
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING THE LIMITATIONS OF LAYER SYNCHRO-
NIZATION IN SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural-network processing in machine learning applications relies on layer syn-
chronization. This is practiced even in artificial Spiking Neural Networks (SNNs),
which are touted as consistent with neurobiology, in spite of processing in the brain
being in fact asynchronous. A truly asynchronous system however would allow all
neurons to evaluate concurrently their threshold and emit spikes upon receiving
any presynaptic current. Omitting layer synchronization is potentially beneficial,
for latency and energy efficiency, but asynchronous execution of models previously
trained with layer synchronization may entail a mismatch in network dynamics
and performance. We present and quantify this problem, and show that models
trained with layer synchronization either perform poorly in absence of the synchro-
nization, or fail to benefit from any energy and latency reduction, when such a
mechanism is in place. We then explore a potential solution direction, based on a
generalization of backpropagation-based training that integrates knowledge about
an asynchronous execution scheduling strategy, for learning models suitable for
asynchronous processing. We experiment with 2 asynchronous neuron execution
scheduling strategies in datasets that encode spatial and temporal information, and
we show the potential of asynchronous processing to use less spikes (up to 50%),
complete inference faster (up to 2x), and achieve competitive or even better accu-
racy (up to ∼10% higher). Our exploration affirms that asynchronous event-based
AI processing can be indeed more efficient, but we need to rethink how we train
our SNN models to benefit from it.

1 INTRODUCTION

Artificial Neural Networks (ANNs) are the foundation behind many of the recently successful
developments in AI, such as in computer vision Szegedy et al. (2017); Voulodimos et al. (2018) and
natural language processing Vaswani et al. (2017); Brown et al. (2020). To match the complexity of
the ever more demanding tasks, networks have grown in size, with advanced large language models
having billions of parameters Zhao et al. (2024). With this the power consumption exploded Luccioni
et al. (2023), limiting the deployment to large data centers. In an effort to learn from our brain’s
superior power efficiency, and motivated in neuroscience research, SNNs Maass (1997) bolster as
an alternative. They use discrete binary or graded spikes (events) for communication, are suited
for processing sparse features He et al. (2020), and when combined with asynchronous event-based
processing are assumed to enhance latency and energy efficiency. Sparsity leads to fewer synaptic
operations, resulting in low energy consumption, and asynchronous operation potentiates concurrent
evaluation of all neurons in the network purely event-driven, leading to low latency.

Conventional highly parallel ANN compute accelerators, such as Graphics Processing Units (GPUs)
and Tensor Processing Units (TPUs), which are primarily optimized for dense vectorized matrix
operations, face inherent challenges in exploiting unstructured and temporal sparsity for improving
their energy efficiency. Targeting the commonplace practiced way of executing ANNs layer-after-
layer has left them with poor support for asynchronous processing too (for improving latency). At
best, they parallelize processing within a layer and/or pipeline processing across layers. This leaves
an exploration space for neuromorphic processors that try to excel in handling the event-driven nature
of SNNs and leverage asynchronous concurrent processing, offering efficiency advantages in various
tasks Ivanov et al. (2022); Kang et al. (2020a); Müller-Cleve et al. (2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, despite this advancement, the training of SNNs today very often conveniently relies on
conventional end-to-end ANN training methods for performance Dampfhoffer et al. (2023), which
organize/synchronize computations per-layer rather than event-driven per neuron Guo et al. (2023).
Specifically, at any given discrete timestep within a neuron layer, first, the total of all presynaptic
currents (from the preceding layer) must be computed and integrated, before postsynaptic neurons
in the current layer update their state and evaluate their activation function (i.e. emitting new
spikes). For consistency, neuron evaluation in one layer must thus complete and synchronize before
proceeding to evaluate neurons of a next layer. This breadth-first processing approach (with per layer
synchronization), while it facilitates use of vectorized computing hardware (such as GPUs) during
training, it introduces dependencies on per-layer synchronization that could impact model accuracy if
altered during inference. To avoid this situation, even asynchronous neuromorphic processors, such as
Loihi Davies et al. (2018), have integrated mechanisms to ensure (and enforce) layer synchronization.

This leaves a crucial (efficiency) aspect of SNNs relatively unexplored: the ability to allow spiking
completely asynchronously across the network without having separate phases for integration and
firing, just like in our brain Zeki (2015). In that neurophysical modus operandi, neurons can fire
and receive currents anywhere in the network at any time, completely independent, a concept we
term "network asynchrony". Allowing network asynchrony can be advantageous Pfeiffer & Pfeil
(2018), as we confirm in our results. Spike activity can quickly propagate deep into the network
without being bound by synchronization barriers, thus reducing latency. Furthermore, adhering
to layer synchronization could lead to increased computational overhead as the network scales, as
suggested by Amdahl’s law Rodgers (1985). This implies that the overhead grows non-linearly by
adding more computational units to a group that needs to be synchronized at some point in time
Yavits et al. (2014). With network asynchrony, such groups can be kept smaller, and the number of
synchronization moments can be minimized, potentially reducing the waiting time.

In this paper, we demonstrate this problem and explore solutions. Using a simulation environment
that implements the concept of network asynchrony, we provide quantitative results on benchmark
datasets (with different spatio-temporal information content) and network topologies of two or more
hidden layers, which show the performance degradation and latency/energy inefficiency resulting
from changes in model dynamics when trained with layer synchronization and later deployed
for asynchronous inference. Next, we explore a potentially promising solution by proposing a
generalisation of gradient (backpropagation-based) training, that can be parameterized with various
neuron execution scheduling strategies for asynchronous processing, and vectorization abilities
present in various neuromorphic processors. We show that using this training method, it is possible
not only to recover the compromised accuracy, but also to fulfil the expectation of saving energy and
improving latency under asynchronous processing (when compared to the conventional breadth-first
processing in GPUs). This work opens a path for design space explorations aimed to bridge the
efficiency gap between neural network model training and asynchronous processor design.

2 RELATED WORK

The term “asynchronous processing” is often used whenever neurons can be active in parallel and
communicate asynchronously, even if some synchronization protocol is enforced to control the order
of spikes and synaptic current processing Rathi et al. (2023); Kang et al. (2020b); Shahsavari et al.
(2023); Yousefzadeh et al. (2019). Another kind of asynchrony is related to input coding Guo et al.
(2021). In this context, synchronizing means grouping spikes (events) into frames, a topic that has
extensively been researched He et al. (2020); Messikommer et al. (2020); Qiao et al. (2024); Ren
et al. (2024); Taylor et al. (2024). Neither of the two, however, is the focus of this work. Here,
asynchrony refers solely to activity within the network not being artificially bound by any order
restriction. This has been researched for simulating biologically accurate neural networks Lytton &
Hines (2005); Magalhães et al. (2019; 2020), but remains under-explored in the context of SNNs for
machine learning. In this context, processing in layers is just one convenient way Mo & Tao (2022).

