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Abstract

Thanks to the tractability of their likelihood, some deep generative models show
promise for seemingly straightforward but important applications like anomaly
detection, uncertainty estimation, and active learning. However, the likelihood
values empirically attributed to anomalies conflict with the expectations these
proposed applications suggest. In this paper, we take a closer look at the behavior
of distribution densities and show that these quantities carry less meaningful
information than previously thought, beyond estimation issues or the curse of
dimensionality. We conclude that the use of these likelihoods for out-of-distribution
detection relies on strong and implicit hypotheses, and highlight the necessity of
explicitly formulating these assumptions for reliable anomaly detection.

1 Introduction

Several machine learning methods aim at extrapolating a behavior observed on training data in order
to produce predictions on new observations. But every so often, such extrapolation can result in
wrong outputs, especially on points that we would consider infrequent with respect to the training
distribution. Faced with unusual situations, whether adversarial (Szegedy et al., 2013; Carlini and
Wagner, 2017) or just rare (Hendrycks and Dietterich, 2019), a desirable behavior from a machine
learning system would be to flag these outliers so that the user can assess if the result is reliable and
gather more information if need be (Zhao and Tresp, 2019; Fu et al., 2017). This can be critical for
applications like medical decision making (Lee et al., 2018) or autonomous vehicle navigation (Filos
et al., 2020), where such outliers are ubiquitous.

What are the situations that are deemed unusual? Defining these anomalies (Hodge and Austin,
2004; Pimentel et al., 2014) manually can be laborious if not impossible, and so generally applicable,
automated methods are preferable. In that regard, the framework of probabilistic reasoning has been
an appealing formalism because a natural candidate for outliers are situations that are improbable or
out-of-distribution. Since the true probability distribution density p∗X of the data is often not provided,
one would instead use an estimator, p(θ)X , from this data to assess the regularity of a point.

Density estimation has been a particularly challenging task on high-dimensional problems. However,
recent advances in deep probabilistic models, including variational auto-encoders (Kingma and
Welling, 2014; Rezende et al., 2014; Vahdat and Kautz, 2020), deep autoregressive models (Uria
et al., 2014; van den Oord et al., 2016b,a), and flow-based generative models (Dinh et al., 2014, 2016;
Kingma and Dhariwal, 2018), have shown promise for density estimation, which has the potential to
enable accurate density-based methods (Bishop, 1994) for anomaly detection.
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Figure 1: There is an infinite number of ways to partition a distribution in two subsets, Xin and Xout
such that P ∗X(Xin) = 0.95. Here, we show several choices for a standard Gaussian p∗X = N (0, 1).

Yet, several works have observed that a significant gap persists between the potential of density-based
anomaly detection and empirical results. For instance, Choi et al. (2018), Nalisnick et al. (2018),
and Hendrycks et al. (2018) noticed that generative models trained on a benchmark dataset (e.g.,
CIFAR-10, Krizhevsky et al., 2009) and tested on another (e.g., SVHN, Netzer et al., 2011) are not
able to identify the latter as out-of-distribution with current methods. Different hypotheses have
been formulated to explain that discrepancy, ranging from the curse of dimensionality (Nalisnick
et al., 2019) to a significant mismatch between p(θ)X and p∗X (Choi et al., 2018; Fetaya et al., 2020;
Kirichenko et al., 2020; Zhang et al., 2020; Wang et al., 2020).

In this work, we propose a new perspective on this discrepancy and challenge the expectation that
density estimation should enable anomaly detection. We show that the aforementioned discrepancy
persists even with perfect density models, and therefore goes beyond issues of estimation, approxima-
tion, or optimization errors (Bottou and Bousquet, 2008). We highlight that this issue is pervasive as
it occurs even in low-dimensional settings and for a variety of density-based methods for anomaly
detection.

