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ABSTRACT

The utility of synthetic data to enhance pretraining data quality and hence to im-
prove downstream task accuracy has been widely explored in recent large lan-
guage models (LLMs). Yet, these approaches fall inadequate in complex, multi-
hop and mathematical reasoning tasks as the synthetic data typically fails to add
complementary knowledge to the existing raw corpus. In this work, we propose a
novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) gener-
ation method that improves the mathematical reasoning ability of LLMs. Specifi-
cally, using MIND, we generate synthetic conversations based on OpenWebMath
(OWM), resulting in a new math corpus, MIND-OWM. Our experiments with dif-
ferent conversational settings reveal that incorporating knowledge gaps between
dialog participants is essential for generating high-quality math data. We further
identify an effective way to format and integrate synthetic and raw data during pre-
training to maximize the gain in mathematical reasoning, emphasizing the need to
restructure raw data rather than use it as-is. Compared to pretraining just on raw
data, a model pretrained on MIND-OWM shows significant boost in mathematical
reasoning (GSM8K: +13.42%, MATH: +2.30%), including superior performance
in specialized knowledge (MMLU: +4.55%, MMLU-STEM: +4.28%) and general
purpose reasoning tasks (GENERAL REASONING: +2.51%).

1 INTRODUCTION

The ability to reason is a fundamental element of human cognition, encompassing our ability to
think logically, draw conclusions, and make decisions based on available information (Gendron
et al., 2024). Large Language Models (LLMs) have demonstrated remarkable performance across
wide range of general reasoning and specialized knowledge tasks. In particular, the improvement
of LLMs in solving complex mathematical reasoning tasks (Hendrycks et al., 2021b; Cobbe et al.,
2021a) has been significant in recent years (Gemini, 2024; Nvidia et al., 2024; OpenAI, 2024).

Strong mathematical reasoning ability heavily relies on the abundance of high-quality, compos-
ite, and structured pretraining corpora. An effective mathematical corpus should not only contain
relevant content but also be formatted to guide models break down complex problems into smaller
sub-problems and solve each part step-by-step—enhancing the model’s ability to process and reason
about complex problems (Wei et al., 2022). Prior studies show that structured and well-formatted
corpora play a crucial role in enhancing multi-hop and logical reasoning abilities (Cobbe et al.,
2021a; Li et al., 2023; Gunasekar et al., 2023), underscoring the importance of well-organized math-
ematical datasets in pretraining LLMs.

Curating complex, high-quality structured mathematical data is costly and resource-intensive,
largely due to the uneven distribution of high-quality sources. Most advanced models (OpenAI,
2024; Gemini, 2024) are not publicly accessible, and it is unclear how their approach is enhancing
math reasoning. To mitigate this challenge, synthetic data generation has emerged as a scalable, and
cost-effective alternative for creating a more balanced and diverse training corpus for pretraining
LLMs (Maini et al., 2024; Eldan & Li, 2023; Gunasekar et al., 2023; Shah et al., 2024). However,
while these techniques have shown promise in improving general reasoning tasks, their data often
lack the step-by-step problem solving structure crucial for multi-hop reasoning and complex math-
ematical tasks (Maini et al., 2024), making them sub-optimal for such reasoning.
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Figure 1: Continuous pretraining with all styles
of conversations (MIND-OWM-4B) derived from
a small subset (OWM-4B) and a 3.6× large raw
corpus (OWM-14B) reveals that model trained
with conversations outperforms the one trained
with larger corpus in GSM8K, MMLU and gen-
eral reasoning—showing the significance of
high-quality structured data over quantity.

To address these challenges, we propose MIND,
a novel approach to generate Math Informed
syNthetic Dialogue data at scale. In MIND, we
provide a pretrained LLM with a web document
and explicitly prompt it in a zero-shot manner
to generate a conversation that—(a) decomposes
the original context step-by-step into multi-turn
conversations and (b) explores each step in depth
within a single turn. As illustrated in Figure 2,
MIND generates conversation from a raw text by
prompting an open-source LLM on seven diverse
conversational styles. The generated conversa-
tions are refined using heuristic filters and then
can be used to pretrain a language model.

MIND demonstrates that transforming raw web
text into structured conversations using an off-
the-shelf open-source LLM significantly enhances
the mathematical and logical reasoning abilities of LLMs compared to unstructured raw or rephrased
web text. Additionally, MIND provides the flexibility to preserve the diversity of the web corpora
and leverage knowledge imbalances between participants for further expansion of the corpora as they
either educate each other or collaboratively bridge their shared knowledge gaps through explanation
and analysis in a conversation. Moreover, MIND enables the continuous generation of synthetic
data from a single document by employing infinite conversational styles, further enriching the diver-
sity. Unlike static text rephrasing (Maini et al., 2024), conversations encourage dynamic reasoning,
where participants build on each other’s ideas, ask questions, and offer clarifications. This quality
makes conversations particularly effective for complex reasoning tasks, as they not only preserve
the original information but also expand it with new layers of understanding and explanation.

In summary, the key contributions of this work are as follows:
• We propose a novel approach, MIND, to generate structured conversational synthetic data for

math reasoning. Leveraging MIND, we produce 64B tokens of synthetic data using 14B tokens
from OpenWebMath corpus.

• We conduct comprehensive experiments with various conversational styles, altering participant
roles to assess their impact on conversation quality and reasoning tasks. Our findings empha-
size the importance of the knowledge imbalance between participants in producing high-quality
mathematical data.

• We scale our approach to higher number of tokens and to two math specific datasets, demonstrating
its efficacy in large and high-quality raw corpus.

• We demonstrate an effective way for integrating synthetic and raw data during pretraining to en-
hance mathematical reasoning ability of LLMs, emphasizing the importance of carefully reformat-
ting raw data to optimize reasoning processes instead of using it in its original form.

In this paper, we evaluate MIND across three dimensions: (1) the effectiveness of each conver-
sational style in mathematical reasoning, (2) whether the impact of conversation persist as data
scales, and (3) whether MIND remains beneficial when the raw text originates from high-quality
sources. Continuously pretraining a 7B LLM on synthetic conversations (MIND-OWM-4B), gener-
ated from a subset of OpenWebMath (OWM-4B), results in 6.29% average improvement across three
mathematical reasoning benchmarks, 4.30% on specialized knowledge tasks (MMLU), and a 2.20%
boost across 10 zero-shot tasks, compared to the model trained with raw OWM-4B. Additionally,
our experiment with entire OpenWebMath (OWM-14B) and its corresponding synthetic conversa-
tions shows a consistent trend, indicating that the benefits of conversational data continue to hold as
the data scales. In fact, with all conversations generated from OWM-4B, we can outperform model
trained with OWM-14B, a 3.6× larger data—2.94% average improvement across GSM8K and MATH
tasks, 1.56% across all benchmarks (Figure 1). This underlines the value of synthetic conversations,
particularly when high-quality in-domain data is limited. Moreover, our analysis with other datasets
reveals that conversational data further amplifies reasoning capabilities in models even when the raw
data originates from high-quality sources. We hope that MIND will pave a way to improve com-
plex reasoning ability of smaller models with limited training data and accelerate further innovation
towards building strong reasoning ability with structured high-quality data.
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2 MIND: MATH INFORMED SYNTHETIC DIALOGUE GENERATION

ℛ!"

Interactive	Problem	Solving

Debater	⇄ Debater	

Professor	⇄ Professor	

Teacher	⇄ Student	 Student	⇄ Student	

Layman	⇄ Knowall	

Interviewer	⇄ Interviewee	 ℛ

Browse Questions # 
How many numbers are 
there between 20000 and 
30000 in which the digits are 
2,3,5,6,7 and each digit can 
be repeated any number of 
times. 

Layman: I don't 
understand the 
problem. Can you 
explainat it's asking? 
Teacher: The 
problem is asking us 
to find the number of 
numbers

Conversations,	𝒔 𝒊,𝒋 ∈ 𝑺

Syn 
Data, 𝑺

Syn 
Data,𝑺′

Language 
Model, 𝐶

Prompts,	𝓟 ∈ [𝟏, 𝟕]

Heuristic 
Filtering, ℋ

Conversation Generator, 𝓜

Debater: I don't 
understand the 
problem. Can you 
explain what it's 
asking? 
Teer: The problem is 
asking us to find the 
number of numbers

Alex: I don't 
understand the 
problem. Can you 
explain what it's 
asking? 
Teacher: The 
problem is asking us 
to find the number of 

Student: I don't 
understand the 
problem. Can you 
explain what it's 
asking? 
Teacher: The 
problem is asking us 
to find the number of

Raw	Data,	𝐫𝐣 ∈ 𝓡 Language 
Model, ℇ

Continuous Pretraining

+

Syn 
Data,𝑺′

Generate Synthetic Dialogue Corpora using MIND
𝓡 → 𝐌𝐈𝐍𝐃	 → 𝑺′

Evaluate MIND generated data
ℇ ← pretrain 𝐶,𝓓 ;
𝓓 = 𝑺! ∪𝓡𝒑𝒕 	

Figure 2: Math Informed syNthetic Dialogue. We (a) manually design prompts of various con-
versational styles, (b) provide the prompt along with raw context as input to LLM to obtain diverse
synthetic conversations, (c) apply heuristic filtering to refine the generated data and (d) observe the
downstream task performance after continuously pretraining an 7B LLM.

To generate high-quality data at scale, current synthetic data generation approach explores rephras-
ing texts using LLMs in varied syntax while preserving the core content (Maini et al., 2024). How-
ever, their proposed approach limits up-sampling high-quality data in a way that does not go beyond
grammatical styles or surface form transformations—leading little to no improvement when it comes
to performance across complex and logical reasoning tasks. We hypothesize that simple rephrasing
does not leverage the full potential of the synthetic data to improve the mathematical and complex
multi-hop reasoning ability of LLM. Therefore, we propose, MIND, a conversational synthetic data
generation approach that adds semantic variations and structured complexity to the raw text which
is required to improve complex reasoning ability of the LLMs. In addition, multi-turn conversations
can break down the original context step-by-step while each step addresses a sub-context at a time
by often injecting complimentary reasoning or explanations. This resonates with how human solves
a complex problem using consecutive chain-of-thought reasoning.

As depicted in Figure 2, given a raw dataset R = {r1, ...rN}, we define a set of conversational
prompts P = {p1, ...p7} and utilize a pretrained LLM, denoted asM, for synthetic data generation.
We combine raw data rj with a prompt pi and pass it toM to produce synthetic conversation si,j .

si,j =M(pi || rj)

Here, si,j represents the synthetic data generated by applying prompt pi to the raw example rj . For
a specific prompt, the total synthetic data generated can be represented as

S = {si,j | j ∈ [1, N ]} for a fixed i ∈ [1, 7]

We further apply heuristic filtering (H) to remove bad generations:

S ′ = H(S)

Finally, we have a high-quality synthetic dialogue corpus S ′ which is specifically designed to im-
prove mathematical and logical reasoning ability. To summarize MIND:

R → MIND → S ′

To evaluate the effectiveness of S ′ in pretraining, we conduct continuous pretraining on a base LLM,
C, to minimize the computational costs associated with full pretraining. Our prior experiments on
complete pretraining with raw data, R and synthetic data, S ′ validates that the ranking between
models trained on S ′ or R remains consistent whether we use continuous pretraining or full-scale
pretraining (detailed in Appendix B.1). Moreover, continuous pretraining has emerged as an effec-
tive way to improve performance of LLMs in target domains (Guo et al., 2024; Huang et al., 2023;
Chen et al., 2023) and even boost their general capabilities (Ibrahim et al., 2024; Parmar et al.,
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2024b) with reduced training cost. Given the similar outcomes and significant savings in computa-
tional resources, we adopt continued pretraining for evaluating our approach throughout the paper.

