
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATTENTION AND COMPRESSION IS ALL YOU NEED FOR
CONTROLLABLY EFFICIENT LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The quadratic cost of attention in transformers motivated the development of
cheap approximations: namely sparse or sliding window attention, convolutions
and linear attention. These approximations come with limitations; they drive down
in-context recall as memory in the recurrent state and compute decrease. A pri-
ori fixing this quality-compute tradeoff in an architecture means being suboptimal:
some downstream applications require good in-context recall, while others require
lower latency and memory. Further, these approaches require heuristic choices for
attention masks, handcrafted and careful recurrent state update rules, or need to
be composed with attention layers to create a hybrid architecture that complicate
the design. To address this, we propose a simple architecture called the Compress
& Attend Transformer (CAT) that decodes each token attending to a chunk of
neighbouring tokens and to compressed chunks of the sequence so far. Choosing
a chunk size trades off quality for compute and memory. Moreover, CATs can be
trained with multiple chunk sizes at once, unlocking control of quality-compute
trade-offs directly at test-time without any retraining, all in a single adaptive ar-
chitecture.
On exhaustive evaluations on language modeling, common-sense reasoning, in-
context recall and long-context understanding, CATs outperform many existing ef-
ficient baselines including the hybrids when inference time and memory matched,
and is competitive with the dense transformer in language modeling while being
1.5− 3× faster and requiring 2− 9× lesser memory.

1 INTRODUCTION

Figure 1: A single adaptive CAT model (red dots),
outperforms nearly every popular efficient architec-
ture on in-context recall tasks using similar or better
inference time and memory.

Transformers (Vaswani et al., 2017) are the
default architectures for large language mod-
els (LLMs), and rely on powerful self-
attention mechanism (Bahdanau et al., 2014).
However, the compute required for decod-
ing with dense self-attention grows quadrat-
ically with the sequence length, with memory
costs growing linearly, making transformers
expensive to deploy.

Given the cost of attention in transformers
there has been interest in making them ef-
ficient. While approaches like sparse atten-
tion (Child et al., 2019; Zaheer et al., 2020)
heuristically restrict the tokens being attended to, others like linear attention (Katharopoulos et al.,
2020; Arora et al., 2024a; Dao & Gu, 2024; Yang et al., 2025b) use fixed-size recurrent states to
enable constant compute and memory costs. However, restricting tokens apriori or using fixed-
size recurrent states hurts in-context recall performance (Arora et al., 2024a; Jelassi et al., 2024;
Wen et al., 2024). Learning to recursively and sequentially compress the sequence can avoid fixed-
memory bottlenecks and heuristic restrictions (Rae et al., 2020; Chevalier et al., 2023), but sequen-
tial computations make the training slow and learning objective difficult to optimize (Geiping et al.,
2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Moreover, not all downstream tasks have the same compute and memory requirements. For example,
writing emails does not require strong in-context recall performance and linear attention may be a
suitable choice but code autocompletion demands accurate recall of function names from the entire
code repository in the context, requiring more memory and compute where dense attention may be
preferred. The existing approaches for efficiency fix the compute and memory usage before training
with choices like attention masks, window size or recurrent state size meaning if at test time a
problem demands a higher budget for better performance, a whole new model needs to be trained.
Training models with different tradeoffs is one way to tackle this problem but repeating this for every
downstream task can become quickly prohibitive. Even if such models were available, learning to
route between them based on the context requires holding all these models in memory.

[A] [quick] [brown] [cat] [jumps] [over] [the] [lazy] [dog]

[A] [quick] [brown]

[cat] [jumps] [over]

[the] [lazy] [dog]

[SOS]

[A] [quick] [brown]

[cat] [jumps] [over]

[the] [lazy] [dog]

Figure 2: An illustration of the CAT architecture.

To address these issues, we introduce the
Compress and Attend Transformer (CAT). CAT
parallelly compresses chunks of tokens into a
shorter sequence which a decoder model at-
tends to while auto-regressively modeling the
tokens in the latest chunk (see Figure 2). De-
coding from the compressed sequence yields
compute and memory savings, where choos-
ing a chunk size trades-off quality for com-
pute and memory. At the same time, the com-
pressed sequence grows gracefully — linearly
with the token sequence but smaller by a fac-
tor of the chunk size — to enable in-context
recall performance at long sequence lengths.
With the compression and decoding being par-
allel over tokens, there is no recurrence along
the sequence dimension, which enables scal-
able training. Further, CATs can be trained with multiple chunk sizes at once, unlocking quality-
compute trade-offs directly at test-time without any retraining, all in a single adaptive architecture.
By varying the chunk size as a controllable knob at test-time, a single CAT spans between dense
transformers and efficient alternatives allowing CATs to cater to different downstream tasks requir-
ing different budgets.

To summarize, this paper

• Develops the CAT architecture to efficiently model sequences by decoding each chunk of
tokens given parallelly compressed representations of the past chunks.

• Builds a single adaptive CAT model, trained with multiple chunk sizes, to cater to different
downstream task depending on the desired quality-efficiency trade-off without retraining.

• Demonstrates that a single CAT model

– outperforms many popular efficient baselines including hybrid architectures on lan-
guage modeling, common-sense reasoning, long-context understanding, in-context
recall, and needle-in-haystack tasks, when matched on inference time and memory.

– matches or outperforms the dense transformer on language modeling while being 1.4−
3.2× faster and using a 2.2 − 9.5× smaller total memory footprint, with the least
efficient CAT even outperforming the transformer on in-context recall tasks.

2 COMPRESS AND ATTEND TRANSFORMERS (CATS)

This section first describes components of the CAT architecture and how it’s trained for test-time
trade-offs between quality and compute. Second, it discusses CAT’s practical implementation and
the resulting compute and memory savings.

Compression and decoding. CAT uses a compressor fθ and a decoder gθ, both instantiated as
dense transformers. The compressor is a bidirectional transformer fθ that has hidden size Df ,
followed by a linear projection to Dg , and the decoder is a causal transformer gθ having hidden size
Dg , matching the linear projection from the compressor.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Given a sequence of N tokens x = {xi}i≤N , we split the sequence into chunks of tokens, each
of size C represented by {ci}i≤Nc , where Nc = ⌈N

C ⌉. That is, ci = xi,: where xi,j = xC·i+j

(numpy indexing notation). CAT compresses each chunk ci = xi,: using the compressor fθ into
chunk representations: fθ(ci) ∈ RDg .

x = {x1, · · ·xN} chunking−−−−−→ {x1,: · · ·xNc,:} = {c1, · · · cNc
} fθ−→ {fθ(c1), · · · fθ(cNc

)}
After compression, CAT decodes the original sequence from the compressed chunk representations
{fθ(ci)}. The decoder gθ takes in compressed chunk representations of the past tokens as input
and outputs a distribution over the tokens in the next chunk. Formally, the decoder’s predictive
distribution for the tokens in ith chunk ci is

pθ(ci | ci−1 · · · c1) =
C∏

j=1

gθ
(
xi,j | xi,j−1, . . .xi,0, fθ(ci−1) · · · fθ(c1)

)
(1)

That is, each token xi,j is decoded autoregressively by attending to a partial chunk of neigh-
bouring tokens before {xi,j−1, . . .xi,0} and to the compressed chunks in the sequence so far
{fθ(ci−1) · · · fθ(c1)}. The compression of each chunk reduces the amount of compute and memory
CATs require; the larger the chunk size the larger the reduction in memory and compute.

During training, the compression and the decoding happens in parallel for all tokens in the sequence
because compression of a chunk does not depend on an earlier chunk. This choice allows entire
CAT model to be efficiently trained end-to-end with the standard next-token prediction loss. The
end-to-end training ensures that CATs learn what to retain in their compressed outputs rather than
relying on fixed attention patterns for sequence modeling.

Training for test-time flexibility in compute and memory. Varying the chunk size in CATs
trades-off quality for compute and memory efficiency. Training CATs with multiple chunk sizes
during training renders a single adaptive model whose compute-memory budget can be adjusted
directly at test-time without any retraining.

To build such a controllably efficient CAT model, we uniformly sample a chunk size C at each
training iteration, and pass in a learnable indicator token to CAT to indicate which chunk size it is
currently operating at. The compressed tokens are separated from the uncompressed ones in the
decoder using a marker token shared across different chunk sizes. After training, one can use the
same CAT model at different compute/memory budget at test-time by just changing the indicator
token. Appendix B.4 provides further detail.

2.1 HOW TO IMPLEMENT FAST AND SCALABLE CATS

Due to both components of CAT being transfomers, CAT admits a pure PyTorch efficient implemen-
tation for scalable training and fast generation. We describe the approach here.