2 Density-based anomaly detection

2.1 Unsupervised anomaly detection: problem statement

Unsupervised anomaly detection is a classification problem (Moya et al., 1993; Schölkopf et al.,
2001), where one aims at distinguishing between regular points (inliers) and irregular points (outliers).
However, as opposed to the usual classification task, labels distinguishing inliers and outliers are not
provided for training, if outliers are even provided at all. Given a input space X ⊆ RD, the task can
be summarized as partitioning this space between the subset of outliers Xout and the subset of inliers
Xin, i.e., Xout ∪ Xin = X and Xout ∩ Xin = ∅. When the training data is distributed according to
the probability measure P ∗X (with density p∗X

1), one would usually pick the set of regular points
Xin such that this set contains the majority (but not all) of the mass (e.g., 95%) of this distribution
(Schölkopf et al., 2001), i.e., P ∗X(Xin) = 1− α ∈

(
1
2 , 1
)
. But, for any given α, there exists in theory

an infinity of corresponding partitions into Xin and Xout (see Figure 1). How are these partitions
defined to match our intuition of inliers and outliers? We will focus in this paper on recently used
methods based on probability density.

2.2 Density scoring

When talking about outliers, infrequent observations, the association with probability can be quite
intuitive. For instance, one would expect an anomaly to happen rarely and be unlikely. Since the
language of statistics often associate the term likelihood with quantities like p(θ)X (x), one might
consider an unlikely sample to have a low "likelihood", that is a low probability density p∗X(x).
Conversely, regular samples would have a high density p∗X(x) following that reasoning. This is an
intuition that is not only prevalent in several modern anomaly detection methods (Bishop, 1994; Blei

1We will also assume in the rest of the paper that for any x ∈ X , p∗X(x) > 0.
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(a) An example of a distribution
density p∗X .
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(b) Density scoring method ap-
plied to the distribution density
p∗X .
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e
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(c) Typicality test method (with
one sample) applied to the distri-
bution density p∗X .

Figure 2: Illustration of different density-based methods applied to a particular one-dimensional
distribution p∗X . Outliers are in red and inliers are in blue. The thresholds are picked so that inliers
include 95% of the mass. In Figure 2b, inliers are considered as the points with density above the
threshold λ > 0 while in Figure 2c, they are the points whose log-density are in the ε-interval around
the negentropy −H(p∗X).

et al., 2017; Hendrycks et al., 2018; Kirichenko et al., 2020; Rudolph et al., 2020; Liu et al., 2020)
but also in techniques like low-temperature sampling (Graves, 2013) used for example in Kingma
and Dhariwal (2018) and Parmar et al. (2018).

The associated approach, described in Bishop (1994), consists in defining the inliers as the points
whose density exceed a certain threshold λ > 0 (for example, chosen such that inliers include a
predefined amount of mass, e.g., 95%), making the modes the most regular points in this setting.
Xout and Xin are then respectively the lower-level and upper-level sets {x ∈ X , p∗X(x) ≤ λ} and
{x ∈ X , p∗X(x) > λ} (see Figure 2b).

2.3 Typicality Test

The Gaussian Annulus theorem (Blum et al., 2016) (generalized in Vershynin, 2019) attests that most
of the mass of a high-dimensional standard Gaussian N (0, ID) is located close to the hypersphere of
radius

√
D. However, the mode of its density is at the center 0. A natural conclusion is that the curse

of dimensionality creates a discrepancy between the density upper-level sets and what we expect as
inliers (Choi et al., 2018; Nalisnick et al., 2019; Morningstar et al., 2020; Dieleman, 2020). This
motivated Nalisnick et al. (2019) to propose another method for testing whether a point is an inlier
or not, relying on a measure of its typicality. This method relies on the notion of typical set (Cover,
1999) defined by taking as inliers points whose average log-density is close to the average log-density
of the distribution (see Figure 2c).