Few event-driven neuromorphic processors, such as µBrain Stuijt et al. (2021) and Speck Caccavella
et al. (2023), are fully event-driven and lack any layer synchronization mechanism. This makes them
notorious for training out-of-the-box with mainstream model training tools that rely on per-layer
synchronization (e.g., PyTorch). Speck developers propose to train their models with hardware
in-the-loop Liu et al. (2024) to reduce the mismatch between the training algorithms and the inference

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

hardware. However this method does not provide a general solution for training asynchronous neural
networks. Others, like SpiNNaker Furber et al. (2014) and TrueNorth Akopyan et al. (2015), use
timer-based synchronization, or Loihi Davies et al. (2018) and Seneca Tang et al. (2023) use barrier
synchronization between layers, in order to warrant that the asynchronous processing dynamics on
hardware are aligned at layer boundaries with models trained in software (with layer synchronization).
This, however, entails an efficiency penalty, as we will show.

Functionally, the most suitable type of model for end-to-end asynchronous processing is probably
rate-coded SNN models, whereby neurons can integrate state and communicate independently from
any other neuron. These models are trained like ANNs Zenke & Vogels (2021); Lin et al. (2018);
Diehl et al. (2015) or converted from pre-trained ANNs Rueckauer et al. (2017); Kim et al. (2020).
Therefore, to be accurate under asynchronous processing, it is required to run the inference for a long
time, reducing the latency and energy benefit of using SNNs Sengupta et al. (2019).

Alternative to rate-coding models are temporal-coding models, with time-to-first spike (TTFS) Park
et al. (2020); Srivatsa et al. (2020); Kheradpisheh & Masquelier (2020); Comşa et al. (2022) or order
encoding Bonilla et al. (2022). They are very sparse (hence energy efficient) but very cumbersome
and elaborate to convert from ANNs Painkras et al. (2013); Srivatsa et al. (2020) or train directly
Kheradpisheh & Masquelier (2020); Comşa et al. (2022), less tolerant to noise Comşa et al. (2022),
and their execution so far, while event-based, requires some form of synchronization or a reference
time. Efficiency is thus only attributable to the reduced number of spikes, all of which need to
be evaluated in order before a decision is reached. Other alternative encodings for event-based
processing of SNNs include phase-coding Kim et al. (2018) and burst coding Park et al. (2019), which
are, however, no more economical than rate coding and have not been shown, to our knowledge, to
attain competitive performance.

The approach presented in this paper is, in fact, unique in enabling the trainability of models for
event-based asynchronous execution, providing efficiency from processing only a subset of spikes,
and delivering consistent performance and tolerance to noise. Also relevant to the works in this paper
are SparseProp Engelken (2024) and EventProp Wunderlich & Pehle (2021) on efficient event-based
simulation and training, respectively. EventPropWunderlich & Pehle (2021) is potentially more
economical than discrete-time backpropagation for training event-based models for asynchronous
processing (and fully compatible with the work in this paper), but it has not been shown how its
complexity scales beyond 1 hidden layer. SparseProp Engelken (2024) proposes an efficient neuron
execution scheduling strategy for asynchronous processing in software simulation. An effective
hardware implementation of this scheduling strategy can be found in Monti et al. (2017), which
has inspired the herein proposed “momentum schedule”. Moreover, we advance this research by
demonstrating how to train SNN models using this event scheduler.

3 METHODS FOR SIMULATING AND TRAINING OF ASYNCHRONOUS SNNS

In this section, we provide an overview of our methodology. We start by showing how one can
simulate asynchronous SNN processing (implementing network asynchrony) and then we explain
how this can be integrated in back-propagation training, to prepare good performing and efficient
asynchronous models.

3.1 SIMULATING ASYNCHRONOUS SNNS

The SNNs used in this work consist of L layers of Leaky Integrate and Fire (LIF) neurons He et al.
(2020), with each layer l for 1 ≤ l ≤ L having N (l) neurons and being fully-connected to the next
layer l+1, except for the output layer. Each input feature is connected to all neurons in the first layer.
Every connection has a synaptic weight. Using these weights, we can compute the incoming current
x per neuron resulting from spikes, as per equation 3.

Each LIF neuron has a membrane potential exponentially decaying over time based on some mem-
brane time constant τm. We use the analytical solution (see equation 4) to compute the decay. By
keeping track of the membrane potential u[t] and the elapsed time ∆t since time t, it is possible to
precisely calculate the membrane potential for t+∆t. Therefore, computations are required only
when x[t+∆t] > 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To determine if a neuron spikes, a threshold function Θ checks if the membrane potential exceeds a
threshold Uthr, following equation 5. If Θ(u) = 1, the membrane potential is hard reset to 0. Soft
reset is another option Guo et al. (2022) as well as refractoriness Sanaullah et al. (2023). However for
simplicity here we only experiment with hard reset.

3.1.1 EVENT-DRIVEN STATE UPDATES

We can vectorize the computations introduced in the previous section to perform them on a per-
layer basis. This is herein referred to as the "layered" inference approach, which implies layer
synchronization, since all neurons of one layer need to evaluate their state, before any neuron in a
down-stream layer does the same. An alternative to this situation is an event-driven approach, where
the computations for state updates are applied in response to new spike arrivals. If additionally spikes
can be emitted (threshold evaluation) at any point in time (e.g in response to any individual synaptic
current), by any neuron in the network, affecting the states of postsynaptic neurons independently of
others, then (we assume) this approach can achieve a true representation of network asynchrony.

When using network asynchrony, the network dynamics evolve with each spike. Any single spike can
generate multiple currents downstream, each linked to a specific stimuli at timestep t, determined by
the initiating input activity. Let Kt represent the atomic computation that is executed at one neuron
in the network, in response to stimulus presented at the network at timestep t, and which will update
the state of the neuron and evaluate its threshold function (activation). The exact computations for a
LIF neuron can be found in section A.2. The order in which Kt is executed across neurons inside the
entire network (and not just in one layer) affects the output of the network due to the non-linearity
in Kt (see figure 1 for an example of the effect this can have). Here for simplicity, it is assumed
that the fan-out currents resulting from the same spike are processed as a group at once (e.g. no
heterogeneous propagation delays exist), and processing is done when an emitted spike is scheduled
for processing, i.e., when the spike is propagated. This may not necessarily be the same moment as
when the spike was emitted due to network asynchrony. Because of these assumptions, analyzing
the spike propagation order gives the same insights as analyzing the execution order of Kt (across
neurons in the network).

Unlike the layered approach, in this modus operandi because of the per-input current evaluation of the
firing threshold neurons could theoretically fire more than once at the same timestep t (in response
to the same input stimulus). We prevent this by inducing a neuron to enter a refractory state for the
remainder of time t. In this state, the neuron keeps its membrane potential at 0. This makes the model
causally simpler, more tractable, and more "economic" when energy consumption is coupled to spike
communication. These aspects also may also give an explicit retrospectively justification for the
neurophysically observed refractoriness Berry & Meister (1997).

Figure 1: With network asynchrony, currents from neurons xi in layer l may come to neuron y in layer
l+ 1 at any time in any order. It may spike before all inputs have been received in a discrete timestep.
Illustrated is the exceedance of the firing threshold at point A. All inputs, and thus information after
A is missed, i.e., the spiking decision is made based on partial information. In this example, if layer
synchronization is enforced, neuron y would wait for 100% of the input and will not spike.

