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Abstract

We systematically study the calibration of001
classifiers trained with differentially private002
stochastic gradient descent (DP-SGD) and ob-003
serve miscalibration across a wide range of vi-004
sion and language tasks. Our analysis identifies005
per-example gradient clipping in DP-SGD as a006
major cause of miscalibration, and we show007
that existing approaches for improving cali-008
bration with differential privacy only provide009
marginal improvements in calibration error010
while occasionally causing large degradations011
in accuracy. As a solution, we show that dif-012
ferentially private variants of post-processing013
calibration methods such as temperature scal-014
ing and Platt scaling are surprisingly effective015
and have negligible utility cost to the overall016
model. Across 7 tasks, temperature scaling and017
Platt scaling with DP-SGD result in an average018
3.1-fold reduction in the in-domain expected019
calibration error and only incur at most a minor020
percent drop in accuracy.021

1 Introduction022

Modern deep learning models tend to memorize023

their training data in order to generalize better024

(Zhang et al., 2021; Feldman, 2020), posing great025

privacy challenges in the form of training data leak-026

age or membership inference attacks (Shokri et al.,027

2017; Hayes et al., 2017; Carlini et al., 2021). To028

address these concerns, differential privacy (DP)029

has become a popular paradigm for providing rig-030

orous privacy guarantees when performing data031

analysis and statistical modeling based on private032

data. In practice, a commonly used DP algorithm033

to train machine learning (ML) models is DP-SGD034

(Abadi et al., 2016). The algorithm involves clip-035

ping per-example gradients and injecting noises036

into parameter updates during the optimization pro-037

cess.038

Despite that DP-SGD can give strong privacy039

guarantees, prior works have identified that this040

privacy comes at a cost of other aspects of trustwor- 041

thy ML, such as degrading accuracy and causing 042

disparate impact (Bagdasaryan et al., 2019; Feld- 043

man, 2020; Sanyal et al., 2022). These tradeoffs 044

pose a challenge for privacy-preserving ML, as it 045

forces practitioners to make difficult decisions on 046

how to weigh privacy against other key aspects of 047

trustworthiness. In this work, we expand the study 048

of privacy-related tradeoffs by characterizing and 049

proposing mitigations for the privacy-calibration 050

tradeoff. The tradeoff is significant as accessing 051

model uncertainty is important for deploying mod- 052

els in safety-critical scenarios like healthcare and 053

law where explainability (Cosmides and Tooby, 054

1996) and risk control (Van Calster et al., 2019) are 055

needed in addition to privacy (Knolle et al., 2021). 056

The existence of such a tradeoff may be surpris- 057

ing, as we might expect differentially private train- 058

ing to improve calibration by preventing models 059

from memorizing training examples and promoting 060

generalization (Dwork et al., 2015; Bassily et al., 061

2016; Kulynych et al., 2022). Moreover, train- 062

ing with modern pre-trained architectures show 063

a strong positive correlation between calibration 064

and classification error (Minderer et al., 2021), and 065

using differentially private training based on pre- 066

trained models are increasingly performant (Tramer 067

and Boneh, 2021; Li et al., 2022b; De et al., 2022). 068

However, we find that DP training has the surpris- 069

ing effect of consistently producing over-confident 070

prediction scores in practice (Bu et al., 2021). We 071

show an example of this phenomenon in a sim- 072

ple 2D logistic regression problem (Fig. 1). We 073

find a polarization phenomenon, where the DP- 074

trained model achieves similar accuracy to its non- 075

private counterpart, but its confidences are clus- 076

tered around either 0 or 1. As we will see later, the 077

polarization insight conveyed by this motivating 078

example transfers to more realistic settings. 079

Our first contribution quantifies existing privacy- 080

calibration tradeoffs for state-of-the-art models that 081
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leverage DP training and pre-trained backbones082