Using S ′ and a subset of pretraining data (Rpt), the model C is continuously pretrained, yielding an
enhanced model E , which possess improved mathematical reasoning capabilities.

E ← pretrain(C,D); where D = {S ′ ∪Rpt}

2.1 COMPOSE CONVERSATIONAL PROMPTS

To generate conversation using a document ri, we promptM in a way that preserves all informa-
tion from the original context in the conversation and remains faithful to the context. We manually
compose several prompts on diverse conversation setting and topics. We finalize seven prompts (P)
featuring conversations between (1) TWO STUDENTS, (2) TEACHER STUDENT, (3) TWO PROFES-
SORS, (4) DEBATE, (5) PROBLEM SOLVING, (6) LAYMAN KNOWALL, and (7) INTERVIEW which
can be found in Appendix A.1. These prompts are specifically designed to guide LLM in breaking
down the input context step-by-step, with each step being discussed in depth through explanations
and reasoning.

2.2 GENERATE CONVERSATION

Given an unstructured raw text (rj), we instruct the LLM to convert the raw text into a multi-turn
conversation (si,j) using a prompt (pi) where pi ∈ {two_students, teacher_student, ..., debate}.
Seed Data Selection. The benefit of MIND will get amplified for raw texts that require step-by-step
analysis and chain of thought reasoning—the key features of a math corpus. Therefore, we choose
OpenWebMath (Paster et al., 2023) as our seed corpus, R, which contains 14.7B tokens of high
quality mathematical web text.

Large Language Model. We useM = LLAMA3-70B-INSTRUCT (AI@Meta, 2024) to generate
conversations from raw text, due to its superior performance across a variety of tasks compared to
other open-source models. The instruction-tuned version is specifically fine-tuned and optimized for
dialogue and chat-based applications.

Generation Configuration. We observe that with increasing context length, conversations tend to
lose details from the original texts, as discussed in Appendix C.1. Therefore, for each generation,
we iteratively take contexts of 500 tokens to obtain accurate and informative conversations. To
evaluate the quality of the generated conversations, we test various filtering methods, from simple
heuristics to LLM-based scoring. However, as noted in Appendix C.3, LLM scoring consistently rates
all generations highly, making it unsuitable for our approach. Hence, we rely on heuristic filtering
to discard bad generations before using them for training.

3 EXPERIMENTAL SETUP

Conversation Generator Configuration. To generate conversation, we consider zero-shot
prompting M, where we only pass a basic prompt (Appendix A.1) and the raw text. We sample
conversations with temperature=1.0 and top_p=0.9 where the total number of input-output
tokes is limited to 4096. We use the TensorRT-LLM toolkit to deploy large scale generation1.

Pretrained Model Architecture. We train a standard decoder-only Transformer (Vaswani et al.,
2017) architecture of 7B parameters (C). The framework uses causal attention masks and Rotary
Position Embeddings (RoPE) (Su et al., 2021), Tiktoken tokenizer, SwiGLU (Shazeer, 2020) acti-
vations in the MLP layers, and grouped query attention (GQA) (Ainslie et al., 2023). The model
consists of 32 layers, 32 attention heads, sequence length of 4096, and a hidden dimension size
of 4096. It has no bias terms, has dropout rate of zero, and untied input-output embeddings. The
models are trained using NVIDIA’s Megatron-LM (Shoeybi et al., 2019) repository.

1https://github.com/NVIDIA/TensorRT-LLM
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3.1 TRAINING DETAILS

Pretraining Data. Our pretraining data blend comprises of publicly available datasets from 13
snapshots of CommonCrawl (73.37%) (Gao et al., 2020), books/patents (9%), papers (9%), code
(5.12%), stack-exchange (2.66%), and Wikipedia (0.8%). Our code data consists of 42 program-
ming languages while the other datasets come from various sources including web documents, news
articles, scientific papers, and books.

General Pretraining. To prepare a base model, we pretrain a 7B LLM on our pretraining data blend
till 700B tokens using 512 H100 80GB SXM5 GPUs. During training, we use the AdamW optimizer
(Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.95 and weight decay of 0.1. We use a 2-way
tensor and pipeline parallelism to train the model. We set the maximum value of learning rate to
3e−4, minimum to 3e−6, and use a batch size of 6M tokens with a 4096 context length.

Continued Pretraining. After pretraining the base model (C) on 700B tokens, we proceed with
continuous pretraining using an additional 50B tokens to obtain E . To reduce the shift between pre-
training and continuous pretraining token distributions (Guo et al., 2024) we create a new data blend
(D) for this phase. To ensure the model is exposed to more math tokens, blend D consists of 2:1
ratio of OpenWebMath (33B tokens)—either raw (R) or synthetic (S ′)— and 13 snapshots of Com-
monCrawl (17B tokens) (Rpt) to maintain consistency with the pretraining blend. To ensure fair
comparison, we always keep this token distribution constant in every experiment i.e., every model
will see a the same amount of tokens from a data source regardless of its size. Unlike the pretrain-
ing blend, we use a high quality version of CommonCrawl data (Rpt) filtered by the FineWebEdu
(Penedo et al., 2024) classifier to achieve reasonable performance in generative tasks. This Rpt

remains constant across all our continued pretraining experiments, while we vary the OpenWeb-
Math with R or S ′ or combining both to assess their relative significance. We maintain the same
training configuration as before and continue pretraining until reaching 50B tokens, using the same
pretraining loss objective. In this paper, we use two versions of OpenWebMath:

• OWM-4B: To quickly evaluate the effectiveness of all seven prompts, we take a smaller subset
of OpenWebMath containing 4B tokens. Synthetic data generated from this subset is labeled as
MIND-OWM-4B throughout the paper.

• OWM-14B: This version contains the full 14.7B tokens of OpenWebMath and the synthetic data
of this is called MIND-OWM-14B.

3.2 EVALUATION METRICS

To evaluate the zero-shot and few-shot learning capabilities of our models, we conduct a thorough
benchmark assessment using a series of datasets using LM Eval Harness (Gao et al., 2024).

General Purpose Reasoning Tasks. This category comprises datasets testing broader cognitive
skills and language comprehension. We consider nine standard commonsense and logical reasoning
tasks: ARC easy (ARC-E) & challenge (ARC-C) (Clark et al., 2018), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021),
OpenBookQA (Mihaylov et al., 2018), TruthfulQA (Lin et al., 2022), CommonsenseQA (Talmor
et al., 2019) and a reading comprehension task: RACE (Lai et al., 2017). During evaluation, we take
the average results across ten general reasoning tasks under the metric ‘GENERAL REASONING’.

Math and Specialized Knowledge Tasks. We consider three diverse math benchmarks to compre-
hensively evaluate the mathematical reasoning ability of the pretrained models using few-shot chain-
of-thought prompting (Wei et al., 2022). These benchmarks encompass mathematical challenges
from elementary to college level complexity demanding qualitative reasoning (GSM8K (Cobbe et al.,
2021b), MATH (Hendrycks et al., 2021c)) and conceptual science and math reasoning (MMLU-STEM
(Hendrycks et al., 2021a)). In the Specialized Knowledge category, we evaluate on MMLU that spans
multiple domains, from professional to academic, testing the model on specialized subjects.

4 EXPERIMENTS AND RESULTS

By leveraging MIND with seven conversational prompts and the raw OWM-4B, we generate a
new corpus of 43 billion tokens (All Conversations). Additionally, employing the entire OWM-14B
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dataset and TWO STUDENTS conversation style, MIND produces an additional 21 billion tokens—
resulting in a total of 64 billion tokens. This underscores MIND’s potential to generate vast amount
of high-quality data from relatively limited source material2.

Performance across Individual Prompt Style. We observe the effect of each conversation style
by generating synthetic data with seven prompts for a smaller subset of OpenWebMath, denoted as
OWM-4B. To establish a baseline, we continue pretraining C using D = {R ∪ Rpt}, where R ∈
OWM-4B. To further assess the significance of MIND over other synthetic data generation approach,
we add another baseline ‘Rephrase’ introduced by Maini et al. (2024). We generate rephrases with
M using the highest performing prompt from their paper to maintain consistency among generation
quality and training setup. We continuously train C with D where R ∈ Rephrase-OWM-4B. In
subsequent experiments, we replace R with S ′ where S ′ = MIND-OWM-4B, corresponding to a
particular conversation style, and repeat the training. To assess the utility of combining multiple
conversations, we create a new dataset by selecting the longest conversation for each context from
the seven generated conversations, labeling it as the LONGEST CONVERSATION dataset.

As shown in Table 1, models trained on MIND-generated data of individual styles consistently
outperform those trained on rephrased or raw data across all reasoning tasks. Specifically, models
trained on synthetic data exhibit significant improvements in mathematical reasoning compared to
the baseline, achieving absolute gains ranging from 4.78% to 12.82% on GSM8K, 0.54% to 1.28% on
MATH, and 0.79% to 4.28% on MMLU-STEM. In specialized knowledge tasks such as MMLU, syn-
thetic data leads to improvements ranging from 1.08% to 4.55%. Furthermore, synthetic data yields
an overall enhancement in general reasoning ability, with up to a 2% absolute average improvement
across the ten reasoning tasks. The LONGEST CONVERSATION delivers the highest gains across all
tasks, demonstrating the potential of incorporating multiple perspectives into the training corpus.

Dataset Style GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-All∗

OWM-4B Raw 12.96 4.92 39.39 45.91 52.90 29.17
Rephrase 11.68 5.46 39.71 46.17 53.58 29.22

MIND-OWM-4B

TEACHER STUDENT 22.74 5.96 40.72 47.93 54.84 32.87
TWO STUDENTS 21.30 6.20 41.90 48.77 54.32 32.65

LAYMAN KNOWALL 17.74 5.46 41.96 48.87 54.89 31.74
DEBATE 23.96 6.12 40.18 47.61 54.76 33.11

INTERVIEW 20.92 5.86 40.53 46.99 54.73 32.12
PROBLEM SOLVING 24.72 6.16 41.36 47.74 54.90 33.38

LONGEST CONVERSATION 25.78 6.30 42.72 49.37 54.86 34.08

Table 1: Results of 7B LLM pretrained on Diverse Conversational Styles. Continuous training
with different conversation styles improves all reasoning tasks. Selecting the longest conversation
for each raw text further enhances performance in math and specialized knowledge tasks3. ∗Average
of GSM8K, MATH, MMLU and General Reasoning.