Definition 1 (Cover, 1999). Given independent and identically distributed elements
(
x(n)

)
n≤N from

a distribution with density p∗X , the typical set A(N)
ε (p∗X) ⊂ XN is made of all sequences that satisfy:∣∣∣∣∣H(p∗X) +

1

N

N∑
n=1

log p∗X

(
x(n)

)∣∣∣∣∣ ≤ ε,
where H(X) = −E[log p∗X(X)] is the (differential) entropy and ε > 0 a constant.

This method matches the intuition behind the Gaussian Annulus theorem on the set of inliers of a
high-dimensional standard Gaussian. Indeed, using a concentration inequality, we can show that
limN→+∞

(
P ∗(Xi)1≤n≤N

(
A

(N)
ε

))
= 1, which means that with N large enough, A(N)

ε (p∗X) will

contain most of the mass of (p∗X)N , justifying the name typicality.
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3 The role of reparametrization

Given the anomaly detection problem formulation Subsection 2.1, we are interested in reasoning
about the properties a solution ought to satisfy, in the ideal case of infinite data and capacity. Under
these conditions, a reasonable algorithm should, in every possible case considered, converge to the
right solution. In deep learning, the development of universal approximation theorems (Cybenko,
1989; Hornik, 1991; Pinkus, 1999) and the use of proper scoring rule follow these considerations for
example. As density-based methods rely on density estimation, we will assume that p(θ)X = p∗X under
infinite data and capacity. This is an appealing setting as it gives space for theoretical results without
worrying about the underfitting or overfitting issues mentioned by Hendrycks et al. (2018); Fetaya
et al. (2020); Morningstar et al. (2020); Kirichenko et al. (2020); Zhang et al. (2020).

Although we work in practice on points (e.g., vectors), it is important to keep in mind that these points
are actually representations of an underlying outcome. As a random variable, X is by definition the
function from this outcome ω to the corresponding observation x = X(ω). However, at its core,
an anomaly detection solution aims at classifying (without supervision) outcomes through these
measurements. How is the choice of X affecting the problem of anomaly detection? While several
papers studied the effects of a change of representation through the lens of inductive bias (Kirichenko
et al., 2020; Zhang et al., 2020), we investigate the more fundamental effects of reparametrizations f .
To sidestep concerns about loss of information (Winkens et al., 2020), we study the particular case of
an invertible map f .

An example of invertible map is the change of coordinate system from Cartesian (xi)i≤D to hyper-
spherical, consisting of a radial coordinate r > 0 and (D − 1) angular coordinates (φi)i<D,

∀d < D, xd = r

(
d−1∏
i=1

sin(φi)

)
cos(φd)

xD = r

(
D−2∏
i=1

sin(φi)

)
sin(φD−1),

where for all i ∈ {1, 2, ..., D − 2}, φi ∈ [0, π) and φD−1 ∈ [0, 2π). While significantly different,
those two systems of coordinates (or representations) describe the same vector.

Similarly, for f invertible, the measurements x = X(ω) and f(x) = (f ◦X)(ω) represent the same
outcome ω (although differently), and, since x and f(x) are connected by an invertible transformation
f , the same method applied respectively to X or f(X) should classify them with the same label,
either as an inlier or an outlier. The target of these methods is to essentially assess the regularity of
the outcome ω. From this, we could ideally make the following requirement for a solution to anomaly
detection.
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(a) An example of a distribution
density p∗X .
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(b) Example of an invertible func-
tion f from [0, 1] to [0, 1].
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(c) Resulting density p∗f(X) from
applying f to X ∼ p∗X as a func-
tion of the new axis f(x).

Figure 3: Illustration of the change of variables formula and how much the application of a bijection
can affect the density of the points considered in a one-dimensional case. In Figures 3a and 3c, points
x with high density p∗X(x) are in blue and points with low density p∗X(x) are in red.
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(a) A three-dimensional standard Gaussian distribu-
tion density in Cartesian coordinates on the hyper-
plane defined by x2 = 0.

x1

x
3

(b) A three-dimensional standard Gaussian distribu-
tion density in hyperspherical coordinates (plotted in
Cartesian coordinates) on the hyperplane defined by
x2 = 0.