Training. While CATs are simple and build on dense transformer abstractions, their naive PyTorch
training implementation is very inefficient. Note that compression of chunks of tokens is efficient
since it can be done in parallel, specifically using torch.vmap(fθ(ci)) for all chunks ci. This costs
a total of O(NC · C2) = O(NC) in self-attention compute, which is much better than O(N2). But,
computing logits for tokens in chunk ci, that is computing gθ(ci | fθ(c1) · · · fθ(ci−1)) can be non-
trivial since for chunk ci, we have i − 1 past chunk representations {fθ(c1), fθ(c2) . . . fθ(ci−1)}.
In other words, there are different number of past chunk representations for every chunk, making
shapes variable and as a result, harder to parallelize computation of logits. One could employ a
python loop and compute logits for every chunk sequentially, but that would be slow and won’t scale.
In fact, even if one manages to compute logits for every chunk in parallel, the total self-attention
operations in the decoder would be O(

∑Nc

i=1(i+C)2) = O((NC)3), that is cubic in sequence length.
Padding to make shapes constant would make things worse. Thus, naive techniques will not scale,
despite CATs being a simple architecture. Similar architectures (Ho et al., 2024; Yu et al., 2023)
do not have this problem: computing logits can be naively parallelized due to fixed shapes and
self-attention operations scale quadratically due to a single compressed representation of the past.

Now, in CATs, observe that in computing logits for every chunk ci, ci+1 . . . cN/C , one calculates
exactly the same key-value vectors for the representation fθ(cj) in the decoder transformer, where

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

j < i. This points to repeated and identical computations. We exploit this observation in CATs
making the training scalable This way of computing logits is quadratic in sequence length but a
constant times better: O(N

2

C) vs. the O(N2) complexity of the dense transformer.

On a high-level, we implement this by modifying the original sequence x = {c1, . . . ci . . . }
to {c1, fθ(c1), c2, fθ(c2), . . . ci, fθ(ci) . . . }, that is we insert compressed representations of the
chunk after the chunk of tokens itself. Now, we pass this sequence into the decoder during
training, with a custom attention mask (Figure 7) that allows a token in chunk ci to attend to
previous tokens within that chunk and only to previous chunk representations, which would be
fθ(ci−1), fθ(ci−2) . . . fθ(c1). Any token in chunk ci does not attend to raw tokens outside this
chunk. This implementation allows re-use of key-values for chunk representations fθ(ci) in de-
coder for computing logits of a future chunk cj , where j > i.

Generation. The decoder during generation attends to atmost Nc +C tokens. Due to compression,
CATs can throwaway past chunks of tokens, and only keep their compressed chunk representations
in memory. This straightaway results in a big reduction of memory; the KV cache is slashed by a
factor of C. For even a moderate chunk size of 4, this results in big reductions in memory during
generation (Figure 3). This slash in memory is accompanied by reduced memory accesses a decoder
makes in CATs, which is the major bottleneck during generation. Costs for self-attention in decoder
scale as O(N

2

C), which is again, C× better than O(N2) for a dense transformer.

Implementing generation is simpler than training and very similar to how it occurs for a dense
transformer. In fact, a pure PyTorch implementation1 for CATs is on-par with efficient architectures
that utilize custom kernels. Given a sequence, CATs first compute representations for each chunk
in parallel and use them to prefill the decoder’s KV cache. Then generation proceeds chunk by
chunk: each new chunk is decoded token by token in the decoder, and once a chunk is complete, the
chunk is compressed and its representation is prefilled in the KV cache for the generation of the next
chunk. This loop continues until the sequence is fully generated. The full implementation details
are in App. D and D.3, refer to App. B for a PyTorch style pseudo-code.

3 RELATED WORK

Efficient self-attention using custom masks: These techniques include heuristically defined fixed
sparse or stratified attention masks Child et al. (2019); Zaheer et al. (2020) or local sliding window
masks Jiang et al. (2023) that reduce the tokens being attended to in self-attention. The compute
required (and in some attention masks, memory) for attention go down during generation, but if the
wrong attention mask is chosen for the task, these methods will be less performant or will require
more depth (Arora et al., 2024a). To match quality of a dense transformer, these models either
require big window sizes (making their memory costs large again) or need to be composed with
dense attention again at specific layers (Arora et al., 2024a; Agarwal et al., 2025).

Compressing past context: Rae et al. (2020); Chevalier et al. (2023) explored recurrent formu-
lations of a transformer to enable generation of longer sequences on limited compute and memory
by compressing past context. But sequential training is slow and memory intensive, making these
approaches hard to scale on modern hardware that favors parallel computations. Moreover, training
models in a recurrent fashion has optimization challenges, back-propagation through time (BPTT)
being the most important one. More recently Geiping et al. (2025) had to use very careful recipe to
train a large recurrent architecture in a stable manner and prevent optimization collapse.

Alternatively, Native Sparse Attention (NSA) (Yuan et al., 2025) reduce attention compute by at-
tending to compressed chunks of tokens as well as to specific chunks of uncompressed tokens in the
past. These past tokens are compressed in parallel in every layer. This is similar in spirit to our work,
however there are no memory savings during inference since the KV cache needs to be retained for
the entire past context; there are only compute savings.

Linear attention: Arora et al. (2024a); Katharopoulos et al. (2020) linearize self-attention that re-
place softmax-based attention with kernelized dot-product-based linear attention, that further admits
a linear recurrence form. Recent enhancements incorporate data-dependent gating mechanism in the

1Out implementation is inspired by the gpt-fast code.

4

https://github.com/meta-pytorch/gpt-fast

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Method Unrestricted
Access to
Memory?

Flexible
memory?

Scalable
training?

Compute & mem-
ory efficient?

Adaptive?

Dense Attention:
Vaswani et al. (2017)

✓ ✓ ✓ ✗ ✗

Sparse Attention: Child
et al. (2019)

✗ ✓ ✓ ✓ ✗

NSA: Yuan et al. (2025) ✓ ✓ ✓ ✗ ✗

Sliding window Attn.:
Jiang et al. (2023)

✗ ✗ ✓ ✓ ✗

Linear Attention: Dao
& Gu (2024)

✓ ✗ ✓ ✓ ✗

Recursive compression:
Chevalier et al. (2023)

✓ ✓ ✗ ✓ ✗

MegaByte/Block
Transformer: Ho et al.
(2024); Yu et al. (2023)

✓ ✗ ✓ ✓ ✗

CATs ✓ ✓ ✓ ✓ ✓

Table 1: We categorize the existing related work into key properties that are desirable for an ef-
ficient architecture. “Both compute and memory efficient?” signifies savings during inference;
“Unrestricted Access to Memory” signifies whether an architecture can freely access any part of the
memory in the past, without any restrictions. We provide a discussion in Sec. 3 and an extended
discussion in App. E

recurrence (Dao & Gu, 2024; Yang et al., 2025b) all which require handcrafted and complicated re-
current state update rules. Although these architectures show impressive reductions in compute and
memory, the fixed-size recurrent state struggles to manage information over long sequences, that
hurts in-context recall performance (Arora et al., 2024a; Jelassi et al., 2024; Wen et al., 2024). To
make these mixers competitive, they are usually composed with long sliding window attention at
specific layers (Yang et al., 2025b). Performing such a composition is unclear and requires care-
ful trial-and-error (Waleffe et al., 2024; Qwen, 2025) making the design process for an efficient
architecture highly cumbersome.

Hierarchical transformers: Nawrot et al. (2021; 2022); Slagle (2024) explored downsample-
then-upsample approach (hour-glass like structure), where the sequence is downsampled into coarse
tokens followed by upsampling into fine-grained tokens before being decoded. Due to the hour-glass
structure, there are compute savings during training; but the architecture must maintain a cache for
all the past tokens leading to significant memory accesses (especially for fine-grained ones) which
is the main bottleneck during generation.

Unlike the above, Ho et al. (2024); Yu et al. (2023) break up the modeling of a sequence into
independent chunks/patches, given a single compressed representation of the entire past. While
compression helps in efficiency, the requirement to decode each chunk from a fixed size compressed
representation results in poor in-context recall even on simple toy tasks (App. Fig. 4). Further,
unlike the original encoder-decoder architectures that attend directly to past tokens (Raffel et al.,
2020; Vaswani et al., 2017), decoder in CAT attends to the compressed representations of chunks of
tokens in the past.

CATs sidestep many limitations of existing efficient baselines described above. Firstly, CATs are
simple: they do not require any handcrafted state update rules or careful composition with atten-
tion layers to have competitive performance; CATs directly build on dense transformer abstractions.
Secondly, CATs alleviate the fixed memory by having flexible but efficient memory usage. That is
the memory grows gracefully as sequence length increases, resulting in superior in-context recall
performance, despite using similar memory overall compared to fixed memory baselines (Table 3).
Thirdly, CATs have scalable and efficient training where compression and decoding can happen in
parallel. Finally, CATs allow control of quality-compute trade-offs at test-time, allowing them to
cater to downstream tasks with different budgets. This is similar in spirit to Kusupati et al. (2022);
Devvrit et al. (2023); Beyer et al. (2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We provide a brief summary of the related work in Table 1, indicating key properties where CATs
and other methods differ. For an extended related work, refer to Appendix E.