The disparity between Rephrase and MIND is closely related to the limitations of the rephrasing
process. Rephrase adds linguistic variations to the older data, preserving the syntactic meaning of
the document, but can not generate semantic/pragmatic variations. Moreover, rephrases are limited
to the information in the raw text and unable to inject new knowledge into the data. As evidenced in
our experiments, while rephrasing offers some benefits, it falls short in addressing the deeper, more
complex reasoning challenges that conversational data can resolve. The structured and interactive
nature of conversations facilitates a more nuanced understanding of the problem space, making it an
effective approach for improving mathematical reasoning of LLMs.

Analysis with Complete OpenWebMath. Building on the findings from OWM-4B experiments,
we establish that all seven conversational styles contribute to significant improvements compared to
the raw data. This insight prompted us to explore the effect of increased data in reasoning by scaling
our synthetic conversation generation for the complete OWM-14B corpus. To generate data, we
follow the similar recipe as before and apply only one conversation style to minimize the generation
cost. Among the top three highest-performing prompts across all tasks, we randomly choose TWO
STUDENTS prompt style to generate conversations (MIND-OWM-14B). We then continuously train

2To maintain consistency, we use a subset of the data (33B tokens) in all experiments.
3Further breakdown of individual tasks are in Appendix B.2.
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C on OWM-14B and MIND-OWM-14B alternatively to assess the impact at a larger data scale. In this
phase, we include another experiment by continuously training C on 50B additional tokens using
D = {Rpt} to observe how much gain we can attain across all tasks from math-centric pretraining.

Dataset Style GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-All

Pretraining Data Raw 9.33 4.74 37.84 45.41 53.22 28.17
OWM-14B 20.47 7.24 42.82 49.49 53.95 32.79

MIND-OWM-14B TWO STUDENTS 27.29 8.24 43.55 49.91 55.54 35.25

Table 2: Results of 7B LLM trained on Complete OWM-14B and MIND-OWM-14B: Continuous
training of LLM with synthetic conversation outperforms models trained with original pretraining
blend and raw OpenWebMath across all tasks.

As consistent with the previous findings, Table 2 shows that model trained on synthetic conversations
is undoubtedly the best for math benchmarks while it also improves overall average for all other
reasoning tasks. This underscores that, with data scaling, MIND maintains significant gains in
mathematical reasoning while preserving and enhancing performance across other reasoning tasks,
including commonsense, factual, and specialized knowledge.

5 ABLATIONS

Does the Prompt Style matter? From Table 1, we observe improvement across all tasks using
six conversational styles. However, our experiment with TWO PROFESSORS conversations yield
relatively equivalent or worse performance compared to the raw data (Table 3).

Dataset Style GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-All

OWM-4B Raw 12.96 4.92 39.39 45.91 52.90 29.17

MIND-OWM-4B TWO PROFESSORS 13.50 4.52 37.93 45.25 53.21 29.12

Table 3: TWO PROFESSORS prompt style vs Raw data. Continuous pretraining with TWO PRO-
FESSORS conversations does not provide gain over raw data compared to other conversational styles.

0.00

0.20

0.40

0.60

Two 
Professors

Teacher 
Students

Two 
Students

Layman 
Knowall

Debate Interview Problem 
Solving

RougeLsum BLEU

Figure 3: Similarity between Raw Text & Syn-
thetic Dialogues. The TWO PROFESSORS style
exhibits greater similarity to raw text, while LAY-
MAN KNOWALL shows the lowest similarity due
to its richer context with details and explanations.

This outcome can be attributed to the nature
of the TWO PROFESSORS conversation style.
Upon reviewing the generated conversations,
we hypothesize that the relatively lower per-
formance is due to the zero-knowledge gap be-
tween participants. In this setup, both partic-
ipants assume that the other already has suf-
ficient knowledge as they are the domain ex-
perts, leading to surface-level engagement and
less detailed discussions.

To further investigate, we measure the BLEU
and ROUGE scores between the raw text and
the corresponding conversation, as shown in
Figure 3, and find that the TWO PROFESSORS
style exhibits the highest similarity to raw text. This implies that TWO PROFESSORS dialogues do
not fully exploit the potential of the generation model to introduce new reasoning or breakdowns
of complex problems, aligning with our qualitative observation that the professors are not engag-
ing in deeper analysis of concepts. This contrasts with other conversational styles where there is
either a clear knowledge gap between participants (LAYMAN KNOWALL, TEACHER STUDENT, IN-
TERVIEW), forcing one to explain concepts in more depth, or both participants, being non-experts
are actively analyzing and solving the problem (PROBLEM SOLVING, DEBATE, TWO STUDENTS)
which results in expanded dialogues with complementary explanations and reasoning. In the latter
case, the lack of expertise creates an implicit knowledge gap—instead of one participant being more
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knowledgeable, both non-experts collaborate to bridge their shared knowledge gap. As depicted in
Figure 3, the LAYMAN KNOWALL style, which features the greatest knowledge imbalance between
participants, has the lowest BLEU and ROUGE scores. This supports our hypothesis that a larger
information gap encourages the knowledgeable participant to explain concepts thoroughly, leading
to more explicit and detailed conversations.

Relating these insights to our findings in Table 1, we see that incorporating explicit knowledge gaps
in dialogues is beneficial for MMLU and general reasoning tasks. Conversely, collaborative problem
solving, to close the implicit knowledge gap, is crucial for improving performance on math tasks.
This highlights a key characteristic of high-quality math data—merely breaking down the problem is
insufficient for effective math reasoning. Instead, dynamic knowledge exchange and analysis within
the dialogues are essential to achieve maximum improvement in math reasoning.

Does Conversation benefit other datasets? OpenWebMath used in our current experiments is
predominantly collected from mathematical web pages that can contain noisy web contexts. Gen-
erating synthetic conversations for such noisy contexts upsamples high-quality data and hence we
observe a huge gain in performance with high-quality conversations. Here, we investigate if MIND
works on high-quality datasets such as books or papers. We consider a new seed corpus, MATHPILE
(Wang et al., 2023), that consists of 9.3B tokens extracted from high-quality data sources such as
ArXiv papers, textbooks, StackExchange, Wikipedia, ProofWiki, and CommonCrawl pages.

Dataset Style GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-All

Pretraining Data Raw 9.33 4.74 37.84 45.41 53.22 28.17
MATHPILE 8.79 4.96 42.82 49.49 54.16 29.35

MIND-MATHPILE TWO STUDENTS 12.74 5.74 43.55 49.91 53.98 30.59

Table 4: MATHPILE vs Synthetic Conversation from MATHPILE (MIND-MATHPILE). Conver-
sation generated from high-quality raw data further improves the performance of math tasks.

By employing M, we generate conversations from raw text with the TWO STUDENTS prompt.
Later, we replicate the experiments by replacing OWM with MATHPILE and MIND-MATHPILE ac-
cordingly. Table 4 shows that MIND-MATHPILE outperforms the raw counterpart in all three math
benchmarks along with specialized knowledge tasks, achieving comparable scores in general rea-
soning task. In addition, majority of MATHPILE data is from ArXiV papers and recent work has
found this source ineffective in improving mathematical reasoning (Shao et al., 2024). We observe
a similar trend, where non-math focused pretraining corpora yields better GSM8K score than raw
MATHPILE corpus. However, our synthetic conversation on MATHPILE rather amplifies the quality
of the corpus resulting in 3.95% absolute improvement on GSM8K in comparison with raw data. This
highlights the superior structured complexity of conversations, which proves particularly effective
for multi-hop and mathematical reasoning tasks, over high-quality data from Arxiv papers.

Is replacing with Synthetic Data the best option? Our findings in Table 1, 2 indicate that com-
pletely replacing OpenWebMath with synthetic data yields the best performance across benchmarks.
However, Maini et al. (2024) emphasizes the importance of combining real data and synthetic
rephrases to achieve consistent improvements across a broader range of tasks—a similar trend we
observe in our experiment with rephrased data, as shown in Table 5. To investigate this further, we
conduct experiments with four data combinations using OWM-4B while theRpt remains constant:

• OWM-4B + MIND-OWM-4B [1:1]. We combineR and S ′ in a 1:1 ratio, ensuring an equal number
of tokens to be seen during pretraining from both sources. For the synthetic data, we utilize the
LONGEST CONVERSATION, as this shows the most improvement across tasks (Table 1).

• OWM-4B + MIND-OWM-4B [Concat]. We concatenate each raw context with all seven synthetic
conversations sequentially.

• MIND-OWM-4B [Longest Conversation]. From the seven conversations generated for each con-
text, we select the longest conversation in token count.

• MIND-OWM-4B [All Conversations]. This data incorporates all conversation across all styles.
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Dataset GSM8K MATH MMLU-STEM MMLU
GENERAL REASONING

(Avg) Avg-All
OWM-4B 12.96 4.92 39.39 45.91 52.90 29.17
OWM-14B 20.47 7.24 42.82 49.49 53.95 32.79

Rephrase-OWM-4B 11.68 5.46 39.71 46.17 53.58 29.22
OWM-4B+Rephrase-OWM-4B [1:1] 14.25 6.20 42.31 48.74 53.68 30.72

OWM-4B+MIND-OWM-4B [1:1] 21.68 6.14 42.56 49.57 54.50 32.97
OWM-4B+MIND-OWM-4B [Concat] 24.49 6.22 43.67 50.46 55.10 34.07
MIND-OWM-4B [Longest Conversation] 25.78 6.30 42.72 49.37 54.86 34.08
MIND-OWM-4B [All Conversations] 26.38 7.22 42.53 50.21 55.41 34.80

Table 5: Comparison of 7B LLM trained with raw and combination of synthetic data. Synthetic
conversation outperforms raw data in all combinations. Specifically, combinations of all conversa-
tions generated from OWM-4B surpasses the performance of OWM-14B (3.6× larger corpus) across
all tasks, underscoring the superior quality and diversity of the conversations.

Our finding in Table 5 indicates that all combinations provide substantial boost in performance
across all tasks. However, for math-centric benchmarks (GSM8K and MATH), training solely with
synthetic conversations elicits the best improvements. This is likely as these tasks require complex
and multi-step reasoning and conversations are designed to replicate these type of thinking. In
parallel, having both raw data and conversation is beneficial for specialized and general purpose
reasoning tasks, aligning with the findings in Maini et al. (2024). Since synthetic data tends to
remove special tags, styles, and code indentations, the inclusion of raw data helps improve the
generalizability of LLMs across diverse domains. Additionally, to measure the maximum gain we can
achieve from conversations for a limited data, we continuously train C with all synthetic dialogues
generated from OWM-4B. As shown in Table 5, using conversations generated from OWM-4B, we
can outperform the model trained with 3.6× bigger corpus (OWM-14B) on GSM8K, MMLU and
general reasoning tasks while showing comparable performance on other tasks. Inspired by this, we
further compare MIND with DEEPSEEKMATH (Shao et al., 2024) that extract 120B unique math
tokens from CommonCrawl (Appendix C.4). The results from Table 14 demonstrate that diverse
conversations from MIND based on a small seed corpus can yield comparable math accuracy to the
DEEPSEEKMATH model. This illustrates the potential to enhance reasoning with limited data by
generating synthetic conversations of infinite styles.