such as RoBERTa (Liu et al., 2019b) and vision083

transformers (ViT) (Dosovitskiy et al., 2020). Al-084

though there have been some studies of miscali-085

bration for differentially private learning (Bu et al.,086

2021; Knolle et al., 2021), they focus on simple087

tasks (e.g., MNIST, SNLI) with relatively small088

neural networks trained from scratch. Our work089

shows that miscalibration problems persist even090

for state-of-the-art private models with accuracies091

approaching or matching their non-private counter-092

parts. Through controlled experiments, we show093

that these calibration errors are unlikely solely due094

to the regularization effects of DP-SGD, and are095

more likely caused by the per-example gradient096

clipping operation in DP-SGD.097

Our second contribution shows that the privacy-098

calibration tradeoff can be easily addressed through099

differentially private variants of temperature scal-100

ing (DP-TS) and Platt scaling (DP-PS). To enable101

these modifications, we provide a simple privacy102

accounting analysis, proving that DP-SGD based103

recalibration on a held-out split does not incur ad-104

ditional privacy costs. Through extensive experi-105

ments, we show that DP-TS and DP-PS effectively106

prevent DP-trained models from being overconfi-107

dent and give a 3.1-fold reduction in in-domain108

calibration error on average, substantially outper-109

forming more complex interventions that have been110

claimed to improve calibration (Bu et al., 2021;111

Knolle et al., 2021).112

2 Related Work113

Differentially Private Deep Learning. DP-SGD114

(Song et al., 2013; Abadi et al., 2016) is a popu-115

lar algorithm for training deep learning models116

with DP. Recent works have shown that fine-tuning117

high-quality pre-trained models with DP-SGD re-118

sults in good downstream performance (Tramer119

and Boneh, 2021; Li et al., 2022b; De et al., 2022;120

Li et al., 2022a). Existing works have studied121

how ensuring differential privacy through mech-122

anisms such as DP-SGD leads to tradeoffs with123

other properties, such as accuracy (Feldman, 2020)124

and fairness (Bagdasaryan et al., 2019; Tran et al.,125

2021; Sanyal et al., 2022; Esipova et al., 2022)126

(measured by the disparity in accuracies across127

groups). Our miscalibration findings are closely128

related to the above privacy-fairness tradeoff that129

has already received substantial attention. For ex-130

ample, per-example gradient clipping is shown to131

exacerbate accuracy disparity (Tran et al., 2021; 132

Esipova et al., 2022). Some fairness notions also 133

require calibrated predictions such as calibration 134

over demographic groups (Pleiss et al., 2017; Liu 135

et al., 2019a) or a rich class of structured “identifi- 136

able” subpopulations (Hébert-Johnson et al., 2018; 137

Kim et al., 2019). Our work expands the under- 138

standing of tradeoffs between privacy and other as- 139

pects of trustworthiness by characterizing privacy- 140

calibration tradeoffs. 141

Calibration. Calibrated probability estimates 142

match the true empirical frequencies of an outcome, 143

and calibration is often used to evaluate the quality 144

of uncertainty estimates provided by ML models. 145

Recent works have observed that highly-accurate 146

models that leverage pre-training are often well- 147

calibrated (Hendrycks et al., 2019; Desai and Dur- 148

rett, 2020; Minderer et al., 2021; Kadavath et al., 149

2022). However, we find that even pre-trained mod- 150

els are poorly calibrated when they are fine-tuned 151

using DP-SGD. Our work is not the first to study 152

calibration under learning with DP, but we provide 153

a more comprehensive characterization of privacy- 154

calibration tradeoffs and solutions that improve this 155

tradeoff which are both simpler and more effective. 156

(Luo et al., 2020) studied private calibration for 157

out-of-domain settings, but did not study whether 158

DP-SGD causes miscalibration in-domain. (An- 159

gelopoulos et al., 2021) modified split conformal 160

prediction to be privacy-preserving, but they only 161

studied vision models and their private models have 162

substantial performance decrease compared to non- 163

private ones. They also did not study the miscal- 164

ibration of private models and the causes of the 165

privacy-calibration tradeoff. (Knolle et al., 2021) 166

studied miscalibration, but only on MNIST and 167

a small pneumonia dataset. Our work provides a 168

more comprehensive characterization across more 169

realistic datasets, and our comparisons show that 170

our recalibration approach is consistently more ef- 171

fective. Closer to our work, the work by (Bu et al., 172

2021) identified that DP-SGD produces miscali- 173

brated models on CIFAR-10, SNLI, and MNIST. 174

As a solution, they suggested an alternative clip- 175

ping scheme that empirically reduces the expected 176

calibration error (ECE). Our work differs in three 177

ways: our experimental results cover harder tasks 178

and control for confounders such as model accu- 179

racy and regularization; we study transfer learning 180

settings that are closer to the state-of-the-art setup 181

in differentially private learning and find substan- 182
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(b) Calibration comparison of logistic regression w and w/o DP

Figure 1: DP-SGD gives rise to miscalibration for logistic regression. (a) Logistic Regression model (blue line)
with ϵ = 8 on Gaussian data {(xi, yi)}ni=1 where (x, y) ∈ Rp × {1,−1}, (x − b)|y ∼ N (0, I2×2), b = (1.5, 0)
if y = 1 else b = (0, 1.5), and y is Rademacher distributed. (b) Reliability diagram and confidence histogram.
DP-SGD trained classifier, which shows poor calibration with a large concentration of extreme confidence values
(Left); the baseline is a standard, non-private logistic regression model trained by SGD, which is much better
calibrated (Right).

tially worse ECE gaps (e.g. they identify a 43%183

relative increase in ECE on CIFAR-10, while we184

find nearly 400% on Food101); we compare our185

simple recalibration procedure to their method and186

find that DP-TS is substantially more effective at187

reducing ECE.188

Our main goal is to build classifiers that are both189

accurate and calibrated under differential privacy.190

We begin by defining core preliminary concepts.191

2.1 Differential Privacy192

Differential privacy is a formal privacy guaran-193

tee for a randomized algorithm which intuitively194

ensures that no adversary has a high probability195

of identifying whether a record was included in196

a dataset based on the output of the algorithm.197

Throughout our work, we will study models trained198

with approximate-DP / (ϵ, δ)-DP algorithms.199

Definition 2.1. (Approximate-DP (Dwork et al.,200

2006)). The randomized algorithm M : X →201

Y is (ϵ, δ)-DP if for all neighboring datasets202

X,X ′ ∈ X that differ on a single element and203

all measurable Y ⊂ Y,P(M(X) ∈ Y ) ≤204

exp(ϵ)P (M (X ′) ∈ Y ) + δ.205

2.2 Differentially Private Stochastic Gradient206

Descent207

The standard approach to train neural networks208

with DP is using the differentially private stochastic209

gradient descent (DP-SGD) (Abadi et al., 2016)210

algorithm. The algorithm operates by privatizing211

each gradient update via combining per-example212

gradient clipping and Gaussian noise injection.213

Formally, one step of DP-SGD to update θ with214

a batch of samples Bt is defined as 215

θ(t+1) = θ(t) − ηt
{

1
B

∑
i∈Bt

clipC
(
∇Li

(
θ(t)

))
+ ξ

}
,

(1) 216

where ηt is the learning rate at step t, L
(
θ(t)

)
is 217

the learning objective, clipC
(
∇Li

(
θ(t)