Figure 4: Illustration of the change of variables formula for a three-dimensional standard Gaussian
distribution with a change of coordinate system, from Cartesian to hyperspherical.

Principle. In an infinite data and capacity setting, the result of an anomaly detection method should
be invariant to any continuous invertible reparametrization f .

Do density-based methods follow this principle? To answer that question, we look into how density
behaves under a reversible change of representation. In particular, the change of variables formula
(Kaplan, 1952) (used in Tabak and Turner, 2013; Dinh et al., 2014; Rezende and Mohamed, 2015),
formalizes a simple intuition of this behavior: where points are brought closer together the density
increases whereas this density decreases when points are spread apart. The formula itself is written
as:

p∗f(X)

(
f(x)

)
= p∗X(x)

∣∣∣∣ ∂f∂xT (x)
∣∣∣∣−1 ,

where
∣∣∣ ∂f∂xT (x)

∣∣∣ is the Jacobian determinant of f at x, a quantity that reflects a local change in volume
incurred by f . Figure 3 already illustrates how the function f (Figure 3b) can spread apart points
close to the extremities to decrease the corresponding density round 0 and 1, and, as a result, turns
the density on the left (Figure 3a) into the density on the right (Figure 3c). Figure 4 shows how much
a simple change of coordinate system, from Cartesian (Figure 4a) to hyperspherical (Figure 4b),
can significantly affect the resulting density associated to a point. This comes from the Jacobian
determinant of this change of coordinates:

rD−1

(
D−1∏
d=1

(
sin(φd)

)D−d−1)
.

With these examples, one can wonder to which degree an invertible change of representation can
affect the density and the anomaly detection methods presented in Subsections 2.2 and 2.3 that use it.

4 Leveraging the change of variables formula

4.1 Uniformization

We start by showing that unambiguously defining outliers and inliers with any density-based approach
becomes impossible when considering a particular type of invertible reparametrization of the problem,
irrespective of dimensionality.

Under weak assumptions, one can map any distribution to a uniform distribution using an invertible
transformation (Hyvärinen and Pajunen, 1999). This is in fact a common strategy for sampling from
complicated one-dimensional distributions (Devroye, 1986). Figure 5 shows an example of this where
a bimodal distribution (Figure 5a) is pushed through an invertible map (Figure 5b) to obtain a uniform
distribution (Figure 5c).
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(a) An example of a distribution
density p∗X . Points x with high
density p∗X(x) are in blue and
points with low density p∗X(x) are
in red.
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(b) The corresponding cumulative
distribution function CDFp∗

X
.
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(c) The resulting density from ap-
plying CDFp∗

X
to X ∼ p∗X is

p∗CDFp∗
X

(X) = U([0, 1]), there-

fore we color all the points the
same.

Figure 5: Illustration of the one-dimensional case version of a Knothe-Rosenblatt rearrangement,
which is just the application of the cumulative distribution function CDFp∗X on the variable x.

To construct this invertible uniformization function, we rely on the notion of Knothe-Rosenblatt
rearrangement (Rosenblatt, 1952; Knothe et al., 1957). A Knothe-Rosenblatt rearrangement (notably
used in Hyvärinen and Pajunen, 1999) is defined for a random variable X distributed according
to a strictly positive density p∗X with a convex support X , as a continuous invertible map f (KR)

from X onto [0, 1]D such that f (KR)(X) follows a uniform distribution in this hypercube. This
rearrangement is constructed as follows: ∀d ∈ {1, ..., D}, f (KR)(x) = CDFp∗

Xd|X<d
(xd | x<d)

where CDFp is the cumulative distribution function corresponding to the density p.