Does the improvement persist with smallerM? In the previous experiments, we used a constant
M, a powerful instruction-tuned model. However, it remains unclear whether the improvements
in downstream reasoning tasks stem from the quality of the generated dialogues or are primarily
due to model distillation from the powerful LLM. To asses the impact of M on the downstream
task performance, we re-run MIND with a smaller M=LLAMA3-8B-INSTRUCT on PROBLEM
SOLVING style, the best performing style in Table 1 and continuously pretrained a 7B LLM following
the training setup in Section 3.1.

Dataset M GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-All

OWM-4B - 12.96 4.92 39.39 45.91 52.90 29.17

MIND-OWM-4B LLAMA3-8B-INSTRUCT 22.37 5.72 41.36 48.48 55.21 32.95
LLAMA3-70B-INSTRUCT 24.72 6.16 41.36 47.74 54.90 33.38

Table 6: Results of 7B LLM trained on MIND-OWM-4B usingM of different sizes: Regardless
of the sizes ofM, model trained on MIND-OWM-4B outperforms the one trained with raw data.

As shown in Table 6, even with a smallerM, the MIND-generated data provides a significant boost
in math and general reasoning abilities compared to the raw/rephrased data. This demonstrates that
the gains are not solely dependent on the capabilities of the larger M but are largely driven by
the quality and structure of the MIND-generated dialogues. Additionally, regardless of model size
and method of synthetic data generation, all LLM-generated synthetic data involves some form of
knowledge distillation. However, we demonstrate an effective distillation approach that significantly
enhances the reasoning ability of LLMs compared to existing approaches (Maini et al., 2024).
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6 RELATED WORKS

Mathematical Data Curation. Selecting high quality data for pretraining LLMs is essential for pro-
ducing state-of-the-art large language models (Brown et al., 2020; Chowdhery et al., 2023; Parmar
et al., 2024a; Rae et al., 2021). Several mathematical datasets have been introduced in recent years
(Paster et al., 2023; Wang et al., 2023; Azerbayev et al., 2023a; Welleck et al., 2021) which have
been carefully collected from the web using different heuristics. OpenWebMath contains 14.7B to-
kens of mathematical web pages filtered from CommonCrawl based on math strings, LATEXcontents
and a math document classifier. Building on this corpus, DEEPSEEKMATH (Shao et al., 2024) trains
a fastText (Joulin, 2016) classifier to further extract mathematical documents from CommonCrawl.
They cluster the extracted documents based on the URL domain and label a domain math-related
where over 10% of the web pages have been collected are classified as math content. Finally, web
pages linked to these URLs, yet uncollected, will be added to the seed corpus which will be used
to retrain the fastText classifier to fetch diverse math contexts. MATHPILE (Wang et al., 2023),
a multi-source corpus (8.9B tokens), has been aggregated from textbooks, Wikipedia, ProofWiki,
CommonCrawl, StackExchange, and arXiv, with the majority (over 85%) sourced from high quality
data source arXiv. Although these datasets can effectively capture the diverse mathematical infor-
mation from web, it is difficult to detect and filter out noisy dataset and hence lowering the chances
to obtain maximum gain from these corpora. Recently, many powerful models (OpenAI, 2024; Jiang
et al., 2023; Gemini, 2024; Anthropic, 2024; Team, 2024b), in addition to not open sourcing their
data, are also refraining from disclosing detailed information about their corpus. For the open-source
community, constructing high-quality and diverse pretraining corpora is a crucial factor in bridging
the performance gap with closed-source models which is the main objective of our work.

Synthetic Math Data. Generating synthetic math data using LLMs has been widely explored in
recent days (Trinh et al., 2024; Li et al., 2024; Gunasekar et al., 2023; Madaan et al., 2024; Patel
et al., 2024; Toshniwal et al., 2024) specifically during alignment using supervised fine-tuning (SFT)
(Taori et al., 2023). Some of the latest approaches focus on generating data from seed problems. For
instance, Yu et al. (2023) rewrites existing benchmark questions from multiple perspectives using
LLMs to create new mathematical problems, while Huang et al. (2024); Shah et al. (2024) leverage
GPT-4 to extract topics and key points from seed samples and recombine them into new questions.
To further improve diversity, Chan et al. (2024) uses GPT-4 to generate questions and answers at
scale, incorporating over one million personas. Previous approaches to generate synthetic data is
primarily designed for fine-tuning rather than pretraining, distinguishing it from our effort. Similar
to ours, Dai et al. (2022) converts documents into dialogues by predicting unobserved questions
without altering the original document. However, MIND expands knowledge by adding comple-
mentary reasoning and explanations, leveraging diverse conversational styles to enhance reasoning
and enrich diversity, which is infeasible with Dai et al. (2022). In the context of pretraining, re-
cent works have generated synthetic datasets (Gunasekar et al., 2023; Li et al., 2023) to train smaller
language models that demonstrate equivalent performance as the larger models on certain mathemat-
ical benchmarks. However, these methods remain largely opaque, costly, and reliant on proprietary
models to produce billions of tokens. Additionally, such data generation can be biased towards
specifically generating data related to tasks that we want to perform well on. In contrast, MIND
provides a feasible alternative to upsample high quality structured data from diverse web contexts,
that embeds multi-step and chain-of-thought reasoning, using an off-the-shelf open source LLM.

7 CONCLUSION

In this paper, we focus on improving the mathematical reasoning abilities of open-source LLMs.
We propose a simple approach to generate complex and structured data at scale, called MIND,
that produces a new conversational synthetic math corpus, MIND-OWM, using an off-the-shelf open-
source LLM. Models trained on MIND-OWM, a corpus generated through our approach, consistently
outperform those trained on raw data, achieving up to a 6.29% improvement across mathematical
reasoning benchmarks and outperforming models trained on 3.6× larger datasets. Importantly, these
gains persist across general-purpose reasoning tasks and when scaling up the data, highlighting the
versatility of synthetic conversations. This work demonstrates the potential of structured conver-
sational data to enhance reasoning, especially in cases where domain-specific high-quality data is
limited, paving the way for more effective and resource-efficient pretraining of LLMs.
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A PROMPTS AND DATASETS

A.1 PROMPTS FOR CONVERSATION

TWO PROFESSORS

Convert the context above as a multi-turn discussions between two professors. Make sure
that their discussions strictly adhere to the context above and remains faithful to information
in the context. Please DONOT add any new information/reference other than the context.

TEACHER STUDENT

Convert the context above as a multi-turn discussions between a teacher and a student. The
student has questions about the context and the teacher solves each of them step-by-step.
Make sure that their discussions strictly adhere to the context above and remains faithful to
information in the context. Please DONOT add any new information/reference other than
the context.

TWO STUDENTS

Convert the context above as a multi-turn discussions between two students who are working
on their assignment related to the given context. Make sure that their discussions strictly ad-
here to the context above and remains faithful to information in the context. Please DONOT
add any new information/reference other than the context.

INTERVIEW

Conduct an interview-style conversation where one participant acts as the interviewer, asking
questions exclusively related to the content provided, while the other participant serves as
the subject matter expert, providing detailed responses based on the content. Make sure that
their discussions strictly adhere to the context above and remains faithful to information in
the context. Please DONOT add any new information/reference other than the context.

PROBLEM SOLVING

Convert the context above as a multi-turn problem-solving conversation where participants
analyze challenges or scenarios presented in the content and brainstorm solutions within
the context of the provided material, avoiding speculation or unrelated discussions. Make
sure that their conversation strictly adhere to the context above and remains faithful to in-
formation in the context. Please DONOT add any new information/reference other than the
context.

LAYMAN KNOW-ALL
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Imagine you are presenting the content above step-by-step to a layman. While you are
presenting, the layman has a lot of followup questions regarding your presentation. You
answer the questions step-by-step with chain-of-thoughts. Design this interaction between
you and the layman as a multi-turn conversational manner. Make sure that the interaction
strictly adhere to the context above and remains faithful to information in the context. Please
DONOT add any new information/reference other than the context.

DEBATE

Convert the context above as a multi-turn debate-style conversation where the participants
present arguments and counterarguments based solely on the content provided, without in-
troducing external information or personal opinions. Each participant defends others argu-
ments step-by-step with chain-of-thoughts. Make sure that the conversation strictly adhere
to the context above and remains faithful to information in the context. Please DONOT add
any new information/reference other than the context.

A.2 EVALUATION METRIC DETAILS

We evaluate the LLM trained on raw and synthetic data using ten diverse general reasoning tasks,
three mathematical tasks and one specialized knowledge tasks.

General Purpose Reasoning Tasks. All the benchmarks under this category are evaluated in zero-
shot manner.

• ARC Easy (ARC-E) and ARC Challenge (ARC-C) (Clark et al., 2018): This dataset is proposed
by the AI2 Reasoning Challenge (ARC). There are two sets of this data: (1) ARC-E and (2) ARC-
C, containing science exam questions from grades 3 to 9. The ARC Challenge set includes more
difficult questions compared to ARC-E that necessitate higher-order reasoning.

• RACE (Lai et al., 2017): This dataset has been collected from English reading comprehension
exams designed for middle and high school Chinese students.

• PIQA (Bisk et al., 2020): Physical Interaction Question Answering evaluates physical common-
sense reasoning ability of the language model.

• Winogrande [Wino.](Sakaguchi et al., 2019): This benchmark is structured as a fill-in-the-blank
task with binary options, requiring the LLM to select the correct option for a given sentence,
primarily focusing on commonsense reasoning and pronoun disambiguation tasks.

• HellaSwag (Zellers et al., 2019): This dataset evaluates a model’s ability to resolve scenarios in
a way that is both contextually appropriate and logically consistent, testing its grasp of language
comprehension and commonsense reasoning.

• OpenBookQA [OBQA](Mihaylov et al., 2018): This dataset is designed to evaluate deeper un-
derstanding of elementary science facts by requiring models to apply these facts to novel situations
using both open book knowledge and external commonsense reasoning.

• TruthfulQA [TFQA] (Lin et al., 2022): Evaluates models’ ability to generate factually correct
answers by presenting 817 questions across 38 categories, designed to challenge common mis-
conceptions.

• CommonSenseQA [CSQA] (Talmor et al., 2019): This dataset has been designed to test com-
monsense reasoning through multiple-choice questions created from CONCEPTNET (Speer et al.,
2017) relations, which requires prior knowledge beyond contextual associations for accurate an-
swering.

• Social-IQA [SIQA] (Sap et al., 2019): Evaluates LLM’s ability to reason about people’s actions
and their social implications.

Math and Specialized Knowledge Tasks. For these tasks, we evaluate the LLM in few-shot man-
ner.
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• GSM8K (Cobbe et al., 2021a): This benchmark comprises of high quality linguistically diverse
grade school math word problems that evaluates the multi-step and logical reasoning ability of
LLM. In this setup, we prompt the LLM with eight chain-of-thought examples from Wei et al.
(2022) and take the majority vote of the answers from greedy decoding following the approach in
Wang et al. (2022).

• MATH (Hendrycks et al., 2021c): This dataset contains challenging competition mathematics
problems that requires step-by-step processing of the problem to derive the solution. We choose
4-shot prompt from Lewkowycz et al. (2022b) for our evaluation process.

