

000 001 002 003 004 005 CAUSAL REPRESENTATION MEETS 006 STOCHASTIC MODELING UNDER GENERIC GEOMETRY 007 008

009
010
011
012 **Anonymous authors**
013 Paper under double-blind review
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

ABSTRACT

Learning meaningful causal representations from observations has emerged as a crucial task for facilitating machine learning applications and driving scientific discoveries in fields such as climate science, biology, and physics. This process involves disentangling high-level latent variables and their causal relationships from low-level observations. Previous work in this area that achieves identifiability typically focuses on cases where the observations are either i.i.d. or follow a latent discrete-time process. Nevertheless, many real-world settings require the identification of latent variables that are stochastic processes (e.g., a multivariate point process). To this end, we develop identifiable causal representation learning for continuous-time latent stochastic point processes. We study the theoretical identifiability by analyzing the geometry of the parameter space. Furthermore, based on this, we develop MUTATE, a variational autoencoder framework with a time-adaptive transition module to evaluate stochastic dynamics. Across simulated and empirical studies, we find that MUTATE has the potential to answer questions in numerous scientific fields.

1 INTRODUCTION

Inferring causal relationships among variables from observations capitalizes the potential of machine learning to advance scientific discovery, as it reveals underlying mechanisms that are not identifiable from observational distributions alone (Pearl, 2009). However, we often do not have access to the causal variables but only the high-dimensional perceptual data, and causal variables with their structures are unknown and thus need to be learned. Yet, these latent causal variables are often not identifiable (Hyvärinen & Pajunen, 1999; Sorrenson et al., 2020). Recently, a growing number of studies on the disentanglement of latent causal representations have developed identifiability guarantees and proposed methods for estimating latent causal variables. Seminal works among them establish identifiability by leveraging sufficient variability in latent distribution arising from multiple-source data (Yao et al., 2022a; Song et al., 2023), auxiliary variable (Hyvärinen & Pajunen, 1999; Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019), or intervention to a latent causal graph (Ahuja et al., 2023; Squires et al., 2023; Jiang & Aragam, 2023; Bing et al., 2024; Buchholz et al., 2023).

Most recent work mentioned above aims to recover the latent causal variables that follow a discrete-time process (Yao et al., 2022a; Song et al., 2023) and that are mixed by an invertible function. However, many latent causal variables of interest are continuous-time processes in practice; and the study of latent continuous-time causal variables driven by stochastic processes or systems of stochastic differential equations has received little attention, especially when mixing functions are non-invertible and more generic¹. For example, in video surveillance systems, cameras are strategically placed to detect and deter crime, safeguard against potential

¹Following the standard usage in algebraic geometry, “a generic point of X has property P ” means that there exists a dense open subset $U \subseteq X$ such that every point of U has property P (Eisenbud & Harris, 2000, Ch. I).

047 threats to the public, and manage emergency response situations during natural and man-made disasters (Lima
 048 et al., 2020; Bacry & Muzy, 2014b; Bacry et al., 2012). In biology, fatal diseases such as cancer are principally
 049 caused by multiple cumulative mutations in driver genes as the colonial expansion proceeds. In neuroscience,
 050 the latent event dynamics trigger visible biological signals (Reynaud-Bouret & Schbath, 2010; Lorch et al.,
 051 2024). Finding cancer-associated mutational genes and tracking their behavior through their representation
 052 has been given much more paramount importance in recent few decades (Torkamani & Schork, 2009; Bailey
 053 et al., 2018; Nourbakhsh et al., 2024). Driven by the practical promise across applications, we study *when*
 054 *continuous-time latent stochastic point processes and their causal structure are identifiable*, and develop
 055 *algorithms to learn these latent dynamics from high-dimensional data*.

056 Contributions.

- 059 • We establish the first necessary and sufficient conditions that guarantee the full identifiability of
 060 latent point processes under generic, non-invertible mixing.
- 061 • We propose MUTATE, a novel identifiable variational auto-encoding method for learning causal
 062 representations of stochastic point processes.

063 2 PROBLEM SETUP: CAUSAL REPRESENTATION WITH STOCHASTIC POINT PROCESS

064 2.1 PRELIMINARIES AND NOTATIONS

065 Let $O_t \in \mathbb{R}^n$ be observable data, and $Z_t \in \mathbb{R}^p$ be a latent causal process with independent noise $\epsilon_t \in \mathbb{R}^p$.
 066 O_t is being generated from latent point processes Z_t through an unknown, arbitrary mixing function f .
 067 A multi-way array $A^{\otimes d}$ denotes the tensor/Kronecker product. In a time process, $\Phi \in \mathbb{R}^{p \times p}$ denotes the
 068 transition operator (e.g., an autoregressive coefficient matrix or continuous kernel matrix) and the symbol \star
 069 represents the convolution operator with kernel effects. We assume a probability space $(S, \mathcal{B}(S), \mathbb{P})$, where S
 070 is a Polish space (i.e., a complete separable metric space), $\mathcal{B}(S)$ is the Borel σ -algebra, and \mathbb{P} is the probability
 071 measure, with μ a generic measure (e.g., for noise or intensity). \mathcal{F}_t is the natural filtration up to the time t of a
 072 process. Let K denote an algebraically closed field² of characteristic zero. Throughout, and unless specified
 073 otherwise, we work over this field K .

074 2.2 A GENERATIVE MODEL FOR STOCHASTIC POINT PROCESSES

075 Throughout this paper, we consider a branch of non-homogeneous stochastic processes (Hawkes process)
 076 with dynamics governed by a conditional intensity defined as follows.

077 **Definition 2.1** (Conditional intensity, informal (Bacry & Muzy, 2014a)). Suppose a collection of latent
 078 processes that evolve stochastically and exhibit self-exciting dynamics over time. Specifically, let $Z_t := N_t$
 079 denote the cumulative count process up to time t . We write $i \leftarrow j$ to indicate that the process j exerts an
 080 influence on i . Accordingly, the conditional intensity of process i at time t is given by

$$081 \quad \lambda_t^i = \mu_i + \sum_j \int_0^t \phi_{i \leftarrow j}(t-s) N_s(\Delta)^j,$$

082 where $\mu_i \in U$ is the baseline rate and $\phi_{i \leftarrow j} \in \Phi$ characterizes the excitation kernel from process j to i . The
 083 counting process N_t^i and the conditional intensity λ_t^i satisfy: $N_{t+\Delta}^i - N_t^i = N_t(\Delta)^i$ and $\lambda_t^i = \frac{\mathbb{E}[dN_t^i | \mathcal{F}_t]}{dt}$.

084
 085
 086
 087
 088
 089
 090
 091
 092
 093
²By definition, a field k is *algebraically closed* if every non-constant polynomial $f(x) \in k[x]$ has a root in k , or
 equivalently, if k admits no proper algebraic extension (Lang, 2002; Atiyah & Macdonald, 1969, Ch. V).

094 For such a point process to be well-defined, some non-trivial constraints are required, one of which is
 095 the stationary condition, an assumption widely adopted in most stochastic process literature to ensure the
 096 uniqueness of the process.

097 **Assumption 1.** 1. (Stationary increments) The process $N_t^{(\Delta)}$ is wide-sense stationary, i.e., its first and
 098 second moments exist and are time-invariant. In particular, the intensity process $\mathbb{E}[\Lambda_t]$ is uniformly
 099 bounded and $dN_t^{(\Delta)}$ has stationary increments.

100 2. (Kernel Integrability) The convolutional causal kernel $\Phi_t \in \mathbb{R}^{p \times p}$ is square-integrable, i.e.,

$$103 \int_0^\infty \|\Phi_t\|_F^2 dt < \infty,$$

105 where $\|\cdot\|_F$ denotes the Frobenius norm.

107 Now, we formally set up the problem of identifying the generative model of stochastic point processes. We
 108 consider a collection of unstructured low-level observations $O = (O_t)_{t \leq T}$ generated from the latent process
 109 N_t through an arbitrary mixing function f . Compactly, by absorbing the kernel matrix Φ and the counting
 110 process N_t into a standard convolution operator, the generative model can be written as

$$111 O_t = f(N_t(\Delta)), \quad \lambda_t = U + \Phi_t \star N_t(\Delta). \quad (1)$$

112 Thus, the central goal is to recover the parameter space $\Theta := (f, N_t, \lambda_t, \Phi, U)$ given samples or the full
 113 distribution of observations O_t . Concerning the theoretical soundness, we adopt the setting where the form of
 114 the mixing function, the number of latent causal processes, and their causal structure are fully unknown.

116 3 IDENTIFIABILITY THEORY

117 In this section, we establish the identifiability of the latent causal stochastic point process. We begin by
 118 introducing a family of general equivalent classes, a model that can be maximally identified from the given
 119 data. Then, the geometry of the parameter space of this equivalent class is examined to ensure the full
 120 recovery of both the mixing map and kernels, together with causal structure through the algebraic structure of
 121 the parameters. All detailed proofs are deferred to Appendix B and C, and the discussion on generalization of
 122 our identifiability can be found in Appendix D.

125 3.1 MAXIMALLY IDENTIFIABLE EQUIVALENT CLASSES

126 We begin by introducing the maximal equivalent class that can be identified from discrete-time observations.
 127 Suppose we observe a discrete-time observation sequence $O_{t_0}, O_{t_0+\Delta}, O_{t_0+2\Delta}, \dots, O_{t_0+k\Delta}$ at times $t_0, t_0 + \Delta, t_0 + 2\Delta, \dots, t_0 + k\Delta$. Given a linear Hawkes-type intensity, we are provided a discretized latent process
 128 $Z_t^{(\Delta)}$ under the subsequence Δ , with its associated intensity: $\lambda_t^{(\Delta)} = u + \phi(\Delta) \cdot \Delta dN_t^{(\Delta)}$. The discrepancy
 129 between realizations arises due to the mismatch between the continuous-time dynamics and its discrete
 130 approximation, i.e., $\lambda_t^{(\Delta \rightarrow 0)} \neq \lambda_t^{(\Delta)}$, which implies that only latent processes generated under the same
 131 discretization scale Δ as the observation resolution can be recovered from $O_t^{(\Delta)}$. Therefore, the identifiability
 132 of the underlying latent dynamics is constrained to a discrete-time equivalence class determined by the
 133 resolution of observation. To capture the distribution-level changes and dynamics, we argue that recovering
 134 the distribution behavior of the latents suffices in most scientific tasks, and it can be used to generate the
 135 latents of any other Δ scale. Accordingly, we are able to identify only an equivalence class, as introduced in
 136 the subsequent definition.

137 **Definition 3.1** (Weakly-convergent equivalent class). Let (dN_t, λ_t) denote the ground-truth latent point
 138 process and its associated continuous-time intensity function. A pair $(Z^{(\Delta)}, \lambda^{(\Delta)})$ is said to belong to the

141 **Weakly-convergent equivalent class** of (dN_t, λ_t) if it satisfies the following weak convergence condition:
 142

$$143 \quad (Z^{(\Delta)}, \lambda^{(\Delta)}) \xrightarrow[\Delta \rightarrow 0]{d} (dN_t, \lambda_t),$$

145 i.e., the estimated latent process and its discrete-time intensity converge in distribution to the ground-truth
 146 continuous-time process as the resolution parameter $\Delta \rightarrow 0$.
 147

148 Thanks to [Definition 3.1](#), it is sufficient to find such a model belonging to the equivalent class and establish
 149 its identifiability. Following [Kirchner \(2016\)](#), we revisit the close connection between order- l integer-value
 150 autoregressive processes (INAR(l)) and the multivariate stochastic point process through convergence limits
 151 when $l \rightarrow \infty$. An INAR(∞) process is defined as the infinite-order autoregressive model with integer
 152 variables Z_t . In particular, it has the form:
 153

$$154 \quad Z_t = \sum_{\tau>0}^{\infty} a_{\tau} Z_{t-\tau} + \epsilon_t, \quad (2)$$

155 where a_{τ} is a constant coefficient and ϵ is a mutually time-wise independent noise. Our intuition is that
 156 replacing the constant coefficient with a time-invariant kernel ϕ_t still ensures the weak convergence to a
 157 stochastic point process N_t . The main goal is to show that such a replacement is a member of the defined
 158 weakly-convergent class, as given in the following lemmas.
 159

160 **Lemma 1** (Bounding point process in Variational approximation). *Let $N_t \in \mathbb{R}^p$ be a multivariate point
 161 process whose conditional intensity function λ_t is governed by a convolution structure described in Eq. (1)
 162 and ϵ_t is a mean-zero and mutually independent noise. Then the intensity model admits the following weak
 163 convergence:*

$$164 \quad Z_k^{\Delta} := \lambda_k^{\Delta} + \epsilon_k^{\Delta} \xrightarrow{w} N_k^{\Delta}, \quad (3)$$

165 where the subscript k denotes an arbitrary subsequence process and λ_k^{Δ} is the corresponding intensity under
 166 the same subsequence.
 167

Lemma 2 (Convergence to latent equivalent classes). *Assume the weak convergence condition in [Lemma 1](#) is
 168 satisfied. Then, there exists a latent process Z_t^{Δ} such that the process N_t and its variational approximation
 169 converge in distribution to the same latent causal class. Formally,*

$$170 \quad \lim_{\Delta \downarrow 0} N_k^{\Delta} := Z^{\Delta} \xrightarrow{d} N_t. \quad (4)$$

171 This implies that, up to infinitesimal resolution Δ , the estimated process admits a latent representation
 172 governed by the same convolution dynamics.
 173

174 **Lemma 1** and **2** together establish the weak convergence of continuous stochastic processes under the
 175 corresponding weak topology. Roughly, for any compact time interval $[a, b]$, a subsequence process of the
 176 original process under such an interval converges to a *continuous-time* causal point process N_t .
 177