In these new coordinates, neither the density scoring method nor the typicality test approach can
discriminate between inliers and outliers in this uniform D-dimensional hypercube [0, 1]D. Since the
resulting density p∗

f(KR)(X)
= 1 is constant, the density scoring method attributes the same regularity

to every point. Moreover, a typicality test on f (KR)(X) will always succeed as

∀ε > 0, N ∈ N∗,∀
(
x(n)

)
n≤N

,

∣∣∣∣∣H (p∗f(KR)(X)

)
+

1

N

N∑
n=1

log p∗f(KR)(X)

(
f (KR)

(
x(n)

))∣∣∣∣∣
=

∣∣∣∣∣H (U ([0, 1]D))+ 1

N

N∑
n=1

log(1)

∣∣∣∣∣ = 0 ≤ ε.

However, these uniformly distributed points are merely a different representation of the same initial
points. Therefore, if the identity of the outliers is ambiguous in this uniform distribution, then
anomaly detection in general should be as difficult.

4.2 Arbitrary scoring

While a particular parametrization can prevent density-based outlier detection methods from separat-
ing between outliers and inliers, we find that it is also possible to build a reparametrization of the
problem to impose to each point an arbitrary density level in the new representation. To illustrate this
idea, consider some points from a distribution whose density is depicted in Figure 6a and a score
function indicated in red in Figure 6b. In this example, high-density regions correspond to areas
with low score value (and vice-versa). We show that there exists a reparametrization (depicted in
Figure 6c) such that the density in this new representation (Figure 6d) now matches the desired score,
which can be designed to mislead density-based methods into a wrong classification of anomalies.
Proposition 1. For any variable X ∼ p∗X with p∗X continuous strictly positive (with X convex) and
any measurable continuous function s : X → R∗+ bounded below by a strictly positive number, there
exists a continuous bijection f (s) such that for any x ∈ X , pf(s)(X)

(
f (s)(x)

)
= s(x).
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(a) An example of a dis-
tribution density p∗X .
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(b) The distribution p∗X
(in black) and the de-
sired density scoring s
(in red).
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(c) A continuous
invertible reparametriza-
tion f (s) such that
p∗
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f (s)(x)

)
=

s(x).
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Figure 6: Illustration of how we can modify the space with an invertible function so that each point x
follows a predefined score. In Figures 6a and 6d, points x with high density p∗X(x) are in blue and
points with low density p∗X(x) are in red.

Proof. We write x to denote (x1, . . . , xD−1, xD) and (x<D, t) for (x1, . . . , xD−1, t). Let f (s) :
X → Z ⊂ RD be a function such that(

f (s)(x)
)
D

=

∫ xD

0

p∗X
(
(x<D, t)

)
s
(
(x<D, t)

) dt,
and ∀d ∈ {1, ..., D−1},

(
f (s)(x)

)
d
= xd. As s is bounded below, f (s) is well defined and invertible.

By the change of variables formula,

∀x ∈ X , p∗f(s)(X)

(
f (s)(x)

)
= p∗X(x) ·

∣∣∣∣∂f (s)∂xT
(x)

∣∣∣∣−1 = p∗X(x) ·
(
p∗X(x)

s(x)

)−1
= s(x).

If Xin and Xout are respectively the true sets of inliers and outliers, we can pick a ball A ⊂ Xin
such that P ∗X(A) = α < 0.5, we can choose s such that for any x ∈ (X \A), s(x) = 1 and for any
x ∈ A, s(x) = 0.1. With this choice of s (or a smooth approximation) and the function f (s) defined
earlier, both the density scoring and the (one-sample) typical set methods will consider the set of
inliers to be (X \A) while Xout ⊂ (X \A), making their results completely wrong. While we can
also reparametrize the problem so that these methods may succeed, such reparametrization requires
knowledge of (p∗X/s)(x). Without any constraints on the space considered, individual densities can
be arbitrarily manipulated, which reveals how little these quantities say about the underlying outcome
in general.

