ
k +1

(nk+1)

11: end if
12: end for
13: return lk, uk, nk

14: end procedure

Algorithm 5 Client-Side Computation for Coverage
Gap with Enhanced Privacy

1: procedure CLIENTCG PRIVATE(k, λ, FM , ỹ, G)
2: lk = [0]G
3: uk = [0]G
4: for g ∈ G do
5: if use mle then
6: lk[g]←

α
(g,ỹ);λ
k

(nk·π(g,ỹ))

7: uk[g]←
α
(g,ỹ);λ
k

(nk·π(g,ỹ))
8: else
9: lk[g]←

α
(g,ỹ);λ
k

·n(g,ỹ)
k((

n
(g,ỹ)
k

+1
)
·(nk+1)·U(g,ỹ)

)
10: uk[g]←

α
(g,ỹ);λ
k

+1

((nk+1)·L(g,ỹ))
11: end if
12: end for
13: pw cgk = [0]G×G
14: // Pairwise coverage gap
15: for (ga, gb) ∈ G × G do
16: pw cgk[ga, gb]← uk[ga]− lk[gb]
17: end for
18: return pw cgk, nk

19: end procedure

Figure 3: Pseudocode for the two client-side protocols to compute the coverage gap. The en-
hanced privacy version (on the right) includes the pairwise computation step, which results in a
larger space complexity compared to the more communication efficient version (on the left).
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Algorithm 6 Full Server-side Aggregation for Coverage Gap
1: procedure SERVERCG(λ0, FM , ỹ,G,formulations)
2: n list = [0]K
3: l list = [0]K×G , u list = [0]K×G ▷ Used for comm. efficient formulations
4: pw cg list = [0]K×G×G ▷ Used for private formulations
5: for client k ∈ K in parallel do
6: if formulations == COMM EFFICIENT then
7: Receive (lk, uk, nk) = CLIENTCG COMM EFFICIENT(k, λ0, FM , ỹ,G)
8: l list[k]← lk, u list[k]← uk

9: else
10: Receive (pw cgk, nk) = CLIENTCG PRIVATE(k, λ0, FM , ỹ,G)
11: pw cg list[k]← pw cgk
12: end if
13: n list[k]← nk

14: end for

15: // Initialize final coverage variables
16: N =

∑
k∈K n list[k], K = |K|, Ucov = [0]G , Lcov = [0]G , PWcov = [0]G×G

17: all comm efficient = all(formulations[k] == COMM EFFICIENT)
18: for client k ∈ K do
19: γk = ((n list[k] + 1)/(N +K))
20: if all comm efficient then
21: Ucov +=

(
γk/L

(g,ỹ)
)
· u list[k] ▷ Standard operations are element-wise

22: Lcov +=
(
γk/U

(g,ỹ)
)
· l list[k]

23: else
24: if formulations[k] == COMM EFFICIENT then
25: PWcov += γk ·

(
u list[k] ⊖ l list[k]⊤

)
▷ ⊖ is pairwise differences between two vectors.

26: else
27: PWcov += γk · pw cg list[k]
28: end if
29: end if
30: end for

31: if all comm efficient then
32: Ucov = element wise min(Ucov, [1]G) ▷ Limit upper coverage prior to coverage gap calculation
33: cov gap = max

g∈G
Ucov[g]−min

g∈G
Lcov[g]

34: else
35: cov gap = min

{
max

ga,gb∈G
PWcov[ga, gb], 1

}
▷ Limit Coverage Gap to 1

36: end if
37: return cov gap
38: end procedure
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F DIFFERENTIAL PRIVACY IN FEDCF

FedCF can also be extended to formally consider (ϵ, δ)-differential privacy (DP), a mathematically
rigorous framework for data privacy (Dwork, 2006), where δ is the probability that ϵ-DP is violated.
We can embed DP within our framework via client shuffling and additive noise approaches. Client
shuffling is a global DP approach that is performed after the client sends data. Before the server
receives the data, it goes through a trusted, centralized shuffler to anonymize which client has sent
what data (Erlingsson et al., 2019). Our framework can accommodate client shuffling due to its
parallelism with client-side computation and its additive aggregation approach.