Two resolutions of time We apply input framing as typically done for inputs from a DVS sensor,
accumulating timestamped events in discrete time-bins, and providing these frames as inputs to the
network in discrete timesteps. The timestep size refers to the time-interval between the timestamps
of the first (or last) events in the time-bins of two consecutive timesteps. Timesteps correspond to
one concept of timing (resolution) with same semantics as in RNNs, and which we refer to here as
macro-time. At each timestep, input event frames initiate network activity, in a so-called forward
pass, making all new spikes contingent on the timestep.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The order of spikes propagated though the network during a timestep establishes another notion of
“time” in a forward pass (we call it “micro-time”), which is discretized in so-called forward steps. A
forward step is associated with the processing of one or a group of events (in case of vectorization),
and the number of forward steps measures time to complete inference. One can realize that in case of
layered inference the number of forward steps is fixed and equals the number of layers, but this is not
the case for asynchronous processing.

3.1.2 VECTORIZED NETWORK ASYNCHRONY

The event-driven (neuron state) update rules for network asynchrony as introduced in the previous
section can be vectorized by selecting a number of spikes for processing them simultaneously.
This allows us to consider the entire spectrum of possibilities between per-layer synchronization
at one extreme (by assuming a vector size equal to a layer size), and “complete” asynchrony
at the other extreme, where each spike event is processed entirely independently of all others.
Additionally, vectorization makes acceleration possible by exploiting the parallelization features and
vector pipelines of accelerators, where these models execute, leading to pragmatic simulation of
network asynchrony.

During the simulation, the states of all the N =
∑L

l=1 N
(l) neurons in the network are stored in

vectors. Vector x ∈ RN tracks the computed input currents for the neurons, u ∈ RN the membrane
potential of the neurons, s ∈ NN the emitted spikes awaiting processing, and c ∈ NN which neurons
have spiked in the current forward pass. For any of those vectors, the indices from

∑l−1
k=1 N

(k) to∑l
k=1 N

(k) represent the values for the neurons in layer l, for 1 ≤ l ≤ L where N (0) = 0.

Algorithm 1 outlines the processing during a forward pass (propagation of the spikes of an input
frame through the network). Input spikes are available in sin ∈ NNin (not to be confused with s)
where Nin is the number of input features. Each forward pass consists of forward steps (the code
within the while loop), which update the state of a set of neurons based on the spikes selected for
propagation. A complete list of parameters can be found in section A.5.

Algorithm 1 Vectorized network asynchrony forward pass

Input: input spikes sin ∈ NNin , previous forward pass time t0 ∈ R, current forward pass time t1 ∈ R, neuron
state u ∈ RN at time t0, forward group size F ∈ N>0

Output: spike count c ∈ NN

∆t← t1 − t0
u← NeuronDecay(u,∆t)
x← InputLayerForward(sin)
s← 0N ▷ Vector with zeros of length N
c← 0N

while (Sum(x) ̸= 0 or Sum(s) ̸= 0) and ¬EarlyStop(s) do
snew,u← NeuronForward(x,u)
s← s+ snew ▷ Enqueue new spikes
c← c+ snew ▷ Update spike count
sselected ← SelectSpikes(s, F)
s← s− sselected ▷ Dequeue selected spikes
x← NetworkLayersForward(sselected)

end while

The forward pass ends either when all spike activations have been processed ("On spiking done" stop
condition), or when any neuron in the output layer has spiked one or more (default is one) forward
steps ago ("On output" stop condition). The latter is checked in the EarlyStop function.

The SelectSpikes function defines how to select a subset of the emitted spikes for propagation. The
function selects F spikes at a time, or less if there are less than F remaining spikes ready to be
propagated. The method of spike selection is determined by a scheduling policy.

For the experiments here two policies are exercised. The intend is that different scheduling strategies
can be tested for their effectiveness in capturing tractably asynchronous processing dynamics. The
first, Random Scheduling (RS), randomly picks spikes from the entire network. The second, Mo-
mentum Scheduling (MS), prioritizes spikes from neurons based on their membrane potential upon
exceeding their threshold.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The neuron model-specific (LIF) behavior is expressed in the NeuronDecay and NeuronForward
functions. This entails the computations for state updates (see section 3.1) for all neurons in the
network (NeuronDecay) or for only those neurons receiving input currents in the forward step
(NeuronForward), with added restriction that spiking is only allowed once per forward pass.

The network architecture is defined by the InputLayerForward and NetworkLayersForward functions.
These functions compute the values of synaptic currents from spikes. This follows from equation 3.

Imitating neuromorphic accelerator hardware Neuromorphic processors come in an number of
variations, but most of them have a template architecture that interconnects many tiny processing
cores with each other. This design enables a scalable architecture that supports fully distributed
memory and compute systems. In this template, each processing core has its own small synchronous
execution domain, but the cores operate asynchronously among each other. For instance, the
architectures of Loihi Davies et al. (2018), SENECA Yousefzadeh et al. (2022), SpiNNaker Painkras
et al. (2013), Speck Caccavella et al. (2023), TrueNorth Akopyan et al. (2015), POETS Shahsavari
et al. (2021) and µBrian Stuijt et al. (2021) all follow this template. Our asynchronous processing
simulation environment imitates the behavior of a generalized neuromorphic processor by simulating
the asynchronous interactions of several tiny synchronous domains and can be also configured to
reproduce more specialized intrinsic behaviors of many of those processors (see table 5).

3.2 TRAINING ASYNCHRONOUS SNNS

We use backpropagation to train the model weights, and specifically when stimulous is presented
across multiple timesteps (forward passes), such as for sequential or temporal data, then this is Back-
propagation Through Time (BPTT). Following common practise to address the non-differentiability
of the threshold function, the surrogate gradient method is used Zenke & Vogels (2021). Specifically
the arctan function Fang et al. (2021), (see section A.3 for details) provides a continuous and smooth
approximation of the threshold function.

Class prediction is based on the softmaxed membrane potentials (for CIFAR-10) or spike counts over
time (for the other datasets) of the neurons in the output layer, as described in section A.4. The loss is
minimized using the Adam optimizer, with β1 = 0.9 and β2 = 0.999.

3.2.1 UNLAYERED BACKPROPAGATION

We refer to “conventional” SNN training with per-layer synchronization using backpropagation
Dampfhoffer et al. (2023), as "layered backpropagation".

The vectorized network asynchronous processing approach is differentiable as well, and can be
used with backpropagation. We refer to this as "unlayered backpropagation". Combined with
BPTT unrolling, this method implies a two level unrolling. At the outer level, unrolling is based on
discretization of time and thus the input across (as usually fixed number of) timesteps. At the inner
level, unrolling is based on the F -grouping (and vectorized processing) of spikes in forward steps,
subject to the scheduling policy, applied to the emitted spikes by neurons; from the beginning of the
current timestep up-until the output is read.