4 EXPERIMENTS

Baselines: Our experiments provide a comprehensive comparison of recent state-of-the-art archi-
tectures, including (i) attention-based baselines: standard Dense Transformer Touvron et al. (2023)
and Sparse Transformer Child et al. (2019), (ii) Linear Transformers such as Mamba2 Dao & Gu
(2024) and GatedDeltaNet (GDN) Yang et al. (2025b), as well as (iii) hybrid architectures such as
the hybrid variant of GDN having alternate layers as long sliding windows, GDN-Hybrid.

All baselines use L = 12 layers with hidden size of D = 1024, making their parameters count not
more than ∼ 300M, except Sparse Transformer that uses ∼ 800M parameters due to hidden size of
2D = 2048 for a fair comparison with CATs (as we will see below). GDN-Hybrid employs a sliding
window of 2K, following Yang et al. (2025b). Refer to Appendix D for more details regarding
hyperparameters used for each baseline.

What makes CATs purr? To match dense-transformer perplexity, we empirically find a more ex-
pressive decoder helps: that is, decoder uses 2× hidden size. This suggests accurate decoding from
compressed representations needs extra compute, with similar observations in recent works (Ho
et al., 2024; Yu et al., 2023). Refer to App. C.2 for a comparison. Further, we find depth of com-
pressor does not have major effect on perplexity (App. C). Given these findings, to instantiate CATs
that compete with dense transformer of depth L and hidden size D: CATs use a decoder of depth
L and hidden size 2D, and a compressor of depth L/4 and hidden size D. While this increases
parameters, CATs are still significantly faster and memory efficient (see Sec. 3) compared to the
corresponding dense transformer. Thus, for CATs we use L = 12 layers, same as baselines, but a
wider hidden size of Dg = 2D = 2048 for the decoder. The compressor uses L = 3 layers and
hidden size of Df = D = 1024. This makes the parameter count for CATs close to 1B. We train
CATs simultaneously on chunk sizes C = {4, 8, 16, 32}. Note that this CAT is a single model that
can work with different chunk sizes at once, offering different compute-quality trade-offs at test-time.

Training setup: All models were trained on 15B tokens of FineWeb-Edu Penedo et al. (2024) which
is 2.5× the Chinchilla optimal, with a context length of 4K following Behrouz et al. (2024); Yang
et al. (2025b). We use the AdamW optimizer Loshchilov & Hutter (2017) with a peak learning rate
of 8e-4, weight decay of 0.1, gradient clipping of 1.0, batch-size of 0.5M tokens, employing the
GPT2 tokenizer (see Appendix D for more details).

Language modeling and understanding benchmarks: Table 2 reports the zero-shot perplexity
against LAMBADA (LMB) Paperno et al. (2016), WikiText (Wiki) Merity et al. (2016), and on a
held-out test set of FineWeb-Edu (FW), and the zero-shot accuracies on key common-sense rea-
soning benchmarks; Appendix D.2 expands the acronyms in table 2. All CAT variants outperform
existing efficient baselines on common-sense reasoning benchmarks on average. CATs-4/8/16 match
or outperform all the baselines on the language modeling tasks except LMB. These evaluations how-
ever only consider short sequences. We test language understanding on longer contexts in table 5 on
a suite of tasks from LongBench Bai et al. (2023) where CATs-4/8/16 outperform all the baselines.

Model LMB↓ Wiki↓ FW↓ HS↑ PQ↑ AE↑ AC↑ WG↑ OQA↑ Avg.↑
Dense 38.7 19.6 17.1 34.8 65.6 56.7 24.4 51.1 20.0 42.1
Sparse 37.2 18.5 16.0 35.6 66.8 57.3 25.4 51.1 22.8 43.2
Mamba2 36.1 19.5 16.7 36.1 67.0 59.2 26.5 51.9 21.6 43.7
GDN 35.7 18.8 16.3 36.1 66.8 58.7 25.2 51.6 22.8 43.5
GDN-Hybrid 36.6 18.5 16.2 36.8 66.3 56.4 25.8 52.1 20.4 43.0

CAT-4 38.0 18.1 16.0 35.6 66.4 59.5 27.1 51.5 23.4 43.9
CAT-8 37.2 18.1 15.8 35.4 66.8 60.1 27.4 51.3 23.6 44.1
CAT-16 36.8 18.4 16.0 35.5 67.3 60.2 27.0 52.0 23.8 44.3
CAT-32 36.8 19.1 16.4 35.9 68.2 61.0 27.0 53.6 25.0 45.1

Table 2: Zero-shot perplexity and accuracy on language modeling and common-sense reasoning benchmarks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Real world in-context recall: Table 3 reports results on in-context recall tasks from Arora et al.
(2024a). Linear models (Mamba2, GatedDeltaNet) lag far behind dense attention, while GDN-
Hybrid reduces the gap. CAT surpasses nearly all efficient baselines, benefiting from the gracefully
growing memory. CAT outperforms even the dense transformer at moderate chunk sizes (= 4, 8),
while being at least 1.4× faster and 2.2× more memory efficient (see appendix A.3).

Figure 3: CAT generates 1.4 − 3.2× faster than the dense trans-
former while showcasing upto 2.2− 9.5× lower memory usage,
all in a single adaptive architecture. Per table 6, CAT-8 outper-
forms GDN-Hybrid in real-world recall tasks while being faster and
requiring similar memory; CAT-16 outperforms Mamba2 and GDN
and is 2× faster but requires 2× the memory.

Model SWDE FDA Avg.
Dense 43.4 19.7 32.0
Sparse 20.9 6.0 13.0
Mamba2 13.5 4.5 9.0
GDN 18.0 6.8 12.0
GDN-Hybrid 44.0 17.8 31.0

CAT-4 49.1 45.1 47.1
CAT-8 38.2 34.8 36.5
CAT-16 27.5 15.4 21.5
CAT-32 13.2 3.2 8.2

Table 3: Zero-shot performance on real-
world in-context recall tasks from EVAP-
ORATE suite, measured upto 4K se-
quence lengths. We report results on
SWDE and FDA here, which have longer
sequences among the datasets in the suite
(others have an average length of ≤ 300
tokens (Arora et al., 2024b)). Appendix A
shows evaluations on all datasets. Figure 1
reports these results.

Needle-in-haystack & State-tracking: Table 4 reports re-
sults on RULER Hsieh et al. (2024) single-needle tasks: S-
NIAH-N (recall number from the context) and the harder
variant S-NIAH-U (recall a long alpha-numeric string or
UUID). Linear recurrent models (Mamba2, GDN) struggle at longer contexts, and while GDN-Hybrid
narrows the gap with dense transformers, performance still drops. CATs-4/8/16 outperform the effi-
cient baselines as context length increases, showing slower degradation with length; notably, large-
chunk CATs underperform at short contexts but surpass baselines at long ones. One explanation is
that the learned compression retains the necessary information and leads to fewer distractions for the
self-attention layers in the decoder due to reduced sequence length (Golovneva et al., 2025; Chiang
& Cholak, 2022); see appendix A.3. On the harder BabiLong state-tracking task (qa1 subset), all
models decline as context grows, although linear recurrent models (Mamba2, GDN) perform better,
in accordance with Kuratov et al. (2024).

Table 4: Accuracy on RULER Hsieh et al. (2024) and BabiLong Kuratov et al. (2024) benchmarks.

S-NIAH-N S-NIAH-U BabiLong

Model 1K 2K 4K 1K 2K 4K 0K 1K 2K 4K

Dense 96.0 92.0 43.0 93.6 55.7 19.8 49.0 14.0 12.0 1.0
Sparse 51.2 46.2 5.0 12.8 1.4 0.8 29.0 22.0 6.0 4.0
Mamba2 97.7 81.1 18.6 46.7 4.6 1.0 30.0 18.0 19.0 0.0
GDN 84.7 69.1 13.6 38.9 2.6 2.0 48.0 36.0 31.0 6.0
GDN-Hybrid 99.0 97.0 44.0 50.9 5.6 2.6 35.0 10.0 2.0 1.0

CAT-4 96.0 97.0 96.0 79.6 59.3 46.5 46.0 22.0 9.0 1.0
CAT-8 90.0 93.0 91.0 68.1 57.5 47.3 46.0 19.0 9.0 5.0
CAT-16 76.0 72.0 70.0 10.0 6.6 3.8 31.0 5.0 8.0 5.0
CAT-32 60.0 37.0 31.0 0.0 0.0 0.0 17.0 10.0 7.0 5.0

Benchmarking generation: Figure 3 compares architectures as one scales the sequence length,
with a fixed batch-size of 256. CAT generates sequences 1.4 − 3.2× faster than the dense trans-
former while showcasing upto 2.2−9.5× lower total memory usage as one increases chunk sizes,
despite using significantly more parameters than the baselines due to wider decoder and the addi-
tional compressor. This is not surprising since the major bottlenecks during generation are: (a) KV
cache size that drives the main memory requirement during generation and not the parameter count

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(Sec. 5), (b) memory accesses required for a token, and (c) FLOPs used per token determined by the
past tokens being attended to. CATs reduce these factors despite carrying more parameters overall.
See appendix D.3 for implementation details.