For additive noise, we propose augmenting the values each client sends back with Gaussian
noise (Dwork et al., 2014; Dong et al., 2022), such that a client returns,

h =
(α

(ga,ỹ);λ
k + 1)

(nk + 1)L(ga,ỹ)
−

α
(gb,ỹ);λ
k n

(gb,ỹ)
k

(n
(gb,ỹ)
k + 1)(nk + 1)U (gb,ỹ)

+X, (21)

where X is a Gaussian random variable (R.V). For the communication efficient approach, one would
add a Gaussian R.V. to the upper coverage and lower coverage terms returned by the client. To ensure

(ϵ, δ)-DP, we make X ∼ N
(
0, 2 ln(1.25/δ)(∆g)2

ϵ2

)
, where ∆h is the sensitivty of h–or how much h

can change if one of the points in the client’s dataset changes. For FedCF, h can be affected by data
changes in the covariates (or non-conformity scores), labels, and group memberships.

F.1 EXAMPLE: DIFFERENTIAL PRIVACY BOUNDS FOR ENHANCED PRIVACY PROTOCOL

Observe using the enhanced privacy approach, ∆h ≤ 1
nk

(
1

L(ga,ỹ) +
1

U(gb,ỹ)

)
. For the communication

efficient approach ∆h ≤ 1
nkL(ga,ỹ) for the upper coverage term and ∆h ≤ 1

nkU
(gb,ỹ) for the lower

coverage term. The server will know the sensitivity used by each client and their choice of ϵ and δ.

To demonstrate how the server can estimate the coverage gap, we will consider an example using
the enhanced privacy approach. The result from server aggregation is,

cov gap est(λ, Fm, ga, gb, ỹ)

=

K∑
k=1

γk

{
(α

(ga,ỹ);λ
k + 1)

(nk + 1)L(ga,ỹ)
−

α
(gb,ỹ);λ
k n

(gb,ỹ)
k

(n
(gb,ỹ)
k + 1)(nk + 1)U (gb,ỹ)

+X
(ga,gb,ỹ)
k

}
︸ ︷︷ ︸

Returned by the Client

, (22)

where X
(ga,gb,ỹ)
k ∼ N (0, σ2

k;(ga,gb,ỹ)) such that σ2
k;(ga,gb,ỹ) provides (ϵk, δk)-DP for the client.

Then observe,

cov gap est(λ, Fm, ga, gb, ỹ)

=

K∑
k=1

γk

{
(α

(ga,ỹ);λ
k + 1)

(nk + 1)L(ga,ỹ)
−

α
(gb,ỹ);λ
k n

(gb,ỹ)
k

(n
(gb,ỹ)
k + 1)(nk + 1)U (gb,ỹ)

}
︸ ︷︷ ︸

true coverage gap

+

K∑
k=1

γkX
(ga,gb,ỹ)
k︸ ︷︷ ︸

Guassian R.V

(23)

= cov gap(λ, Fm, ga, gb, ỹ) +X, X ∼ N
(
0,

K∑
k=1

γ2
kσ

2
k;(ga,gb,ỹ)

)
(24)

Using a prespecified probability β we can accept or reject the statement
cov gap est(λ, Fm, ga, gb, ỹ) ≤ c. In other words, we can check whether,
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cov gap(λ, Fm, ga, gb, ỹ) +X ≤ c =⇒ X ≤ c− cov gap(λ, Fm, ga, gb, ỹ)

=⇒ X√
K∑

k=1

γkX
(ga,gb,ỹ)
k︸ ︷︷ ︸

Standard Normal RV

≤ c− cov gap(λ, Fm, ga, gb, ỹ)√
K∑

k=1

γkX
(ga,gb,ỹ)
k

.

Then, if Φ

 c−cov gap(λ,Fm,ga,gb,ỹ)√
K∑

k=1

γkX
(ga,gb,ỹ)

k

 > β, where Φ is the CDF of the standard normal distribution,

we can accept the coverage gap as being less than c. In other words, with probability β, the closeness
criterion is satisfied with λ.