178 This convergence ensures that Z^{Δ} effectively represents N_t and maintains all causal structures. Without loss
 179 of generality, we can therefore directly work with Z^{Δ} and study its identifiability by analyzing the geometry
 180 of the associated parameter space.
 181

182 3.2 GEOMETRY CHARACTERIZATION OF MODEL IDENTIFIABILITY

183 As a stepping stone toward our main results, the geometry of the proposed latent model characterizes the
 184 uniqueness of the parameters in the generative model. An exploration by [Carreno et al. \(2024\)](#) has shown that
 185 parameter space can be fully recovered if and only if the solution set of the system defined by the available
 186 data is zero-dimensional, i.e., it consists of finitely many points consistent with the number of latent variables
 187

188 or parameters. Geometrically, given the finite-dimensional observation distribution $P(O_t)$, we consider the
 189 ideal
 190

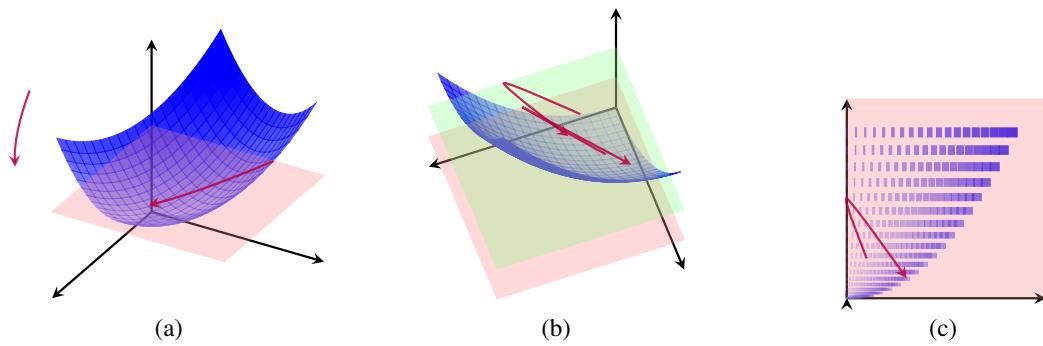
$$\mathcal{I} = \langle P(O_t) - P_\Theta \rangle, \quad (5)$$

192 and identifiability of the parameter Θ requires that \mathcal{I} has dimension zero. Intuitively, the parameter space
 193 $\Theta := (f, Z^\Delta)$ of the generative model (i.e., the mixing map f together with the full parameters of Z^Δ)
 194 corresponds to the vanishing locus of \mathcal{I} , which in this case cannot lie on any higher-dimensional hypersurface,
 195 as shown in [Figure 1](#). In practice, the full distribution is typically inaccessible; hence, we aim to establish
 196 identifiability by relying solely on partial distributional information. Following [Wang & Seigal \(2024\)](#), we
 197 choose the cumulant of the observational distribution as an intermediary to study the geometry of parameter
 198 space Θ . Cumulant of infinite order is an important algebro-geometric signature, as it precisely encodes the
 199 entire distribution, including the component-wise and time-wise dependency among variables ([Achab et al.,
 200 2018; Jovanović et al., 2015; Landsberg, 2011](#)). Higher-order cumulants then capture the causal structure of a
 200 distribution at the same orders, enabling fine-grained mathematical analysis of intervention effects beyond
 201 traditional mean and variance shifts.

202 Under generic (non-Gaussian) conditions, [Carreno et al. \(2024\)](#) show that if the observed variable satisfies a
 203 fully linear causal model of the form $X = FZ$ where $Z = AZ + \epsilon$, then the d -th cumulant of X , denoted by
 204 $\kappa_d(X)$, admits a unique decomposition as
 205

$$\kappa_d(X) = \sum_{j=1}^p \kappa_d(\epsilon) \cdot K_j \otimes \cdots \otimes K_j, \quad K = F(\mathbb{I} - A)^{-1}.$$

209 Compared to Eq. (5), the above equation induces a simplified ideal $\mathcal{I} := \langle K(\mathbb{I} - A) - F \rangle$, with A and F
 210 treated as generic indeterminates. Consequently, the parameter space encoded in K is identifiable up to
 211 scaling and permutation. The identifiability of this linear mixture of parameters is equivalent to showing that
 212 the algebraic variety defined by $\kappa_d(X)$ is *not* p -defective ([Chiantini et al., 2017](#)). This connection between
 213 the geometry of the parameters and identifiability enables us to establish the identifiability in the linear case
 214 of the INAR equivalence class, which we develop in the next section.



227 Figure 1: surfaces with generic hyperplanes (smooth gradient grid, 3D effect). (a) surface with one hyper-
 228 plane;(b)Veronese with two hyperplanes;(c) surfaces with finite points

3.3 IDENTIFYING LINEAR MIXTURES

233 We begin with the identifiability result in the linear case. Specifically, we show that the full generative
 234 model $\Theta := (f, \Phi, U)$ can be recovered from a linear mixture $O_t = FZ_t^\Delta$, where Z_t^Δ denotes the weakly

equivalent class introduced in Section 3.1. For clarity, we drop the subsequence notation whenever the context is unambiguous. By [Lemma 2](#), this latent process satisfies $Z_t = \lambda_t + \epsilon$ with $\lambda_t = U + \Phi \star Z_t$.

In general, when causal variables are identified from the full distribution $P(O_t)$, sufficient variability of the latent distribution is required ([Yao et al., 2022b](#); [Song et al., 2023](#); [Zhang et al., 2024](#)). Unlike this setting, where only linear mixtures of Z_t are observed, any variability in the latent distribution can arise solely from changes in the parameter $\Theta := (F, \Phi, U)$. This observation motivates the use of the algebraic structure of cumulants, which naturally captures distributional variability and provides a transparent interpretation of identifiability.

If the d -th order cumulant of O_t , denoted by $\kappa_d(O_t)$, also admits a unique decomposition, the reduced ideal $\mathcal{I}' := \langle K(\mathbb{I} - \Phi) - F \rangle$, where $K = F(\mathbb{I} - \Phi)^{-1}$, has degree at most one and admits a decomposition into a finite composition of prime ideals. The dimension of the solution space coincides with the dimension of the associated ideal \mathcal{I}' , thereby determining the identifiability of the full generative model. To this end, we need to control the geometry of the associated parameter space.

Assumption 2.

1. *F is generic with the possible maximum rank almost surely.*
2. *There exists a set $D := \{d \in \mathbb{Z} \mid \kappa_{d+1}(O_t) = 0\}$ such that the collection $\{\kappa_d(O_t)\}_{d \in D}$ contains at least p non-zero elements.*
3. *The ideal $\mathcal{I} := \langle F - K^{(k)}(\mathbb{I}_p - \Phi^{(k)}) \rangle$, $k = 1, 2, \dots, p$ is such that the space Θ is zero-dimensional.*

The three conditions are not independent of or parallel to each other. Instead, they are sequentially related, where each condition builds upon the preceding one, thereby establishing a stepwise progression toward full identifiability of the generative model. That is, each observed component $\kappa_d(O_t)$ has finite depth d and the non-vanishing information up to this order is sufficiently rich to ensure identifiability via tensor decomposition: The proposed rank condition (1) is classic and results in a generically unique decomposition of each order d tensor $\kappa_d(O_t)$, which uniquely recovers the component $K_j := (F(\mathbb{I} - \Phi)^{-1})_{t-s}^{(i,j)}$, for all $j \in [p]$ and all $s \in S := \{s : s < t\}$, up to permutation and rescaling. This holds for the Kruskal rank condition $\text{krank}(V)$ ([Kruskal, 1977](#); [Lovitz & Petrov, 2023](#)), which requires that each rank-1 component $(K_j)^{\otimes d}$ has no collinear columns in the ambient space³ ([Wang & Seigal, 2024](#); [Wang et al., 2025](#)). Condition (2) guarantees that there are at least p such points in the linear span of the outer space of $(K_j)^{\otimes d}$ that do not vanish, so that F and Φ form a zero-dimensional parameter space. As a direct consequence of the combined results of condition (1), (2), and (3), we achieve full identifiability of the model.

Theorem 1 (Linear identifiability of equivalent classes). *Under [Assumption 1](#) and [Assumption 2](#), the weakly-convergent equivalent class of the latent point process and the causal structure are identifiable up to component-wise scaling and permutation.*

We further remark that, once the generative model is identified, the causal variables can be sampled from the model $\Theta := (F, \Phi, U)$.

3.4 IDENTIFYING GENERIC NONLINEAR EQUIVALENT CLASSES

In this section, we relax the linearity assumption and demonstrate that the algebraic structure of the observed manifold can also ensure the identifiability under arbitrary nonlinear transformations (*cf.* the generic F in [Assumption 2](#)). Specifically, we now assume that f is generic (potentially injective), so that the mapping

³The *ambient space* is the higher-dimensional space in which a given variety or scheme is embedded, typically \mathbb{A}^n or \mathbb{P}^n in algebraic geometry. See details in [Appendix C.1](#).

282 $f : Z_t \mapsto O_t$ is well-defined and preserves the distinguishability of the latent representation. We formalize
 283 this in [Assumption 3](#).

284 **Assumption 3.**

285

 286 1. *Let f be a generic C^d map.*
 287 2. *On the mixed cumulant manifold, the system admits a linear degeneration for which [Assumption 2](#)
 289 holds for some order d and p .*

290 The C^d regularity assumption is strictly weaker than requiring f to be a diffeomorphism, required by
 291 a spectrum of prior works, such as in [\(Song et al., 2023\)](#). Even in the presence of directional collapse
 292 within the latent space, the induced algebraic structure may still faithfully transmit the essential dependency
 293 relations to the observed domain. Unsurprisingly, one observes that the genericity of the mixing function f is
 294 naturally satisfied when the elements of its Jacobian J_f are sufficiently free functions (e.g., polynomials or
 295 C^d functions). Indeed, the set of functions for which J_f fails to be full rank corresponds to a proper algebraic
 296 subvariety of the function space, so that almost all choices of f yield a full-rank Jacobian. Consequently,
 297 having functional (rather than constant) Jacobian entries increases the likelihood that f is generic in the
 298 algebraic-geometric sense.

299 **Theorem 2** (Fully nonlinear identifiability of equivalent classes). *Under [Assumption 1](#) and [Assumption 3](#), the
 300 weakly-convergent equivalent class of the latent point process and the causal structure are identifiable up to
 301 component-wise transformation and permutation.*

303 **The intuition of our theorem.** The cumulant propagates the causal structure through nonlinear transformations,
 304 which enables the recovery of latent dependencies from partial algebro-geometric information on the
 305 mixed manifold O_t . We distinguish two cases: access to the full observational distribution $P(O_t)$, or access
 306 only to realizations drawn from a restricted distribution $P^R(O_t)$. In either case, the geometry of the cumulant
 307 can be checked: allowing tolerance of loss in distribution information up to a certain order, the cumulant
 308 admits a unique linear degeneration. This degeneration canonically determines a projective embedding of the
 309 Veronese variety, identical up to a component-wise scaling and permutation. Additionally, given multiple
 310 environments (interventions or variability) in condition (2), it follows that the full generative model cannot be
 311 contained in any hypersurface of positive dimension.

312 Importantly, the conditions stated in [Assumption 2](#) are not merely technical assumptions, but collectively
 313 form a set of *necessary and sufficient conditions* for identifiability. Under the given data, there exists no
 314 alternative order $d_0 < d$ such that a strictly simpler cumulant manifold would still guarantee identifiability,
 315 unless additional data or interventions are introduced, as formalized below:

316 **Theorem 3.** *The identifiability result stated in [Theorem 1, 2](#) holds if and only if the conditions in [Assumption 2](#)
 317 are satisfied.*

319 **4 MUTATE: ESTIMATING EQUIVALENT STOCHASTIC CAUSAL PROCESS**

321 Building upon our identifiability theory, we formally introduce MUTATE (MUlti -Time Adaptive Transition
 322 Encoder), a novel Variational Auto-encoding framework for estimation of latent multivariate stochastic
 323 point processes. Importantly, the framework is modular and can be readily adapted to other types
 324 of stochastic processes with suitable modifications. We highlight two core features of MUTATE, each
 325 addressing a key challenge related to identifiability. First, the central objective of our method is to re-
 326 cover the latent realization sequence $\{Z_{t_0}^\Delta, Z_{t_1}^\Delta, \dots, Z_T^\Delta\}$ from multiple unstructured observational sources
 327 $\{O_t\}_{t=0}^T$. Unlike prior frameworks that rely primarily on time-stamp conditional independence to en-
 328 force latent structure, our approach accounts for the nature of progressively adaptive stochastic processes.

329 In such systems, the filtration \mathcal{F}_T , which captures the intrinsic history
 330 of the process, is defined as $\sigma(\bigcup_{0 < t < T} \sigma(Z_t^\Delta))$ and grows
 331 strictly over time. As shown in Figure 2, this dynamically expanding
 332 information structure poses unique challenges for both identifiability
 333 and representation learning, which MUTATE is explicitly designed
 334 to address. In addition, to leverage mutually independent noise, we
 335 employ a power spectral density (PSD) decomposition module in
 336 the joint optimization of parameters, which automatically enforces
 337 global whiteness of the noise.