CATs scale as well as their dense counterparts: Figure 6 demonstrates that CATs scale simi-
lar to their dense transformer equivalents. We evaluate against three dense transformer scales
{31M, 92M, 260M}, with their CAT equivalents containing parameters {95M, 326M, 1B}. All
models were trained for 15B tokens, under the setup in section 4.

MegaByte/Block Transformer struggle at in-context recall: The MegaByte/Block Transformer
(Ho et al., 2024; Yu et al., 2023) has elements similar to CAT but fail to solve a simple in-context
recall task in fig. 4 across different hyperparameters and architecture configurations due to the fixed
memory bottleneck. In fact, the block transformer overfits on the task. CATs alleviate the memory
bottleneck with a gracefully growing memory, allowing it to solve the task, with even lower memory
requirements. See appendix A.2 for details.

CATs outperform baselines when memory matched: To rule out slight memory advantages in
CATs (Fig. 3), we evaluate on MQAR (Arora et al., 2023a), matching memory budgets down to the
level of bytes, and stress-test up to 1K sequence length (5× standard); Figure 5 in reports results.
Baselines are grid-searched over learning rates. Linear models collapse at longer contexts, while
CATs remain near-perfect, thanks to the flexible yet efficient memory scaling. We use the same
setup in App. A.4.

Single-doc QA Multi-doc QA Few Shot Avg.
Model QAS MQA HQA 2WMQ TQA TREC

Dense 3.9 12.2 6.9 10.8 11.2 10.6 9.3
Sparse 5.1 11.0 7.0 10.6 10.5 5.6 9.3
Mamba2 4.1 11.9 7.6 7.6 9.0 7.6 8.0
GDN 8.3 15.5 6.0 7.9 7.4 8.3 8.9
GDN-Hybrid 4.2 13.3 6.6 11.6 11.8 6.5 9.0

CAT-4 5.6 12.7 7.4 9.9 12.1 35.6 13.9
CAT-8 5.5 11.0 6.1 8.0 12.4 29.5 12.1
CAT-16 4.3 14.1 6.1 5.6 10.5 16.6 9.5
CAT-32 4.7 11.0 7.0 6.6 10.0 8.3 7.9

Table 5: Zero-shot evaluation of baselines on suite of tasks from LongBench Bai et al. (2023) measured upto
4K sequence lengths. Refer to Appendix D.2 for the abbreviations.

Figure 4: Block Transformer Ho et al. (2024); Yu
et al. (2023) (across different configurations and
hyperparameters) fails to solve a simple MQAR
task with only 4 key-value pairs tested on modest
sequence length of 256 tokens. Note that training
of CAT stops when it solves the task perfectly.

Figure 5: Comparison of different archi-
tectures across sequence lengths on MQAR
task. We measure test-accuracy on the hard-
est subset. All architectures are memory
matched in bytes at every point (except dense
transformer).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: CATs scale like their dense
transformer counterparts while being up
to 3× faster and 9× more memory-
efficient. All CAT points come from a
single model at a particular scale, eval-
uated at different chunk sizes.

Ablations: We investigate how different choices affect
performance of CATs in App. C.

5 DISCUSSION AND CONCLUSION

We introduce Compress & Attend Transformers (CATs),
a simple controllably efficient alternative to the stan-
dard transformer architecture. On language modeling
tasks, common-sense reasoning, in-context recall and
long-context understanding, CAT outperforms various ex-
isting efficient baselines, when matched in inference time
and memory. Notably, CAT-4 (the least efficient setting)
outperforms the dense transformer in both language mod-
eling and recall tasks while being 1.5× faster and requir-
ing 2× less memory. We discuss the practical utility of
CATs and list future directions.

Are CATs adoptable and practical? The CAT model in the experiments has nearly 4 times as
many parameters as its dense transformer counterpart. Despite the larger parameter count, working
with compressed sequences ensures that CATs are faster and memory efficient than the dense trans-
former. This efficiency does not come at the cost of performance; CAT-4 is more efficient than the
dense transformer while matching or outperforming it on both language modeling and recall tasks.

The training cost is larger for CATs, taking twice as much time. Custom kernels could mitigate this
difference; see appendix B.5. Training, however, is a one time cost, and the service life of models
dictates profits, making serving costs the more important consideration. Deploying language models
at scale is often constrained not by model weights but by the memory footprint of their KV cache.
For instance, Qwen3-14B at the batch size of 8, which is common in chat/code completion, requires
an order of magnitude more memory for the KV cache than the model weights themselves: 28GB
for the weights vs. ∼ 330GB for the KV cache. In contrast, a CAT variant of the same model could
reduce memory usage upto ∼ 2.7× despite having more model parameters overall2, and generating
tokens faster. The reduction in memory and increase in throughput are more pronounced at larger
batch sizes, which are critical for workloads such as synthetic data generation Maini et al. (2025)
and large-scale rollouts in RL training pipelines Noukhovitch et al. (2024). Further, CATs serve as
multiple models in one, enabling reduced compute during high traffic, longer shelf-life under smaller
budgets, and deployment on cheaper hardware – all from a single training run.

Future work: CATs currently rely on dense transformer abstractions, but the architecture is general
and could incorporate other sequence mixers directly; for e.g. linear attention as compressor with
dense attention decoders for long-range interactions between the compressed sequence could im-
prove efficiency. Work concurrent to ours (Hwang et al., 2025) proposes such compositions to avoid
handcrafted tokenization. A different direction is data-dependent adaptivity. CATs, as they stand,
require users to choose a chunk size appropriate for their compute and memory budgets. Instead, one
could post-train with reinforcement learning to allow CATs to learn to allocate budget themselves
based on the context and the task. Such post-training would enable adaptive efficiency. Next, dense
transformers of 1B parameters are usually trained for a 100B tokens. Scaling up the CATs to 100B
tokens would enable further insights and better comparisons. This would be fruitful future work.

6 REPRODUCIBILITY STATEMENT

We provide exhaustive implementation details for CATs in Section 2.1 and pseudo-code in Appendix
B. Further, we provide training details and hyperparameters for baselines in Appendix D. We directly
use the official code for implementing and benchmarking baselines.

2Total memory usage for CATs: 28 · 4 + 330·2
32

= 132GB, which is ∼ 2.7× better at chunk size C = 32

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els. arXiv preprint arXiv:2312.04927, 2023a.

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023b.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024a.

Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, Xinyi Zhao,
Ashish Rao, Atri Rudra, and Christopher Ré. Just read twice: closing the recall gap for recurrent
language models. arXiv preprint arXiv:2407.05483, 2024b.

Jacob Austin, Sholto Douglas, Roy Frostig, Anselm Levskaya, Charlie Chen, Sharad Vikram, Fed-
erico Lebron, Peter Choy, Vinay Ramasesh, Albert Webson, and Reiner Pope. How to scale your
model. 2025. Retrieved from https://jax-ml.github.io/scaling-book/.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Loı̈c Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey,
Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R Costa-jussà, David Dale, et al.
Large concept models: Language modeling in a sentence representation space. arXiv preprint
arXiv:2412.08821, 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496–14506, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models to
compress contexts. In The 2023 Conference on Empirical Methods in Natural Language Process-
ing, 2023. URL https://openreview.net/forum?id=kp1U6wBPXq.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. arXiv preprint
arXiv:2202.12172, 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

10

https://openreview.net/forum?id=kp1U6wBPXq

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. Advances in neural information processing systems,
33:4271–4282, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon,
Yulia Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, and Prateek Jain. Matformer:
Nested transformer for elastic inference. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023), 2023.
URL https://openreview.net/forum?id=93BaEweoRg.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. Multi-token attention.
arXiv preprint arXiv:2504.00927, 2025.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in neural information processing systems, 34:15908–15919, 2021.

Namgyu Ho, Sangmin Bae, Taehyeon Kim, Hyunjik Jo, Yireun Kim, Tal Schuster, Adam Fisch,
James Thorne, and Se-Young Yun. Block transformer: Global-to-local language modeling for
fast inference. Advances in Neural Information Processing Systems, 37:48740–48783, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierarchical
sequence modeling. arXiv preprint arXiv:2507.07955, 2025.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

11

https://openreview.net/forum?id=93BaEweoRg

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack,
2024.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 3047–3056, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Pratyush Maini, Vineeth Dorna, Parth Doshi, Aldo Carranza, Fan Pan, Jack Urbanek, Paul Burstein,
Alex Fang, Alvin Deng, Amro Abbas, et al. Beyondweb: Lessons from scaling synthetic data for
trillion-scale pretraining. arXiv preprint arXiv:2508.10975, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. arXiv
preprint arXiv:2110.13711, 2021.

Piotr Nawrot, Jan Chorowski, Adrian Łańcucki, and Edoardo M Ponti. Efficient transformers with
dynamic token pooling. arXiv preprint arXiv:2211.09761, 2022.

Piotr Nawrot, Robert Li, Renjie Huang, Sebastian Ruder, Kelly Marchisio, and Edoardo M
Ponti. The sparse frontier: Sparse attention trade-offs in transformer llms. arXiv preprint
arXiv:2504.17768, 2025.