))
clips the 218

gradient using clipC
(
∇Li

(
θ(t)

))
= ∇Li

(
θ(t)

)
· 219

min
(
1, C/∥∇Li

(
θ(t)

)
∥2
)

and ξ is Gaussian 220

noise defined as ξ ∼ N
(
0, C2 σ2

B2 Ip

)
with the 221

standard deviation σ as the noise multiplier re- 222

turned by accounting and the expected batch size 223

B. Each step of DP-SGD is approximate-DP, and 224

the final model satisfies approximate-DP with pri- 225

vacy leakage parameters that can be computed with 226

privacy loss composition theorems (Abadi et al., 227

2016; Mironov, 2017; Wang et al., 2019b; Dong 228

et al., 2019; Gopi et al., 2021). 229

2.3 Calibration 230

A probabilistic forecast is said to be calibrated if 231

the forecast has accuracy p on the set of all ex- 232

amples with confidence p. Specifically, given a 233

multi-class classification problem where we want 234

to predict a categorical variable Y based on the ob- 235

servation X , we say that a probabilistic classifier hθ 236

parameterized by θ over C classes satisfies canoni- 237

cal calibration if for each p in the simplex ∆C−1 238

and every label y, P (Y = y | hθ(X) = p) = py 239

holds.1 Intuitively, a calibrated model should give 240

predictions that can truthfully reflect the predictive 241

uncertainty, e.g., among the samples to which a 242

calibrated classifier gives a confidence 0.1 for class 243

k, 10% of the samples actually belong to class k. 244

1We slightly abuse the notation of X and Y .
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The canonical calibration property can be diffi-245

cult to verify in practice when the number of classes246

is large (Guo et al., 2017). Because of this, we will247

consider a simpler top-label calibration criterion in248

this work. In this relaxation, we consider calibra-249

tion over only the highest probability class. More250

formally, we say that a classifier hθ is calibrated if251

∀p∗ ∈ [0, 1], P (Y ∈ argmax p | maxhθ(X) = p∗) = p∗,

(2)252

where p∗ is the true predictive uncertainty. With the253

same definition of p∗, we will quantify the degree to254

which a classifier is calibrated through the expected255

calibration error (ECE), defined by256

E[| p∗ − E [Y ∈ argmaxhθ(X) |maxhθ(X) = p∗]|] .257

In practice, we estimate ECE by first partitioning258

the confidence scores into M bins B1, . . . , BM259

before calculating the empirical estimate of ECE260

as261

ECE =
M∑

m=1

|Bm|
n

|acc (Bm)− conf (Bm)| , (3)262

where263

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(yi = argmaxhθ(xi)),

(4)

264

conf (Bm) =
1

|Bm|
∑
i∈Bm

hθ(xi) (5)265

and {(xi, yi)}ni=1 are a set of n i.i.d. samples that266

follow a distribution P (X,Y ). When appropri-267

ate, we will also study fine-grained miscalibra-268

tion errors through the histogram of conf(Bm) (the269

confidence histogram) and plot acc(Bm) against270

conf(Bm) (the reliability diagram).271

3 Experimental Results272

We study three different experimental settings. We273

first consider in-domain evaluations, where we274

evaluate calibration errors on the same domain that275

they are trained on. Results show that using pre-276

trained models does not address miscalibration is-277

sues in-domain. We then evaluate the same models278

above in out-of-domain settings, showing that both279

miscalibration and effectiveness of our recalibra-280

tion methods carry over to the out-of-domain set-281

ting. Finally, we perform careful ablations to iso-282

late and understand the causes of in-domain miscal-283

ibration. In each case, we will show that DP-SGD284

leads to high miscalibration, and DP recalibration 285

substantially reduces calibration errors. 286

Models. Our goal is to evaluate calibration er- 287

rors for state-of-the-art private models. Because 288

of this, our models are based on transfer learning 289

from a pre-trained model. For the text datasets, 290

we fine-tune RoBERTa-base using the procedure in 291

(Li et al., 2022b), and for vision datasets, we per- 292

form linear probe of ViT and ResNet-50 features, 293

following (Tramer and Boneh, 2021). 294

MNLI QNLI QQP SST-2 Food101 SUN397 CIFAR-10
Dataset

0.00

0.05

0.10

0.15

EC
E

DP
Non-private

Figure 2: DP trained models display consistently higher
ECE than their non-private counterparts.

Datasets. Following prior work (Li et al., 2022b), 295

we train on MNLI, QNLI, QQP, SST-2 (Wang et al., 296

2019a) for the text classification tasks, and per- 297

form OOD evaluations on common transfer targets 298

such as Scitail (Khot et al., 2018), HANS (Mc- 299

Coy et al., 2019), RTE, WNLI, and MRPC (Wang 300

et al., 2019a).2 For the vision tasks, we focus on 301

the in-domain setting and evaluate on a subset of 302

the transfer tasks in (Kornblith et al., 2019) with at 303

least 50k examples. 304

Methods. As baselines, we train the above mod- 305

els using non-private SGD (NON-PRIVATE), stan- 306

dard DP-SGD (DP), global clipping (Bu et al., 307

2021) (GLOBAL CLIPPING), and differentially 308

private stochastic gradient Langevin dynamics 309

(Knolle et al., 2021) (DP-SGLD). The last two 310

methods are included to evaluate our simple recali- 311

bration approaches against existing methods which 312

are reported to improve calibration. 313

For our recalibration methods, we run the private 314

recalibration method over the in-domain recalibra- 315

tion set Xrecal in Sec. 3.1 using private temperature 316

scaling (DP-TS) (Guo et al., 2017) and Platt scal- 317

ing (DP-PS) (Platt et al., 1999; Guo et al., 2017). 318

We also include a non-private baseline that com- 319

2To match the label space between MNLI and the OOD
tasks, we merge “contradiction” and “neutral” labels into a
single “not-contradiction” label.
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Table 1: The image classification performance (ϵ = 8) of models before and after recalibration. Results for ϵ = 3
are in Appendix B.3