• MMLU (Hendrycks et al., 2021a): This task is designed to evaluate a LLM’s multitask accuracy
across 57 diverse subjects, including elementary mathematics, US history, and law in multiple-
choice question format, requiring extensive world knowledge and problem-solving skills for high
performance. We explicitly consider MMLU-STEM as it contains comprehensive math and science
problems that requires multi-hop and complex reasoning ability. Using the evaluation pipeline of
LM Eval Harness, we evaluate the LLM with 5-shot prompts for this task.

B ADDITIONAL EXPERIMENTS AND RESULTS

B.1 RESULTS OF PRETRAINING LLM FROM SCRATCH

We pretrain a 8B LLM from scratch with 300B tokens using (i) 4 snapshots of CommonCrawl (ii)
OWM-4B and (iii) wikipedia, books and epubs corpus corresponding to 486B, 4B and 84B original
tokens respectively. To emphasize math over other datasets, we provide 8 epochs of OWM-4B in
the pretraining blend resulting in 35B OWM tokens that will be seen by the LLM during pretraining.
For all other datasets, we maintain 0.46 epochs. For our experimentation with synthetic corpus, we
analyze four variations in the OWM corpus while keeping the other data constant:

• MIND-OWM-4B [TWO STUDENTS ]. This data includes conversations between two students.

• OWM-4B + MIND-OWM-4B [1:1]. We sample raw and synthetic conversations in a 1:1 ratio,
ensuring an equal number of tokens to be seen during pretraining from both sources. For the
synthetic data, we utilize the TWO STUDENTS conversations.

• OWM-4B + MIND-OWM-4B [Concat]. We concatenate each raw context with all seven synthetic
conversations sequentially.

• MIND-OWM-4B [Longest Conversation]. From the seven conversations generated for each con-
text, we select the longest conversation in token count.

Dataset ARC-E Race PIQA Wino. HellaSwag ARC-C OBQA TFQA CSQA SIQA Avg-All
OWM-4B 66.79 35.98 77.69 62.19 68.23 38.91 37.20 35.92 19.57 44.42 48.69

MIND-OWM-4B [TWO STUDENTS ] 68.14 36.75 77.86 63.06 69.11 40.19 39.40 37.80 19.66 45.55 49.75
OWM-4B+MIND-OWM-4B [1:1] 69.74 37.32 77.64 63.69 69.51 40.87 38.20 34.97 20.39 44.47 49.68
OWM-4B+MIND-OWM-4B [Concat] 69.28 38.37 78.02 64.09 68.66 39.76 39.00 38.38 22.52 44.63 50.27
MIND-OWM-4B [Longest Conversation] 68.39 36.75 77.64 62.04 68.91 40.02 39.40 38.23 20.23 44.52 49.61

Table 7: Evaluation of 8B LLM on General Reasoning tasks: Conversations provide improve-
ment over raw data in general purpose reasoning tasks including commonsense, factual and social
reasoning tasks.

As shown in Table 7, conversational synthetic data improves general purpose reasoning ability of
LLM. Specifically, the concatenation of raw text and conversations yields the best average score
for all combinations—highlighting the efficacy of both data towards generalizability of LLM across
wide range of reasoning tasks.

In addition, for mathematical benchmarks, only synthetic data produce the best imrpovement over
the raw data (Table 8). The nature of conversational data being composite and structured helps the
LLM to perform well in tasks that requires step-by-step processing of a complex problem. Con-
versely, specialized knowledge tasks require both raw and synthetic data to attain the maximum
gain.
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Dataset GSM8K MATH
MMLU-
STEM

MMLU-
Humanities

MMLU-
Social-Sciences

MMLU-
Others MMLU Avg-All

OWM-4B 4.78 4.92 26.29 25.93 26.75 27.16 26.46 12.05

MIND-OWM-4B [TWO STUDENTS ] 10.77 5.30 26.93 26.78 26.81 27.87 27.06 14.38
OWM-4B+MIND-OWM-4B [1:1] 8.49 5.02 28.01 28.44 28.40 28.39 28.32 13.94
OWM-4B+MIND-OWM-4B [Concat] 8.04 4.98 29.18 29.22 29.51 31.54 29.79 14.27
MIND-OWM-4B [Longest Conversation] 8.57 4.60 26.77 27.16 29.12 29.29 27.97 13.71

Table 8: Evaluation of 8B LLM on Math and Specialized Knowledge tasks: Conversations are
always beneficial for mathematical reasoning where specialized knowledge tasks further benefit
from having both raw and synthetic data in the corpus.

B.2 BREAKDOWN OF INDIVIDUAL TASKS RESULTS OF CONTINUED PRETRAINED LLM

In this section, we further breakdown the performance of models trained on individual and com-
binations of conversation styles across general purpose reasoning tasks and specialized knowledge
tasks.

Performance across Individual Prompt Style. As shown in Table 9, synthetic data overall
achieves highest gain for general purpose reasoning task compared to using raw or rephrased data.
Table 10 further validates the efficacy of synthetic conversations on mathematical reasoning tasks
where model trained with all styles of conversational data generated from OWM-4B gets the highest
gain across all other models—highlighting the potential of upsampling high-quality data by gener-
ating synthetic data of diverse styles using a small seed data.

Dataset Style ARC-E Race PIQA Wino. HellaSwag ARC-C OBQA TFQA CSQA SIQA Avg-All
OWM-4B Raw 71.89 37.89 78.24 65.98 71.42 46.33 41.40 36.96 32.35 46.57 52.90

Rephrase-OWM-4B Rephrase 72.05 38.28 78.07 63.14 71.16 45.31 42.20 47.09 33.33 45.19 53.58

MIND-OWM-4B

TWO PROFESSORS 72.18 38.85 77.20 66.38 71.54 44.20 40.40 42.51 32.35 46.47 53.21
TEACHER STUDENT 75.17 38.76 78.35 66.46 72.08 47.70 40.20 44.88 38.74 46.06 54.84

TWO STUDENTS 72.90 38.56 78.24 65.82 72.24 46.67 41.00 44.10 38.25 45.45 54.32
LAYMAN KNOWALL 74.12 39.04 78.45 65.27 72.19 46.42 41.00 46.25 41.28 44.88 54.89

DEBATE 74.92 38.37 78.45 65.75 71.89 47.78 40.40 45.47 38.41 46.16 54.76
INTERVIEW 73.82 37.99 78.13 65.11 72.18 48.72 42.00 47.81 36.04 45.45 54.73

PROBLEM SOLVING 74.41 38.37 78.07 65.59 71.67 49.40 41.20 47.04 37.02 46.26 54.90

LONGEST CONVERSATION 74.71 37.99 78.18 64.80 72.10 47.61 41.40 45.49 39.80 46.52 54.86
ALL CONVERSATIONS 75.17 39.04 77.86 65.43 72.31 49.40 41.00 46.68 40.79 46.42 55.41

OWM-4B+MIND-OWM-4B [1:1] Combination 74.12 37.99 78.18 66.54 72.28 48.12 41.40 39.27 40.70 46.37 54.50
OWM-4B+MIND-OWM-4B [Concat] 74.92 38.28 77.58 67.32 72.63 48.55 41.80 42.26 40.95 46.72 55.10

Table 9: Results of 7B LLM on General Reasoning Tasks: We evaluate both the baseline and
model trained with synthetic data across diverse tasks that focus on general reasoning, language
understanding and commonsense.

Dataset Style GSM8K MATH
MMLU-
STEM

MMLU-
Humanities

MMLU-
Social-Sciences

MMLU-
Others MMLU Avg-All

OWM-4B Raw 12.96 4.92 39.39 41.15 52.84 52.85 45.91 21.26

Rephrase-OWM-4B Rephrase 11.68 5.46 39.71 40.77 54.76 52.40 46.17 21.10

MIND-OWM-4B

TWO PROFESSORS 13.50 4.52 37.93 41.89 52.32 50.76 45.25 21.09
TEACHER STUDENT 22.74 5.96 40.72 42.21 56.78 55.13 47.93 25.54

TWO STUDENTS 21.30 6.20 41.90 43.40 57.07 55.65 48.77 25.42
LAYMAN KNOWALL 17.74 5.46 41.96 44.27 56.19 55.62 48.87 24.02

DEBATE 23.96 6.12 40.18 42.40 55.38 55.33 47.61 25.90
INTERVIEW 20.92 5.86 40.53 41.21 55.48 53.91 46.99 24.59

PROBLEM SOLVING 24.72 6.16 41.36 42.21 55.18 55.23 47.74 26.21

LONGEST CONVERSATION 25.78 6.30 42.72 43.53 57.52 56.90 49.37 27.15
ALL CONVERSATIONS 26.38 7.22 42.53 44.38 58.63 58.51 50.21 27.94

OWM-4B+MIND-OWM-4B [1:1] Combination 21.68 6.14 42.56 43.85 57.59 57.42 49.57 25.80
OWM-4B+MIND-OWM-4B [Concat] 24.49 6.22 43.67 44.87 59.21 57.16 50.46 27.06

Table 10: Results of 7B LLM on Specialized Knowledge Tasks: In this setup, we assess the
domain specific knowledge of LLM specifically on mathematics, science and general knowledge.
We emphasize on the GSM8K, MATH and MMLU-STEM task, as these tasks predominantly checks
the mathematical reasoning ability of the LLM.

Analysis with Complete OpenWebMath. Our experiment with complete OWM-14B shows the
similar trend as before. The comprehensive nature of this larger dataset continues to reinforce the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

MIND

advantages of synthetic data, as models trained on it also exhibit enhanced performance across both
general purpose reasoning (Table 11) and mathematical reasoning tasks (Table 11). This consistency
across different dataset sizes highlights the robustness of the benefits gained from incorporating
diverse conversational styles, further supporting the notion that expanding training data through
synthetic means can lead to significant advancements in the capabilities of language models.

Dataset ARC-E Race PIQA Wino. HellaSwag ARC-C OBQA TFQA CSQA SIQA Avg-All
Pretraining Data 70.88 38.76 78.78 67.80 73.90 43.86 42.60 41.35 29.65 44.63 53.22
OWM-14B 73.40 37.32 77.91 65.90 72.15 47.10 41.40 38.39 39.64 46.26 53.95

MIND-OWM-14B 75.84 39.52 78.56 65.67 72.38 48.55 42.80 45.06 39.89 47.08 55.54

Table 11: Evaluations on General Reasoning Tasks with complete OWM-14B: Conversational
data is beneficial for general purpose reasoning tasks.

Dataset GSM8K MATH
MMLU-
STEM

MMLU-
Humanities

MMLU-
Social-Sciences

MMLU-
Others MMLU Avg-All

Pretraining Data 9.33 4.74 37.93 41.23 51.80 53.07 45.43 34.79
OWM-14B 20.47 7.24 42.82 44.48 56.61 56.78 49.49 39.70

MIND-OWM-14B 27.29 8.24 43.55 43.95 57.95 57.45 49.91 41.19

Table 12: Evaluations on Math and Specialized Knowledge Tasks with complete OWM-14B:
Conversations improve mathematical reasoning over raw data.

C ADDITIONAL ABLATIONS

C.1 CONTEXT LENGTH VS CONVERSATION QUALITY

To generate conversations, we utilizeM, which supports input sequences of up to 8K tokens. How-
ever, the OpenWebMath corpus, composed of mathematical web pages from Common Crawl, often
contains documents exceeding this 8K token limit, leading to errors when processing them with the
LLM. A straightforward approach is to split these inputs into 8K-token windows, but initial exper-
iments with this method reveal significant drawbacks. Conversations generated from the 8K-token
inputs tend to summarize the lengthy context, resulting in a loss of substantial information from the
original text.