Note, that the dependence on the scheduling policy, applied on a variable number of activations
(across timesteps and data samples), in F -sized groups is the fundamental difference from layered
back-propagation, and leads to different gradient state being built up in the computation graph. This
state now captures the dynamics of asynchonous processing. For a single backward pass in a timestep
of BPTT, which is applied in a similar way as the layered backpropagation equivalent, it is given that:

∂Lt

∂W
=

∂Lt

∂ct

Nt∑
i=1

(
∂ct
∂si

∂si
∂W

) (1)

where t is the time(step) of the forward pass, W refers to the trainable weights, Lt is the loss, ct
is the spike count at the end of the forward pass, and si is the emitted spikes vector at the end of
the forward step i. The overall gradient (state) depends on the total number of forward steps Nt in
the forward pass and the spikes processed in each forward step. The number of steps scales linearly
with the number of spikes processed in the forward pass, and it is important to understand that due to
asynchronous processing the number of spikes processed until the evaluation of the loss function may

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

be (well) less than the total number of spikes emitted throughout the forward pass. Since for every
forward step, the computations are repeated, the time complexity scales linearly with the number of
forward steps, O(Nt). The same applies to the space complexity.

During the backward pass, the spikes in si which are not selected for processing can skip the
computation f for that step:

∂si
∂W

=
∂f(si−1;selected, ui−1, xt,W)

∂W
+

∂si−1;not selected

∂W
(2)

Skip connections have been researched in deep ANNs and identified as a contributor to the stability of
the training process Orhan & Pitkow (2018). This may apply to the skip in unlayered backpropagation
as well. To what extent this is the case is not explored in this work.

Note that under this generalization, layered backpropagation corresponds to F -group the size of a
layer, populated with a static round-Robin execution schedule following neuron index order within a
layer, and re-reset across consecutive layers).

3.2.2 REGULARIZATION TECHNIQUES

During training, we use regularization to prevent overfitting and/or enhance model generalization.
These techniques are not used during inference.

Input spike dropout. Randomly omits input spikes with a given probability. The decision to drop
each spike is independent according to a Bernoulli distribution.

Weight regularization. Adds weight decay to the loss function: LλW
(W) = L(W) + λW ∥W∥22

where λW is the regularization coefficient, L is the loss given the weights, and W are all the weights.

Refractory dropout. With some probability, do not apply the refractory effect, allowing a neuron to
fire again within the same forward pass.

Momentum noise. When using momentum scheduling, noise sampled from U(0, 1) and multiplied
by some constant λMS is added to the recorded membrane potential while selecting spikes.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We carried out our experiments on SNN models trained primarily in three common benchmarking
datasets, each of them has different structure: N-MNIST Orchard et al. (2015), SHD Cramer et al.
(2020), and DVS gestures Amir et al. (2017). N-MNIST has purely spatial structure, SHD purely
temporal, and DVS gestures combines both spatial and temporal (input framing in DVS gesture
is done such that an entire gesture motion and contour is not revealed within a single frame). We
also repeat some of the experiments with a fourth dataset, CIFAR-10 Krizhevsky (2012), in a more
compex VGG-style network, which we will discuss in section 5. More details on the datasets and
network topologies, can be found in section A.6.1. Table 1, summarizes the parameterization of the
experiments and the reported results. The network architecture and hyperparameters are given in table
6. State-of-the art performance for these tasks can be achieved with reasonably shallow and wide
models. We chose however to train narrow, but deeper network architectures so that the effects of
absence of layer synchronization can be revealed in the comparison (because of this bias in network
topology the accuracy results shown can vary from the top state of the art). In sectionA.7, we also
provide an additional ablation with regard to how various training hyperparameters affect accuracy
(forward group size, refractory dropout, and momentum noise during training).

4.2 NETWORK ASYNCHRONY INCREASES NEURON REACTIVITY

As observed in figure 2 (top row) during asynchronous inference, neurons are more reactive, i.e. a
neuron can spike after integrating only a small number of incoming currents. With layer synchroniza-
tion, this effect is averaged out as neurons are always required to consider all presynaptic currents
(which are more likely to cancel each other out). For inference with F = 8, artifacts in the number of
currents to spike can be observed, because each forward step propagates currents resulting from 8

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Parameterization of experiments and results.

Parameterization Description

Training method Training with layered backpropagation is marked as "Layered" and with unlayered
backpropagation as "Unlayered [scheduling strategy]".

Inference method Inference with layer synchronization is marked as "Layered" and with network
asynchrony as "Async [scheduling strategy]".

Scheduling strategy How to select spikes from the queue. Can be random ("RS"), or based on the
membrane potential just before spiking ("MS").

Forward group size F Number of spikes to select for processing at the same time. Default is 8, both
during training and inference.

Stop condition Forward pass terminates: If all network activity drains ("On spiking done") or one
forward step after the first spike is emitted by the output layer ("On output"). The
default is "On spiking done" during training and "On output" during inference.

spikes, causing neurons to integrate more currents than necessary for firing. Similar artifacts might
also occur in neuromorphic chips equipped with fixed-width vector processing pipelines; making
these observations insightful into the behavior of such hardware.

Figure 2: (Top row) Number of currents integrated by a neuron before spiking, recorded per neuron
and per forward pass for all samples and neurons (excluding the neurons in the input layer). The
Y-axis shows the relative frequency of the number of currents integrated before spiking. (Bottom
row) Mean number of spikes per neuron during inference of all samples in the test. Error bars show
the 25th and 75th percentiles. (Models in this figure were trained with layered backpropagation.)

One expects that more reactive neurons imply higher activation density. Interestingly, this is not
necessarily the case for the models trained for asynchronous inference! In figure 2 (bottom row) we
see that if we wait for the network to “drain” of spike activity during a forward pass the total number
of spikes will indeed be higher. But if the forward pass terminates as soon as a decision is made,
asynchronous models are consistently sparser. This is because asynchronous processing allows spike
activity to freely flow through to the output and not be blocked at every layer for synchronization.

4.3 UNLAYERED BACKPROPAGATION RECOVERS ACCURACY AND INCREASES SPARSITY

Network asynchrony negatively affects the performance of the models trained with layered backprop-
agation in all three datasets (table 2). This is likely the “Achilles’ heel” of neuromorphic processing
today. However, we observe that the accuracy loss is remediated when training takes into account
asynchronous processing dynamics, which also significantly increases sparsity (by about 2x). We
witnessed that the accuracy of models trained and executed asynchronously is consistently superior
under the two scheduling policies we considered. This result conjectures that neuromorphic AI is
competitive and more computationally efficient.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3 reveals another interesting result. It depicts how accuracy evolves as we allow more forward
steps in the forward pass after the initial output during asynchronous inference. We see that because
of the free flow of key information depth-first, models trained with unlayered backpropagation obtain
the correct predictions as soon as the output layer gets stimulated. Activity that is likely triggered by
“noise” in the input is integrated later on. Momentum scheduling is particularly good at exploiting
this to boost accuracy.

Table 2: Accuracy and activation density results. More details about these metrics in section A.6.2.

N-MNIST SHD DVS gesture
Training Inference Acc. Density Acc. Density Acc. Density

Layered Layered 0.949 3.987 0.783 14.386 0.739 46.473
Layered Async RS 0.625 3.652 0.750 13.905 0.701 44.140
Unlayered RS Async RS 0.956 1.504 0.796 5.100 0.777 25.140
Unlayered MS Async MS 0.963 1.476 0.816 6.224 0.856 26.686

Figure 3: Accuracy as function of forward steps after the first spike in the output layer. Given that
F = 8, each extra forward step processes another 8 spikes, assuming enough spikes are available.
Dashed lines show the accuracy after all spike activity has been “drained” out of the network.