Category Model
CIFAR-10 SUN397 Food101

Accuracy ECE Accuracy ECE Accuracy ECE

Baseline
DP 0.7951 0.0903 0.6844 0.1302 0.7582 0.154

DP-SGLD 0.7122 0.1331 0.6062 0.1952 0.6476 0.2416
Global Clipping 0.7712 0.0804 0.6215 0.1125 0.7451 0.1017

Recalibration
DP-PS 0.789 0.012 0.674 0.104 0.7543 0.0554
DP-TS 0.789 0.0221 0.674 0.0763 0.7543 0.0540

Non-private
DP+Non-private-TS 0.789 0.0222 0.674 0.0764 0.7543 0.0539

Non-private 0.83 0.0794 0.7044 0.1062 0.8245 0.0349

Table 2: The text classification performance (ϵ = 8) before and after recalibration.

Category Model
MNLI QNLI QQP SST-2

Accuracy ECE Accuracy ECE Accuracy ECE Accuracy ECE

Baseline
DP 0.8281 0.166 0.8503 0.149 0.8685 0.13 0.8922 0.105

DP-SGLD 0.7188 0.2625 0.7787 0.2138 0.7917 0.2009 0.82 0.1742
Global Clipping 0.8236 0.1667 0.8502 0.1491 0.8685 0.1296 0.8922 0.1047

Recalibration
DP-PS 0.826 0.0487 0.8464 0.0305 0.8659 0.0672 0.8842 0.0201
DP-TS 0.826 0.0849 0.8464 0.0915 0.8659 0.0635 0.8842 0.0665

Non-private
DP+Non-private-TS 0.826 0.0849 0.8464 0.0915 0.8659 0.0635 0.8842 0.0665

Non-private 0.8642 0.0699 0.914 0.028 0.9042 0.0891 0.9323 0.0425

bines differentially private model training with non-320

private temperature scaling (DP+NON-PRIVATE-321

TS) as a way to quantify privacy costs in the post-322

hoc recalibration step. Further implementation de-323

tails and default hyper-parameters for DP training324

are in Tab. 6 in Appendix B.325

3.1 In-domain Calibration326

We now conduct in-depth experiments across mul-327

tiple datasets and domains to study miscalibration328

(Tab. 1, 2). We train differentially private mod-329

els using pre-trained backbones, and find that their330

accuracies match previously reported high perfor-331

mance (Tramer and Boneh, 2021; Li et al., 2022b;332

De et al., 2022).333

However, we find that these same models have334

substantially higher calibration errors. For example,335

the linear probe for Food101 in Fig. 2 has private336

accuracy within 7% of the non-private counterpart,337

but the ECE is more than 4× that of the non-private338

counterpart. In the language case, we see similar re-339

sults on QNLI with a ~6% decrease in accuracy but340

a ~4.3× increase in ECE. The overall trend of mis-341

calibration is clear across datasets and modalities342

(Fig. 2).343

DP recalibration. We now turn our attention to344

recalibration algorithms and see whether DP-TS345

and DP-PS can address in-domain miscalibration.346

We find that DP-TS and DP-PS perform well con-347

sistently over all datasets and on both modalities 348

with marginal accuracy drops (Tab.1 and Tab.2). In 349

many cases, the differentially private variants of re- 350

calibration work nearly as well as their non-private 351

counterparts. The ECE values for the private DP- 352

TS and non-private baseline of DP+Non-private-TS 353

are generally close across all the datasets. 354

We note that both DP-TS and DP-PS perform 355

consistently well, with an average relative (in- 356

domain) ECE reduction of 0.58. Despite being sim- 357

ple, the two methods never underperform Global 358

Clipping and DP-SGLD in terms of ECE, and can 359

have very close or even higher accuracies despite 360

the added cost of sample splitting. 361

Qualitative analysis. Examining the reliability 362

diagram before and after DP-TS, we see two clear 363

phenomena. First, the model confidence distribu- 364

tion under DP-SGD is highly polarized (Fig. 3, first 365

two panels) with nearly all examples receiving con- 366

fidences of 1.0. Next, we see that after DP-TS, 367

this confidence distribution is adjusted to cover a 368

much broader range of confidence values. In the 369

case of SUN397, after recalibration, we see almost 370

perfect agreement between the model confidences 371

and actual accuracies. 372

3.2 Out-of-domain Calibration 373

We complement our in-domain experiments with 374

out-of-domain evaluations. To do this, we eval- 375

5



Table 3: The zero-shot transfer NLI performance (ϵ = 8) across multiple OOD test datasets.