Token Length of Original Context
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Figure 4: With increasing context length the generated conversation length decreases!

Therefore, we conduct an experiment on 140k samples from the OpenWebMath corpus of varying
input length to determine the optimal input token length that generates conversations of following
characteristics: (1) retains all relevant information from the original context, (2) remains grounded
to the source material and (3) enhances the conversation with complementary explanations and rea-
soning. For each sample, we generate conversations using two prompt (TWO PROFESSORS and
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TEACHER STUDENT) and observe the token length of the generations. As depicted in Figure 4, with
increasing input token length (X-axis), the token length of the generated conversation (Y-axis) does
not scale up linearly. For example, an input context of 2K tokens results in a conversation that has
1K tokens resulting in a lot of information loss during conversion. Analyzing the Figure 4, we see
that the input token length of 500 can generate conversation that goes beyond 500 tokens meaning
that the conversation not only retains information but also adds necessary reasoning resulting in
more tokens.

C.2 CONVERSATION LENGTH VS MODEL PERFORMANCE

As shown in Table 1, LONGEST CONVERSATION achieves the best results among all styles. Since
LONGEST CONVERSATION is curated by selecting the longest dialogue (in terms of token count)
from seven conversations for a single context, it raises the question of how dialogue length impacts
downstream task accuracy.

Style Avg Token Length Accuracy (Avg-All)
TWO PROFESSORS 451.95 29.12
TWO STUDENTS 452.17 32.65
PROBLEM SOLVING 465.29 33.38
TEACHER STUDENT 494.03 32.87
INTERVIEW 497.21 32.12
DEBATE 511.90 33.11
LAYMAN KNOWALL 630.23 31.74
LONGEST CONVERSATION 653.48 34.08

Table 13: Conversation Length vs Downstream
Task Accuracy: Conversation length is not cor-
related with downstream task accuracy.

To explore the relationship between dialogue
length and accuracy, we measured the aver-
age token length of dialogues across all con-
versational styles, including LONGEST CON-
VERSATION. As seen in Table 13, reasoning
accuracy does not exhibit a linear correlation
with dialogue length. For example, with PROB-
LEM SOLVING style we can achieve comparable
accuracy to LONGEST CONVERSATION even
when the average token length for PROBLEM
SOLVING is 1̃88 lower than LONGEST CON-
VERSATION. This highlights that the conversation length is not the only important factor to attain
the maximum gain in reasoning ability. As mentioned in Section 5, the structure and dynamics of
the conversations also play a crucial role in maximizing reasoning gains.

C.3 CONVERSATION QUALITY ASSESSMENT

While the conversations generated by the LLM typically appear coherent, there are instances where
the conversation fails to preserve the context or lacks grounding to the source material. In some
cases, conversations may even be incomplete. Detecting poor-quality generation becomes challeng-
ing at scale. To address this, we explore two quality-filtering approaches:

Heuristic Filtering. We employ a simple heuristic based on token length. Given that the input
context is limited to a maximum of 500 tokens and split into subcontexts of 500 tokens each to
maximize information retention, we discard any generated conversations that fall below 50 tokens.
This ensures that minimal information loss is detected early.

LLM-based Scoring. For a more comprehensive assessment, we use an LLM to score the quality of
the generated conversations. We introduce four key metrics for evaluation:

• Correctness: Verifies that all information, such as numbers and parameters, is accurately reflected
in the conversation.

• Faithfulness: Ensures the conversation remains grounded in the context provided.

• Information Preservation: Checks whether all relevant facts and knowledge from the original
context are retained in the conversation.

• New Knowledge: Evaluates whether the conversation introduces additional explanations, reason-
ing, or definitions not present in the raw input.

Given a raw context and its corresponding conversation, we askM to rate the conversation on a scale
of 1 to 5 in each of four metrics, with 1 representing poor quality and 5 representing the best possible
conversation. To determine the overall quality, we compute the average score across the metrics
and choose conversations with average scores more than or equal to 3. Additionally, we utilize
the prompt from the FineWebEdu (Penedo et al., 2024) annotation framework to further check the
correlation between two scoring approaches. In Figure 5, we plot the scores for 140K conversations
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using FineWebEdu metrics and our metrics. It is clearly visible from the figure is that LLM tends to
rate its own generation higher almost all the time resulting in a skewed distribution of rating. Around
96% of conversations are labelled as high quality. However, compared to FineWebEdu, our metric
results in less skewed distribution—making our approach more suitable for evaluating synthetic data
derived from a seed corpus.

Score

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5

FineWeb Metric Our Metric

Figure 5: LLM tends to rate its generation higher
most of the times.

To further investigate, we choose 20 con-
texts and their corresponding conversations and
manually label them on the above four metrics.
We later pass these samples to LLM to obtain
the quality scores. The correctness and faithful-
ness metrics were consistently high, with LLM
showing a generation correct 96% of times and
human annotators labeling a conversation cor-
rect 98% of times (with spearman correlation
between two being 0.82) which validates the
quality and reliability of the generated synthetic
dialogues. When comparing the overall human
scores with those from the LLM across the four
metrics, we observe a weak correlation between
two sets (Spearman’s ρ = 0.03) and the reason-
ing behind them. Human annotators prioritized the information preservation metric, while the LLM
often overlooked minor information loss. Additionally, the interpretation of “New Knowledge" dif-
fered between humans and the LLM. Humans valued extra reasoning and explanation as forms of
new knowledge, whereas the LLM assigned higher “New Knowledge" scores to conversations con-
taining out-of-context information that is difficult to verify. Given these differences in the results
from human and LLM-based quality filtering, we use simple heuristic filtering in this study and plan
to explore other approaches in the future.

C.4 COMPARE WITH DEEPSEEKMATH

To asses the quality of our data, we run pre-training experiments to compare MIND-OWM with the
recently released DEEPSEEKMATH (Shao et al., 2024). The DEEPSEEKMATH approach is iterative.
They construct a dataset for binary classification consisting of 500K positive data points randomly
sampled from OpenWebMath (the seed corpus) and 500K negative data points randomly sampled
from CommonCrawl. They train a fastText (Joulin, 2016) classifier on these data which they then use
to extract samples from CommonCrawl as math content. All CommonCrawl domains for which over
10% of the existing web pages have been extracted are at this point understood to be math-related.
URLs which are associated with these domains but which have yet to be collected are manually
labeled as math content. The web pages hosted at these addresses are added to the seed corpus and
the classifier is retrained. DEEPSEEKMATH performs 4 rounds in total resulting in the DEEPSEEK-
MATH Corpus, consisting of some 120B math tokens. They continuously train a partially converged
7B DEEPSEEKCODER-V1.5 model on a 500B token blend to attain the DEEPSEEKMATH model
and achieve substantial improvement on several math tasks. In contrast, MIND proposes a simple
alternative for generating high-quality math data that boosts the mathematical reasoning ability of
LLM given access to a small seed corpus.

As the DEEPSEEKMATH dataset is not public, we replicate our previous blend, D = {X ∪
Rpt}, where X = {MIND-OWM-4B (conversations of all styles except the TWO STUDENTS one) ∪
MIND-OWM-14B (TWO STUDENTS conversations)}. We maintain a 2:1 ratio of X and Rpt

in the training blend. Similar to the approach of DEEPSEEKMATH, we take a converged
DEEPSEEKCODER-V1.5 model as C — the unconverged model weights are unpublished as far as
we are aware — and convert the model weights to a format compatible with Megatron-LM, which
serves as our training framework, before continuously training for 500B tokens. We use a cosine
learning rate schedule with a 19B token linear ramp-up, a maximum learning rate of 3e-4, and a
minimum learning rate of 3e-6, and we anneal the learning rate over 500B tokens. We use Adam
with parameters β1 = 0.9 and β2 = 0.95, a weight decay of 0.1, a gradient clipping threshold of
1.0, a sequence length of 4096, and a global batch size of 2304 sequences.
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Dataset Tokens GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-Math Avg-All

DEEPSEEKMATH (Shao et al., 2024)
500B

59.29 4.37 55.41 54.98 55.94 39.69 43.64

MIND-OWM-4B/14B [Combinations∗] 57.32 2.36 51.95 56.54 59.16 37.21 43.84

Table 14: DEEPSEEKMATH vs All Synthetic Conversations. A model trained on conversa-
tions generated by MIND from a small seed corpus can achieve math accuracy comparable to the
DEEPSEEKMATH model trained on 120B unique tokens.

From Table 14, we can see that a model trained on conversations which MIND generated given a
small seed corpus can attain math accuracies comparable to the DEEPSEEKMATH model with access
to 120B unique math tokens in its continuous training blend. In fact, we outperform DEEPSEEK-
MATH in MMLU and general reasoning tasks, reaching higher average accuracy across all tasks.
This underscores the quality of MIND generated conversations and signifies the efficacy of MIND
in improving mathematical reasoning ability of LLM when the underlying raw data is limited.

In contrast to our prior C, DEEPSEEKMATH-7B LLM is a strong math baseline that has been specifi-
cally designed for addressing mathematical reasoning ability and surpasses Azerbayev et al. (2023b),
Team (2024a), Jiang et al. (2023), Lewkowycz et al. (2022a), Javaheripi et al. (2023), Dubey et al.
(2024) [8B] base models on diverse math tasks. To evaluate the effectiveness of MIND with stronger
pretrained model, we perform an additional experiment, similar to our training setup in Section 3.1
using C = DEEPSEEKMATH-7B. Specifically, we have continuously trained the C on 500B tokens
maintaining a 2:1 ratio of math (R) and 13 CC (Rpt) dataset where the total blend isD = {R∪Rpt}.
We conduct two experiments by alternatingR with raw (OWM-14B) and X .

Dataset Tokens GSM8K MATH
MMLU-
STEM MMLU

GENERAL REASONING
(Avg) Avg-Math Avg-All

OWM-14B
500B

39.42 1.59 49.92 52.87 55.47 30.31 37.34

MIND-OWM [ALL CONVERSATIONS] 57.32 2.36 51.95 56.54 59.16 37.21 43.84

Table 15: Training DEEPSEEKMATH-7B with Raw Data vs All Synthetic Dialogues. A strong
pretrained LLM continously trained on conversations generated by MIND provides significant boost
in math accuracy than the same model trained on raw data—showing the effectiveness of MIND
regardless of pretraining model quality.

As shown in Table 15, model trained on MIND-OWM data shows consistent improvement over model
trained on raw data—resulting in 17.90% gain on GSM8K, 6.90% average improvement across math
tasks and 3.43% average improvement across ten general reasoning tasks. These results further
solidifies the effectiveness of MIND regardless of the quality of the pretrained model.