338 4.1 TIME ADAPTIVE TRANSITION MODULE

340 To infer this latent structure from observed data, we first employ
 341 an encoder $q_\phi(Z_t^\Delta | O_t^\Delta)$ to learn the estimated latents $Z_t^\Delta \sim q_\phi(Z_t^\Delta | O_t^\Delta)$ as commonly applied in
 342 representation learning frameworks. Recall that the latent process is modeled as $Z_t = \Phi * Z_t + R_t$, where Φ
 343 denotes a global convolution kernel and $R_t = U + \epsilon_t$ is a residual process. Under our weak convergence
 344 condition, Z_t receives a well-structured representation $Z_t = (\mathbb{I} - \Phi)^{-1} * (U + \epsilon_t)$, which is also a $(U + \epsilon_t)$ -
 345 measurable process with tractable Power Spectrum Density (PSD)

$$346 S_{Z_t^\Delta}(w) = (I - \Phi)^{-1} \Sigma (I - \Phi)^{-H} \quad (6)$$

347 where the baseline U is treated as a learnable parameter in the model and A^H is the Hamilton conjugate
 348 transpose of A . w is a continuous frequency variable. The inverse mapping f_O^{-1} is an encoder with trainable
 349 parameters of neural networks. Importantly, the learned functional f maps the observation Z_t to a space
 350 of independent varying noise through the designated PSD decomposition that enforces Σ being a diagonal
 351 matrix and recursively infers $H^\dagger = (\mathbb{I} - \Phi)^{-1}$. Then, the evaluated prior from the PSD module is sent
 352 to calculate the KL divergence. Decomposing $S(w)$ in Eq. (6), each component of transitions satisfies
 353 $\log p(Z_t^\Delta | \mathcal{F}_{t-}) = \log p[(I - \Phi) * R_t^\Delta]$, which is the main part of the latent prior estimation. Our model is
 354 trained based on the Variational Auto-encoding framework (the detailed derivation is referred to Appendix E).
 355 Therefore, we aim to maximize the log likelihood of observation $\log p_{data}(X)$ through the evidence lower
 356 bound (ELBO):
 357

$$358 \begin{aligned} ELBO &= -\mathcal{L}_{recon} - \alpha \mathcal{L}_{KL} \\ 359 &= \mathbb{E}_{z \sim q(Z_t | O_t)} [\log p(O_t | Z_t) - \log q(Z_t | O_t)] + \mathbb{E}_{z \sim q(Z_t | O_t)} \left[\sum_{\substack{\mathcal{F}_T \\ \mathcal{F}_0^+}}^{\mathcal{F}_T} \log p(Z_t^\Delta | \mathcal{F}_{t-}) \right] \\ 360 &\quad + \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\substack{\mathcal{F}_T \\ \mathcal{F}_0^+, Z_t, N \in (N_0, T)}}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{UPSD}_{Z_t}(H(0)), \frac{1}{N} \sum_{k=0}^{N-1} S_{Z_t}(w_k)) \right] \right\} \end{aligned} \quad (7)$$

367 5 EXPERIMENTAL RESULTS

368 We simulate multivariate point processes and their converging equivalent class \mathcal{Z}_t extensively studied in
 369 our identifiability theory. We sample all point processes using the Poisson Superposition method (rejection
 370 sampling from the upper bound of conditional intensity (Cinlar & Agnew, 1968; Albin, 1982)) to mimic highly
 371 dynamic changes in conditional intensity, and capture denser information contained in stochastic processes.
 372 Then we create corresponding converging classes as a proof-of-concept validation: A total of 20,000 latent
 373 trajectories are sampled for each of the five kernel functions—exponential, power-law, rectangular, simple
 374 nonlinear, and flexible mixing—under two noise regimes: heterogeneous noise and Gaussian mixture noise.
 375

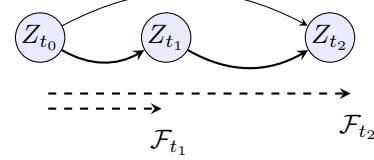


Figure 2: Visualization of information loss in increasing filtration.

376 To illustrate the latent events underlying the unstructured data, we also simulate stochastic dynamics for
 377 biological data using SERGIO (Dibaeinia & Sinha, 2020), a GRN-guided gene expression simulator used in
 378 Lorch et al.’s Lorch et al. (2024) causal modeling as well. All observations O_t is obtained from latents Z_t
 379 through MLP and LeakyReLU nonlinearity mixing. A detailed simulation procedure is included in E.1.
 380

381 To validate our identifiability results, we evaluate against several representative baselines, including
 382 TDRL (Yao et al., 2022a), BetaVAE (Higgins et al., 2017), SlowVAE (Klindt et al., 2021), and PCL (Hy-
 383 varinen & Morioka, 2017). Among them, PCL and TDRL incorporate temporal dependencies by leveraging
 384 historical information and explicitly enforcing conditional independence among latent variables to recover
 385 underlying dynamics. In contrast, BetaVAE and SlowVAE assume independent latent components and
 386 disregard any time-delayed mechanisms.
 387

388 **Evaluation metrics** We validate our method on both synthetic and real-world datasets. For selected
 389 baseline models, we adapt the factorized inference module—commonly employed in nonlinear ICA—to
 390 support a deeper composition of intrinsic filtration, enabling the modeling of complex real-world dynamics.
 391 On synthetic datasets, we assess identifiability using the Mean Correlation Coefficient (MCC), a standard
 392 metric that quantifies the recovery accuracy of latent variables. Specifically, MCC is computed by averaging
 393 the absolute correlations between the ground-truth and inferred latent components after solving a linear
 394 assignment problem to handle permutation indeterminacy.
 395

396 **Results** Performance of all baselines and our model is shown in Table 1 with extended results reported in
 397 Table A2. During training, both BetaVAE and SlowVAE tend to converge prematurely, typically reaching a
 398 local optimum within the first epoch and triggering early stopping. This behavior highlights their limitations
 399 in modeling temporal structures essential for identifying latent event-driven processes. TDRL performs
 400 reasonably when the lag module is set to a longer one (we use $L = 9$ in experiments) since it can harness
 401 shorter temporary contextual information. It is noticed that our identifiability can be readily applied to the
 402 prior framework by either adding the domain index in synthetic datasets or modulating the distribution shifts
 403 that change pairs of edges in the latent space. However, we also realize that the fully non-parametric setting is
 404 hard to interpret since our identifiability avoids this.
 405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 Table 1: MCC Scores with standard deviations for five kernels

Method	Ave. (↑ better)	Exponential	Powerlaw	Rectangular	nonlinear	nonparametric
TDRL	0.599	0.593 ± 0.028	0.609 ± 0.043	0.618 ± 0.056	0.556 ± 0.016	0.616 ± 0.043
BetaVAE	0.141	0.153 ± 0.863	0.128 ± 0.077	0.128 ± 0.078	0.146 ± 0.108	0.149 ± 0.096
SlowVAE	0.115	0.108 ± 0.075	0.104 ± 0.073	0.104 ± 0.073	0.126 ± 0.074	0.131 ± 0.076
PCL	0.375	0.395 ± 0.034	0.330 ± 0.029	0.330 ± 0.029	0.414 ± 0.028	0.404 ± 0.028
MUTATE(ours)	0.837	0.853 ± 0.218	0.938 ± 0.036	0.879 ± 0.102	0.921 ± 0.029	0.598 ± 0.013

6 CONCLUDING REMARK

423 This work extends causal representation learning framework to stochastic causal dynamics (i.e., multivariate
 424 Hawkes Processes), a topic not yet covered in current CRL literature. We show that, under sufficiently generic
 425 conditions, the generative model of a latent stochastic point process can be fully identified. Our results
 426 bridge the gap between stochastic modeling and causal representation. We also propose a novel framework
 427 to estimate the latent point processes. However, our work avoids the worst, the most complex scenario for
 428 a fully nonparametric kernel, which, in empirical practice, can be replaced with a simpler kernel. Future
 429 directions may include solving this condition and causal representation learning for stochastic differential
 430 processes that manifest in rich scientific questions.
 431

423 ETHICS STATEMENT
424425 This paper does not arouse any significant concerns of ethics, such as human subjects, harmful experiments,
426 or violation of social fairness.
427428 REFERENCES
429

430 Massil Achab, Emmanuel Bacry, Stéphane Gaiffas, Iacopo Mastromatteo, and Jean-François Muzy. Uncovering
431 Causality from Multivariate Hawkes Integrated Cumulants. 2018.

432 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional Causal Representation
433 Learning. In *International Conference on Machine Learning*, pp. 372–407. PMLR, July 2023. URL
434 <https://proceedings.mlr.press/v202/ahuja23a.html>. ISSN: 2640-3498.

435 Susan L Albin. On poisson approximations for superposition arrival processes in queues. *Management
436 Science*, 28(2):126–137, 1982.

437 M. F. Atiyah and I. G. Macdonald. *Introduction to Commutative Algebra*. Addison-Wesley, 1969. ISBN
438 978-0201407518.

439 E. Bacry, K. Dayri, and J. F. Muzy. Non-parametric kernel estimation for symmetric Hawkes processes.
440 Application to high frequency financial data. *The European Physical Journal B*, 85(5):157, May 2012.
441 ISSN 1434-6028, 1434-6036. doi: 10.1140/epjb/e2012-21005-8. URL <http://arxiv.org/abs/1112.1838>. arXiv:1112.1838 [physics, q-fin].

442 Emmanuel Bacry and Jean-François Muzy. Second order statistics characterization of Hawkes processes and
443 non-parametric estimation, January 2014a. URL <https://arxiv.org/abs/1401.0903v2>.

444 Emmanuel Bacry and Jean-François Muzy. Hawkes model for price and trades high-frequency dynamics.
445 *Quantitative Finance*, 14(7):1147–1166, July 2014b. ISSN 1469-7688, 1469-7696. doi: 10.1080/14697688.
446 2014.897000. URL <http://www.tandfonline.com/doi/abs/10.1080/14697688.2014.897000>.

447 Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes Processes in Finance. *Market
448 Microstructure and Liquidity*, 01(01):1550005, June 2015. ISSN 2382-6266, 2424-8037. doi: 10.
449 1142/S2382626615500057. URL <https://www.worldscientific.com/doi/abs/10.1142/S2382626615500057>.

450 Matthew H. Bailey, Collin Tokheim, Eduard Porta-Pardo, Sohini Sengupta, and *et al.* Bertrand. Compre-
451 hensive Characterization of Cancer Driver Genes and Mutations. *Cell*, 173(2):371–385.e18, April 2018.
452 ISSN 00928674. doi: 10.1016/j.cell.2018.02.060. URL <https://linkinghub.elsevier.com/retrieve/pii/S009286741830237X>.

453 Patrick Billingsley. *Convergence of probability measures*. Wiley series in probability and statistics Probability
454 and statistics section. Wiley, New York Weinheim, 2. ed edition, 1999. ISBN 978-0-471-19745-4 978-0-
455 470-31780-8.

456 Simon Bing, Urmi Ninad, Jonas Wahl, and Jakob Runge. Identifying Linearly-Mixed Causal Representations
457 from Multi-Node Interventions. In *Causal Learning and Reasoning*, pp. 843–867. PMLR, March 2024.
458 URL <https://proceedings.mlr.press/v236/bing24a.html>. ISSN: 2640-3498.

459 Philip Boeken and Joris M. Mooij. Dynamic Structural Causal Models, June 2024. URL <https://arxiv.org/abs/2406.01161v2>.

470 Stephan Bongers, Tineke Blom, and Joris M. Mooij. Causal Modeling of Dynamical Systems, March 2018.
 471 URL <https://arxiv.org/abs/1803.08784v4>.

472

473 Stephan Bongers, Tineke Blom, and Joris M. Mooij. Causal Modeling of Dynamical Systems, March 2022.
 474 URL <http://arxiv.org/abs/1803.08784>. arXiv:1803.08784 [cs].

475 Pierre Brémaud and Laurent Massoulié. Stability of nonlinear Hawkes processes. *The Annals of*
 476 *Probability*, 24(3), July 1996. ISSN 0091-1798. doi: 10.1214/aop/1065725193. URL <https://projecteuclid.org/journals/annals-of-probability/volume-24/issue-3/Stability-of-nonlinear-Hawkes-processes/10.1214/aop/1065725193.full>.

477

478

479 Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf, and
 480 Pradeep Ravikumar. Learning Linear Causal Representations from Interventions under General
 481 Nonlinear Mixing. *Advances in Neural Information Processing Systems*, 36:45419–45462, December
 482 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/8e5de4cb639ef718f44060dc257cb04f-Abstract-Conference.html.

483

484

485 Ruichu Cai, Zhifang Jiang, Zijian Li, Weilin Chen, Xuexin Chen, Zhifeng Hao, Yifan Shen, Guangyi Chen,
 486 and Kun Zhang. From Orthogonality to Dependency: Learning Disentangled Representation for Multi-
 487 Modal Time-Series Sensing Signals, May 2024. URL <https://arxiv.org/abs/2405.16083v1>.

488

489 Paula Leyes Carreno, Chiara Meroni, and Anna Seigal. Linear causal disentanglement via higher-order
 490 cumulants. *arXiv preprint arXiv:2407.04605*, 2024.

491

492 Luca Chiantini and Ciro Ciliberto. Weakly defective varieties. *Transactions of the American Mathematical*
 493 *Society*, 354(1):151–178, 2002.

494

495 Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven. On generic identifiability of symmetric
 496 tensors of subgeneric rank. *Transactions of the American Mathematical Society*, 369(6):4021–4042, 2017.

497

498 Erhan Cinlar and RA Agnew. On the superposition of point processes. *Journal of the Royal Statistical Society: Series B (Methodological)*, 30(3):576–581, 1968.

499

500 Daryl J. Daley and David Vere-Jones. *An introduction to the theory of point processes. 1: Elementary theory and methods*. Springer, New York NY, 2. ed., 2. corr. print edition, 2005. ISBN 978-0-387-95541-4.

501

502 Payam Dibaeinia and Saurabh Sinha. Sergio: a single-cell expression simulator guided by gene regulatory
 503 networks. *Cell systems*, 11(3):252–271, 2020.