4.3 Canonical distribution

Since our analysis in Subsections 4.1 and 4.2 reveals that densities or low typicality regions are not
sufficient conditions for an observation to be an anomaly, whatever its distribution or its dimension,
we are now interested in investigating whether additional realistic assumptions can lead to some
guarantees for anomaly detection. Motivated by several representation learning algorithms which
attempt to learn a mapping to a predefined distribution (e.g., a standard Gaussian, see Chen and
Gopinath, 2001; Kingma and Welling, 2014; Rezende et al., 2014; Dinh et al., 2014; Krusinga et al.,
2019) we consider the more restricted setting of a fixed distribution of our choice, whose regular
regions could for instance be known. Surprisingly, we find that it is possible to exchange the densities
of an inlier and an outlier even within a canonical distribution.

Proposition 2. For any strictly positive density function p∗X over a convex space X ⊆ RD with
D ≥ 2, for any xin, xout in the interior X o of X , there exists a continuous bijection f : X → X
such that p∗X = p∗f(X), p

∗
f(X)

(
f
(
x(in)

))
= p∗X

(
x(out)

)
, and p∗f(X)

(
f
(
x(out)

))
= p∗X

(
x(in)

)
.
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(a) Points sampled from p∗X =
N (0, I2).

(
f(x)

)
1

( f
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)) 2

(b) Applying a bijection f that pre-
serves the distribution p∗f(X) =

N (0, I2) to the points in Figure 7a.

(
f(x)

)
1

( f
(x
)) 2

(c) The original distribution p∗X with
respect to the new coordinates f(x),
p∗X ◦ f−1.

Figure 7: Application of a transformation using the bijection in Figure 8 to a standard Gaussian
distribution N (0, I2), leaving it overall invariant.

We provide a sketch of proof and the detailed proof in Appendix A.

Since the resulting distribution p∗f(X) is identical to the original f∗X , then their entropies are the same

H
(
p∗f(X)

)
= H (f∗X). Hence, when xin and xout are respectively an inlier and an outlier, whether

in terms of density scoring or typicality, there exists a reparametrization of the problem conserving
the overall distribution while still exchanging their status as inlier/outlier. We provide an example
applied to a standard Gaussian distribution in Figure 7.

This result is important from a representation learning perspective and a complement to the general
non-identifiability result in several representation learning approaches (Hyvärinen and Pajunen,
1999; Locatello et al., 2019). It means that learning a representation with a predefined, well-known
distribution and knowing the true density p∗X are not sufficient conditions to control the individual
density of each point and accurately distinguish outliers from inliers.

5 Discussion

Fundamentally, density-based methods for anomaly detection rely on the belief that density, as a
quantity, conveys useful information to assess whether an outcome is an outlier or not. For example,
several density-based methods operate in practice on features learned independently from the anomaly
detection task (Lee et al., 2018; Krusinga et al., 2019; Morningstar et al., 2020; Winkens et al., 2020)
or on the original input features (Nalisnick et al., 2018; Hendrycks et al., 2018; Kirichenko et al.,
2020; Rudolph et al., 2020; Nalisnick et al., 2019). In general, there is no evidence that the density in
these representations will carry any useful information for anomaly detection bringing into question
whether performance of probabilistic models on this task (e.g., Du and Mordatch, 2019; Grathwohl
et al., 2019; Kirichenko et al., 2020; Liu and Abbeel, 2020) reflects goodness-of-fit of the density
model. On the contrary, we have proven in this paper that density-based anomaly detection methods
are inconsistent across a range of possible representations 2, even under strong constraints on the
distribution, which suggests that finding the right input representation for meaningful density-based
anomaly detection requires privileged information, as discussed in Subsection 4.2. Moreover, several
papers have pointed to existing problems in commonly used input representations; for example, the
geometry of a bitmap representation does not follow our intuition of semantic distance (Theis et al.,
2016), or images can come from photographic sensors tuned to specific populations (Roth, 2009;
Buolamwini and Gebru, 2018). This shows how strong of an otherwise understated assumption it is
to suppose that the methods presented in Subsection 2.2 and Subsection 2.3 would work on input
representations (see Appendix B for a simple counter-example in a bitmap representation). This is

2Alternatively, this can be seen as a change of base distribution used to define a probability density as a
Radon-Nikodym derivative.
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particularly problematic for applications as critical as autonomous vehicle navigation or medical
decision-making.