C.5 CONVERSATIONS ON CODE TASKS

Unlike raw data, conversations tend to break down the context into sub-context and participants
exchange their reasoning about the sub-context in a single turn. This feature is particularly useful
for mathematical or logical reasoning which require step-by-step reasoning. However, this structure
might hurt performance of LLM in domains where sequence of context needs to be preserved such as
in codes. To further investigate the impact of conversational data on the coding capabilities of LLM,
we conduct an evaluation of models trained on both raw and synthetic data across four established
coding benchmarks: HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), HumanEval+, and
MBPP+ (Liu et al., 2024). These benchmarks are specifically designed to assess the model’s ability
to generate functional code in response to given prompts.

Our results, as presented in Table 16, demonstrate that conversational synthetic data does not en-
hance coding performance. This is largely due to the way conversations tend to fragment code,
wrapping it in natural language and thereby obscuring the intended sequence and logic inherent in
programming tasks. Consequently, while conversations may be effective in contexts that benefit
from collaborative reasoning, they are not suited for preserving the integrity of code, leading to
diminished performance in coding benchmarks.
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Dataset Style HumanEval HumanEval+ MBPP (Sanitized) MBPP+ Avg-All
OWM-4B Raw 12.20 10.98 23.74 0.00 11.73

Rephrase-OWM-4B Rephrase 5.49 4.27 20.23 0.53 7.63

MIND-OWM-4B

TWO PROFESSORS 8.54 4.88 20.62 0.00 8.51
TEACHER STUDENT 13.41 9.76 26.46 0.26 12.47

TWO STUDENTS 10.37 7.93 26.07 0.26 11.16
LAYMAN KNOWALL 10.37 8.54 26.46 0.79 11.54

DEBATE 11.59 9.15 24.90 0.26 11.48
INTERVIEW 7.32 4.88 23.35 0.26 8.95

PROBLEM SOLVING 9.76 9.15 24.51 0.26 10.92

LONGEST CONVERSATION 9.15 7.32 28.40 0.53 11.35
ALL CONVERSATIONS 12.20 9.15 28.02 0.53 12.48

OWM-4B+MIND-OWM-4B [1:1] Combination 13.41 10.98 23.35 0.00 11.94
OWM-4B+MIND-OWM-4B [Concat] 10.37 7.93 31.52 0.00 12.46

Table 16: Results of 7B LLM on Code Tasks: Conversations and rephrases are ineffective for code
benchmarks.

Interestingly, we also observe that rephrasing, which resembles raw data more closely in structure,
further degrades coding accuracy. Our qualitative analysis of the rephrased documents reveals that
the conversation generator (LLAMA3-70B-INSTRUCT) often removes critical elements such as
important tags and code indentation, which are essential for comprehending and executing code
correctly. This finding underscores the necessity of designing code-specific prompts that retain the
structural components vital for coding tasks.
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D DIALOGUE EXAMPLES

RAW TEXT

# The Truth about Martin Luther King Jr
By Murray Bourne, 09 Jul 2006
While King’s influence on the civil rights movement was overall a Good Thing, I found the
King Papers Project interesting, considering he was quite a plagiariser.
Stanford’s own King Encyclopedia gives some background but there is no mention of pla-
giarism.
Wikipedia has more on King’s authorship issues. Was his plagiarism sloppy academic writ-
ing or dishonesty?
This is the dilemma we face every time we find that a student has copied...
Footnote: There are some interesting comments on King at Myths of Martin Luther King.
Both of these sites have questionable reliability, of course. You have been warned.
See the 1 Comment below.
### One Comment on "The Truth about Martin Luther King Jr" 1. Vinod says:
If I have seen further, it is by standing on the shoulders of giants.
### Comment Preview
HTML: You can use simple tags like <b>, <a href=“...”>, etc.
To enter math, you can can either: 1. Use simple calculator-like input in the following format
(surround your math in backticks, or qq on tablet or phone):
a2 = sqrt(b2 + c2)
(See more on ASCIIMath syntax); or
2. Use simple LaTeX in the following format. Surround your math with $$ and $$.
$$

∫
gdx =

√
a
b $$

(This is standard simple LaTeX.)
NOTE: You can’t mix both types of math entry in your comment.

SYNTHETIC DIALOGUE [TWO PROFESSORS ]

Professor 1: You know, I was reading about Martin Luther King Jr. and I came across some
interesting information. While his influence on the civil rights movement was undoubtedly
a good thing, I found out that he was quite a plagiarizer.
Professor 2: Really? I hadn’t heard that about him. What’s the source of this informa-
tion? Professor 1: Well, I was looking at the King Papers Project, and it’s quite revealing.
Stanford’s own King Encyclopedia doesn’t mention it, but Wikipedia has more on King’s
authorship issues.
Professor 2: That’s fascinating. Do you think his plagiarism was just sloppy academic
writing or outright dishonesty?
Professor 1: Exactly! That’s the dilemma we face every time we find that a student has
copied. It’s hard to know whether it’s just laziness or intentional deception.
Professor 2: I see what you mean. By the way, I love that quote from Isaac Newton: "If I
have seen further, it is by standing on the shoulders of giants." It’s a great reminder that we
all build on the work of others.
Professor 1: Ah, nice connection! And yes, it’s a great quote. By the way, I also came
across some interesting comments on King at Myths of Martin Luther King. Of course, one
has to be cautious about the reliability of those sources, but still...
Professor 2: Absolutely. We always need to approach these kinds of sources with a critical
eye. Thanks for sharing this, it’s definitely given me something to think about.
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RAW TEXT

?
Free Version
Moderate
# Interpretation of Equilibrium from Graph of Concentration vs Time
CHEM-NWU9LE
Consider the graph below of a chemical reaction observing the concentration of two chemi-
cal species with time.
Which species is the reactant? $$
Which species is the product?
$$
At what region does the solution appear to be in equilibrium? $$
What is the Kc for the reaction?

SYNTHETIC DIALOGUE [TEACHER STUDENT ]

Student: Hi, teacher. I’m having trouble understanding this graph of a chemical reaction.
Can you help me?
Teacher: Of course! What’s your first question about the graph?
Student: Okay, so which species is the reactant?
Teacher: Let’s take a look at the graph. The species whose concentration is decreasing with
time is the reactant. Can you identify which one that is?
Student: Ah, I think it’s... (looks at the graph) ...the one whose concentration starts high
and decreases.
Teacher: That’s correct! The reactant is the species whose concentration starts high and
decreases with time. Now, what’s your next question?
Student: Which species is the product?
Teacher: Good question! The product is the species whose concentration starts low and
increases with time. Can you identify which one that is?
Student: Yeah, I think it’s... (looks at the graph) ...the one whose concentration starts low
and increases.
Teacher: That’s right! The product is the species whose concentration starts low and in-
creases with time. Now, what’s your next question?
Student: At what region does the solution appear to be in equilibrium?
Teacher: Look at the graph again. At what point does the concentration of both species
seem to be constant, not changing with time?
Student: Hmm... I think it’s... (looks at the graph) ...after a certain time, when the lines are
flat.
Teacher: Exactly! The solution appears to be in equilibrium when the concentration of both
species is constant, which is after a certain time when the lines are flat. Now, what’s your
next question?
Student: What is the Kc for the reaction?
Teacher: Unfortunately, the graph doesn’t provide enough information to calculate the Kc
value. We would need more data or information about the reaction to determine the equilib-
rium constant, Kc.
Student: Okay, I think I understand now. Thank you for your help!
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What’s the probability that: The person is not age 18 to 34 and does not own an iPhone?
The presidential election is coming.
Five survey companies (A, B, C, D, and E) are doing survey to forecast whether or not the
Republican candidate will win the election.
Each company randomly selects a sample size between 1000 and 1500 people.
All of these five companies interview people over the phone during Tuesday and Wednesday.
The interviewee will be asked if he or she is 18 years old or above and U.S. citizen who
are registered to vote. If yes, the interviewee will be further asked: will you vote for the
Republican candidate?
On Thursday morning, these five companies announce their survey sample and results at the
same time on the newspapers.
The results show that a% (from A), b% (from B), c% (from C), d% (from D), and e% (from
E) will support the Republican candidate.
The margin of error is plus/minus 3% for all results.
Suppose that c>a>d>e>b. When you see these results from the newspapers, can you ex-
actly identify which result(s) is (are) not reliable and not accurate?
That is, can you identify which estimation interval(s) does (do) not include the true popula-
tion proportion?
If you can, explain why you can, if no, explain why you cannot and what information you
need to identify.
Discuss and explain your reasons. You must provide your statistical analysis and reasons.

SYNTHETIC DIALOGUE [TWO STUDENTS ]

**Turn 1**
Alex: Hey Ben, have you started working on our assignment about the presidential election
survey?
Ben: Yeah, I’ve been going over the context. It seems like we need to identify which survey
result is not reliable and accurate.
Alex: Exactly! Let’s break it down. We have five survey companies, A, B, C, D, and E, each
with a sample size between 1000 and 1500 people.
Ben: Right, and they all have a margin of error of plus/minus 3%.
**Turn 2**
Alex: Okay, so we’re given that c > a > d > e > b. What does this tell us?
Ben: It tells us the order of the proportions of people who will support the Republican
candidate according to each survey company.
Alex: That’s right. And since the margin of error is the same for all companies, we can as-
sume that the true population proportion should lie within a similar range for all companies.
**Turn 3**
Ben: But wait, if the true population proportion lies within a similar range, then shouldn’t
all the estimation intervals overlap?
Alex: Exactly! If the estimation intervals don’t overlap, it means that at least one of them is
not reliable and accurate.
Ben: So, we need to check if the intervals overlap. How do we do that?
**Turn 4**
Alex: Let’s calculate the estimation intervals for each company. For company A, it’s a% ±
3%, and similarly for the others.
Ben: Okay, got it. So, we have a% ± 3%, b% ± 3%, c% ± 3%, d% ± 3%, and e% ± 3%.
Alex: Now, let’s check if these intervals overlap. Since c > a > d > e > b, the interval for
company C should be the highest, and the interval for company B should be the lowest.
**Turn 5**
Ben: I see what you’re getting at. If the intervals overlap, then the highest value of the
lowest interval (company B) should be greater than or equal to the lowest value of the highest
interval (company C).
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Alex: That’s right! If that’s not the case, then we know that at least one of the intervals is
not reliable and accurate.
Ben: Let’s plug in some numbers and see if we can identify which one is not reliable.
**Turn 6**
Alex: Alright, let’s say the results are a = 45%, b = 38%, c = 50%, d = 42%, and e = 40%.
Can we identify which one is not reliable?
Ben: Let’s calculate the estimation intervals... (calculates)...and check if they overlap.
Alex: (checks the calculations) Ah, look at that! The interval for company B (38% ± 3%)
doesn’t overlap with the interval for company C (50% ± 3%).
Ben: That means company B’s result is not reliable and accurate!
**Turn 7**
Ben: But why can’t we identify the other unreliable results, if any?
Alex: That’s because we only have the relative order of the proportions, not the exact values.
We need more information to identify other unreliable results, if any.
Ben: I see. So, we can only identify company B’s result as not reliable and accurate, but we
can’t say for sure about the others.
Alex: That’s correct. We’ve done our best with the given information.
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# Decimal to Percent Calculator.
The calculator will convert decimal into percent, with steps shown.
If the calculator did not compute something or you have identified an error, or you have a
suggestion/feedback, please write it in the comments below.
Convert 1.4 into decimal. ## Solution From the converting decimal to percent note, we know
that to obtain a percent, we need to multiply a decimal by 100.
But multiplying by 100is equivalent to moving a decimal point 2 positions to the right.