504

505 Vanessa Didelez. Graphical Models for Marked Point Processes Based on Local Independence. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 70(1):245–264, February 2008. ISSN
 506 1369-7412, 1467-9868. doi: 10.1111/j.1467-9868.2007.00634.x. URL <https://academic.oup.com/jrssb/article/70/1/245/7109395>.

507

508 David Eisenbud and Joe Harris. *The Geometry of Schemes*. Springer, 2000.

509

510 Robin Hartshorne. *Algebraic Geometry*, volume 52 of *Graduate Texts in Mathematics*. Springer, 1977. ISBN
 978-0387902441.

511

512 Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. 1971. doi: 10.1093/biomet/58.1.83.

513

514 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
 515 Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
 516 framework. In *International conference on learning representations*, 2017.

517 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised Feature Extraction by Time-Contrastive
 518 Learning and Nonlinear ICA. *Advances in Neural Information Processing Systems*, 29,
 519 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/hash/d305281faf947ca7acade9ad5c8c818c-Abstract.html.

520

521 Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ICA of Temporally Dependent Stationary Sources. In
 522 *Artificial Intelligence and Statistics*, pp. 460–469. PMLR, April 2017. URL <https://proceedings.mlr.press/v54/hyvarinen17a.html>. ISSN: 2640-3498.

523

524

525 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ICA Using Auxiliary Variables and
 526 Generalized Contrastive Learning. In *The 22nd International Conference on Artificial Intelligence and
 527 Statistics*, pp. 859–868. PMLR, April 2019. URL <https://proceedings.mlr.press/v89/hyvarinen19a.html>. ISSN: 2640-3498.

528

529

530 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
 531 uniqueness results. *Neural Networks*, 12(3):429–439, April 1999. ISSN 08936080. doi: 10.1016/S0893-6080(98)00140-3. URL <https://linkinghub.elsevier.com/retrieve/pii/S0893608098001403>.

532

533

534 Yibo Jiang and Bryon Aragam. Learning Nonparametric Latent Causal Graphs with Unknown
 535 Interventions. *Advances in Neural Information Processing Systems*, 36:60468–60513, December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/bdeab378efe6eb289714e2a5abc6ed42-Abstract-Conference.html.

536

537

538 Jikai Jin and Vasilis Syrgkanis. Learning Causal Representations from General Environments: Identifiability
 539 and Intrinsic Ambiguity, November 2023. URL <https://arxiv.org/abs/2311.12267v2>.

540

541

542 Stojan Jovanović, John Hertz, and Stefan Rotter. Cumulants of Hawkes point processes. *Physical Review E*, 91(4):042802, April 2015. ISSN 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.91.042802. URL
 543 <https://link.aps.org/doi/10.1103/PhysRevE.91.042802>.

544

545

546 Amir Mohammad Karimi Mamaghan, Andrea Dittadi, Stefan Bauer, Karl Henrik Johansson, and Francesco
 547 Quinzan. Diffusion-Based Causal Representation Learning. 26(7):556, 2024. ISSN 1099-4300. doi:
 548 10.3390/e26070556. URL <https://www.mdpi.com/1099-4300/26/7/556>.

549

550 Matthias Kirchner. Hawkes and INAR(\$\infty\$) processes. *Stochastic Processes and their Applications*, 126
 551 (8):2494–2525, August 2016. ISSN 03044149. doi: 10.1016/j.spa.2016.02.008. URL <http://arxiv.org/abs/1509.02007>. arXiv:1509.02007 [math].

552

553 David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge, and
 554 Dylan Paiton. Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding, March
 555 2021. URL <http://arxiv.org/abs/2007.10930>. arXiv:2007.10930 [stat].

556

557 Joseph B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to
 558 arithmetic complexity and statistics. *Linear Algebra and its Applications*, 18(2):95–138, 1977.

559

560 Joseph M Landsberg. *Tensors: geometry and applications: geometry and applications*, volume 128. American
 561 Mathematical Soc., 2011.

562

563 Serge Lang. *Algebra*, volume 211 of *Graduate Texts in Mathematics*. Springer, 3rd edition, 2002. ISBN
 978-0387953854.

564 Vinicius Lima, Fernanda Jaiara Dellajustina, Renan O. Shimoura, Mauricio Girardi-Schappo, Nilton L.
565 Kamiji, Rodrigo F. O. Pena, and Antonio C. Roque. Granger causality in the frequency domain: derivation
566 and applications. *Revista Brasileira de Ensino de Física*, 42:e20200007, 2020. ISSN 1806-9126, 1806-
567 1117. doi: 10.1590/1806-9126-RBEF-2020-0007. URL <http://arxiv.org/abs/2106.03990>.
568 arXiv:2106.03990 [physics, q-bio, stat].

569 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. Causal
570 Representation Learning for Instantaneous and Temporal Effects in Interactive Systems. 2023. URL
571 <http://arxiv.org/abs/2206.06169>.

572 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. iTransformer:
573 Inverted Transformers Are Effective for Time Series Forecasting, March 2024. URL <http://arxiv.org/abs/2310.06625>. arXiv:2310.06625 [cs].

574 Lars Lorch, Andreas Krause, and Bernhard Schölkopf. Causal modeling with stationary diffusions. In Sanjoy
575 Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *Proceedings of The 27th International Conference on
576 Artificial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp. 1927–
577 1935. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/lorch24a.html>.

578 Benjamin Lovitz and Fedor Petrov. A generalization of kruskal’s theorem on tensor decomposition. In *Forum
579 of Mathematics, Sigma*, volume 11, pp. e27. Cambridge University Press, 2023.

580 Mona Nourbakhsh, Kristine Degn, Astrid Saksager, Matteo Tiberti, and Elena Papaleo. Prediction of cancer
581 driver genes and mutations: the potential of integrative computational frameworks. *Briefings in Bioinformatics*,
582 25(2):bbad519, January 2024. ISSN 1467-5463, 1477-4054. doi: 10.1093/bib/bbad519. URL
583 <https://academic.oup.com/bib/article/doi/10.1093/bib/bbad519/7584784>.

584 Judea Pearl. *Causality*. Cambridge university press, 2009.

585 Patricia Reynaud-Bouret and Sophie Schbath. Adaptive estimation for Hawkes processes; application to genome
586 analysis. *The Annals of Statistics*, 38(5), October 2010. ISSN 0090-5364. doi: 10.1214/10-AOS806. URL
587 <https://projecteuclid.org/journals/annals-of-statistics/volume-38/issue-5/Adaptive-estimation-for-Hawkes-processes-application-to-genome-analysis/10.1214/10-AOS806.full>.

588 Alexander Sokol. Intervention in Ornstein-Uhlenbeck SDEs, August 2013. URL <https://arxiv.org/abs/1308.2152v1>.

589 Alexander Sokol and Niels Richard Hansen. Causal interpretation of stochastic differential equations.
590 *Electronic Journal of Probability*, 19(none), January 2014. ISSN 1083-6489. doi: 10.1214/EJP.v19-2891.
591 URL <http://arxiv.org/abs/1304.0217>. arXiv:1304.0217 [math].

592 Xiangchen Song, Weiran Yao, Yewen Fan, Xinshuai Dong, Guangyi Chen, Juan Carlos Niebles,
593 Eric Xing, and Kun Zhang. Temporally Disentangled Representation Learning under Unknown
594 Nonstationarity. *Advances in Neural Information Processing Systems*, 36:8092–8113, December 2023. URL
595 https://proceedings.neurips.cc/paper_files/paper/2023/hash/19a567abaec3990cb40d7a013556fecd-Abstract-Conference.html.

596 Xiangchen Song, Zijian Li, Guangyi Chen, Yujia Zheng, Yewen Fan, Xinshuai Dong, and Kun
597 Zhang. Causal temporal representation learning with nonstationary sparse transition. In A. Globerson,
598 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances
599 in Neural Information Processing Systems*, volume 37, pp. 77098–77131. Curran Associates,
600 2024.

611 Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/8cef4e4bcb85f7d4a1005a9db018d6b6-Paper-Conference.pdf.

612

613 Peter Sorrenson, Carsten Rother, and Ullrich Köthe. Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN), January 2020. URL <https://arxiv.org/abs/2001.04872v1>.

614

615

616 Chandler Squires, Anna Seigal, Salil S Bhate, and Caroline Uhler. Linear causal disentanglement via interventions. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 32540–32560. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/squires23a.html>.

617

618

619

620

621

622 Ali Torkamani and Nicholas J. Schork. Identification of rare cancer driver mutations by network reconstruction. *Genome Research*, 19(9):1570–1578, September 2009. ISSN 1088-9051. doi: 10.1101/gr.092833.109. URL <http://genome.cshlp.org/lookup/doi/10.1101/gr.092833.109>.

623

624

625 Kexin Wang and Anna Seigal. Identifiability of overcomplete independent component analysis, January 2024. URL <https://arxiv.org/abs/2401.14709v1>.

626

627

628 Kexin Wang, Aida Maraj, and Anna Seigal. Contrastive independent component analysis, May 2025. URL <http://arxiv.org/abs/2407.02357>. arXiv:2407.02357 [math].

629

630 Christian H. Weiβ. Thinning operations for modeling time series of counts—a survey. *AStA Advances in Statistical Analysis*, 92(3):319–341, August 2008. ISSN 1863-8171, 1863-818X. doi: 10.1007/s10182-008-0072-3. URL <http://link.springer.com/10.1007/s10182-008-0072-3>.

631

632

633 Norbert Wiener. *Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications*. MIT Press, Cambridge, MA, 1949.

634

635

636 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. *Advances in Neural Information Processing Systems*, 34:22419–22430, December 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bcd7c19a8ac0c2b-Abstract.html>.

637

638

639

640 Dingling Yao, Caroline Muller, and Francesco Locatello. Marrying Causal Representation Learning with Dynamical Systems for Science. 2024. URL <http://arxiv.org/abs/2405.13888>.

641

642 Weiran Yao, Guangyi Chen, and Kun Zhang. Temporally Disentangled Representation Learning. *Advances in Neural Information Processing Systems*, 35:26492–26503, December 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/a938292feb86b94ebe3e6200ff7786ef-Abstract-Conference.html.

643

644

645

646 Weiran Yao, Yuewen Sun, Alex Ho, Changyin Sun, and Kun Zhang. Learning Temporally Causal Latent Processes from General Temporal Data, February 2022b. URL <http://arxiv.org/abs/2110.05428>. arXiv:2110.05428 [cs, stat].

647

648

649

650 Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam, and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 50254–50292. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/9d3a4cdf6f70559e8c6fe02170fba568-Paper-Conference.pdf.

651

652

653

654

655 Kun Zhang, Shaoan Xie, Ignavier Ng, and Yujia Zheng. Causal Representation Learning from Multiple Distributions: A General Setting, February 2024. URL <https://arxiv.org/abs/2402.05052v1>.

656

657

658 *Supplement to*659
660 **“Causal Representation Meets Stochastic Modeling”**

661

662

663

664 **A Useful Lemmata** 16

665 A.1 Preliminary lemmas	16
666 A.2 Discussion of Point Process	16
668 A.3 Cumulants and Tensors	18

669
670 **B Proof of Supportive Results** 19

672 B.1 Proof of Lemma 1	20
673 B.2 Proof of Lemma 2	21

675 **C Proof of Identifiability Theory** 22

677 C.1 Notations	22
678 C.2 Proof of Theorem 1	22
679 C.3 Proof of Theorem 2	32
681 C.4 Proof of Theorem 3	34
682 C.5 Discussion for other cases	35

684 **D Extended Identifiability Results** 37

686 D.1 Existence of hierarchy minimality	37
688 D.2 Proof of Proposition 2	37
689 D.3 Proof of Proposition 3	40

691 **E Detailed MUTATE Configuration** 41

693 E.1 Simulation Regime	41
694 E.2 Prior decomposition of time-adaptive module	42
695 E.3 Explicit control for convolution prior	44
697 E.4 Extended results	45

699 **F Related Work** 45701 **G Extended Discussion** 46

705 **A USEFUL LEMMATA**
706707 **A.1 PRELIMINARY LEMMAS**
708

709 The identifiability stated in [Theorem 2](#) builds upon [Lemma 1](#) and [Lemma 2](#) that discuss a wide range of
710 convergence conditions under a space metric and a topological space. For seamless understanding, we
711 introduce those basic but crucial concepts with illustrations.

712 **Lemma A.1** (Weak Convergence [Billingsley \(1999\)](#)). *Let (S, \mathcal{S}) be a Polish space equipped with its Borel
713 σ -algebra, and let $\{Z_n\}_{n \in \mathbb{N}}$ and Z be S -valued random elements defined on a common probability space.
714 Then the sequence $\{Z_n\}$ converges in distribution (i.e., weakly) to Z , denoted $Z_n \Rightarrow Z$, if and only if*

$$715 \lim_{n \rightarrow \infty} \mathbb{E}[f(Z_n)] = \mathbb{E}[f(Z)]$$

716 for all bounded continuous functions $f : S \rightarrow \mathbb{R}$.

717 The proof and demonstration of this lemma is classic in basic probability that we omit here. The weak
718 convergence, in most cases, corresponds to the convergence of finite dimension distribution of a process or a
719 variable.

720 **Lemma A.2** (Tightness of the Measure $\mathbb{P}_{Z^{(\Delta)}}$). *Let $\{Z_n^{(\Delta)}\}_{n \in \mathbb{N}}$ be a sequence of S -valued random elements
721 (e.g., stochastic processes or path evaluations) indexed by Δ and defined on a Polish space S with Borel
722 σ -algebra. Then the sequence of corresponding probability measures $\{\mathbb{P}_{Z_n^{(\Delta)}}\}$ is tight. In particular, any
723 subsequence admits a further weakly convergent subsequence.*

724 Tightness of a sequence of probability measures ensures the existence of well-behaved subsequences: every
725 subsequence admits a further weakly convergent subsequence. This property is particularly useful in Polish
726 spaces, where tightness is equivalent to relative compactness (precompactness) under the weak topology.
727 However, it is important to note that precompactness does not imply full compactness; in general, a tight
728 sequence need not converge without an additional uniqueness or limit identification argument. Thus, tightness
729 provides necessary control over subsequential behavior, but does not guarantee full convergence of the entire
730 sequence.