Michael Noukhovitch, Shengyi Huang, Sophie Xhonneux, Arian Hosseini, Rishabh Agarwal, and
Aaron Courville. Asynchronous rlhf: Faster and more efficient off-policy rl for language models.
arXiv preprint arXiv:2410.18252, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

12

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak. Hierar-
chical transformers for long document classification. In 2019 IEEE automatic speech recognition
and understanding workshop (ASRU), pp. 838–844. ieee, 2019.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In International conference on machine learning, pp. 4055–
4064. PMLR, 2018.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Qwen. Qwen3-next: Towards ultimate training & inference efficiency, 2025. URL https:
//qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=
research.latest-advancements-list. Accessed: 2025-09-18.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SylKikSYDH.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Claude E Shannon. Prediction and entropy of printed english. Bell system technical journal, 30(1):
50–64, 1951.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Kevin Slagle. Spacebyte: Towards deleting tokenization from large language modeling. Advances
in Neural Information Processing Systems, 37:124925–124950, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

13

https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key bottleneck
on in-context retrieval, 2024. URL https://arxiv.org/abs/2402.18510.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In The Thirteenth International Conference on Learning Representations, 2025b. URL
https://openreview.net/forum?id=r8H7xhYPwz.

Howard Yen. Long-context language modeling with parallel context encoding. Master’s thesis,
Princeton University, 2024.

Lili Yu, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
Megabyte: Predicting million-byte sequences with multiscale transformers. Advances in Neural
Information Processing Systems, 36:78808–78823, 2023.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

George Kingsley Zipf. Human behavior and the principle of least effort: An introduction to human
ecology. Ravenio books, 2016.

14

https://arxiv.org/abs/2402.18510
https://openreview.net/forum?id=r8H7xhYPwz

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS FOR THE APPENDICES

A More experiments 16

A.1 Recall evaluation . 16

A.2 Comparison with MegaByte/Block Transformer 16

A.3 Comparing CATs with parameter matched Dense transformer 16

A.4 Sparse or Sliding Window Attention needs more layers for recall 18

B Implementation details and PyTorch style pseudo-code 19

B.1 Training . 19

B.2 CAT’s training attention mask . 20

B.3 Generation . 21

B.4 Adaptive CATs training details . 22

B.5 CAT’s training throughput analysis . 22

C Some ablations on the CAT architecture 23

C.1 Ablation on hidden size of compressor . 23

C.2 Ablation on hidden size of decoder . 23

C.3 Ablation on depth of the compressor . 23

D More experiment details 25

D.1 Baselines . 25

D.2 Datasets . 25

D.3 Generation . 26

E Extended Related Work 27

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A MORE EXPERIMENTS

A.1 RECALL EVALUATION

Here, we evaluate all baselines on all datasets from the EVAPORATE suite of tasks that tests for
real-world in-context recall.

Model SWDE FDA Squad TriviaQA Drop Avg.
Dense 43.4 19.7 31.0 15.0 19.4 26.7
Sparse 20.9 6.0 20.7 15.2 19.3 16.4
Mamba2 13.5 4.5 24.9 13.9 17.8 14.9
GDN 18.0 6.8 25.5 15.5 17.2 16.6
GDN-H1 44.0 17.8 32.9 15.4 19.8 26.0

CAT-4 49.1 45.1 28.3 15.0 17.9 31.1
CAT-8 38.2 34.8 25.9 14.0 18.3 26.2
CAT-16 27.5 15.4 20.4 14.8 16.9 18.9
CAT-32 13.2 3.2 15.8 13.0 14.3 11.9

Table 6: Zero-shot performance on real-world in-context recall tasks from EVAPORATE suite, mea-
sured upto 4K sequence lengths. Note that only SWDE and FDA have long token sequences among
the datasets in the suite (others have an average length of ≤ 300 tokens Arora et al. (2024b)). GDN-
Hybrid performs well on short sequences probably due to 2K token long sliding window. In CATs,
there is compression even on short sequences.

A.2 COMPARISON WITH MEGABYTE/BLOCK TRANSFORMER

In figure 4, we evaluate in-context recall ability for Block Transformer architectures Ho et al. (2024);
Yu et al. (2023), that model chunks of tokens similar to CATs but with a subtle but salient difference
in the architecture circuit (that we explain below). For this experiment, we test on the MQAR task (a
synthetic needle-in-haystack task Arora et al. (2023a)) on a modest sequence length of 256. We test
the accuracy of retrieving just 4 needles. We parametrize components of Block Transformer that is:
global model and local model using a transformer, the embedder is a look-up table or a transformer.
We keep the patch size/chunk size as 4 – same as CAT. We keep the identical training setup for both
architectures. We grid search for hyper-parameters (lr, hidden size, and embedder parameteri-
zation), even using more memory than the CAT baseline, in its global decoder. Even in these simple
settings and added advantage, Block Transformer Ho et al. (2024); Yu et al. (2023) fails to solve the
task (fig. 4) – instead the model starts to memorize the train points, as seen from train loss and train
accuracy – train metrics keep getting better, however, test metrics suffer.

CATs directly pass all the “local” patch/chunk representations directly to the decoder, unlike the
block transformer that forces the history to be compressed into fixed dimensional representation.
This design choice helps CAT alleviate the memory bottleneck that Ho et al. (2024) suffers from
where the architecture must compress everything from the past into a single ”global” representation
to generate the next chunk. Note that this different design choice in CATs does not introduce any
memory/compute overhead compared to Block Transformer Ho et al. (2024), it just changes the
circuit of the architecture. In fact, CATs don’t utilize three different components (embedder, global
decoder, local decoder) – it only uses a compressor and a decoder, reducing the design space and
(significant) parameter requirements further.

A.3 COMPARING CATS WITH PARAMETER MATCHED DENSE TRANSFORMER

The larger model size raises question: do CATs outperform the dense transformer purely due to
the parameter count? Table 7 compares CATs with a dense transformer of similar size, trained for
the same number of gradient steps. CAT-4 still retains higher average recall performance while
being 3× faster and 4× cheaper in memory usage, but falls behind in language modeling tasks. This
finding suggests that a larger parameter count is not the sole reason that CATs excel at recall, and that
compression also plays role. However, compression does trade-off language modeling performance

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

in favor of recall (Table 7). One explanation is that compression gets rid of unnecessary information,
which inturn leads to fewer distractions for the self-attention layers in the decoder Golovneva et al.
(2025); Chiang & Cholak (2022).

Model SWDE↑ FDA↑ Avg. Recall↑ LAMBADA↓ WikiText↓ FineWeb↓ Avg. LM Eval↑
Dense 43.4 19.7 32.0 38.7 19.6 17.1 42.1
Dense 2D 53.0 34.0 44.0 35.7 16.9 15.1 45.6
CAT-4 49.1 45.1 47.1 38.0 18.2 16.0 43.9
CAT-8 38.2 34.8 36.5 37.3 18.1 15.9 44.1
CAT-16 27.5 15.4 21.5 36.9 18.4 16.1 44.3

Table 7: We compare CATs with a similar parameter dense transformer having a 2D = 2048 hidden
size, same as decoder in CATs. Note that while CATs slightly outperform Dense 2D on recall, they
significantly lack in language modeling performance. We report recall on SWDE and FDA, and
perplexity on LAMBADA, WikiText, FineWeb-Edu and average accuracy across standard common-
sense reasoning benchmarks. Moreover, CATs recall drops significantly when C > 4. In FDA
dataset, compression could be helping CAT-4 getting significantly better recall compared to Dense
2D; compression possibly helps attention get less distracted by the context. However, when chunk
size is increased beyond 4, compression also result in loss of information, and hence we see a sharp
drop.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 SPARSE OR SLIDING WINDOW ATTENTION NEEDS MORE LAYERS FOR RECALL

We evaluate models on the synthetic multi-associate query recall (MQAR) task, proposed in Arora
et al. (2023a) and further popularized in Arora et al. (2024a). All models use depth of 2 layers, and
are trained and tested on sequence lengths upto 256 having varying number of key-value pairs. CAT
models use a 1 layer compressor, followed by a 2 layer decoder, with a chunk size of 4, both using
model dimension of D = Dd = 64 in this case. Note that the state size for CAT is N

C ·D = 4096 for
this particular sequence length and model dimension. Sparse attention uses a chunk size of 4 (for
fair comparison with CAT); Sliding window uses a window size of 64.

Method Solves? State Size
Dense ✓ 16384
Sparse ✗ 4096
Sliding Window ✗ 4096
CAT ✓ 4096

Table 8: For each method, we report the state size at which the particular method was trained for the
MQAR task. Each method was grid searched for best possible hyper-parameters. We use the state
size calculations provided in Arora et al. (2024a; 2023a).

In table 8, CAT is able to solve the MQAR task. Notably, we find the sparse attention as well as
sliding window attention fail to solve the task at 2 layers, highlighting their dependence on depth.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS AND PYTORCH STYLE PSEUDO-CODE

In this section, we discuss some implementation details regarding CATs. We repeat some text pre-
sented in the main paper to be self-contained below.