Dataset Category Model
Hans Scitail RTE WNLI

Accuracy ECE Accuracy ECE Accuracy ECE Accuracy ECE

MNLI

Baseline
DP 0.5195 0.4786 0.7761 0.2172 0.7437 0.2541 0.4507 0.5492

DP-SGLD 0.4996 0.4995 0.7515 0.233 0.6498 0.3169 0.4507 0.5491
Global Clipping 0.5221 0.4747 0.7845 0.2051 0.7076 0.2737 0.4366 0.5632

Recalibration
DP-PS 0.5237 0.348 0.7707 0.1089 0.7220 0.1516 0.4366 0.4416
DP-TS 0.5237 0.3544 0.7707 0.1168 0.7220 0.1593 0.4366 0.4495

Non-private
DP+Non-private-TS 0.5237 0.3544 0.7707 0.1168 0.7220 0.1593 0.4366 0.4495

Non-private 0.668 0.2687 0.7853 0.1348 0.7906 0.1518 0.507 0.4677

QNLI

Baseline
DP 0.5046 0.4932 0.729 0.2666 0.5657 0.4407 0.4724 0.5215

DP-SGLD 0.5 0.4986 0.7209 0.2723 0.5668 0.4266 0.4225 0.5738
Global Clipping 0.5025 0.4971 0.7293 0.2684 0.5199 0.4761 0.4789 0.52

Recalibration
DP-PS 0.5002 0.3244 0.7377 0.0832 0.5632 0.2578 0.4648 0.3464
DP-TS 0.5002 0.385 0.7377 0.1353 0.5632 0.3121 0.4648 0.404

Non-private
DP+Non-private-TS 0.5002 0.385 0.7377 0.1353 0.5632 0.3121 0.4648 0.404

Non-private 0.538 0.1969 0.7454 0.0690 0.5199 0.3036 0.5493 0.2438
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Figure 3: Reliability diagram and confidence histogram before (Left) and after (Right) recalibration using DP-TS.
Recalibration parameters are learned on the validation set Xrecal of MNLI and SUN397.

Table 4: The zero-shot transfer paraphrase perfor-
mance (ϵ = 8) from QQP to MRPC.

Dataset Category Model
MRPC

Accuracy ECE

QQP

Baseline
DP 0.7475 0.252

DP-SGLD 0.6936 0.2979
Global Clipping 0.7475 0.252

Recalibration
DP-PS 0.7426 0.1252
DP-TS 0.7426 0.1796

Non-private
DP+Non-private-TS 0.7426 0.1796

Non-private 0.7255 0.2635

uate the zero-shot transfer performance of mod-376

els trained over MNLI, QNLI (Tab. 3) and QQP377

(Tab. 8).378

Our findings are consistent with the in-domain379

evaluations. Differentially private training gener-380

ally results in high ECE, while DP-TS and DP-381

PS generally improve calibration. The gaps out-382

of-domain are substantially smaller than the in-383

domain case, as all methods are of low accuracy384

and miscalibrated out of domain. However, the385

general ranking of miscalibration methods, and the386

observation that DP-TS and DP-PS lead to private387

models with calibration errors on-par to non-private388

models is unchanged.389

3.3 Analyses and Ablation Studies 390

Finally, we carefully study two questions to better 391

understand the miscalibration of private learners: 392

What component of DP-SGD leads to miscalibra- 393

tion? What are other confounders such as accuracy 394

or regularization effects that lead to miscalibration? 395

Ablation on per-example gradient clipping and 396

noise injection. DP-SGD involves per-example 397

gradient clipping and noise injection. To better 398

understand which component contributes more to 399

miscalibration, we perform experiments to isolate 400

the effect of each individual component. 401

On 2D synthetic data (example given in Fig. 1), 402

Fig. 5(a) shows that fixing the overall privacy guar- 403

antee (ϵ) and increasing the clipping threshold from 404

DP (0.1) to DP (1) and further to DP (10) affect the 405

accuracy only marginally but substantially improve 406

calibration. Repeating this ablation with RoBERTa 407

fine-tuning on MNLI (Fig. 5(b)) confirms that in- 408

creasing the clipping threshold (slightly) decreases 409

ECE but does not substantially impact model ac- 410

curacy. Finally, Fig. 5(c) shows that completely 411

removing clipping and training with only noisy 412

gradient descent dramatically reduces ECE (and 413

increases accuracy). These results suggest that in- 414

tensive clipping exacerbates miscalibration (even 415
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Figure 4: (a) MNLI performance under varying privacy budgets ϵ. (b) Controlling for accuracy by early
stopping non-private models to match the DP models does not substantially affect differences in ECE. The accuracy
differences are within 1%.
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Figure 5: Per-example gradient clipping (ϵ = 8) causes large ECE errors in (a) logistic regression on non-separable
2D synthetic data, and (b) fine-tuning RoBERTa on MNLI. (c) Performing only gradient noising leads to high
accuracy and low ECE.

under a fixed privacy guarantee).416

Controlling for accuracy and regularization.417

Accuracy and calibration are generally positively418

correlated (Minderer et al., 2021; Carrell et al.,419

2022). This poses a question: Does the miscali-420

bration of DP models arise due to their suboptimal421

accuracy? We find evidence against this in two422

different experiments.423

In the first experiment, we vary ϵ for fine-tuning424

RoBERTa with DP on MNLI. This results in several425

models situated on a linear ECE-accuracy tradeoff426

curve (Fig. 4(a)). Intuitively, extrapolating this427

curve helps us identify the anticipated ECE for a428

DP trained model with a given accuracy. Fig. 4(a)429

shows that when compared to these private mod-430

els, the non-private model has substantially lower431

ECE than would be expected by extrapolating this432

tradeoff alone. This suggests that private learning433

experiences a qualitatively different ECE-accuracy434

tradeoff than standard learning.435

In the second experiment, we controlled the in-436

domain accuracy of non-private models to match 437

their private counterparts by early-stopping the non- 438

private models to be within 1% of the DP model 439

accuracy. Fig. 4(b) shows that the ECE gap be- 440

tween the private and non-private models persists 441

even when controlling for accuracy. 442

More generally, we find that regularization 443

methods such as early stopping impact the ECE- 444

accuracy tradeoff qualitatively differently than DP- 445

SGD. Our results in Tab. 5 show that most other reg- 446

ularizers such as early-stopping lead to an accuracy- 447

ECE tradeoff, in which highly regularized models 448

are less accurate but better calibrated. This is not 449

the case for DP training, where the resulting mod- 450

els are both of lower accuracy and less calibrated 451

relative to their non-private counterparts. These 452

findings suggest that calibration errors in private 453

and non-private settings may be caused by different 454

reasons - the miscalibration of private models may 455

not be due to the regularization effects of DP-SGD. 456
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Table 5: Comparison with non-private models trained using common regularizers, i.e. ℓ2 (weight decay factor),
dropout (probability) and early stopping (total training epochs). Models are trained on MNLI and evaluated over
MNLI, Scitail and QNLI.