731 **Lemma A.3** (Higher-Order Moment Bound Implies Lower-Order Bounds). *Let $\{Z_n\}_{n \in \mathbb{N}}$ be a sequence of
732 real-valued random variables defined on a common probability space. Fix an integer $d > 0$. Suppose there
733 exists a constant $C > 0$ such that*

$$734 \sup_{n \in \mathbb{N}} \mathbb{E}[|Z_n|^d] \leq C.$$

735 Then for any $0 < p < d$, there exists a constant $C_p > 0$ such that

$$736 \sup_{n \in \mathbb{N}} \mathbb{E}[|Z_n|^p] \leq C_p.$$

737 **A.2 DISCUSSION OF POINT PROCESS**
738

739 To motivate, we recall the dynamics of a stochastic point process, a family of non-homogeneous point
740 processes with unfixed intensity, by the following example:

741 **Motivating example.** We start with dynamics that can be seen in numerous scientific fields. Consider
742 a system with two latent provably existing disease-associated processes (i.e., biological mutations) $M =$
743 (M_t^1, M_t^2) for $0 \leq t < \infty$. By nature of point processes, we denote by ϕ a kernel function that conveys
744 impacts to different processes and λ_t the conditional intensity of the process at time t . Therefore, the

752 conditional intensity vector for each type of mutation is expressed as
 753

$$754 \quad [\lambda_1(t), \lambda_2(t)] = \left[u_1 + \int_0^t \sum_{j=1}^2 \phi_{1 \leftarrow j}(t - t') dM_{t'}^j, u_2 + \int_0^t \sum_{j=1}^2 \phi_{2 \leftarrow j}(t - t') dM_{t'}^j \right]$$

$$755$$

$$756$$

757 The interpretation is natural: for one type of mutation M_t^1 (potentially on different genes), all past existing
 758 mutants before t will be contributing to the higher probability (described as intensity λ_t^1) of future mutations
 759 through the multiplying effect with a *time-invariant* kernel. Since kernel function relays possible impacts to
 760 all participating processes, causal influences are fully captured in kernel matrices along with their evolutions.
 761 ϕ denotes one element of Φ_t and $M_t^i(\Delta)$ is the measure of a counting process M_t^j , also the integral measure
 762 in Itô calculus, distinct from deterministic calculus. Note that one *cannot* perform the standard calculus
 763 operation on this form since the integral element $M_t^j(\Delta)$ is not differentiable as it is in the Riemann–Stieltjes
 764 integral at any point, since it has stochastic jumps at each time step. The counting process M_t^i and the
 765 conditional intensity λ_t^i satisfy: $M_{t+\Delta t}^i - M_t^i = M_{\Delta t}^i = M_t^i(\Delta)$ and $\lambda_t^i = \frac{\mathbb{E}[M_t^i(\Delta)|\mathcal{F}_t]}{\Delta t}$. Dividing time into
 766 sufficiently small intervals $[t_k, t_{k+1})$ gets us the form of discrete intensity:
 767

$$768 \quad \lambda_k^i = u^i + \sum_{j=1}^p \sum_{s < k} \phi_{i \leftarrow j}(k - s) \Delta M_s^i \quad (\text{A.1})$$

$$769$$

$$770$$

771 We highlight the difference between the kernel matrix $\begin{bmatrix} \phi_{1 \leftarrow 1}(t') & \phi_{1 \leftarrow 2}(t') \\ \phi_{2 \leftarrow 1}(t') & \phi_{2 \leftarrow 2}(t') \end{bmatrix}$ and the regular coefficient
 772 matrix A_k for step k : the kernel matrix encodes not only the model information but the evolution of the
 773 system. For example, given $t_1, t_2, (i, j)$ entry of the kernel matrix varies due to the generative nature of ϕ .
 774 (i, j) entry of A_k , however, just captures the effect of the variable i on j regardless of the evolution direction
 775 in the system.
 776

777 **Assumption A.1** (Stability and stationary Increment, Proposition 1 in (Bacry et al., 2015)). *The process N_t
 778 has asymptotically stationary increments, and intensity λ_t is asymptotically stationary if the kernel satisfies
 779 the assumption:*

$$780 \quad \rho_{\Phi(t)} = \|\Phi(t)\| = \int_0^t |\Phi(t)| dt \text{ has spectral radius smaller than 1} \quad (\text{A.2})$$

$$781$$

$$782$$

783 **Assumption A.1** gives a necessary condition so that the point process has stable, stationary increments in its
 784 intensity. In particular, it means the entire process tends to be stable with an unknown but fixed expectation
 785 of the conditional intensity $\mathbb{E}[\lambda_t^i] = \Lambda^i$. Restricted by the stationary increment assumption, the existence of
 786 the corresponding process is ensured by [Lemma 3](#). To illustrate those conditions, we show a simpler version
 787 kernel in [Example 1](#).
 788

789 *Example 1.* Consider a point process whose kernel functions relay causal influence with an exponential decay
 790 to other processes. The generating process thus be accordingly

$$791 \quad \lambda_t^i = u^i + \sum_{j=1}^p \int_0^t \alpha^{ij} e^{-\beta(t-t')} dN_{t'}^j$$

$$792$$

$$793$$

794 shows the exponential kernel triggers influences that are sustaining but decaying as time proceeds. Technically,
 795 the induced causal influences, although decaying from inside the system dynamics, will not disappear unless
 796 the causal strength $\alpha = 0$ for all j .

797 **Lemma 3** (Proposition 6 in [Kirchner \(2016\)](#)). *If all conditions and results in [Assumption A.1](#) hold almost
 798 everywhere, there exists only one determined process whose dynamics match observations with regard to Λ^i .*

799 **Convolved Kernels and Intensity.** We evaluate stochastic integrals in continuous time, where kernel-
800 induced causal influences decay smoothly over time. Suppose $t < t'$ denotes any time before t . Then, the
801 kernel vector evaluated at t' for p stochastic processes is given by:
802

$$803 \quad \phi_i(t - t') = (\phi_{i,1}(t - t'), \phi_{i,2}(t - t'), \phi_{i,3}(t - t'), \dots, \phi_{i,p}(t - t'))$$

804 This leads to an integral in the form of

$$805 \quad I_i(t) = \int_0^t \sum_{j=1}^2 \phi_{ij} dN_t^j = \int_0^t \sum_{j=1}^2 \phi_{ij}(t - t') d \begin{bmatrix} N_1(t') \\ N_2(t') \\ \vdots \\ N_p(t') \end{bmatrix} = \int_0^t \phi_i(t - t') dN_{t'} \quad (A.3)$$

810 Collecting p integrals

$$812 \quad \begin{bmatrix} I_1(t) \\ I_2(t) \\ \vdots \\ I_p(t) \end{bmatrix} = \int_0^t \begin{bmatrix} \phi_{11}(t - t') & \cdots & N_1(t') \\ \phi_{21}(t - t') & \cdots & N_2(t') \\ \vdots & \ddots & \vdots \\ \phi_{p1}(t - t') & \phi_{pp}(t - t') & N_p(t') \end{bmatrix} d \begin{bmatrix} N_1(t') \\ N_2(t') \\ \vdots \\ N_p(t') \end{bmatrix} = \int_0^t \Phi(t - t') dN_{t'} = \int_0^t \Phi(t') dN_{t-t'} \quad (A.4)$$

817 which concludes it as the convolution of the kernel matrix Φ and the stochastic jump vector dN up to time t

$$818 \quad I(t) = \Phi_t \star dN_t \quad (A.4)$$

820 A.2.1 REMARKS ON THE FILTRATION

822 In probability theory, the filtration \mathcal{F}_t is defined as the smallest σ -algebra that renders the intensity process λ_t
823 to be \mathcal{F}_t -adapted and measurable. This filtration is constructed by the minimal closure under set operations
824 (e.g., union, intersection) over past events, ensuring that λ_t evolves consistently with the observable history
825 (Hawkes, 1971; Daley & Vere-Jones, 2005). Therefore, for any filtration as its internal history, we have
826 $\mathcal{F}_s \subseteq \mathcal{F}_t$, for $s \leq t$. Note that the filtration \mathcal{F}_t may theoretically differ from the intrinsic history \mathcal{H}_t , which
827 introduces additional challenges in the evaluation and modeling of point processes. For a comprehensive
828 discussion on scenarios where \mathcal{F}_t and \mathcal{H}_t are defined differently, we refer the interested reader to (Daley
829 & Vere-Jones, 2005). We occasionally overload the notation dN_t^i , which represents an integral element
830 in stochastic calculus, to distinguish it from its deterministic counterpart. Despite potential similarities in
831 notation, they are fundamentally different: while standard calculus considers infinitesimal increments over
832 fixed mesh widths (e.g., $dg(x)$ as $\Delta t \rightarrow 0$), the increment dN_t^i is a random variable governed by the stochastic
833 process. Specifically, its realization at each infinitesimal interval is drawn from a Bernoulli process with
834 intensity λ_t^i , such that $\mathbb{P}(dN_t^i > 0 | \mathcal{F}_t) = \lambda_t^i dt$. In contrast to deterministic differentials, dN_t^i encapsulates
835 the uncertainty of event occurrences within each interval. The kernel matrix Φ_t consists of time-decaying
836 kernel functions that transmit the influence of past events across processes. It captures both time-delayed and
causal dependencies, and plays a central role in modeling self-exciting or mutually-exciting dynamics.

837 A.3 CUMULANTS AND TENSORS

839 **Cumulant tensor notation.** The d -th order cumulant tensor of a random vector $X \in \mathbb{R}^p$ is denoted
840 $\kappa_d(X) \in \mathbb{R}^{p \times \dots \times p}$, and is symmetric in all modes. In ICA and CRL settings, cumulants of independent
841 components often admit a CP form:

$$842 \quad \kappa_d(X) = \sum_{r=1}^R \lambda_r \cdot v_r^{\otimes d},$$

845 where $v_r \in \mathbb{R}^p$ and $\lambda_r \in \mathbb{R}$. This structure enables identifiability of latent sources from cumulant information.

846 **Tensor notation and operations.** We denote an order- d tensor as $\mathcal{T} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_d}$. The outer product
 847 $u^{(1)} \otimes \dots \otimes u^{(d)} \in \mathbb{R}^{I_1 \times \dots \times I_d}$ produces a rank-1 tensor with entries:
 848

$$849 \quad \mathcal{T}_{i_1, \dots, i_d} = u_{i_1}^{(1)} \cdots u_{i_d}^{(d)}. \\ 850$$

851 Given a tensor $\mathcal{T} \in \mathbb{R}^{I_1 \times \dots \times I_N}$ and a matrix $U \in \mathbb{R}^{J \times I_n}$, the *mode- n* product $\mathcal{T} \times_n U \in$
 852 $\mathbb{R}^{I_1 \times \dots \times I_{n-1} \times J \times I_{n+1} \times \dots \times I_N}$ is defined as:
 853

$$854 \quad (\mathcal{T} \times_n U)_{i_1, \dots, i_{n-1}, j, i_{n+1}, \dots, i_N} = \sum_{i_n=1}^{I_n} \mathcal{T}_{i_1, \dots, i_N} \cdot U_{j, i_n}. \\ 855 \\ 856$$

857 B PROOF OF SUPPORTIVE RESULTS

860 A point process is associated with a counting process N_t , which arises from its random measure over a
 861 measurable space S . Taking the limit as the mesh width tends to zero yields the conditional intensity process:
 862

$$863 \quad \lambda_t = u + \Phi_t \star dN_t. \quad (\text{B.1})$$

864 Even a univariate point process does not satisfy the autoregressive property, as the intensity λ_t is itself
 865 stochastically driven by internal dynamics. This makes the process self-exciting and adapted to the filtration
 866 \mathcal{F}_t . Such a non-autoregressive structure poses challenges in formulating a causal model for a collection of
 867 stochastic intensity variables $\{\lambda_t^i\}_{t \in T, i \in [p]}$. To model the relationship between the stochastic jumps dN_t and
 868 their conditional intensities λ_t , we aim to find a representation of the form $dN_t = f(\lambda_t)$ that is compatible
 869 with a latent causal model, which is what our weak convergence class aims at.
 870

871 **Remark B.1.** *The relationship between dN_t and λ_t can be written more compactly. By definition, the
 872 conditional intensity satisfies:*

$$873 \quad \lambda_t = \frac{\mathbb{E}[N_{t+dt} - N_t \mid \mathcal{F}_t]}{dt} = \frac{\mathbb{E}[dN_t \mid \mathcal{F}_t]}{dt}.$$

875 This naturally leads to a decomposition:
 876

$$877 \quad dN_t = \lambda_t dt + dM_t,$$

879 where dM_t is a local martingale capturing the stochastic deviation from the conditional expectation. This
 880 decomposition is analogous to the standard regression form $Y = \mathbb{E}[Y \mid X] + \epsilon$, with the filtration \mathcal{F}_t taking
 881 the role of covariates and dM_t representing a stochastic error term.
 882

Under the assumption of a causally sufficient system, the residual noise vector $R_t = (r_t^1, r_t^2, \dots, r_t^p)$ is
 component-wise independent. This specific representation of the point process facilitates further analysis
 using operator-theoretic tools. The conditional intensity λ_t can be interpreted as a short-term estimate of the
 expected number of events in process i at time t . This idea is formalized in [Fact 1](#), whose proof is provided in
 Appendix B.