B.1 TRAINING

Training: While CATs are simple and build on dense transformer abstractions, their naive PyTorch
training implementation is very inefficient.

Note that compression of chunks of tokens is efficient since it can be done in parallel, specifically
using torch.vmap(fθ(ci)) for all chunks ci. This costs a total of O(NC · C2) = O(NC) in
self-attention compute, which is much better than O(N2).

But, computing logits for tokens in chunk ci, that is computing gθ(ci | fθ(c1) · · · fθ(ci−1))
can be non-trivial since for chunk ci, we have i − 1 past chunk representations
{fθ(c1), fθ(c2) . . . fθ(ci−1)}. In other words, there are different number of past chunk representa-
tions for every chunk, making shapes variable and as a result, harder to parallelize computation of
logits. One could employ a python loop and compute logits for every chunk sequentially, but that
would be slow and won’t scale. In fact, even if one manages to compute logits for every chunk in

parallel, the total self-attention operations in the decoder would be O(
∑N

C
i=1(i+ C)2) = O((NC)3),

that is cubic in sequence length. Padding to make shapes constant would make things worse. Thus,
naive techniques will not scale.

With such difficulties in making the training scalable, it may not be surprising that despite the sim-
plicity of CATs, it was not attempted in the community. Note that unlike CATs, similar architectures
Ho et al. (2024); Yu et al. (2023) do not have this problem: computing logits can be naively par-
allelized due to fixed shapes and self-attention operations scale quadratically due to a single com-
pressed representation for the past.

In CATs, observe that in computing logits chunks ci, ci+1 . . . cN
C

, one calculates the same key-
values for chunk representations fθ(cj) in the decoder, where j < i. This points to repeated and
identical computations. To exploit this observation, we take advantage of a custom attention mask in
decoder to calculate logits for all chunks in parallel, and reuse computations done for a past chunk
representation to be used for a computations for logits for a future chunk. To be concrete, once
we calculate all chunk representations fθ(ci) in parallel using torch.vmap, we insert fθ(ci)s at
particular positions in the original sequence: after every chunk ci, we attach its chunk representation.
That is, sequence would look like: {c1, fθ(c1), c2, fθ(c2), . . . ci, fθ(ci) . . . }. Now, we pass this
sequence into the decoder during training, with a custom attention mask (see Figure 7) that allows
a token in chunk ci to attend to previous tokens within that chunk only as well as only to previous
chunk representations, which would be fθ(ci−1), fθ(ci−2) . . . fθ(c1) only. Any token in chunk
ci does not attend to raw tokens outside this chunk. This implementation allows re-use of key-
values for chunk representations fθ(ci) for calculation of logits of future chunks, in parallel, making
the training of CATs efficient and scalable. We utilize the FlexAttention API Dong et al. (2024)
to automatically create a custom kernel for the custom mask (Figure 7). Note that this way of
computing logits is quadratic in sequence length but with a constant times better: concretely it is
O(NC ·N + N

C · C2) = O(N
2

C), which is C× better than O(N2) (yellow dots in figure 7 provides
a visual proof for this cost; number of yellow dots are significantly lower than N2

2). Mathematically
the cost of attention in CATs decoder is:

∑N
i=1[

i
C] + (i mod C)+ 1 = O(N

2

C), where [.] is the floor
function, and mod is modulo operator.

For a discussion in training throughput, refer to a discussion in Appendix B.5.
1

2 def forward(input_ids, targets):
3

4 input_ids = einops.rearrange("b (k c) -> b k c", k=num_chunks, c=
chunk_size)

5

6 # calculate f(x)
7 # shape of fx: (b, k, D_d)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

8 fx = torch.vmap(f)(input_ids)
9

10 output_logits = list()
11 for i in range(num_chunks): # note that this loop is done in parallel

with the custom attention mask presented in the appendix
12 # use the previous i+1 fx to predict the current chunk
13 # shape of cur_chunk_logits: (b, 1, l, V)
14 cur_chunk_logits = phi(input_ids[:, i, :], fx[:, :i+1, :])
15 output_logits.append(cur_chunk_logits)
16 output_logits = torch.cat(output_logits, dim=1) # shape: (b, k, c, V)
17 output_logits = einops.rearrange(output_logits, "b k c v -> b (k c) v

") # arrange all chunks logits together (or flatten)
18 return torch.nn.functional.cross_entropy(output_logits, targets) #

return the loss

Listing 1: Pseudocode for training step

B.2 CAT’S TRAINING ATTENTION MASK

Figure 7: Sequence length is 128, and the chunk size that we use in this particular attention mask is
C = 16.

Note that attention mask in figure 7 looks very similar to the attention mask as defined in Child
et al. (2019), however, in CAT’s case: (a) it is not heuristic choice, and (b), tokens in a particular
chunk attend to the past fθ(ci) representations obtained by the compressor, rather than the past token
embeddings at that position as done in Child et al. (2019).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.3 GENERATION

The decoder during generation attends to atmost N
C + C tokens. Due to compression, CATs can

throwaway past chunks of tokens, and only keep their compressed chunk representations in memory.
This straightaway results in a big reduction of memory; the KV cache is slashed by a factor of C.
For even a moderate chunk size of 4, this results in big reductions in memory during generation
(Figure 3) compared to a dense transformer. This slash in memory is accompanied by reduced
memory accesses a decoder makes in CATs, which is the major bottleneck during generation. Costs
for self-attention in CATs decoder scale as O(N

2

C), which is again, C× better than O(N2) for a
dense transformer.

Implementing generation is simpler than training and very similar to how it occurs for a dense
transformer. In fact, a pure PyTorch implementation for CATs is on-par with efficient architec-
tures that utilize custom kernels. We inspire our implementation from: https://github.com/
meta-pytorch/gpt-fast. Given i chunks of tokens: firstly, torch.vmap over chunks in-
dependently to calculate fθ(ci) in parallel. Then prefill the decoder’s KV cache in parallel with the
obtained fθ(ci)s. Now generate the next chunk ci+1 autoregressively one token at a time. Note that
this uses a simple causal mask since the previous positions are already prefilled with fθ(ci)s, which
is required to decode chunk ci+1. Once all the tokens of the chunk ci+1 are generated, calculate
fθ(ci+1) and prefill the decoder’s KV cache just after the position where fθ(ci) was cached. Now
the KV cache is ready for generation of the next chunk ci+2 and this process will continue.

This simple implementation enables CATs to be 1.4− 3.2× faster than the dense transformer while
showcasing upto 2.2− 9.5× lower total memory usage as one increases chunk sizes.

1

2 # https://github.com/pytorch-labs/gpt-fast/blob/7
dd5661e2adf2edd6a1042a2732dcd3a94064ad8/generate.py#L154

3 def generate_chunk_by_chunk(
4 input_ids
5):
6 # assume input_ids.shape == (batch_size, 1, chunk_size)
7

8 # declare/reset static KV cache, shape: [batch_size, num_chunks +
chunk_size, 2, D_d]

9

10 input_pos = 0
11

12 # compress the first chunk (batch_size, 1, chunk_size) -> (batch_size
, 1, D_d)

13 # get fx for the very first chunk
14 fx = f(input_ids) # shape of fx: (batch_size, 1, D_d)
15 next_token = prefill(fx, input_pos) # prefill at idx 0 with fx in phi
16

17 new_chunks = list()
18

19 for i in range(num_chunks - 1):
20

21 # generate entire chunk using fx that was prefilled earlier in
phi

22 next_chunk = generate_chunk(next_token)
23 new_chunks.append(next_chunk.clone())
24

25 # get new fx
26 # compress the new obtained chunk
27 fx = f(next_chunk) # (batch_size, 1, chunk_size) -> (batch_size,

1, D_d)
28

29 # prefill again at input_pos
30 input_pos += 1
31 next_token = prefill(fx, input_pos) # prefill fx at idx ‘

input_pos‘ in phi
32

33 new_chunks = torch.cat(new_chunks)

21

https://github.com/meta-pytorch/gpt-fast
https://github.com/meta-pytorch/gpt-fast

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

34 return new_chunks

Listing 2: Pseudocode for generation

B.4 ADAPTIVE CATS TRAINING DETAILS

To enable training of adaptive CATs, we made some choices that we now describe. In every training
iteration, we sample a chunk size uniformly at random and perform loss computation. Further, due
to variable size of a chunk in every training iteration, one cannot keep a single projection matrix
that projects processed token embeddings in the compressor to a single chunk representation (since
shapes for projection matrix would be different for different chunk size). One could tackle this
by keeping an independent projection matrix for every chunk size, but we found this didn’t work
well empirically, possibly due to reduced updates for every chunk size’s projection weights (only
one chunk size’s projection weights are updated per iteration; this is not the case with compressor
or the decoder, they are updated every iteration). Instead, we took inspiration from Beyer et al.
(2023) where the authors declared a single projection matrix for all chunk sizes, and then linearly
interpolated the matrix to the desired shape depending on the current chunk size. This means the
linear interpolation is also under torch.autograd and is optimized so that the final linearly
interpolated projection matrix gives a good chunk representation for every chunk size.