While using Gaussian noise results in a PAC-style guarantee, one could instead add strictly positive
noise via an exponential mechanism Dwork et al. (2014), where the noise X ∼ exp( ϵ

2∆h ) is selected
to satisfy ϵ-DP, i.e., (ϵ, 0)-DP. This would result in an overestimate of the actual coverage gap. If
the overestimate satisfies the closeness criterion, then the server would assert that the exact coverage
gap also satisfies the closeness criterion–thus restoring the strict (non-PAC) guarantee in FedCF.

G FEDCF FOR AUDITING

Auditing tools are vital for regulatory bodies to ensure ML models comply with fairness and safety
standards (Maneriker et al., 2023). In this regard, we present how FedCF can be used to determine
if a federated conformal predictor is fair according to the regulator’s specification of fairness and
closeness criterion, c (U.S. Equal Employment Opportunity Commission, 1979; New York City
Council, 2021; 2023; European Parliament and Council of the European Union, 2024).

To assess compliance, FedCF can use the global threshold (λ) values used by the previously trained
conformal-predictor and provide it to each client. Then, the client should send the sufficient values
calculated via Algorithm 4 (or Algorithm 5) to compute the federated coverage gap. The server
would aggregate these values using Algorithm 6. If the calculated coverage gap is below c, then the
server can assert that the conformal predictor is fair.

Our auditing approach does not require all clients to provide data for auditing. As discussed in
Section 3.1, our guarantees hold assuming that the test-point, (xtest, ytest) ∼

∑K
k=1 γkPk, is sampled

from a mixture of client distributions where γk is the probability the test point is sampled from Pk,
or equivilantly is exchangeable with data from client k. Thus, if a subset of clients used to train the
original federated conformal predictor provides auditing data, then the audit guarantees will hold
assuming that (xtest, ytest) are sampled from a mixture consisting of the subset of clients used for
auditing. This result allows clients to independently decide if they would like to submit data for
auditing.

The auditing tool provided by FedCF can also be used to ascertain the marginal fairness with respect
to each client. Using the auditing procedure described above with data from one client, FedCF can
determine if the global, federated conformal predictor maintains fairness with respect to data from
a single client. If the computed coverage gap is less than c, then the fairness guarantees hold with
regard to (xtest, ytest) ∼ Pk, i.e., the client’s marginal distribution.
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H MORE RESULTS

Here, we provide additional results for the ACS and Pokec-{n,z} datasets. Recall, in each figure,
we use a solid line to represent the average efficiency of the base federated conformal predictors
across different thresholds and a dashed line to represent the corresponding average worst-case
fairness disparity. The bar plot shows the efficiency and worst-case fairness disparity using FedCF,
while the dots indicate the desired fairness disparity. We report the average base performance for
clarity and readability

H.1 IMPACT OF DATA HETEROGENEITY ON ACSEDUCATION: US VS CONTINENTAL US
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(b) Enhanced Privacy.

Figure 4: ACSEducation, Small, Interval Bounds. The plots in the top row indicate the efficiency
with the corresponding fairness disparity plots in the bottom row. We observe that when all US states
are included (and Puerto Rico), the closeness criterion is satisfied. However, the efficiency for Equal
Opportunity is high for all closeness criterion values, especially compared to the continental US
version of ACSEducation in Figure 5. This result stems from a conservative coverage gap estimate
during calibration due to limited covariate representation for some groups.
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(b) Enhanced Privacy.

Figure 5: ACSEducation, Continental Small, Interval Bounds. The top row demonstrates the
efficiency of FedCF when using the continental version of ACSEducation, and its fairness disparity
on the bottom row. Compared to Figure 4, the efficiencies improved (particularly for Equal Oppor-
tunity using RAPS), due to increased covariate representation for all sensitive groups.
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(b) Enhanced Privacy.