Fact 1. Let N_t be a counting process with conditional intensity defined in Eq. (1). Then the residual between
 the discrete-time process N_t^Δ and the approximation $\lambda_t dt + dM_t$ is uniformly bounded with high probability.
 Specifically, with probability at least $1 - \epsilon$, the following holds:
 888

$$891 \quad |N_t^\Delta - \lambda_t dt - dM_t| = o\left(\log\left(\frac{f(\Lambda)}{T^2}\right)\right).$$

893 B.1 PROOF OF LEMMA 1
894895 This lemma significantly constitutes the reasoning chains that lead to our identifiability results. We restate the
896 original statement to provide more details and background on the point process and theory of weak topology
897 and convergence.898 **Lemma B.1** (Bounding Point Process in intensity, *constructive*). *For a measurable mapping $N^\Delta : (\Omega, \mathcal{F}) \rightarrow (M_p, \mathcal{M})$ such that $\omega \mapsto N(\omega)$ is a point process at scale Δ . Let Δ be the control operator for any subsequence of its point process. Consider $A \in \mathcal{B}$ generated by the topology $\mathcal{M}_p := \mathcal{B}(M_p)$. λ and ϵ is defined on this metric space. If λ satisfies the stationary increment condition, then we can establish the weak convergence of the constructed equivalent class:*

903
$$\sum_{k:k\Delta \in A} \lambda_k^{(\Delta)} + \epsilon_k^{(\Delta)} \xrightarrow{w} N(A) \text{ for } \lambda_k^\Delta = \lim_{\Delta \rightarrow 0} \lim_{\delta \rightarrow 0} \frac{\mathbb{E}[dN^\Delta | \mathcal{F}]}{\delta}$$

904
905

906 *Proof.* We organize our proof into three steps. First, a trivial case can be readily justified when $\Delta = 1$,
907 consistent with the discrete time autoregressive model. Second, to keep the conditional intensity well-behaved,
908 the numerator and denominator should have simultaneous and proportional changes. By constructing a
909 sub-sequence $N_t^{(\Delta)}$, where $t \in \mathcal{B}(M_p)$ is a σ -algebra generated by a weak topology $\mathcal{M} : \mathcal{B}(M_p)$, we show
910 that the trivial convergence in step 1 can be extended to the case of $\Delta \in (0, 1)$. Last, a weak convergence to a
911 continuous autoregressive causal process is established through the property of a uniformly tight measure.
912913 We start the proof with a trivial case. If $\delta = \Delta_1 = 1$, the conditions always trivially hold. In this case, we
914 only need to show $N_t^{(\Delta_1)} = \lambda_t^{(\Delta_1)} + R_t$ by simply using the tower rule. Therefore, our proof gives more
915 attention to the non-trivial case for $\delta \neq 1$.916 *Case 2: $\delta \in (0, \Delta_1)$* 917 The reasoning of this case becomes more complicated if the time step operator used for generating sub-
918 sequences proportionally shrinks to a sufficiently small unit $(0, \Delta_1)$. We rewrite the approximating sequence
919 N to leverage the metricizability of the space. Since we work in a Polish space, the Borel δ -algebra is
920 countably generated and the space is separable and metrizable. Given a measurable set $A \in \mathcal{B}$, and a metric ρ ,
921 define the open δ -neighborhood as:
922

923
$$\mathcal{A} = A^\delta := \{x \in \mathbb{R}^d : \rho(x, A) < \delta\}$$

924 By outer regularity of Borel probability measures on Polish spaces, for every $\epsilon > 0$, there exists a countable
925 collection of open sets $\{A_i\}_{i \in \mathbb{N}}$ such that $\bigcup_i A_i \supset \mathcal{A}$ and $\sum_i \mu(A_i \setminus A) < \epsilon$. This allows us to approxi-
926 mate any compact subset from outside using open sets with arbitrarily small excess mass and ensures the
927 approximating sequence is defined on a non-decreasing base. We paraphrase the convergence as

928
$$\sum_{k:k\Delta \in A} \lim_{i \rightarrow \infty} \frac{\mathbb{E}[N^\Delta(A_i) | \mathcal{F}]}{|A_i|} + \epsilon_k^{(\Delta)} \xrightarrow{w} N(A) \text{ for } \Delta \rightarrow 0 \quad (\text{B.2})$$

929
930

931 The equation above is adapted from the continuous-time intensity for point processes. However, it requires
932 us to work with two limit conditions for A_i with the $1/k$ closed ball shrinking to zero measure and for the
933 subsequence operator Δ approaching 0. A common method is to ensure dominated and uniform convergence
934 of the limit. To harness information regarding the intensity in our convergence to a more generalized process,
935 we first work with only the operator Δ to induce the same time scale of intensity function. Therefore, we
936 have the equivalent condition

937
$$\sum_{k:k\Delta \in A} \frac{\mathbb{E}[\sum_{k=1} Z_k^\Delta - \sum_{k=1} Z_{k-1}^\Delta | \mathcal{F}]}{|A_i|} + \epsilon_k^{(\Delta)} = \sum_{k:k\Delta \in A} \frac{\mathbb{E}[Z^\Delta(\Delta) | \mathcal{F}]}{\Delta} + \epsilon_k^{(\Delta)} \xrightarrow{w} N(A) \text{ for } \Delta \rightarrow 0 \quad (\text{B.3})$$

938
939

We remove the limit condition as it is clear that $|A_i|$ is of measure zero when $\Delta = 0$, which ensures the alignment between our topological property and plausibility to analyze only subsequences in the sequel. According to Lemma 2 of (Kirchner, 2016), for any compact interval $[a, b]^{(\delta)}$ with the number of bins $[b - a]/\delta$, $\mathbb{E}[N^{(\delta)}([a, b])] < (b - a + 2)(I - G^{(\delta)}(a, b))^{-1}\Lambda$ where $G(a, b) = \int_a^b \Phi(s)ds$ is a solution of the stochastic differential equation systems

$$\mathbb{E}[\lambda([a, b])] = \mathbb{E}[u + G(a, b)\Lambda], \text{ for } \mathbb{E}[\lambda(a, b)] = \Lambda$$

Note that, by reapplying the tower rule, Eq. (B.2) implies:

$$\lim_{\delta \rightarrow 0} \mathbb{E}[N_A^{(\delta \in (0, 1))}] \rightarrow \lim_{\delta \rightarrow 0} \mathbb{E}\left[\frac{\mathbb{E}[N_A^{(\delta)} | \mathcal{F}_t]}{\delta}\right]$$

Next, we show the necessity of tightness of the corresponding probability measure \mathbb{P}^Δ for the left-hand of Eq. (B.3) to achieve the desired convergence. Without loss of generality, we consider a nonparametric intensity function $\lambda_t = \psi(u + \int \phi(t-s)Z^\Delta(s)ds)$. Consequently, $\mathbb{E}[\lambda_t] = \Lambda$ and $\mathbb{E}[\lambda_t] = \mathbb{E}[\psi(u + \int \phi(t-s)Z^\Delta(s)ds)]$. Assume that ψ is α -Lipschitz and $\alpha\|\phi\|_1 < 1$ (Brémaud & Massoulié, 1996), so the mapping $F(\Lambda) = \psi(u + \|\phi\|_1\Lambda)$ is a contraction on \mathbb{R}_+ . By Banach's fixed-point theorem, there exists a unique solution Λ^* to the equation:

$$\Lambda^* = \psi(u + \|\phi\|_1\Lambda^*)$$

Formally, this can be rearranged as:

$$\psi^{-1}(\Lambda^*) - \|\phi\|_1\Lambda^* = u \implies \Lambda^* = (\text{id} - \|\phi\|_1 \cdot \psi^{-1})^{-1}(-u)$$

provided that $\text{id} - \|\phi\|_1 \cdot \psi^{-1}$ is invertible on the image of ψ .

To control the tail probability, we apply Markov's inequality:

$$\mathbb{P}\left(\sum_{k:k\Delta \in A} \frac{\mathbb{E}[Z^\Delta(\Delta) | \mathcal{F}]}{\Delta} + \epsilon_k^{(\Delta)} > M_\varepsilon\right) \leq \frac{\mathbb{E}[\sum_k \Lambda^\Delta]}{M_\varepsilon} \leq \frac{(b - a + 2\delta) \cdot \Lambda^*}{M_\varepsilon}$$

Here, we define:

$$M_\varepsilon := \frac{(b - a + 2\delta) \cdot \Lambda^*}{\varepsilon} \quad \text{where } \Lambda^* = \psi(u + \|\phi\|_1\Lambda^*)$$

This choice ensures the upper bound remains within the prescribed ε -level for all $\Delta \in (0, \Delta_1)$. Since the only thing we need is the precompactness, we will not establish any tighter bound. Tightness of measure, as presented in Lemma A.2, indicates we can always find a subsequence $\lambda_{k_n}^\Delta + \epsilon_{k_n}^\Delta$ in $\lambda_k^\Delta + \epsilon_k^\Delta$ converges weakly to a sequence $\lambda^* + \epsilon^*$. This weak convergence of subsequences, however, cannot control the limit uniqueness for each sequence. Therefore, we also should further control the limiting behavior of each sequence by uniform convergence of the characteristic functional defined by the approximating process and the target process, which corresponds to the central idea of Lemma 2. \square

B.2 PROOF OF LEMMA 2

Lemma B.2 (Converging to the equivalent class, constructive for finite dimension distribution). *Under Lemma 1 and its constructive version, each subsequence $N_k^\Delta(A_i)$ defined on the measure \mathbb{P}^Δ converges weakly to a limit process N_t , and this limit exists and is unique.*

Proof. This proof is tedious but straightforward, adapted from the uniform convergence of the finite-dimensional moment generating function (MGF) for any compactly supported continuous function f . The procedure is organized as follows: the sub-sequence convergence in Lemma 1 chooses an arbitrary sequence with the characteristic function $\Psi(N_k^\Delta)$ that also converges to $\Psi(N^{\Delta \rightarrow 0})$. Provided the process has a bounded second variation, ensured by Lemma A.3, the subsequence has the same limit as the original process N . Equivalence between characteristic functions indicates uniform convergence in their behavior. \square

987 C PROOF OF IDENTIFIABILITY THEORY

988 C.1 NOTATIONS

991 **Projective space of causal representation** For the rest of this proof, we study the algebraic structure of
 992 the proposed latent causal models. We work in the complex projective space \mathbb{P}^n , also written as \mathbb{CP}^n , which
 993 formalizes the usual identifiability convention that matrices are considered equivalent up to a nonzero scalar
 994 multiple. Concretely, for a vector $v \in \mathbb{C}^{n+1} \setminus \{0\}$, its equivalence class in \mathbb{P}^n is $[v] = \{\lambda v \mid \lambda \in \mathbb{C} \setminus \{0\}\}$. For
 995 example, given an algebraic object $V := V(f(x, y)) \subseteq \mathbb{P}^1$, where V is the vanishing locus of a *homogeneous*
 996 polynomial $f(x, y)$, each point $[x : y] \in \mathbb{P}^1$ corresponds to a line through the origin in \mathbb{C}^2 . Under the usual
 997 identification $\mathbb{P}^1(\mathbb{C}) \simeq \hat{\mathbb{C}}$ (the Riemann sphere), each line intersects the unit sphere $S^2 \subset \mathbb{R}^3$ in two antipodal
 998 points. Therefore, topologically, we have $\mathbb{P}^1 \cong S^2$. Unless noted otherwise, all rings considered in this paper
 999 are assumed to be commutative, Noetherian (finitely generated), and to possess a multiplicative identity. In
 1000 particular, we focus on rings such as $K(x, y, z)$ and their subrings, e.g., $f(x, y) \subseteq K(x, y, z)$, which are
 1001 always understood to satisfy these properties. Additional assumptions, such as being an integral domain or a
 1002 field, will be explicitly stated when required.

1003 **Genericity and Full Rank.** Throughout this work, we regard matrices

$$1005 F \in \mathbb{C}^{n \times p} \quad \text{as points} \quad P = (p_0, p_1, \dots, p_{np-1}) \in \mathbb{P}^{np-1} \text{ or } \mathbb{CP}^{np-1},$$

1006 where the entries of F are identified with the homogeneous coordinates of P . A point P is said to be *generic* if
 1007 there exists no non-zero polynomial $f \in K[x_0, \dots, x_{mn-1}]$ such that $f(p_0, \dots, p_{mn-1}) = 0$. Equivalently,
 1008 the coordinates of a generic point are algebraically independent over the base field K . Genericity implies that
 1009 the corresponding matrix F is of full rank almost surely, since the vanishing of any minor corresponds to the
 1010 zero locus of a non-zero polynomial, which a generic point cannot lie on. However, the converse is generally
 1011 false: a matrix can be of full rank without its entries being algebraically independent. Therefore, the set of
 1012 generic points encompasses a broader range of matrices than merely the injective or invertible ones.

1013 **Low-dimension embedding** To embed algebraic objects arising from our models, we introduce a higher-
 1014 dimensional projective space \mathbb{P}^N with $N \geq n$, called the ambient space, into which \mathbb{P}^n is naturally in-
 1015 cluded (Hartshorne, 1977, Ch. I). We say that a projective variety $V \subset \mathbb{P}^n \subset \mathbb{P}^N$ has codimension $N - n$ in
 1016 \mathbb{P}^N , meaning that $\dim \mathbb{P}^N - \dim V = N - n$, where $\dim V$ denotes the projective dimension of V . Under
 1017 these conventions, all algebraic objects associated with the latent causal models are understood projectively,
 1018 so that equivalence under scaling is built into the framework.