While defining anomalies might be impossible without prior knowledge (Winkens et al., 2020) as out-
of-distribution detection is an ill-posed problem (Choi et al., 2018; Nalisnick et al., 2019; Morningstar
et al., 2020), several approaches make these assumptions more explicit. For instance, the density
scoring method has also been interpreted in Bishop (1994) as a likelihood ratio method (Ren et al.,
2019; Serrà et al., 2020; Schirrmeister et al., 2020), which is not only invariant to reparametrization
but also more transparent with respect to its underlying assumptions. Inspired by the Bayesian
approach from Choi et al. (2018), one can also work on defining a prior distribution on possible
reparametrizations over which to average (similarly to Jørgensen and Hauberg, 2020).
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(a) Points xin and xout in a uniformly distributed
subset. f (rot) will pick a two-dimensional plane and
use the polar coordinate using the mean xm of xin

and xout as the center.

(b) Applying a bijection f (rot) exchanging the points
xin and xout. f (rot) is a rotation depending on the
distance from the mean xm of xin and xout in the
previously selected two-dimensional plane.

Figure 8: Illustration of the norm-dependent rotation, a locally-acting bijection that allows us to swap
two different points while preserving a uniform distribution (as a volume-preserving function).

A Proof of Proposition 2

Proposition 3. For any strictly positive density function p∗X over a convex space X ⊆ RD with
D > 2, for any xin, xout in the interior X o of X , there exists a continuous bijection f : X → X
such that p∗X = p∗f(X), p

∗
f(X)

(
f
(
x(in)

))
= p∗X

(
x(out)

)
, and p∗f(X)

(
f
(
x(out)

))
= p∗X

(
x(in)

)
.

Let’s first provide a sketch of proof. We rely on the transformation depicted in Figure 8, which can
swap two points while acting in a very local area. If the distribution of points is uniform inside this
local area, then this distribution will be unaffected by this transformation. In order to arrive at this
situation, we use the uniformization method presented in Subsection 4.1, along with a linear function
to fit this local area inside the support of the distribution (see Figure 9). Once those two points have
been swapped, we can reverse the functions preceding this swap to recover the original distribution
overall.

Proof. Our proof will rely on the following non-rigid rotation f (rot). Working in a hyperspherical
coordinate system consisting of a radial coordinate r > 0 and (D − 1) angular coordinates (φi)i<D,

∀d < D, xd = r

(
d−1∏
i=1

sin(φi)

)
cos(φd)

xD = r

(
D−2∏
i=1

sin(φi)

)
sin(φD−1),

xin

xout

xm

(a) When taking two points xin and xout inside the
hypercube [0, 1]D , there is sometimes no L2-ball cen-
tered in their mean xm containing both xin and xout.

L(xin)

L(xout)

(b) However, given xin and xout, one can apply an in-
vertible linear transformation L such that there exists
a L2-ball centered in their new mean L(xm) contain-
ing both L(xin) and L(xout). If the distribution was
uniform inside [0, 1]D , then it is now also uniform
inside L

(
[0, 1]D

)
Figure 9: We illustrate how, given xin and xout in a uniformly distributed hypercube [0, 1]D, one
can modify the space such that f (rot) shown in Figure 8 can be applied without modifying the
distribution.
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where for all i ∈ {1, 2, ..., D− 2}, φi ∈ [0, π) and φD−1 ∈ [0, 2π), given rmax > r0 > 0, we define
the continuous mapping f (rot) as:

f (rot)
(
(r, φ1, . . . , φD−2, φD−1)

)
=

(
r, φ1, . . . , φD−2, φD−1 + π

(rmax − r)+
rmax − r0

[mod 2π]

)
.

where (·)+ = max(·, 0). This mapping only affects points inside B2(0, rmax), and exchanges two
points corresponding to (r0, φ1, . . . , φD−2, φD−1) and (r0, φ1, . . . , φD−2, φD−1+π) in a continous
way (see Figure 8). Since the Jacobian determinant of the hyperspherical coordinates transformation
is not a function of φD−1, f (rot) is volume-preserving in cartesian coordinates.