Method
MNLI Scitail QNLI

Accuracy ECE Accuracy ECE Accuracy ECE
DP 0.8281 0.166 0.7761 0.2172 0.5058 0.4942

Non-private 0.8642 0.0699 0.7853 0.1348 0.5050 0.4426
ℓ2 (1e-4) 0.8664 0.0347 0.7876 0.0822 0.5058 0.4874
ℓ2 (1e-3) 0.8672 0.0349 0.7891 0.0816 0.5056 0.4862
ℓ2 (1e-2) 0.8620 0.0326 0.7845 0.0845 0.5059 0.4870
ℓ2 (1e-1) 0.8684 0.1874 0.786 0.0835 0.5059 0.4872

dropout (0.1) 0.8684 0.1874 0.786 0.0835 0.5059 0.4872
dropout (0.2) 0.8601 0.046 0.7722 0.1076 0.5058 0.487
dropout (0.3) 0.8380 0.0629 0.7423 0.1523 0.5050 0.486

early stopping (2) 0.8423 0.0288 0.7806 0.0662 0.5050 0.4818
early stopping (4) 0.8572 0.0299 0.78 0.094 0.5058 0.486
early stopping (6) 0.8623 0.0355 0.7837 0.0811 0.5056 0.486
early stopping (8) 0.8684 0.1874 0.786 0.0835 0.5059 0.4872
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Figure 6: DP-SGD training (ϵ = 8) makes train and eval ECE close but both of them are large. The training
dynamics of (a) ECE and (b) Loss on both QNLI training and evaluation sets.

DP training leads to similarly high train and test457

ECE. Learning algorithms which satisfy tight DP458

guarantees are known to generalize well, mean-459

ing that the train (empirical) and test (popula-460

tion) losses of a DP trained model should be simi-461

lar (Dwork et al., 2015; Bassily et al., 2016). In a462

controlled experiment, we fine-tune RoBERTa on463

QNLI with DP-SGD (ϵ = 8) and observe that the464

train-test gaps for both ECE and loss are smaller for465

DP models than the non-private ones (Fig. 6). Yet,466

for DP trained models, both the train and test ECEs467

are high compared to the non-private model. Inter-468

estingly, these observations with DP trained models469

are very different from what’s seen in miscalibra-470

tion analyses of non-private models. For instance,471

(Carrell et al., 2022) showed that non-private mod-472

els tend to be calibrated on the training set but can473

be miscalibrated on the test set due to overfitting474

(large calibration generalization gap). Our results 475

show that DP trained models have a small calibra- 476

tion generalization gap, but are miscalibrated on 477

both the training and test sets. 478

4 Discussion and Concluding Remarks 479

In this work, we study the calibration of ML models 480

trained with DP-SGD. We quantify the miscalibra- 481

tion of DP-SGD trained models and verify that they 482

exist even using state-of-the-art pre-trained back- 483

bones. While the calibration errors are substan- 484

tial and consistent, we show that adapting existing 485

post-hoc calibration methods is highly effective for 486

DP-SGD models. We believe it is an open question 487

whether it is possible to leverage the generalization 488

guarantees of DP-SGD to naturally obtain similarly 489

well-calibrated models without the use of sample- 490

splitting and recalibration. 491
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A Privacy Analysis for Independent Releases With a Partition of Data 673

Our post-processing calibration setup requires splitting the original (private) training data into two disjoint 674

splits where one of which is used solely for training and the other solely for post hoc recalibration. 675

Given that both the training and post hoc recalibration algorithms are DP, it is natural to ask what is 676

the overall privacy spending of the joint release. While one can essentially resort to any “off-the-shelf” 677

privacy composition theorem, we note that in our setup the splits of data used in the two algorithms are 678

disjoint, and thus a tighter characterization of privacy leakage is possible. Based on parallel composition 679

(McSherry, 2009), we prove the following proposition. 680

Proposition A.1. Let M1 : X1 → Y and M2 : X2 × Y → Z be (ϵ, δ)-DP algorithms consuming 681

independent random bits operating on disjoint splits of the dataset. Then, the algorithm M : X → Y ×Z 682

defined by 683

M(X) = (y, z), y = M1(X1), z = M2(X2, y), 684

where (X1, X2) is a partition of X determined through some procedure independent on X , is also 685

(ϵ, δ)-DP. 686

Proof. Let X and X ′ be neighboring datasets. Suppose that the first component in both partitions is the 687

same, i.e., X = (X1, X2), and X ′ = (X1, X
′
2), where X2 and X ′

2 are neighboring. Then, M is (ϵ, δ)-DP 688

directly follows from that M2 is (ϵ, δ)-DP. 689

The more subtle case is when the second component in both partitions is the same. Specifically, 690

suppose that X = (X1, X2), and X ′ = (X ′
1, X2), where X1 and X ′

1 are neighboring. Let R denote the 691

random variable that controls only the randomness of M2, i.e., conditioned a draw of R = r, M2 is a 692

deterministic function. With slight abuse of notation, we denote this deterministic function by M2(r). Let 693