Figure 6: ACSEducation, Small, Point Estimates The plots in the top row indicate the efficiency
with the corresponding fairness disparity plots in the bottom row. We observe that using point
estimates will result in a similar or lower efficiency than using the interval bounds approach in
Figure 4, at the cost of a similar or higher fairness violation. Because the MLE does not provide a
finite sample guarantee, the violation can exceed the desired closeness criterion, but will be lower
than the baseline federated conformal predictor.
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(b) Enhanced Privacy.

Figure 7: ACSEducation, Continental Small, Point Estimates. The plots in the top row indicate
the efficiency with the corresponding fairness disparity plots in the bottom row. We observe that
using point estimates will result in a similar or lower efficiency than using the interval bounds ap-
proach in Figure 5, at the cost of a similar or higher fairness violation. Because the MLE does not
provide a finite sample guarantee, the violation can exceed the desired closeness criterion, but will
be lower than the baseline federated conformal predictor.
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H.2 IMPACT OF DIFFERENT SENSITIVE ATTRIBUTES FOR POKEC-{N,Z}
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(a) Communication Efficient.
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(b) Enhanced Privacy.

Figure 8: Pokec-{n,z}, gender. For each plot (a) and (b), the top plots are for the efficiency,
and the bottom plots are for the fairness disparity. The baseline disparity is within the closeness
criterion, so we see no changes in efficiency when using FedCF. This is the case when using either
the communication efficient and enhanced privacy protocols.
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(a) Communication Efficient.
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(b) Enhanced Privacy.

Figure 9: Pokec-{n,z}, region. For each plot (a) and (b), the top plots are for the efficiency, and
the bottom plots are for the fairness disparity. Note that while the baseline disparity is within the
closeness criterion for the test set, the finite-sample guarantee from using the interval bounds ensures
FedCF looks for a better threshold, resulting in a smaller violation with a small cost to efficiency.
This is the case when using either the communication efficient and enhanced privacy protocols.
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(a) Communication Efficient.
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(b) Enhanced Privacy.

Figure 10: Pokec-{n,z}, region and gender. For each plot (a) and (b), the top plots are for the
efficiency, and the bottom plots are for the fairness disparity. In the case of intersectional fairness,
since there are more groups, the violation will be worse than considering a single sensitive attribute.
We observe that in all cases, FedCF produces a threshold that satisfies the closeness criterion, at a
slight cost to efficiency. This is the case when using either the communication efficient and enhanced
privacy protocols.
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I ADDITIONAL RESULTS FROM REBUTTAL PHASE

I.1 JUSTIFICATION FOR DESCENT-BASED APPROACH TO CF

In this experiment, we define the discrete search space needed in (Vadlamani et al., 2025) as
Λ = linspace(q̂(α), 2, num rounds), where q̂(α) is the minimal lambda to satisfy 1 − α cov-
erage of standard federated CP, and 2 represents the upper bound of the RAPS score (Angelopoulos
et al., 2022). We observe that more communication rounds are required for the iterative approach
to achieve performance comparable to our descent-based approach. This is because linspace deter-
mines the precision of the λ values, so by using fewer rounds, we will find a less precise, and in turn
more conservative, λ. This is not a limitation for our descent-based approach, which will continue
to converge to a constraint-satisfying λ. The results in Table 1 below demonstrate that it took 1000
rounds of the Iterative approach to achieve sufficient granularity and match the performance of the
Descent-Based approach, which only used 100 rounds. Thus, we demonstrate approximately a 10×
speedup to achieve comparable performance, justifying the descent-based approach as a necessary
adaptation for the federated learning setting.

Table 8: ACSIncome (small) using RAPS. Each entry is of the form, efficiency/fairness disparity.
We compare the Descent-Based (with 100 communication rounds) and the Iterative method (with
100 and 1000 communication rounds) across different closeness criteria (c).

Method c = 0.1 c = 0.15 c = 0.2

Eff / Disp Eff / Disp Eff / Disp

Descent-Based (rounds=100) 3.127 / 0.096 2.977 / 0.179 2.816 /0.257
Iterative (rounds=100) 3.239 / 0.119 3.137 / 0.139 2.890 / 0.213
Iterative (rounds=1000) 3.120 / 0.137 2.989 / 0.170 2.821 / 0.251
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