B.5 CAT’S TRAINING THROUGHPUT ANALYSIS

We make use of FlexAttention API to obtain a custom self-attention kernel specifically for the
masking scheme section 7. This fused kernel gives a significant boost in training throughput in
self-attention costs compared to using a naive PyTorch masked implementation.

That being said, an efficient training kernel can be developed in the future. In our experiments, using
FlexAttention did not give significant boosts compared to training speeds using Flash Attention on a
dense transformer. This could be due to the fact that speeding up the attention maps (that we use in
figure 7) may require different principles than Flash Attention like optimization that Flex Attention
might be using under the hood.

Thus, due to the unavailability of an efficient training kernel, theoretical speed ups due to reduction
in attention FLOPs in the CAT architecture don’t appear in training wall-clock times. Additionally,
MLPs in a transformer drive the majority of the FLOPs budget during training at smaller sequence
lengths Austin et al. (2025). At a sequence length of 4096, CATs take ≤ 2.35× to train compared
to a dense transformer (measured on batch size of 8 with compressor depth of 3, decoder depth of
6, hidden size for compressor D = 1024 and hidden size for decoder Dg = 2D = 2048 for CAT,
compared against dense transformer having depth of 6 and D = 1024, on a A100 80 GB PCIe.)

Developing an efficient attention kernel for training CATs is left as future work.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C SOME ABLATIONS ON THE CAT ARCHITECTURE

C.1 ABLATION ON HIDDEN SIZE OF COMPRESSOR

With this ablation, we show that increasing hidden size of the compressor does not help in improving
perplexity. We fix Dg = 1536 for these experiments. For this ablation, we use a smaller WikiText-
103 dataset. Both compressor and decoder use the same depth L = 6.

Chunk Size C Size of Df Perplexity

16 768 17.6
1536 17.6

Table 9: Comparison of choices of hidden size of compressor on WikiText-103 perplexity.

There is no effect of increasing the hidden size of the compressor. The performance before and after
remains the same.

C.2 ABLATION ON HIDDEN SIZE OF DECODER

We ablate on different choices of Dg along with different chunk sizes in CAT . In this setup, we
fix Df in the compressor, and only vary Dg or C (chunk size). We use WikiText-103 for these
experiments. In this setup, D = 768. Both compressor and decoder use the same depth of L = 6.

Chunk Size C Size of Dg Perplexity

4 D 19.8
2D 17.4

8 D 20.4
2D 17.7

16 D 20.2
2D 17.6

Table 10: Comparison on choices of chunk sizes and sizes of Dg on WikiText-103 perplexity.

We observe that we obtain the best perplexities when we Dg = 2D for the particular chunk size we
are using. Using this observation, we used this as our default configuration for the FineWeb-Edu
experiments.

Model Df Dg Perplexity Avg. recall
Dense −− D 21.2 23.8

CAT D D 23.8 13.7
CAT D 2D 20.7 19.8

Table 11: Impact on perplexity and average recall performance of CAT when varying Dg . For dense,
Dg implies hidden size for itself. Here, D = 1024. Dg = 2D gives better perplexity and average
recall. We train CAT only at chunk size C = 8 for these experiments. All models were trained for
5B tokens with 1K sequence length. Rest of the setup follows Sec. 4.

C.3 ABLATION ON DEPTH OF THE COMPRESSOR

We ablate on the depth of the compressor. For a fixed chunk-size, Df = 768 (compressor embedding
size), Dg = 1536 (decoder hidden size), and a fixed depth of the decoder, we vary the compressor
depth.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Chunk Size C Depth of Compressor Perplexity

8 6 17.4
3 17.4

16 6 17.8
3 17.7

Table 12: Comparison on choices of depth of the compressor across different chunk sizes C on
WikiText-103.

We have an interesting observation that one can reduce the depth of the compressor without sac-
rificing on the downstream perplexity. This could mean one can compress small chunks of tokens
without a requiring high capacity. In our generation benchmarks, we observed that compressor
depth play less of a role in latency as compared to the decoder depth (since we compress tokens in
parallel using one transformer call). That being said, compressor depth does play a significant role
in training costs (due to the MLP training costs in the compressor). Therefore, reducing compressor
depth goes into overall advantage for the CAT architecture.

However, what is the limit, and can one go to even a 1 layer of compressor is an interesting question
to ask. There might be some lower bound on the compressor depth to start compressing chunks of
tokens, but we leave this to future work.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D MORE EXPERIMENT DETAILS

Here we provide more details about the experiments done in the main text.

D.1 BASELINES

Model Total (M) Embedding (M) Non-Embedding (M)
Dense 260 50 210
Mamba2 260 50 210
GDN 310 50 260
GDN-Hybrid 280 50 230
Sparse 820 100 720

CAT-4/8/16/32 150 + 820 50 + 100 100 + 720

Table 13: Model parameter sizes in millions, separated into embedding and non-embedding param-
eters. Parameters for CATs consists of cost of compressor + cost of decoder.

1. Dense transformer (or Transformer++) Vaswani et al. (2017); Touvron et al. (2023): We use
rotary position embeddings along with the FlashAttention kernel to perform self-attention.
The MLP is a SwiGLU MLP Touvron et al. (2023).

2. Sparse transformer Child et al. (2019): Follows the Dense transformer configuration, except
the attention mask used. Moreover, we used D = 2 · 1024 = 2048 for this baseline for a
fair comparison with CATs. We used FlexAttention API to create optimized Flash Attention
like kernel for this.

3. MAMBA2 Dao & Gu (2024): The model uses 2 Mamba mixer per layer. All layers use
the MAMBA2 block without any mixing any attention. The expand is set to 2, dstate =
128, and convolution k = 4. Activations used are SiLU. We use the official codebase
for MAMBA2 generation throughput and memory benchmarking: https://github.
com/state-spaces/mamba and code from: https://github.com/fla-org/
flash-linear-attention for training.

4. Gated Delta Net Yang et al. (2025b): We use the implementation provided at https:
//github.com/fla-org/flash-linear-attention for training. We use
head dim as 128 and num heads as 8 (same as MAMBA2 above). For the hybrid version,
we use sliding window layers at every other layer with a sliding window size of 2048.

D.2 DATASETS

Following common practices done in Gu & Dao (2023); Dao & Gu (2024); Arora et al. (2024a);
Yang et al. (2025b), we evaluate all models on multiple common sense reasoning benchmarks: PIQA
Bisk et al. (2020), HellaSwag Zellers et al. (2019), ARC-challenge Clark et al. (2018), WinoGrande
Sakaguchi et al. (2021) and measure perplexity on WikiText-103 Merity et al. (2016)and LAM-
BADA Paperno et al. (2016). In Table 2, HS denotes HellaSwag, PQ denotes PIQA, AE denotes
ARC-Easy, AC denotes ARC-Challenge, WG denotes Winogrande, OQA denotes OpenBookQA,
LMB denotes LAMBADA, Wiki denotes WikiText, and FW denotes FineWeb-Edu.

We evaluate on tasks from LongBench Bai et al. (2023) where each abbrevation in table 5 stands
for: QAS: qasper, MQA: multifieldqa en, HQA: hotpotqa, 2WMQ: 2wikimqa, TQA:
triviaqa, TREC: trec split of LongBench.

To measure real-world recall accuracy, we use datasets used in Arora et al. (2024a;b). Namely
these consists of SWDE Lockard et al. (2019) for structured HTML relation extraction and several
question answering datasets including SQuAD Rajpurkar et al. (2018), TriviQA Joshi et al. (2017),
DROP Dua et al. (2019) and FDA Arora et al. (2023b). Since our pretrained models are small, we
use the Cloze Completion Formatting prompts provided by Arora et al. (2024b).

We evaluate on tasks from the needle-in-haystack benchmark RULER Hsieh et al. (2024).

25

https://github.com/state-spaces/mamba
https://github.com/state-spaces/mamba
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Additionally, we evaluate on datasets from the LongBench benchmark Bai et al. (2023) to evaluate
long-context understanding.

Finally, to evaluate baselines on state-tracking tasks, we used the BabiLong benchmark Kuratov
et al. (2024). Due to relatively small scale of our setup, we were only able to evaluate on qa1
subset, since for other complex subsets, all baselines failed.

D.3 GENERATION

Both dense transformer and CAT use FlexAttention API causal dot product kernels. We use the script
provided in Dao & Gu (2024) to benchmark3 Mamba2, GatedDeltaNet and GatedDeltaNet-Hybrid.
All benchmarks used a prefill of 8 tokens. All benchmarks were run using a single NVIDIA A100
80GB PCIe, and use CUDA cache graphs for the next-token prediction.