1019 C.2 PROOF OF THEOREM 1

1020 We decompose the proof of **Theorem 1** by walking through the algebro-geometric viewpoints that are
 1021 increasingly related to the full identification of the entire generative model. First, we obtain algebraic
 1022 cumulants for infinite-order INAR models via a multi-linear transformation, which guarantees the recovery of
 1023 $K = F(\mathbb{I}_p - \Phi)^{-1}$, where the factor $[K^{(1)}, K^{(2)}, \dots, K^{(p)}]$ lies on a Veronese variety, provided **Lemma C.1**
 1024 holds. It follows that a topologically ordered representation \mathcal{G} is provided by embedding an arbitrary $\Phi(\tau)$
 1025 to a larger ambient space $\mathbb{R}^{2p \times 2p}$. Finally, we show that, under our assumption, the dimension of related
 1026 varieties living on the related ambient space is zero-dimensional.

1027 C.2.1 DECOMPOSITION OF ALGEBRAIC QUANTITIES

1028 To potentially identify any latent components of dynamics, we must introduce tensor algebra beyond our
 1029 current setting, as presented in the following important results.

1034 **Corollary C.1** (CP decomposition). *Let $\mathcal{T} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_N}$ be an order- N tensor. We say that \mathcal{T} admits an
1035 exact rank- R Canonical Polyadic (CP) decomposition if there exist component vectors $a_r^{(n)} \in \mathbb{R}^{I_n}$ for each
1036 $r = 1, \dots, R$, $n = 1, \dots, N$, such that:*

$$1038 \quad 1039 \quad 1040 \quad \mathcal{T} = \sum_{r=1}^R a_r^{(1)} \otimes a_r^{(2)} \otimes \dots \otimes a_r^{(N)} = \llbracket A^{(1)}, A^{(2)}, \dots, A^{(N)} \rrbracket,$$

1041 where $A^{(n)} = [a_1^{(n)} \ a_2^{(n)} \ \dots \ a_R^{(n)}] \in \mathbb{R}^{I_n \times R}$ are the factor matrices.

1043 **Corollary C.2.** *Let $X^{(1)}, X^{(2)}, \dots, X^{(n)} \in \mathbb{R}^p$ be independent random vectors with nonzero d -th order
1044 cumulants, such that each admits the form*

$$1045 \quad 1046 \quad \kappa_d(X^{(i)}) = \lambda_i \cdot v_i^{\otimes d}, \quad \text{for } i = 1, \dots, n,$$

1047 with $v_i \in \mathbb{R}^p$ and $\lambda_i \in \mathbb{R} \setminus \{0\}$. Let $\mathcal{T} := \kappa_d(X^{(1)} + \dots + X^{(n)}) \in \mathbb{R}^{p \times \dots \times p}$ be the d -th order cumulant
1048 tensor of their sum.

1049 Assume that the matrix $V = [v_1 \ v_2 \ \dots \ v_n] \in \mathbb{R}^{p \times n}$ satisfies

$$1051 \quad 1052 \quad 1053 \quad \text{krank}(V) \geq \left\lceil \frac{2n + (d - 1)}{d} \right\rceil.$$

1054 Then the CP decomposition

$$1055 \quad 1056 \quad 1057 \quad \mathcal{T} = \sum_{i=1}^n \lambda_i \cdot v_i^{\otimes d}$$

1058 is unique up to scaling and permutation.

1060 C.2.2 USEFUL LEMMAS

1061 Recall F is sufficiently generic and Φ is a kernel matrix with the spectral radius $\rho < 1$. Let $K = F(\mathbb{I}_p - \Phi)^{-1}$
1062 and denote by $\mathcal{F}[\cdot]$ the regular Fourier transformation. We use $\llbracket K_1, K_2, \dots, K_p \rrbracket_{\mathcal{F}}$ to represent the columns
1063 of the Fourier-transformed K . For each $(K_j)_{\mathcal{F}}$, it has the coordinates $[k_1 : k_2 : \dots : k_n]_{\mathcal{F}}$ denoting free
1064 indeterminates in the vector.

1065 In the sequel, we extend Proposition 4.6 in (Wang & Seigal, 2024) to prove an important pre-identifiability
1066 result, the mixed parameter space $F(\mathbb{I}_p - \Phi)^{-1}$.

1067 **Lemma C.1** (Finite intersection with generic linear subspace). *Define a rational map $\psi : \mathbb{P}_{\mathcal{F}}^{n-1} \mapsto$
1068 $\nu_2(\mathbb{P}_{\mathcal{F}}^{n-1}) \subset \mathbb{P}_{\mathcal{F}}^{m-1}$ as:*

$$1069 \quad 1070 \quad \psi : [k_1 : k_2 : \dots : k_n]_{\mathcal{F}} \mapsto [k_1^d : k_1^{d-1} k_2 : \dots : k_n^d]_{\mathcal{F}} \quad (\text{C.1})$$

1071 where $m = \binom{n+d-1}{d}$ denotes the ordinates in the projective space of dimension $m - 1$. ν_d represents the
1072 d -th Veronese embeddings of all order- d tensors. Let \mathcal{V} be the projected space consisting of all rank-1
1073 matrices. Consider a sufficiently generic linear subspace spanned by $\{K_1^{\otimes d}, K_2^{\otimes d}, \dots, K_p^{\otimes d}\}$, denoted by \mathcal{W} .
1074 It follows that the variety $\mathcal{W} \cap \mathcal{V}$ has dimension zero and \mathcal{W} intersects \mathcal{V} in d^{n-1} distinct points. Therefore,
1075 $\{K_1^{\otimes d}, K_2^{\otimes d}, \dots, K_p^{\otimes d}\}$ is identifiable if and only if $\mathcal{V}(f) = \{K_1^{\otimes d}, K_2^{\otimes d}, \dots, K_p^{\otimes d}\}$.

1076 *Proof.* In the classical linear source decomposition (LSD) setting, the d -th order cumulant of X admits the
1077 following tensor decomposition: $\kappa_d(X) = \sum_{i=1}^p \kappa_d(s_i) \cdot (A_i)^{\otimes d}$ under the assumption that the components

1081 of ϵ are non-Gaussian with non-vanishing d -order cumulants, and that multiple interventions are available.
 1082 The sufficient d -order cumulant of each Z_t for a fixed $t = t_i$ is
 1083

$$1084 \kappa_d(Z_t) = \kappa_d[(I - \Phi)^{-1} \star \epsilon_t] = \kappa_d\left[\sum_{k=1}^t H_{t-s}\epsilon_s\right]$$

$$1085$$

$$1086$$

1087 For each s , the linear transformation H_{t-s} results in a multi-linear transformation of their cumulants
 1088

$$1089 \kappa_d(H_{t-s}\epsilon_k) = (H_{t-s})^{\otimes d} \mathcal{C}_{\epsilon_s}^d = \sum_{i=1}^p \kappa_d(\epsilon_s^i) (H_{t-s})_j^{\otimes d}$$

$$1090$$

$$1091$$

1092 The full d -order cumulant is
 1093

$$1094 \kappa_d(O_t) = \kappa_d(\underbrace{FZ_t, FZ_t, \dots, FZ_t}_{d \text{ times}})$$

$$1095$$

$$1096 = F^{\otimes d} \cdot \kappa_d(\underbrace{Z_t, Z_t, \dots, Z_t}_{d \text{ times}}) \tag{C.2}$$

$$1097$$

$$1098 = \underbrace{F \otimes F \otimes \dots \otimes F}_{d \text{ times}} \cdot \kappa_d \left(\underbrace{\sum_{s_1=1}^t H_{t-s_1}\epsilon_{s_1}, \sum_{s_2=1}^t H_{t-s_2}\epsilon_{s_2}, \dots, \sum_{s_d=1}^t H_{t-s_d}\epsilon_{s_d}}_{d \text{ times}} \right)$$

$$1099$$

$$1100$$

$$1101$$

$$1102$$

$$1103 = \underbrace{F \otimes F \otimes \dots \otimes F}_{d \text{ times}} \cdot \sum_{s_1=1}^t \dots \sum_{s_d=1}^t \kappa_d(H_{t-s_1}\epsilon_{s_1}, H_{t-s_2}\epsilon_{s_2}, \dots, H_{t-s_d}\epsilon_{s_d})$$

$$1104$$

$$1105$$

$$1106 = \underbrace{F \otimes F \otimes \dots \otimes F}_{d \text{ times}} \cdot \sum_{s_1=1}^t \dots \sum_{s=1}^t \sum_{j=1}^p \kappa_d(H_{t-s}^{(j)}\epsilon_s^{(j)}, H_{t-s}^{(j)}\epsilon_s^{(j)}, \dots, H_{t-s}^{(j)}\epsilon_s^{(j)})$$

$$1107$$

$$1108$$

$$1109 = \underbrace{F \otimes F \otimes \dots \otimes F}_{d \text{ times}} \cdot \left(\sum_{s=1}^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \underbrace{H_{t-s}^{(j)} \otimes H_{t-s}^{(j)} \otimes \dots \otimes H_{t-s}^{(j)}}_{d \text{ times}} \right)$$

$$1110$$

$$1111$$

$$1112$$

$$1113 = \left(\sum_{s=1}^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \underbrace{F \otimes F \otimes \dots \otimes F}_{d \text{ times}} \cdot \left(H_{t-s}^{(j)} \right)^{\otimes d} \right)$$

$$1114$$

$$1115$$

$$1116 = \sum_{s=1}^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \left(FH_{t-s}^{(j)} \right)^{\otimes d}$$

$$1117$$

$$1118$$

1119 We drop the time index in $\kappa(\epsilon)$ since the noise is temporally uncorrelated (white noise), i.e.,
 1120

$$1121 \text{Cov}(\epsilon_s, \epsilon_t) = \sigma^2 \delta_{s,t},$$

$$1122$$

1123 Unlike in a time-free process, the joint cumulant of a time process is of order d that is coupled with the
 1124 number of time lags:

$$1125 \kappa_d(O_{t_1}, \dots, O_{t_d}) = \sum_{s=1}^{\min(t_1, \dots, t_d)-1} \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \bigotimes_{\ell=1}^d \left(FH_{t_\ell-s}^{(j)} \right)$$

$$1126$$

$$1127$$

$$1128 \quad 1129 \quad 1130 \quad = \sum_{j=1}^p \sum_{s=1}^{\min(t_1, \dots, t_d)-1} \kappa_d^{(j)}(\epsilon) \cdot \bigotimes_{\ell=1}^d \left(FH_{t_\ell-s}^{(:,j)} \right) \quad (C.4)$$

1131
1132 We denote the Fourier transform of $x(t)$ with respect to time t as $\mathcal{F}[x](\omega)$. Using the convolution theorem
1133 and linearity of the Fourier transform, we have:

$$1134 \quad 1135 \quad 1136 \quad \mathcal{F}[\kappa_d(O_t)](\omega) = \mathcal{F} \left[\sum_{s \geq 0}^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \left(FH_{t-s}^{(:,j)} \right)^{\otimes d} \right] \\ 1137 \quad 1138 \quad 1139 \quad = \mathcal{F} \left[\int_0^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \left(FH(t-s)^{(:,j)} \right)^{\otimes d} ds \right] \\ 1140 \quad 1141 \quad 1142 \quad = \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \star \mathcal{U}(t-s) \right] \right) \\ 1143 \quad 1144 \quad 1145 \quad = \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \right] (\omega) \cdot \left(\pi \delta(\omega) + \frac{1}{i\omega} \right) \right) \quad (C.5)$$

1146
1147 Hereafter, we applied \mathcal{U} to induce a generalized convolution integral. Since $\delta(\omega)$ vanishes everywhere except
1148 at $\omega = 0$, multiplying it by ω gives zero, Eq. (C.5) yields
1149

$$1150 \quad 1151 \quad 1152 \quad i\omega \mathcal{F}[\kappa_d(O_t)](\omega) = \left(i\omega \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \right] (\omega) \cdot \left(\pi \delta(\omega) + \frac{1}{i\omega} \right) \right) \\ 1153 \quad 1154 \quad 1155 \quad = \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \right] (\omega) \cdot i\omega \cdot \left(\pi \delta(\omega) + \frac{1}{i\omega} \right) \right).$$

1156 which reads

$$1158 \quad 1159 \quad 1160 \quad \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \right] (\omega) \cdot i\omega \cdot \left(\pi \delta(\omega) + \frac{1}{i\omega} \right) \right) = \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot \mathcal{F} \left[\left(FH^{(:,j)} \right)^{\otimes d} \right] (\omega) \cdot 1 \right) \quad (C.6)$$

1162 Writing FH in terms of K as a convention obtains:

$$1164 \quad 1165 \quad 1166 \quad \kappa_{O_t, \mathcal{F}} = \left(\sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot (k_j)_{\mathcal{F}}^{\otimes d} \right)$$

1168 $(k_j)_{\mathcal{F}}^{\otimes d}$ is an order d , rank 1 tensor and thus can be represented as the space of $V \otimes \dots \otimes V$. In projective
1169 space \mathbb{P}^n , each point represents a line going through the origin, and all points lose one dimension up to
1170 multiples. Therefore, the variety \mathcal{V} has projective dimension $n-1$, embedded in an ambient space of
1171 projective dimension $m-1$. The linear subspace \mathcal{W} is an element of the Grassmannian $\text{Gr}(p-1, n-1)$
1172 and is sufficiently generic. By Proposition 2.6 of (Chiantini & Ciliberto, 2002), for a sufficiently generic,
1173 reduced, irreducible variety \mathcal{V} in \mathbb{P}^{m-1} , if there exists an integer such that $k + (n-1) < m-1$, then the
1174 intersections of \mathcal{V} with the generic linear subspace \mathcal{W} are the union of the generic points $\langle P_0, P_1, \dots, P_k \rangle$.