SYNTHETIC DIALOGUE [LAYMAN KNOWALL ]

**Turn 1**
Layman: Hi, I’m not sure what this calculator does. Can you explain it to me?
Me: This calculator converts decimals into percents. It shows the steps to do the conversion.
**Turn 2**
Layman: Okay, got it. So what’s the problem we’re trying to solve?
Me: We’re trying to convert 1.4 into a percent.
**Turn 3**
Layman: How do we do that? Is there a formula or something?
Me: Yes, there is. According to the note on converting decimal to percent, we need to
multiply the decimal by 100 to obtain a percent.
**Turn 4**
Layman: Why do we need to multiply by 100? What’s the logic behind it?
Me: Well, I’m not sure about the logic, but the note says that’s what we need to do. But I
can tell you that multiplying by 100 is equivalent to moving the decimal point 2 positions to
the right.
**Turn 5**
Layman: What do you mean by moving the decimal point 2 positions to the right? Can you
explain that?
Me: Sure. When you multiply a number by 100, the decimal point shifts 2 places to the
right. For example, if you have 1.4 and you multiply it by 100, the decimal point will move
2 places to the right, making it 140.
**Turn 6**
Layman: Ah, I think I understand now. So, if we multiply 1.4 by 100, what do we get?
Me: That’s right! If we multiply 1.4 by 100, we get 140. And that’s the equivalent percent
value of the decimal 1.4.
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Try to finish the derivation and see how it applies to the sum you’re trying to compute. Sorry
if this is hard to understand.
7. Jun 14, 2009
### jgens
Cyosis, why would he/she use the sum for the first n natural numbers when his sum asks for
odd natural numbers only?
8. Jun 14, 2009
### Cyosis
If you know the sum for the first n natural numbers you can quickly solve the sum for the
first odd numbers. Had he known it, it would have been the easiest way to calculate the sum
he’s interested in.
9. Jun 14, 2009
### Manchot
The story is that a six-year-old Gauss was told by his teacher to add the numbers 1 to 100 as
a form of busywork. In seconds, he came up with the answer, much to his teacher’s surprise.
What he did was notice that since 1+100=101, 2+99=101, 3+98=101, etc., the sum becomes
a simple multiplication: there are 50 of the above p̈airs,s̈o the sum is just 50*101 = 5050.
Anyway, that’s the intuition behind the identity that Cyosis posted. You can pretty much use
the exact same intuition.
10. Jun 14, 2009
### gabrielh
Okay thanks, I get it now.
11. Jun 14, 2009

SYNTHETIC DIALOGUE [DEBATE ]

jgens: I don’t understand why Cyosis suggested using the sum of the first n natural numbers
to solve the problem. The original problem asks for the sum of the first odd natural numbers,
not all natural numbers.
Cyosis: I see what jgens is saying, but I think my approach is still valid. If you know the
sum of the first n natural numbers, you can easily derive the sum of the first odd natural
numbers. It’s actually the easiest way to calculate the sum.
Manchot: I think I can help clarify things. The story about Gauss adding numbers from 1
to 100 is relevant here. He noticed that 1+100=101, 2+99=101, and so on, which makes the
sum a simple multiplication problem. There are 50 such pairs, so the sum is 50*101 = 5050.
This is the intuition behind Cyosis’ suggestion.
jgensL I see what Manchot is saying, but I’m still not convinced. How does this story about
Gauss relate to the sum of odd natural numbers?
Cyosis: Well, jgens, the same intuition applies here. We can use a similar pairing method to
calculate the sum of odd natural numbers. It’s not a direct application, but the principle is
the same.
gabrielh: I think I’m starting to get it now. So, we can use the sum of the first n natural
numbers as a stepping stone to calculate the sum of the first odd natural numbers, and the
Gauss story provides the intuition behind this approach.
Manchot: Exactly, gabrielh! That’s the idea. By understanding the sum of the first n natural
numbers, we can derive the sum of the first odd natural numbers using a similar method.
Cyosis: I’m glad we could clarify things. The key is to recognize that the sum of the first
n natural numbers is a more general problem that can be used to solve the more specific
problem of the sum of the first odd natural numbers.
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The Cryptographic Lens
Shafi Goldwasser - Colloquium Lecture - POSTPONED!
Tuesday, 21.10.2014, 14:30
Room 337-8 Taub Bld.
...
ceClub: A Centralized Z̈ero-QueueN̈etwork Architecture
Jonathan Perry (MIT, CSAIL)
Monday, 06.10.2014, 11:00
EE Meyer Building 861
Current datacenter networks inherit the principles that went into the design of the Internet,
where packet transmission and path selection decisions are distributed among the endpoints
and routers. Instead, we propose that each sender should delegate control—to a centralized
arbiter—of when each packet should be transmitted and what path it should follow. Fastpass
is a datacenter network architecture built using this principle. Fastpass incorporates two fast
algorit...
Parameterized Automata Constructions and Their Applications
Ran Ben-Basat
Monday, 22.09.2014, 15:30
Taub 701
Parameterization is a useful tool for handling NP-hard problems in the real world. It aims
to reduce the running times of algorithms for such problems, by confining the combinatorial
explosion to some parameter k. As this parameter is often significantly smaller than the
input size, it allows to develop practical algorithms for non-trivial classes of instances for
these problems. In this talk we present a novel framework for developing parameterized
algorithms, using construction...
Observing the Observers: Social Context Analysis Using Computer Vision
Meir Cohen
Wednesday, 10.09.2014, 12:00
Taub 601
It is quite common that multiple human observers attend to a single point of interest.
Mutual awareness activity (MAWA) refers to the dynamic of this social phenomena.
A peak of a MAWA is known as a mutual awareness event (MAWE) and can be interpreted
as a b̈uzzëvent, which draws the attention of many observers.
A preferred way to monitor those social phenomenon is with a camera that captures the
human observers while they observe the activity in the scene.
Our work studies the ...

SYNTHETIC DIALOGUE [INTERVIEW ]

Subject Matter Expert: Unfortunately, the lecture was postponed, so we don’t have any
information about the specific topic she was going to cover. However, the title of the lecture
was T̈he Cryptographic Lens,ẅhich suggests that it might have been related to cryptography
and its applications.
Interviewer: That’s a shame it was postponed. Moving on, let’s talk about the ceClub
lecture by Jonathan Perry from MIT, CSAIL. Can you summarize the main idea behind his
proposed datacenter network architecture, Fastpass?
Subject Matter Expert: Yes, certainly. Jonathan Perry proposed a centralized z̈ero-
queuen̈etwork architecture called Fastpass, which is a departure from the traditional dis-
tributed approach used in Internet design. In Fastpass, each sender delegates control to a
centralized arbiter, which decides when each packet should be transmitted and what path it
should follow. This approach aims to improve the efficiency of datacenter networks.
Interviewer: That’s fascinating. What can you tell me about the talk by Ran Ben-Basat on
parameterized automata constructions and their applications?
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Subject Matter Expert: Ran Ben-Basat discussed the concept of parameterization, which
is a useful tool for handling NP-hard problems in the real world. The idea is to reduce the
running times of algorithms for these problems by confining the combinatorial explosion to
some parameter k. He presented a novel framework for developing parameterized algorithms
using construction-based methods.
Interviewer: I see. Now, let’s switch gears and talk about the lecture by Meir Cohen on
social context analysis using computer vision. Can you explain what mutual awareness
activity (MAWA) and mutual awareness event (MAWE) refer to in this context?
Subject Matter Expert: Yes. Mutual awareness activity (MAWA) refers to the dynamic of
multiple human observers attending to a single point of interest. A peak of this activity is
known as a mutual awareness event (MAWE), which can be interpreted as a b̈uzzëvent that
draws the attention of many observers. Meir Cohen’s work focuses on monitoring and ana-
lyzing these social phenomena using computer vision, specifically by capturing the human
observers with a camera while they observe the activity in the scene.
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Note: At section X = 12 m, the speed is close to 1.5 m / s Thus for a return trip of 2x20m =
40 m to return to the profile X = 14m, the wave takes 27 s. Thus, the graph of Figure. 11 is
located before the (eventual) reflected wave coming from the absorbing upstream boundary,
which can disturb the sensors.
## Comparative analysis of records
We have exploited some of the tests in a transversal manner, to identify particular behaviors
of the surface waves:
• impact of the variation of the amplitude for several tests characterized by the same param-
eters but with roughnesses, or geometries either uniform, or linear
• impact of the change in the period
• impact of the variation of the initial amplitude
• comparison for the same test carried out in uniform or converging section
• impact of roughness variation
### Impact of the variation of the amplitude for several tests with the same parameters
We have compared several tests characterized by D70, by Ab absorbing boundary conditions
and for the same period T5. These are tests D70A5T5, D70A2T2 and D70A5T7 in RoAbUn,
SmAbCo and SmAbUn conditions
Figure 16 Figure 17 Figure 18
• Figure 16: amplitudes variations for the 3 runs are increasing according to the slope, which
is in accordance with the theory.
• Figure 17: the initial amplitudes of the waves generated by the wave maker are not always
well respected: all the curves of the same diagram should start from the same point to X = 0
• Figure 18: there is a sharp change in amplitude at the arrival at the top of the slope.

SYNTHETIC DIALOGUE [PROBLEM SOLVING ]

User: Hi, I’m analyzing some data on surface waves and I’d like to discuss some obser-
vations with you. Can you help me understand the impact of varying amplitude on surface
waves?
AI Assistant: I’d be happy to help. From the context, I see that you have several tests
with the same parameters but different amplitudes. Specifically, you have tests D70A5T5,
D70A2T2, and D70A5T7 in RoAbUn, SmAbCo, and SmAbUn conditions. What would you
like to know about these tests?
User: Yes, that’s correct. I’m looking at Figures 16, 17, and 18. Can you explain what’s
happening in Figure 16?
AI Assistant: In Figure 16, the amplitudes of the waves are increasing according to the
slope, which is consistent with theoretical expectations. This suggests that the amplitude of
the wave is directly related to the slope of the surface.
User: That makes sense. But what about Figure 17? The initial amplitudes of the waves
generated by the wave maker don’t seem to be consistent.
AI Assistant: That’s a good observation. Yes, the initial amplitudes of the waves don’t start
from the same point at X = 0, which is unexpected. This could be an issue with the wave
maker or the experimental setup.
User: Okay, got it. And what about Figure 18? There seems to be a sudden change in
amplitude at the top of the slope.
AI Assistant: Yes, that’s correct. Figure 18 shows a sharp change in amplitude at the arrival
at the top of the slope. This could be due to the interaction between the wave and the slope,
causing a sudden increase or decrease in amplitude.
User: That’s helpful. So, what can we conclude about the impact of varying amplitude on
surface waves?
AI Assistant: Based on these figures, it seems that the amplitude of the wave is directly
related to the slope of the surface, and changes in amplitude can affect the behavior of
the wave. However, we also need to consider the potential issues with the wave maker or
experimental setup that may be affecting the results.
User: Okay, that’s a good summary. Thanks for your help in analyzing these figures!
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