4.4 NETWORK ASYNCHRONY AND ENERGY EFFICIENCY

To provide a quantification of energy savings from asynchronous processing in the trained models,
table 3 reports the mean number of synaptic operations and energy consumption on the µBrain
neuromorpchic chip Stuijt et al. (2021) per sample.

N-MNIST SHD DVS gesture
Training Inference SOs Energy SOs Energy SOs Energy

Layered Layered 3.521 0.9155 50.82 13.21 158.8 41.29
Layered Async RS 3.225 0.8386 49.12 12.77 150.9 39.22
Unlayered RS Async RS 1.328 0.3454 18.02 4.684 85.92 22.34
Unlayered MS Async MS 1.304 0.3389 21.99 5.717 91.2 23.71

Table 3: Mean num of Synaptic Operations (SOs ×104) and energy consumption (µJ) for classification
of one sample, using 26 pJ/SO as measured for µBrain Stuijt et al. (2021); ignoring static power.

4.5 NETWORK ASYNCHRONY REDUCES LATENCY

An equally important result concerns the inference latency reduction under asynchronous network
processing. The models trained with unlayered backpropagation have significantly lower latency
than those trained with layer synchronization. Assuming a unit latency for processing one spike,
the comparatively worst case latency will be given under sequential processing, as a function of the
number of spikes processed until an inference decision is made. Figure 4 shows a distribution of
the inference latencies across the entire test-set. It should be clear by now that this is because “the
important spikes” in these models quickly reach the output layer, uninhibited by layer synchronization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Latency per forward pass for all samples, in number of spikes until a decision in the output
layer is reached. The Y-axis shows the relative frequency of recorded latencies.

4.6 UNLAYERED BACKPROPAGATION IS RESOURCE-INTENSIVE

We also tried to confirm the results in a scaled up setup, namely with a deeper VGG-7 like network
(details in A.9), trained on the CIFAR-10 dataset. Figure 5a confirms the problem when training with
layered backpropagation and the running asynchronous inference. When we try to train asynchronous
models with unlayered backpropagation and the simpler RS scheduling policy the memory cost
however becomes prohibitive unless we substantially increase the forward group size F . Nevertheless,
even with as large as F = 512 (during training, the smallest possible with an NVIDIA RTX 5000
GPU) and tested with F = 64, accuracy steeply recovers to 71%, while activation density drops to
about 1/4 (confirming our previous observations). We anticipate that with much smaller F during
training (higher degree of network asynchrony), the accuracy can be completely recovered.

Unfortunately, the computational cost of unlayered backpropagation, in the current framework (and
implementation) is rather high, especially when training with a small F . Each time F is halved, the
time and memory requirements approximately double as discussed in sections 3.2.1 and A.8.

(a)

CIFAR-10
Training Inference Acc. Density

Layered Layered 0.805 0.0089
Layered Async RS 0.183 0.0111
Async RS Async RS 0.712 0.0026

(b)

Figure 5: (a) Impact of network asynchrony on a CIFAR-10 trained VGG-style model. A larger de-
crease in accuracy occurs with smaller forward group sizes accompanied by an increase in activations.
(b) Accuracy and activation density results on CIFAR-10

5 DISCUSSION

We pinpoint a crux for neuromorphic AI processing in training SNN models with conventional
backpropagation and then naively assuming that they will execute consistently, and energy and
latency efficiently in asynchronous event-driven neuromorpchic processors. We identified the source
of this problem in neglecting the dynamics of asynchronous processing, and we found a way to factor
them in the gradient training process. The resulting models not only tend to recover the affected
performance (even exceed it) but also deliver the anticipated energy and latency benefits touted by
neuromorphic computing. Execution scheduling strategies may be a missing bridge between neural
algorithms/models and neuromorpchic hardware architecting. This study has merely scratched the
surface of a research exploration in this direction, but our observations is that unless we rethink
our training methods (take into account asynchronous processing dynamics), and design choices
of neuromorphic accelerators (layer synchronization primitives considered harmful), SNNs and
brain-inspired computing could fail to deliver in the long-term either in performance or efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The methods and appendices should provide enough information to reproduce the results. To help
with the reproducibility, we also provided code.

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan
Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully
event-based gesture recognition system. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7243–7252, 2017.

Michael Berry and Markus Meister. Refractoriness and neural precision. Advances in neural
information processing systems, 10, 1997.

Lina Bonilla, Jacques Gautrais, Simon Thorpe, and Timothée Masquelier. Analyzing time-to-first-
spike coding schemes: A theoretical approach. Frontiers in Neuroscience, 16:971937, 09 2022.
doi: 10.3389/fnins.2022.971937.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Caterina Caccavella, Federico Paredes-Vallés, Marco Cannici, and Lyes Khacef. Low-power event-
based face detection with asynchronous neuromorphic hardware. arXiv preprint arXiv:2312.14261,
2023.

Iulia-Maria Comşa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo,
and Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function:
Learning with backpropagation. IEEE Transactions on Neural Networks and Learning Systems, 33
(10):5939–5952, 2022. doi: 10.1109/TNNLS.2021.3071976.

Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 33(7):2744–2757, 2020.

Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Backpropagation-
based learning techniques for deep spiking neural networks: A survey. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Peter U. Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2015. doi: 10.1109/
IJCNN.2015.7280696.

Rainer Engelken. Sparseprop: Efficient event-based simulation and training of sparse recurrent
spiking neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The spinnaker project. Proceedings of the
IEEE, 102(5):652–665, 2014. doi: 10.1109/JPROC.2014.2304638.

Wenzhe Guo, Mohammed E. Fouda, Ahmed M. Eltawil, and Khaled Nabil Salama. Neu-
ral coding in spiking neural networks: A comparative study for robust neuromorphic sys-
tems. Frontiers in Neuroscience, 15, 2021. ISSN 1662-453X. doi: 10.3389/fnins.
2021.638474. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2021.638474.

Yufei Guo, Yuanpei Chen, Liwen Zhang, YingLei Wang, Xiaode Liu, Xinyi Tong, Yuanyuan Ou,
Xuhui Huang, and Zhe Ma. Reducing information loss for spiking neural networks. In European
Conference on Computer Vision, pp. 36–52. Springer, 2022.

Yufei Guo, Xuhui Huang, and Zhe Ma. Direct learning-based deep spiking neural networks: a review.
Frontiers in Neuroscience, 17:1209795, 2023.

Weihua He, YuJie Wu, Lei Deng, Guoqi Li, Haoyu Wang, Yang Tian, Wei Ding, Wenhui Wang, and
Yuan Xie. Comparing snns and rnns on neuromorphic vision datasets: Similarities and differences.
Neural Networks, 132:108–120, 2020.

Dmitry Ivanov, Aleksandr Chezhegov, Mikhail Kiselev, Andrey Grunin, and Denis Larionov. Neuro-
morphic artificial intelligence systems. Frontiers in Neuroscience, 16:1513, 2022.

Laxmi R Iyer, Yansong Chua, and Haizhou Li. Is neuromorphic mnist neuromorphic? analyzing the
discriminative power of neuromorphic datasets in the time domain. Frontiers in neuroscience, 15:
608567, 2021.