O = ∪o1∈O1{o1} ×O2(o1) ⊂ Y × Z be a subset of the codomain. Define the following shorthand for 694

the preimage of M2 conditioned on R = r 695

M2(r)
−1(X2, S) = {y ∈ Y | M2(r)(X2, y) ∈ S}. 696

Then, we have 697

Pr (M(X) ∈ O | R = r) =
∑

o1∈O1

Pr (M1(X1) = o1) Pr (M2(X2, o1) ∈ O2(o1) | R = r) 698

=
∑

o1∈O1

Pr (M1(X1) = o1)1 [M2(r)(X2, o1) ∈ O2(o1)] 699

=
∑

o1∈O1

Pr
(
M1(X1) = o1, M1(X1) ∈ M2(r)

−1(X2, O2(o1))
)

700

= Pr
(
M1(X1) ∈ ∪o1∈O1

(
{o1} ∩M2(r)

−1(X2, O2(o1))
))

701

≤ eϵ Pr
(
M1(X

′
1) ∈ ∪o1∈O1

(
{o1} ∩M2(r)

−1(X2, O2(o1))
))

+ δ 702

= eϵ Pr
(
M(X ′) ∈ O | R = r

)
+ δ. 703

Since the above holds for all draws of R, we conclude that Pr (M(X) ∈ O) ≤ eϵ Pr (M(X ′) ∈ O) + δ 704

for all neighboring X and X ′ which differ only in their first components. This concludes the proof. 705

B Extended Experimental Details and Results 706

B.1 Settings for Synthetic Experiments 707

For synthetic experiments, we generate two-dimensional mixture Gaussian data of size 10k. The distance 708

between the centers of two class data shifts by a constant, which is set to be 2 ∗ 1.5. We use logistic 709

regression to do the binary classification. We set the amount of data points from each class as 5k and 710

batch size as 4k. We include the results with different maximum gradient norm C ∈ {0.1, 0.5, 1} of DP 711

training. 712
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Table 6: Default hyperparameter of DP finetuning over different datasets for reproducibility. Batch size is based on
a unit batch size 20 with different amount of gradient accumulation steps. We use the validation ratio, the proportion
of validation set, to split the training set for tuning recalibration methods.

Dataset CIFAR-10 SUN397 Food101 MNLI QNLI QQP SST-2
Learning rate 2e-3 1e-2 1e-4 5e-4 1e-3 5e-4 1e-3

Batch size 32 32 32 6,000 2,000 6,000 1,000
LR decay False False False True True True True
Epochs 10 10 10 18 6 18 3

Weight decay 1e-4 1e-4 1e-4 0 0 0 0
Clipping norm 1.0 1.0 1.0 0.1 0.1 0.1 0.1

Privacy budget ϵ 3, 8 3, 8 3, 8 8 8 8 8
Validation ratio 0.1

Noise scale calculated numerically so that a DP budget of (ϵ, δ) is spent after E epochs

B.2 Implementation Details713

We use pre-trained checkpoints and trainers from Huggingface library (Wolf et al., 2020) for NLP714

experiments. We do linear probe for CV experiments using ResNet50 for CIFAR-10, ViT for SUN397715

and Food101. We use the modified Opacus privacy engine (Yousefpour et al., 2021) from (Li et al.,716

2022b), which computes per-example gradients for transformers. We compare DP training with popular717

regularizers used for finetuning like ℓ2, dropout and early stopping over NLP datasets. ℓ2 is the weight718

decay rate {1e− 1, 1e− 2, 1e− 3, 1e− 4} during optimization. We apply dropout to both hidden and719

attention layers of transformers, which takes the value in {0.1, 0.2, 0.3, 0.4}. We do early stopping by720

setting the maximum amount of training epochs to be smaller, i.e. values in {2, 4, 6, 8}. The default721

hyper-parameters for ℓ2, dropout, early stopping are 1e− 1, 0.1, 8 respectively so some of the results in722

Tab.5 are reused.723

For recalibration training, we use a fixed amount of epochs without hyper-parameter tuning to avoid724

privacy leakage of validation sets. We initialize the temperature parameter in DP-TS as 1.0 and train 100725

epochs for all the tasks except Food1001 (which uses 30 epochs) using DP-SGD with a 0.1 learning rate,726

10 maximum gradient clipping norm, and a linearly decayed learning rate scheduler. We adapt multiclass727

extensions for Platt scaling by considering higher-dimensional parameters (Guo et al., 2017).728

For baselines, we grid search the maximum norm bound Z ∈ {100, 500, 1000} and epochs over729

{6, 8, 18} for global clipping (Bu et al., 2021); we use pre-noise scale 0.046, temperature τ = 6.08,730

exponential learning rate decay with learning rate 0.005 and decay factor 0.028 as suggested by (Knolle731

et al., 2021).732

B.3 Additional Image Classification Results733

In Tab. 7, we give additional results when we have a smaller privacy budget ϵ = 3. We see consistent734

results that DP fine-tuning gives poor calibration performance while DP-TS and/or DP-PS can recalibrate735

the classifiers effectively.736

B.4 Additional Text Classification Results737

We include additional text classification results (Tab. 8 and Tab. 9) and see a consistent trend that DP738

training leads to higher ECE than the non-private ones. DP-TS and DP-PS can give reduction on ECE739

even without further training on target domains.740

B.5 Additional Ablation Studies741

Label noise injection. All of the datasets we consider have labels that are designed to be unambiguous,742

and the Bayes optimal predictor would produce a confidence histogram that is concentrated at 1.0. In this743

case, we might wonder whether the polarized confidence histograms observed in Fig. 3 are an artifact for744

datasets with unambiguous labels.745
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Table 7: The image classification performance (ϵ = 3) of different models before and after recalibration across
datasets.