Let f (KR) be a Knothe-Rosenblatt rearrangement of p∗X , f (KR)(X) is uniformly distributed in [0, 1]D.
Let z(in) = f (KR)

(
x(in)

)
and z(out) = f (KR)

(
x(out)

)
. Since f (KR) is continuous, z(in), z(out)

are in the interior (0, 1)D. Therefore, there is an ε > 0 such that the L2-balls B2
(
z(in), ε

)
and

B2
(
z(out), ε

)
are inside (0, 1)D. Since (0, 1)D is convex, so is their convex hull.

Let r0 = 1
2

∥∥z(in) − z(out)∥∥
2

and rmax = r0 + ε. Given z ∈ (0, 1)D, we write z‖ and z⊥ to denote
its parallel and orthogonal components with respect to

(
z(in) − z(out)

)
. We consider the linear

bijection L defined by
L(z) = z‖ + ε−1rmaxz⊥.

Let f (z) = L ◦ f (KR). Since L is a linear function (i.e., with constant Jacobian), f (z)(X) is
uniformly distributed inside L

(
[0, 1]D

)
. If z(m) is the mean of z(in) and z(out), then f (z)(X )

contains B2
(
L
(
z(m)

)
, rmax

)
(see Figure 9). We can then apply the non-rigid rotation f (rot) defined

earlier, centered on L
(
z(m)

)
to exchange L

(
z(in)

)
and L

(
z(out)

)
while maintaining this uniform

distribution.

We can then apply the bijection
(
f (z)

)−1
to obtain the invertible map f =

(
f (z)

)−1 ◦ f (rot) ◦ f (z)
such that p∗f(X) = f∗X , p∗f(X)

(
f
(
x(in)

))
= p∗X

(
x(out)

)
, and p∗f(X)

(
f
(
x(out)

))
= p∗X

(
x(in)

)
.

B A single-pixel counter-example

We generate 56 individual pixels as three-dimensional vectors according to a distribution built as
follows: let pw = U([255, 256]3) (corresponding to the color white), pb = U([0, 10]3) (corresponding
to shades of black), and pout = U([10, 11]3) (corresponding to a dark shade of grey), the pixels
follow the distribution

pX(x) = (1− β)
(
α · pw(x) + (1− α) · pb(x)

)
+ β · pout(x),

where α = 1001−3 and β = 10−4. Once generated, we concatenate these pixels in a 125× 125 RGB
bitmap image in Figure 10 for a more convenient visualization.

Visually, a common intuition would be to consider white pixels to be the anomalies in this figure.
However, following a construction similar to Subsection 4.2, the final densities corresponding to pixels
from pw (equal to α(1−β)) and pb (equal to (1−α)(1−β)10−3) are equal to 1001−3(1−10−4) ≈
10−3, and the final density corresponding to pixels from pout (equal to β) is 10−4. Therefore,
none of the methods presented in Subsection 2.2 (density scoring) and Subsection 2.3 (typicality)
would consider the white pixels (in [255, 256]3) as outliers. They would only classify the pixels of a
particular dark shade of grey in [10, 11]3 as outliers.
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Figure 10: We generated 56 pixels according to the procedure described in ?? and concatenate
them in a single 125× 125 RGB bitmap image for an easier visualization. While, visual intuition
would suggest that white pixels are the outliers in this figure, density-based definitions of anomalies
described Subsection 2.2 (density scoring) and Subsection 2.3 (typicality) would consider a specific
dark shade of grey to be the outlier.
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