Minseon Kang, Yongseok Lee, and Moonju Park. Energy efficiency of machine learning in embedded
systems using neuromorphic hardware. Electronics, 9(7):1069, 2020a.

Ziyang Kang, Lei Wang, Shasha Guo, Rui Gong, Shiming Li, Yu Deng, and Weixia Xu. Asie:
An asynchronous snn inference engine for aer events processing. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 16(4):1–22, 2020b.

Saeed Reza Kheradpisheh and Timothée Masquelier. Temporal backpropagation for spiking neural
networks with one spike per neuron. International Journal of Neural Systems, 30, 03 2020. doi:
10.1142/S0129065720500276.

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373–386, 2018. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2018.05.087. URL https://www.sciencedirect.com/science/
article/pii/S0925231218306726.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: Spiking neural
network for energy-efficient object detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 34:11270–11277, 04 2020. doi: 10.1609/aaai.v34i07.6787.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

Chit-Kwan Lin, Andreas Wild, Gautham N. Chinya, Yongqiang Cao, Mike Davies, Daniel M. Lavery,
and Hong Wang. Programming spiking neural networks on intel’s loihi. Computer, 51(3):52–61,
2018. doi: 10.1109/MC.2018.157113521.

Yuhang Liu, Tingyu Liu, Yalun Hu, Wei Liao, Yannan Xing, Sadique Sheik, and Ning Qiao. Chip-in-
loop snn proxy learning: a new method for efficient training of spiking neural networks. Frontiers
in Neuroscience, 17:1323121, 2024.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model. Journal of Machine Learning Research, 24(253):
1–15, 2023.

William W Lytton and Michael L Hines. Independent variable time-step integration of individual
neurons for network simulations. Neural computation, 17(4):903–921, 2005.

12

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://www.sciencedirect.com/science/article/pii/S0925231218306726
https://www.sciencedirect.com/science/article/pii/S0925231218306726

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

Bruno Magalhães, Michael Hines, Thomas Sterling, and Felix Schürmann. Fully-asynchronous
fully-implicit variable-order variable-timestep simulation of neural networks. In Computational
Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020,
Proceedings, Part V 20, pp. 94–108. Springer, 2020.

Bruno RC Magalhães, Thomas Sterling, Michael Hines, and Felix Schürmann. Fully-asynchronous
cache-efficient simulation of detailed neural networks. In Computational Science–ICCS 2019:
19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part III 19, pp.
421–434. Springer, 2019.

Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza. Event-based
asynchronous sparse convolutional networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pp. 415–431. Springer,
2020.

Lingfei Mo and Zhihan Tao. Evtsnn: Event-driven snn simulator optimized by population and
pre-filtering. Frontiers in Neuroscience, 16:944262, 2022.

Massimo Monti, Manolis Sifalakis, Christian F. Tschudin, and Marco Luise. On hardware pro-
grammable network dynamics with a chemistry-inspired abstraction. IEEE/ACM Transactions in
Networking, 25(4):2054–2067, aug 2017. ISSN 1063-6692. doi: 10.1109/TNET.2017.2674690.
URL https://doi.org/10.1109/TNET.2017.2674690.

Simon F Müller-Cleve, Vittorio Fra, Lyes Khacef, Alejandro Pequeño-Zurro, Daniel Klepatsch,
Evelina Forno, Diego G Ivanovich, Shavika Rastogi, Gianvito Urgese, Friedemann Zenke, et al.
Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic
hardware. Frontiers in Neuroscience, 16:951164, 2022.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Emin Orhan and Xaq Pitkow. Skip connections eliminate singularities. In International Conference
on Learning Representations, 2018.

Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron Patterson,
David R Lester, Andrew D Brown, and Steve B Furber. Spinnaker: A 1-w 18-core system-on-chip
for massively-parallel neural network simulation. IEEE Journal of Solid-State Circuits, 48(8):
1943–1953, 2013.

Seongsik Park, Seijoon Kim, Hyeokjun Choe, and Sungroh Yoon. Fast and efficient information
transmission with burst spikes in deep spiking neural networks. In 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2019.

Seongsik Park, Seijoon Kim, Byunggook Na, and Sungroh Yoon. T2fsnn: Deep spiking neural
networks with time-to-first-spike coding. 57th ACM/IEEE Design Automation Conference (DAC),
pp. 1–6, 2020. doi: 10.1109/DAC18072.2020.9218689.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and challenges.
Frontiers in neuroscience, 12:409662, 2018.

Guanchao Qiao, Ning Ning, Yue Zuo, Pujun Zhou, Mingliang Sun, Shaogang Hu, Qi Yu, and Yang
Liu. Spatio-temporal fusion spiking neural network for frame-based and event-based camera sensor
fusion. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.

Nitin Rathi, Indranil Chakraborty, Adarsh Kosta, Abhronil Sengupta, Aayush Ankit, Priyadarshini
Panda, and Kaushik Roy. Exploring neuromorphic computing based on spiking neural networks:
Algorithms to hardware. ACM Computing Surveys, 55(12):1–49, 2023.

Hongwei Ren, Yue Zhou, Haotian FU, Yulong Huang, Xiaopeng LIN, Jie Song, and Bojun Cheng.
Spikepoint: An efficient point-based spiking neural network for event cameras action recognition.
In The Twelfth International Conference on Learning Representations, 2024.

13

https://doi.org/10.1109/TNET.2017.2674690

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

David P Rodgers. Improvements in multiprocessor system design. ACM SIGARCH Computer
Architecture News, 13(3):225–231, 1985.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii
Liu. Conversion of continuous-valued deep networks to efficient event-driven networks
for image classification. Frontiers in Neuroscience, 11, 2017. doi: 10.3389/fnins.
2017.00682. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2017.00682.

Sanaullah, Shamini Koravuna, Ulrich Rückert, and Thorsten Jungeblut. Exploring spiking neural
networks: a comprehensive analysis of mathematical models and applications. Frontiers in
Computational Neuroscience, 17:1215824, 2023.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Mahyar Shahsavari, Jonathan Beaumont, David Thomas, and Andrew D. Brown. POETS: A Parallel
Cluster Architecture for Spiking Neural Network. International Journal of Machine Learning and
Computing, 11(4):281–285, August 2021. ISSN 20103700. doi: 10.18178/ijmlc.2021.11.4.1048.

Mahyar Shahsavari, David Thomas, Marcel van Gerven, Andrew Brown, and Wayne Luk. Advance-
ments in spiking neural network communication and synchronization techniques for event-driven
neuromorphic systems. Array, 20:100323, 2023.

P Srivatsa, Kyle Timothy Ng Chu, Yaswanth Tavva, Jibin Wu, Malu Zhang, Haizhou Li, and Trevor E.
Carlson. You only spike once: Improving energy-efficient neuromorphic inference to ann-level
accuracy. ArXiv, abs/2006.09982, 2020. doi: 10.48550/arXiv.2006.09982.

Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh, and Federico Corradi. µbrain: An event-driven
and fully synthesizable architecture for spiking neural networks. Frontiers in neuroscience, 15:
664208, 2021.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

Guangzhi Tang, Kanishkan Vadivel, Yingfu Xu, Refik Bilgic, Kevin Shidqi, Paul Detterer, Stefano
Traferro, Mario Konijnenburg, Manolis Sifalakis, Gert-Jan van Schaik, and Amirreza Yousefzadeh.
Seneca: building a fully digital neuromorphic processor, design trade-offs and challenges. Frontiers
in Neuroscience, 17, 2023. ISSN 1662-453X. doi: 10.3389/fnins.2023.1187252.

Luke Taylor, Andrew King, and Nicol S Harper. Addressing the speed-accuracy simulation trade-off
for adaptive spiking neurons. Advances in Neural Information Processing Systems, 36, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
Deep learning for computer vision: A brief review. Computational intelligence and neuroscience,
2018, 2018.

Timo C Wunderlich and Christian Pehle. Event-based backpropagation can compute exact gradients
for spiking neural networks. Scientific Reports, 11(1):12829, 2021.

Leonid Yavits, Amir Morad, and Ran Ginosar. The effect of communication and synchronization on
amdahl’s law in multicore systems. Parallel Computing, 40(1):1–16, 2014.

Amirreza Yousefzadeh, Mina A Khoei, Sahar Hosseini, Priscila Holanda, Sam Leroux, Orlando
Moreira, Jonathan Tapson, Bart Dhoedt, Pieter Simoens, Teresa Serrano-Gotarredona, et al.
Asynchronous spiking neurons, the natural key to exploit temporal sparsity. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(4):668–678, 2019.

14

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Amirreza Yousefzadeh, Gert-Jan Van Schaik, Mohammad Tahghighi, Paul Detterer, Stefano Traferro,
Martijn Hijdra, Jan Stuijt, Federico Corradi, Manolis Sifalakis, and Mario Konijnenburg. Seneca:
Scalable energy-efficient neuromorphic computer architecture. In 2022 IEEE 4th International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 371–374. IEEE, 2022.

Semir Zeki. A massively asynchronous, parallel brain. Philosophical Transactions of the Royal
Society B: Biological Sciences, 370(1668):20140174, 2015.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899–925, 2021.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. ACM
Transactions on Intelligent Systems and Technology, 15(2):1–38, 2024.

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 SPIKING NEURAL NETWORKS

A.1.1 INCOMING CURRENT

For every neuron layer, all the synaptic weights on its inbound connections are kept in a weight matrix
W(l) ∈ RN(l)×N(l−1)

, where N (0) = number of input features Nin. Using these weight matrices, the
total incoming current x for a neuron i in the next layer can be computed using:

x
(l+1)
i [t] =

N(l)∑
j=1

W
(l+1)
ij s

(l)
j [t] (3)

where s
(l)
j [t] is 1 if neuron j in layer l has emitted a spike at time t, otherwise 0.

A.1.2 MEMBRANE POTENTIAL DECAY

The decay of the membrane potential is governed by a linear Ordinary Differential Equation (ODE).
The analytical solution can be used to compute the decay:

u[t] = u[t−∆t] · e−
∆t
τm + x[t] (4)

where τm is the membrane time constant and ∆t the elapsed time.

A.1.3 THRESHOLD FUNCTION

Θ(u) =

{
1 if u > Uthr

0 otherwise
(5)

where Uthr is the membrane potential threshold required for spiking.

A.2 EVENT-DRIVEN STATE UPDATE RULE FOR LIF NEURON

When an input current is received at time t by a neuron with a previous state u[t0] at some time
t0 ≤ t, an atomic set of computations is executed. Start with computing the decayed membrane

potential u[t−] = u[t0] · e
−(t−t0)

τm , then update the membrane potential u[t+] = u[t−] + x[t] with the
input current x[t], and finally set u[t] = 0 and emit a spike if Θ(u[t+]) = 1; otherwise u[t] = u[t+]
without emitting a spike.

A.3 ARCTAN SURROGATE GRADIENT

Θ(u) =
1

π
arctan(πu

α

2
) (6)

where α is a hyperparameter modifying the steepness of the function.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 CLASS PREDICTION

Class prediction involves first calculating the output rates as follows:

ci =
∑
t∈T

s[i, t] (7)

where ci is the spike count for class i, T are all the timesteps for which a forward pass occurred, and
s[i, t] is the output of the neuron representing class i in the output layer at the end of the forward pass
at time t. For CIFAR-10, instead the value of ci is equal to the membrane potential of the output
neuron for class i at the end of having processed all the spikes. These values are subsequently used
as logits within a softmax function:

pi =
eci∑NC

j=1 e
cj

(8)

where NC is the total number of classes. The resulting probabilities are then used to compute the
cross-entropy loss:

L =

NC∑
i=1

yilog(pi) (9)

where y ∈ {0, 1}NC is the target class in a one-hot encoded format.

A.5 PARAMETERS FOR THE SIMULATOR

Table 4: Overview of all current simulator parameters. If the text is italic, then the parameter was not
used for the experiments in this paper.

Name Value range Description

Forward group size N>0 3.1.2
Scheduling policy RS/MS 3.1.2
Prioritize input True/False If input spikes are propagated before any

spikes from inside the network.
Stop condition On spiking done /

On output
3.1.2

Forward steps after output N≥0 3.1.2 (only for "On output" stop condition)
Refractory dropout [0.0, 1.0] 3.2.2
Momentum noise R≥0 3.1.2 (only for "MS" scheduling policy)
Membrane time constant R>0 3.1
Input spike dropout [0.0, 1.0] 3.2.2
Network spike dropout [0.0, 1.0] The same as input spike dropout, but for

spikes from inside the network, applied per
forward step.

Membrane potential threshold R>0 3.1
Timestep size N>0 3.1.1
Synchronization threshold N≥0 Have neurons wait for a number of input

currents (including barrier messages) be-
fore being allowed to fire. Can be set per
neuron.

Emit barrier messages True/False Have neurons emit a barrier message if
they have retrieved exactly the number of
input currents to exceed the synchroniza-
tion threshold, but not enough to exceed
the membrane potential threshold.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Simulator parameters for simulating neuromorphic processors

Synchronization type Neuromorphic processors Forward
group size

Synchronization
threshold [emit
barrier messages]

Barrier-based / layer Loihi Davies et al. (2018),
SENECA Yousefzadeh et al.
(2022), POETS Shahsavari et al.
(2021)

neu/layer # neu/layer [True]

Timer-based / core SENECA Yousefzadeh et al.
(2022), SpiNNaker Painkras et al.
(2013), TrueNorth Akopyan et al.
(2015), POETS Shahsavari et al.
(2021)

neu/core # neu/core [True]

Asynchronous Speck Caccavella et al. (2023),
µBrian Stuijt et al. (2021)

neu/layer 1 [False]

A.6 DETAILS ON THE EXPERIMENTAL SETUP

A.6.1 DATASETS AND NETWORK ARCHITECTURES

The Neuromorphic MNIST (N-MNIST) dataset captures the MNIST digits using a Dynamic Vision
Sensor (DVS) camera. It presents minimal temporal structure Iyer et al. (2021). It consists of 60000
training samples and 10000 test samples. Each sample spans approximately 300 ms, divided into
three 100 ms camera sweeps over the same digit. Only the initial 100 ms segment of each sample is
used in this study.