Category Model
CIFAR-10 SUN397 Food101

Accuracy ECE Accuracy ECE Accuracy ECE

Baseline
DP 0.7912 0.0916 0.6751 0.2806 0.7097 0.2464

DP-SGLD 0.6953 0.1595 0.562 0.3295 0.6217 0.2834
Global Clipping 0.7659 0.0782 0.6345 0.285 0.6853 0.2276

Recalibration
DP-PS 0.7823 0.0109 0.6694 0.2826 0.7084 0.0626
DP-TS 0.7823 0.0217 0.6694 0.0183 0.7084 0.0601

Non-private
DP+Non-private-TS 0.7823 0.0218 0.6694 0.019 0.7084 0.0598

Non-private 0.83 0.0794 0.7044 0.1062 0.8245 0.0349

Dataset Category Model
MRPC

Accuracy ECE

QQP

Baseline
DP 0.7475 0.252

DP-SGLD 0.6936 0.3016
Global Clipping 0.7475 0.252

Recalibration
DP-PS 0.7426 0.1317
DP-TS 0.7426 0.1765

Non-private
DP+Non-private-TS 0.7426 0.1765

Non-private 0.7255 0.2671

Table 8: The zero-shot transfer paraphrase performance (ϵ = 8) from QQP to MRPC.

To understand this, we intentionally inject label noise into MNLI and study how this changes the 746

behavior of DP-SGD and non-private learning algorithms. Specifically, we uniformly corrupt training 747

labels - by selecting a uniform random class with probability p ∈ {0.6, 0.8}. We compare DP-SGD trained 748

models and non-private models with 0.2 dropout regularization. The confidence histograms in Fig. 7 749

clearly demonstrate that differentially private models result in 100% confidence, even when the Bayes 750

optimal classifier can be at most 60% confident. This shows that DP-SGD trained model’s miscalibration 751

behavior that results in near 100% confidence is not driven by a dataset’s label distribution and this 752

behavior is likely to be even worse on tasks with inherent label uncertainty. 753
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Figure 7: Reliability diagram and confidence histogram for label noise settings with different models (corruption
rates) trained on MNLI. For comparison, non-private models are included.

C Remarks on Correlations between Accuracy and Calibration 754

In general, the correlations between accuracy and calibration are not clearly understood even for non- 755

private learners as many factors can impact calibration such as architecture, regularization, optimization, 756

data distribution, overparameterization, etc. Below we include some notable empirical findings. Convolu- 757

tional networks like ResNets and DenseNets can be miscalibrated (Guo et al., 2017). However, (Minderer 758

et al., 2021) show that modern models like ViT (Dosovitskiy et al., 2020) are better calibrated compared 759

to past models; modern neural networks tend to have a strong positive correlation between calibration and 760

classification error; model architectures matter greatly in calibration properties. Using pre-training can 761
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Dataset Category Model
Hans Scitail RTE WNLI

Accuracy ECE Accuracy ECE Accuracy ECE Accuracy ECE

QNLI

Baseline
DP 0.5002 0.5 0.7377 0.7351 0.5632 0.5546 0.5352 0.4663

DP-SGLD 0.5 0.4986 0.7209 0.7148 0.5668 0.5557 0.5775 0.4235
Global Clipping 0.5025 0.5021 0.7293 0.7272 0.5198 0.5219 0.5211 0.4778

Recalibration
DP-PS 0.5002 0.3452 0.7377 0.5793 0.5632 0.3924 0.5352 0.3073
DP-TS 0.5002 0.4058 0.7377 0.629 0.5632 0.4426 0.5352 0.3653

Non-private
DP+Non-private-TS 0.5002 0.4058 0.7377 0.629 0.5632 0.4426 0.5352 0.3653

Non-private 0.538 0.273 0.7454 0.5646 0.5199 0.3433 0.451 0.4035

Table 9: Additional zero-shot transfer NLI performance (ϵ = 8) from QNLI to multiple OOD test datasets.

improve model uncertainty and calibration (Hendrycks et al., 2019; Desai and Durrett, 2020; Minderer762

et al., 2021; Kadavath et al., 2022). Regularizations like gradient noise injection can promote stability and763

distributional generalization so good calibration over the training set can transfer to the test set (Kulynych764

et al., 2022). (Carrell et al., 2022) empirically shows that popular models with small generalization gaps765

will have small test calibration errors.766

Realizing the above observations, it is possible that the per-example gradient clipping and gradient767

noise injection in DP-SGD can contribute to both accuracy and calibration in different ways. Therefore,768

we carefully control the accuracy and regularization when conducting analyses and drawing conclusions769

(Tab. 5, Fig. 4(a) and 4(b), Fig. 7). However, even with the confounding controls above, DP-SGD trained770

models are still miscalibrated. In other words, the reason for the finding that private learners are much771

more miscalibrated than non-private counterparts is less likely to be the unambiguous labels in datasets,772

accuracy discrepancy or regularization effects of DP-SGD but more likely to be the per-example gradient773

clipping operation.774

a classifier with high accuracy does not necessarily have good calibration. For example, a highly775

accurate but miscalibrated classifier can always output polarized confidence scores so the top-class776

confidence is always above 0.9. This is corroborated both qualitatively (Fig. 3) and quantitatively (Tab. 1777

and Tab.2) in our experiments.778
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