3github.com/state-spaces/mamba

26

https://github.com/state-spaces/mamba/blob/main/benchmarks/benchmark_generation_mamba_simple.py

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E EXTENDED RELATED WORK

Reducing self-attention costs: Reducing the cost of self-attention enables scaling transformers
to large contexts and has been the focus of much work Child et al. (2019); Parmar et al. (2018);
Beltagy et al. (2020); Jiang et al. (2023). Common techniques include heuristically defined sparse
attention maps Child et al. (2019); Zaheer et al. (2020) or a sliding window Jiang et al. (2023) in
order to reduce the tokens being attended to. The compute required (and in some cases, memory) for
attention go down, however, compromising with the expressivity of the model. In turn, to achieve
performance similar to that of full-attention, efficient models either require big window sizes (mak-
ing their memory costs large again) (Arora et al., 2024a) or more layers (in case of sparse or sliding
window attention, see App. A.4 and Tab. 3).

Shazeer (2019) proposes use of single or reduced key and value heads in the self-attention block,
more commonly known as Grouped Query Attention (only one key/value head) or Multi Query
Attention (reduced key/value heads). This results in reduction of memory with seemingly no loss in
downstream performance, making this a popular choice in latest model releases Yang et al. (2025a).
That being said, one could use the same technique inside CAT’s decoder (and compressor) self-
attention block, making it complimentary.

Concurrent works like Yuan et al. (2025) reduce attention compute by attending to compressed past
tokens as well as to specific blocks of uncompressed tokens in the past. This is similar in spirit to
our work, however, in the case of Yuan et al. (2025), there are no memory savings during inference.

Some works Rae et al. (2020); Chevalier et al. (2023) explored recurrent formulations of a trans-
former to enable processing of longer sequences on limited compute by compressing past context.
However, training sequence models in a recurrent fashion has its own challenges, back-propagation
through time (BPTT) being the most important one. More recently Geiping et al. (2025) had to
use very careful weight initialization, truncated gradients, small learning rates and careful place-
ment and tuning of norms to train a large-scale recurrent architecture in a stable manner and prevent
optimization collapse. Nevertheless, these techniques are complementary to CAT.

Alternatively, one can optimize the computation of full-attention to directly reduce wall-clock time
and memory by leveraging hardware advancements. For example, Dao et al. (2022) compute atten-
tion in blockwise manner and exploit the nature of online softmax Milakov & Gimelshein (2018)
which removes the need to instantiate the entire QKT matrix and reduce calls to slow-read part of
the GPU memory. As we utilize the attention mechanism as is, any reductions in cost due to hard-
ware optimization that apply to the attention mechanism also proportionally reduce the cost of CAT
models.

Finally, plethora of works have tackled reducing compute and memory requirements of a transformer
in a post-hoc manner i.e. after it has been trained using full-attention (also called training-free sparse
attention Nawrot et al. (2025)). Common techniques include prefill-time sparsification (vertical/s-
lash/block; adaptive) and decode-time KV-cache selection/eviction (e.g. Li et al. (2024); Tang et al.
(2024)). However, because models are trained dense but run sparse, train–test mismatch can hurt
downstream performance. Still, these works are orthogonal to CAT and can be layered on CAT’s
decoder, making them complementary.

Linear attention and state-space models: A different line of work reduces the generation cost
of transformers by limiting the recurrent state, which is the vector required to decode each token.
Self-attention keeps track of the entire context (or the KV cache) meaning that the recurrent state
increases in size with each decoded token. Works like Arora et al. (2024a); Katharopoulos et al.
(2020) linearize attention to make a fixed-size recurrent state that can be updated via simple aver-
aging; the technique is to approximate self-attention with linear operations of query, key, and value
vectors transformed through a feature map. The choice of the feature map falls to the user and
approximating attention well requires the feature map to be large in size, which can counteract the
gains in computational costs achieved by the linearization.

Alternatively, one can replace attention with linear or pseudo-linear sequence mixers such as state-
space models (SSMs) Gu et al. (2021); Sun et al. (2023), gated convolutions Fu et al. (2022); Poli
et al. (2023) and input-dependent recurrent Peng et al. (2023); Gu & Dao (2023) and more recently
Yang et al. (2025b).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Typical implementations of linear attention and state-space models do achieve impressive reductions
in generation costs and memory, but restrict the expressivity to the extent that these models do not
solve in-context recall tasks without large recurrent state sizes Arora et al. (2024a; 2023a), or without
composing with other sequence mixers, such as local sliding window attention (Arora et al., 2024a;
Yang et al., 2025b). Choosing such a composition again falls back to the user, complicating the
design process. Additionally, this process trades-off computation costs for performance because the
attention layers that improve recall performance also come with larger time and memory costs.

Unlike the works discussed above, CATs require no complicated changes to the attention mechanism
itself. CATs rely on the fact that natural language is redundant and can be compressed Zipf (2016);
Shannon (1951). Instead of relying manual approximations of history or utilizing any heuristic
choice for feature maps, we let the model and optimization decide what the history should be using
learned compression. Moreover, its unclear how much memory and compute a downstream task
requires, making the adaptive property of CATs much desirable, which no other baselines provide.

Hierarchical transformers: Many previous works Pappagari et al. (2019); Han et al. (2021);
Dai et al. (2020) have explored employing hierarchy in transformers for creating representations
representations for documents/images, where a local encoder transformer processed parts of the
document/image independently. Later works Nawrot et al. (2021; 2022); Slagle (2024) explored
downsample-then-upsample approach (hour-glass like structure), where the sequence is downsam-
pled into coarse tokens followed by upsampling into fine-grained tokens before being decoded. Due
to the hour-glass structure, there are compute savings during training, but during generation, the ar-
chitecture must maintain a cache for all the past tokens, leading to significant memory accesses.
Concurrently, Hwang et al. (2025) explored a dynamic and end-to-end learned strategy for chunking
in hour-glass like architectures.

Different from above, works like Ho et al. (2024); Yu et al. (2023) break up the modeling of a
sequence into chunks/patches, where each chunk is modeled independently of each other given
the previous “global” chunk embedding. An embedder first compresses each chunk independently,
then these “local” chunk embeddings are passed to a “global” model where each “local” chunk
embedding attends to past “local” chunk embeddings, forming a “global” chunk embedding. Each
“global” chunk embedding is then passed to a decoder that is responsible for generating the next
chunk.

On first glance, CATs might appear similar to above works, specifically Ho et al. (2024); Yu et al.
(2023), however the subtle but salient difference is: one directly feeds all the previous “local”
chunk/patch representations directly to the decoder in CAT, whereas in works like Ho et al. (2024),
one feeds in just the previous “global” chunk representation outputted by a “global” model to the
decoder. This architectural choice of passing all the compressed local chunks from the past directly
to the decoder allows CATs to solve long-range recall tasks with ease while maintaining efficiency,
whereas Ho et al. (2024) is plagued by learnability problems (even in toy recall tasks) due to constant
size compression of history. Additionally, CATs don’t utilize three different components (embedder,
global decoder, local decoder) – it only uses a compressor and a decoder, reducing the design space
and (significant) parameter requirements further.

Additionally, Yen (2024) extend the cache by using a modified encoder-decoder architecture, where
decoder attends directly to final activations of a smaller fixed encoder, without any compression.

Finally, Barrault et al. (2024) suggest learning “concepts” instead of tokens by modeling the latent
representation of language produced by pushing the token sequence through a large sentence em-
bedder. The focus of this work is to decouple the modeling of the low-level details in each language,
like tense and grammar, from the larger concept space that is shared across languages. In contrast,
the goal with CAT is to reduce the cost of modeling sequences and can be used as a plug-and-play
replacement to the latent concept model. Moreover, the encoder in Barrault et al. (2024) is an auto-
encoder, that might keep irrelevant information in the chunk representation. Compressor in CATs
only keeps information that is predictive of the future chunks.

Adaptive architectures: Kusupati et al. (2022); Devvrit et al. (2023) learns representations dur-
ing training time that can work at different granularity during test-time, yielding adaptivity to the
learned architecture. However, coarser granularity of Matryoshka representations result in loss of
language modeling performance (in terms of perplexity) Devvrit et al. (2023). That being said, one
could apply similar approaches to CATs making them complimentary. CATs use the same high-level

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

approach described in Beyer et al. (2023): learn a single model that can work for various patch sizes
at once depending on the downstream use-case at test-time. However, Beyer et al. (2023) worked
with image classification tasks; CATs deal with language modeling and generation.

29

	Introduction
	Compress and Attend Transformers (cats)
	How to implement fast and scalable cats

	Related Work
	Experiments
	Discussion and Conclusion
	Reproducibility Statement
	More experiments
	Recall evaluation
	Comparison with MegaByte/Block Transformer
	Comparing cats with parameter matched Dense transformer
	Sparse or Sliding Window Attention needs more layers for recall

	Implementation details and PyTorch style pseudo-code
	Training
	cat's training attention mask
	Generation
	Adaptive cats training details
	cat's training throughput analysis

	Some ablations on the cat architecture
	Ablation on hidden size of compressor
	Ablation on hidden size of decoder
	Ablation on depth of the compressor

	More experiment details
	Baselines
	Datasets
	Generation

	Extended Related Work