The Spiking Heidelberg Digits (SHD) dataset Cramer et al. (2020) is composed of auditory recordings
with significant temporal structure. It consists of 8156 training samples and 2264 test samples. Each
sample includes recordings of 20 spoken digits transformed into spike sequences using a cochlear
model, capturing the rich dynamics of auditory processing. The 700 cochlear model output channels
are downsampled to 350 channels.

The DVS gesture dataset Amir et al. (2017) focuses on different hand and arm gestures recorded by a
DVS camera. Like the SHD dataset, it has significant temporal structure. It focuses on 11 different
hand and arm gestures recorded by a DVS camera. It consists of 1176 training samples and 288 test
samples. The 128× 128 input frame is downsampled to a 32× 32 frame.

CIFAR-10 Krizhevsky (2012) is a widely-used image classification dataset consisting of 60000 32x32
color images across 10 classes, including animals and vehicles. It has no temporal structure. Unlike
the other datasets, all input is provided in one single timestep.

For all four datasets, input events are assigned a timestamp and an index. In the case of N-MNIST,
the index corresponds to a position within a 34 × 34 pixel frame, with each pixel having a binary
polarity value (either 1 or 0), leading to a total of 34 × 34 × 2 = 2312 distinct input indices. For
SHD, the index denotes one of the 350 output channels. For DVS gesture, the 128× 128 input frame
is downsampled to a 32 × 32 frame. Like N-MNIST, each pixel has a binary polarity value, so in
total this gives 32 × 32 × 2 = 2048 input indices. Unlike the other datasets, for CIFAR-10, the
input events present a continuous value (so they are currents instead of spikes), while also still being
assigned an index and timestamp (although the timestamp is irrelevant).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Network architecture and hyperparameters. The architecture is given as [neurons in hidden
layers × number of hidden layers] - [neurons in output layer].

N-MNIST SHD DVS gesture CIFAR-10

Architecture [64×3]-10 [128×3]-20 [128×3]-11 see A.9
Timestep size 10 ms 10 ms 20 ms N/A
Batch size 256 32 32 64
Epochs 50 100 70 150
Learning rate 5e-4 7e-4 1e-4 2e-4
Membrane threshold Uthr 0.3 0.3 0.3 0.2
Weight decay constant λW 1e-5 1e-4 1e-5 0
Membrane time constant τm 1 ms 100 ms 100 ms N/A
Surrogate steepness α 2 10 10 2
Input spike dropout 0.25 0.2 0.2 0
Forward group size F 8 8 8 512
Refractory dropout 0.8 0.8 0.8 0.7
Momentum noise λMS 1e-6 0.1 0.1 see A.9

A.6.2 PERFORMANCE METRICS

To evaluate accuracy, output rates ci for each class i are first calculated as outlined in equation 7. The
predicted class corresponds to the one with the highest output rate. Accuracy is then quantified as the
ratio of correctly predicted outputs to the total number of samples.

Spike density is computed using:

density =
1

Nsamples ·Nneurons

Nsamples∑
i=1

Nspikes[i] (10)

where Nsamples is the number of samples, Nneurons is the number of neurons in the hidden layers, and
Nspikes[i] is the total number of spikes during inference of the sample i.

A.7 RESULTS ON HYPERPARAMETERS

Choosing a smaller F (i.e., with a more asynchronous system), may improve accuracy, particularly
benefiting models with mechanisms that rely on network asynchrony such as momentum scheduling.
However, reducing F also has its drawbacks. It significantly raises resource demands (discussed in
section A.8), and there is a risk of reducing the effectiveness or even stalling the training process, as
observed for SHD and DVS gesture.

Refractory dropout, can positively affect training outcomes. An explanation for this is that it increases
the gradient flow by allowing more spiking activity. However, using full refractory dropout can also
reduce performance, likely due to the inability to generalize to inference with refractoriness.

The momentum noise helps by introducing a slight stochastic element into the spike selection process,
helping to avoid potential local minima that a purely deterministic selection method is prone to get
stuck in. This seems to do little for N-MNIST, but for more complex datasets like SHD and DVS
gesture it has a significant effect.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: Results from inference with network asynchrony for different hyperparameters used during
training. For SHD and DVS gesture with random scheduling, training F s smaller than 6 are not
included due to the training failing to converge.

A.8 RESULTS ON RESOURCE USAGE

The increase in processing time is less pronounced for the N-MNIST and DVS gesture datasets
compared to the SHD dataset. This discrepancy could be due to computational optimizations that
apply specifically to the N-MNIST and DVS gesture datasets (both being vision-based datasets).

Table 7: Resource usage compared between layered and unlayered backpropagation during the second
epoch of training on an NVIDIA Quadro RTX 5000.

Method Time per epoch (s) VRAM use (MB)

N-MNIST
Layered 14 210
Unlayered RS, training F = 16 19 412
Unlayered RS, training F = 8 24 556
Unlayered RS, training F = 4 37 986

SHD
Layered 38 214
Unlayered RS, training F = 16 118 2220
Unlayered RS, training F = 8 292 4844
Unlayered RS, training F = 4 681 10574

DVS gesture
Layered 120 244
Unlayered RS, training F = 16 150 3802
Unlayered RS, training F = 8 177 6984
Unlayered RS, training F = 4 245 13914

A.9 DETAILS ON CIFAR-10 WITH VGG EXPERIMENTS

The details of network structure of the VGG model that we used to train on the CIFAR-10 dataset is
shown in Figure 7a. We have removed (for simplicity) the batch normalization and dropout layers.

To reduce the memory overhead for training with unlayered backpropagation and make it feasible on
an NVIDIA RTX 5000 we provided all the input of each sample in a single timestep (thus eliminating
the unfolding across timesteps), and we adopted a forward group size F = 512 for training and
F = 64 for testing. Additionally we deployed IF neurons that do not leak.

Output predictions were based on the membrane potential accumulated at the output neurons.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Because of the very large F , MS scheduling policy was also difficult to train requiring rather large
amounts of annealing noise (Figure 7b).

(a) (b)

Figure 7: (a) simplified VGG network topology without batch normalization and dropout layers. (b)
Training error evolution for different amounts of annealing noise in MS scheduling policy

20

	Introduction
	Related work
	Methods for simulating and training of asynchronous SNNs
	Simulating asynchronous SNNs
	Event-driven state updates
	Vectorized network asynchrony

	Training asynchronous SNNs
	Unlayered backpropagation
	Regularization techniques

	Results
	Experimental setup
	Network asynchrony increases neuron reactivity
	Unlayered backpropagation recovers accuracy and increases sparsity
	Network asynchrony and energy efficiency
	Network asynchrony reduces latency
	Unlayered backpropagation is resource-intensive

	Discussion
	Appendix / supplemental material
	Spiking neural networks
	Incoming current
	Membrane potential decay
	Threshold function

	Event-driven state update rule for LIF neuron
	Arctan surrogate gradient
	Class prediction
	Parameters for the simulator
	Details on the experimental setup
	Datasets and network architectures
	Performance metrics

	Results on hyperparameters
	Results on resource usage
	Details on CIFAR-10 with VGG experiments