1175 We can prove this by choosing $k = p$. This condition can be much more easily satisfied if we have a higher
 1176 order $d \geq 2$ due to the combinatorial nature of $m = \binom{n+d-1}{d}$.
 1177

1178 Consequently, by assuming non-Gaussianity in ϵ_t , for each j , Eq. (C.6), hence $i\omega \mathcal{F}[\kappa_d(O_t)](\omega)$ has a unique
 1179 decomposition of the summation of a rank-1 tensor(matrix if $d = 2$). Therefore, each column of the sub-linear
 1180 mixing transferring matrix $\mathcal{F}[(FH^{(:,j)})]$ is theoretically recovered up to a scaling and permutation π if all
 1181 assumptions made are satisfied for Φ . This indicates that, regardless of whether the decomposition must be
 1182 explicitly calculated, such uniqueness provides a foundation for further disentanglement. \square
 1183

1184 Hereafter, $\mathcal{F}[(FH^{(:,j)})] DP$ is available; we thus obtain the unique indeterminacy as an immediate result of
 1185 Lemma C.2.
 1186

1187 **Lemma C.2.** *Consider \mathbb{F} is an algebraically closed field, the unknown indeterminacy DP is preserved in \mathbb{F} ,
 1188 that is, the following relation*

$$1188 \quad FH_{\tau}^{(:,j)} = \hat{F} \hat{H}_{\tau}^{(:,j)} D_{j,\tau} P_{j,\tau}, \\ 1189 \quad \text{with } (P_{j,\tau}, D_{j,\tau}) \in \{(P_j, D_j) \mid \mathcal{F}[FH^{(:,j)}] D_j P_j = \mathcal{F}[\hat{F} \hat{H}^{(:,j)}]\}.$$

1191 *Proof.* Let \mathbb{F} be a field and $n \geq 1$ an integer. The *general linear group* of degree n over \mathbb{F} is
 1192

$$1193 \quad \text{GL}_n(\mathbb{F}) := \{A \in M_n(\mathbb{F}) \mid \det(A) \neq 0\}.$$

1194 Equivalently, if V is a n -dimensional vector space over \mathbb{F} ,

$$1195 \quad \text{GL}(V) := \text{Aut}_{\mathbb{F}}(V) = \{T : V \rightarrow V \text{ linear isomorphisms}\},$$

1196 and any choice of basis identifies $\text{GL}(V)$ with $\text{GL}_n(\mathbb{F})$. It is obvious that $\mathcal{F}[\mathbb{F}]$ is exactly a subgroup of $\text{GL}(\mathbb{F})$
 1197 as the group $\text{GL}_n(\mathbb{F})$ satisfies: i) It is precisely the set of all invertible linear transformations (invertible
 1198 matrices). ii) If $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , then $\text{GL}_n(\mathbb{F})$ is an open subset of $M_n(\mathbb{F})$ since $\text{GL}_n(\mathbb{F}) = \det^{-1}(\mathbb{F} \setminus \{0\})$,
 1199 and it is a Lie group. By the definition of kernel matrix, one notes that i) trivially holds due to the maximal
 1200 spectrum being less than 1. For ii), \det^{-1} denotes the preimage of the open set $\mathbb{F} \setminus \{0\}$ under \det . Cutting the
 1201 one-dimensional line at 0 produces two open intervals (for $\mathbb{F} = \mathbb{R}$) or a punctured plane (for $\mathbb{F} = \mathbb{C}$), hence
 1202 the preimage is open in $M_n(\mathbb{F})$. Therefore, the permutation and scaling must be preserved in $M \in \mathbb{R}^{p \times p}$. \square
 1203

1204 Using Lemma C.2, the generic points $(k_j)_{\mathcal{F}}^{\otimes d}(w)$ with a generic projective linear span indicate generic points
 1205 $(k_j)_{\mathcal{F}}^{\otimes d}(\tau)$. As a result, the original kernel mixing matrix FH_{τ} is recovered up to the same permutation and
 1206 scaling for any τ . In what follows, the claim to be established is the recovery of the causal structure as well as
 1207 its full parameter space. Our proof focuses on the polynomial system and its associated ideal \mathcal{I} generated by
 1208 the multi-linear constrained polynomial system.
 1209

1210 C.2.3 PROOF OF THEOREM 1

1211 What remains to be proved is to show that, in Theorem 1, condition (2) ensures condition (3), which
 1212 guarantees the full identifiability of the model $\Theta := (F, \Phi, U)$. To study the geometry of the parameter space
 1213 of the latent model, we endow a topological ordering to Φ .

1214 **Lemma C.3.** *Given a bipartite graph of the proposed INAR(∞) structure, it admits a kernel DAG, denoted
 1215 by \mathcal{G} , corresponding to a matrix $\mathcal{M}_{\mathcal{G}} \in \mathbb{R}^{2p \times 2p}$ such that $\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}$ is invertible. Consequently, its inverse
 1216 can be expressed as a finite order k expansion of $\mathcal{M}_{\mathcal{G}}$,*

$$1218 \quad (\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}})^{-1} = \sum_{i=0}^k \mathcal{M}_{\mathcal{G}}^i, \quad k \leq p, \quad \mathcal{M}_{\mathcal{G}} = \begin{bmatrix} \mathcal{M}_{\mathcal{G}}[U] & \Phi \\ 0 & \mathcal{M}_{\mathcal{G}}[V] \end{bmatrix}$$

1221 where k corresponds to the length of the longest path in the DAG and $\mathcal{M}_{\mathcal{G}}[U] = \mathcal{M}_{\mathcal{G}}[V] = \mathbf{0}_{p \times p}$.

Figure A3: Figure(a) is a kernel-delayed DAG \mathcal{G} compatible with $\mathcal{M}_{\mathcal{G}}$; the system $\mathcal{M}_{\mathcal{G}}$ is a strict upper-triangular matrix. Figure (b) violates the topological order with additional edges $\{u_2 \rightarrow u_1, v_3 \rightarrow v_2\}$.

Proof. Let $\mathcal{M}_{\mathcal{G}} \in \mathbb{R}^{2p \times 2p}$ be the kernel matrix associated with the bipartite graph, where the variables are partitioned into two subsets U and V . Consider a topological ordering where all nodes in U precede those in V . Since edges from V to U are forbidden by the bipartite structure, no element in the lower-left block of \mathcal{M} can be nonzero. Moreover, edges within U are only topologically ordered, so the off-diagonal and upper-right block corresponding to U have zeros on the diagonal. The edges within V form a DAG, and under a topological ordering of V , the corresponding block in \mathcal{M} is strictly upper-triangular. Therefore, \mathcal{M} as a whole is strictly upper-triangular, which implies that it represents a DAG.

Because $\mathcal{M}_{\mathcal{G}}$ is strictly upper-triangular, it is nilpotent. Let k denote the length of the longest directed path in the DAG. Then $\mathcal{M}_{\mathcal{G}}^{k+1} = 0$, and the inverse of $\mathbb{I} - \mathcal{M}_{\mathcal{G}_K}$ can be expressed as a finite sum of powers of \mathcal{M} :

$$(\mathbb{I} - \mathcal{M}_{\mathcal{G}})^{-1} = \sum_{i=0}^k \mathcal{M}_{\mathcal{G}}^i.$$

Each term $\mathcal{M}_{\mathcal{G}}^i$ corresponds to contributions from paths of length i in the DAG. This shows that the inverse is fully determined by path products up to the longest path length k , completing the proof. \square

Example 2. Consider a kernel matrix $\Phi \in \mathbb{R}^{2 \times 2}$ with internal arrows allowed:

$$\Psi_U = \begin{bmatrix} 0 & \psi_{12} \\ 0 & 0 \end{bmatrix}, \quad \Phi = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}, \quad \Psi_V = \begin{bmatrix} 0 & \psi'_{34} \\ 0 & 0 \end{bmatrix}$$

where Ψ_U, Ψ_V encodes the internal arrows of the sub-graph \mathcal{G}_U and \mathcal{G}_V ; Φ encodes time-delayed kernel effects from s to t .

The corresponding expanded kernel matrix $\mathcal{M} \in \mathbb{R}^{4 \times 4}$ is

$$\mathcal{M} = \begin{bmatrix} 0 & \psi_{12} & \phi_{11} & \phi_{12} \\ 0 & 0 & \phi_{21} & \phi_{22} \\ 0 & 0 & 0 & \psi'_{34} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The polynomial system in condition (3) has a geometric equivalence representation. That is, condition (3) immediately indicates [Corollary C.3](#).

Corollary C.3. *The ideal $I : \langle K_{\mathcal{G}}(\mathbb{I}_{2p} - M_{\mathcal{G}}) - F_{\mathcal{G}} \rangle$ is such that the space $\Theta_{\mathcal{G}} := (F_{\mathcal{G}}, M_{\mathcal{G}})$ is zero-dimensional.*

By [Corollary C.3](#), identifying the space of all parameters in F and Φ is equivalent to solving the following ideal $\mathcal{I} : \langle F_{\mathcal{G}} - F_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}})^{-1}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}) \rangle$. In latent causal models, $F_{\mathcal{G}}, M_{\mathcal{G}}$ are filled as indeterminates

1269 that need to be recovered, where $F_{\mathcal{G}}$ is the expanded linear mixing obtained by filling $F \in \mathbb{R}^{n \times p}$ in a larger
 1270 block-diagonal matrix of size $2n \times 2p$, denoted by $F_{\mathcal{G}}$.
 1271

1272 Remember, we have $F(\mathbb{I} - \Phi(\tau))^{-1}$ to be unique due to decomposition up to a scaling and permutation. We
 1273 write $H_{\mathcal{G}} = (\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}})^{-1}$, then

$$1274 \quad F_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}})^{-1} = \begin{bmatrix} F & \mathbf{0} \\ \mathbf{0} & F \end{bmatrix} \begin{bmatrix} H_{\mathcal{G}}(U) & H_{\mathcal{G}}(\Phi) \\ \mathbf{0} & H_{\mathcal{G}}(V) \end{bmatrix} = \begin{bmatrix} FH_{\mathcal{G}}(U) & FH(\Phi) \\ \mathbf{0} & FH_{\mathcal{G}}(V) \end{bmatrix} = K_{\mathcal{G}}$$

1277 Under INAR, the diagonal blocks of $K_{\mathcal{G}}$ are $\mathbf{0}$ matrix. Therefore, we have the ideal $\mathcal{I} : \langle F_{\mathcal{G}} - K_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}) \rangle$
 1278 where $K_{\mathcal{G}}$ is known because FH is known, by [Lemma C.1](#), so they are no longer considered as indeterminate
 1279 and thus do not contribute any degrees in the dimension of \mathcal{I} . Clearly, under passively observational settings,
 1280 recovery of full models is never possible as the current \mathcal{I} must be positive dimensional, leading to no fixed
 1281 points defined in the associated variety \mathcal{V} . This leads to a central goal of identifying the number of contexts
 1282 that indicate sufficient variability or interventional settings, thereby recovering the parameter space. To this
 1283 end, we need to first discuss important properties of $F_{\mathcal{G}}$.
 1284

1284 **Lemma C.4.** *$F \in \mathbb{R}^{n \times p}$ is a generic full-rank matrix. Then $F_{\mathcal{G}}$ is of full rank with $\text{rank}(F_{\mathcal{G}}) = 2 \cdot \text{rank}(F) = 2 \min(n, p)$, and it is not generic in an open dense subset of $\mathbb{R}^{2n \times 2p}$ due to the additional linear constraints
 1285 imposed by the block-diagonal structure. Consequently, $F_{\mathcal{G}}$ belongs to a proper linear subvariety of $\mathbb{R}^{2n \times 2p}$
 1286 defined by*

$$1288 \quad \mathcal{V}_{I_*} := \left\{ B \in \mathbb{R}^{2n \times 2p} : B = \begin{pmatrix} F' & \mathbf{0} \\ \mathbf{0} & F' \end{pmatrix}, F' \in \mathbb{R}^{n \times p} \right\}.$$

1290 Therefore, for any square matrix A^{2p} with $\text{rank}(A) \leq r$, $\text{rank}(F_{\mathcal{G}} A) \leq r$

1292 *Proof.* This proof is trivial by linear algebra. □

1294 We first show that identifying \mathcal{M} is equivalent to making a variety, which falls onto a projective space \mathbb{P}^d that
 1295 is zero-dimensional. However, as for the current ideal, the dimension can be rather larger, as shown in the
 1296 following lemma.

1297 **Lemma C.5.** *The subvariety associated with the ideal \mathcal{I}^* for $\mathcal{M}_{\mathcal{G}}$ has dimension at least $3p^2 - 2p$.*

1299 *Proof.* Consider the matrix $\mathcal{M}_{\mathcal{G}}$ in the ambient projective space. Since the bottom-left block $\mathcal{M}_{\mathcal{G}}$ is forced
 1300 to be zero, we have $\mathcal{M}_{\mathcal{G}} \in \mathbb{P}^{4p^2-1-p^2}$. $\mathcal{M}_{\mathcal{G}}$ is nilpotent, i.e., $\mathcal{M}_{\mathcal{G}}^k = 0$. This nilpotency imposes additional
 1301 algebraic constraints, restricting $\mathcal{M}_{\mathcal{G}}$ to a subvariety $V^* = \langle \text{Tr}(\mathcal{M}_{\mathcal{G}}), \det(\mathcal{M}_{\mathcal{G}}) \rangle$. The dimension of this
 1302 variety is

$$1303 \quad \dim V^* = (2p)^2 - 1 - (2p) = 4p^2 - 2p - 1.$$

1305 Now, the intersection of two varieties of dimensions d_1 and d_2 in an ambient space of dimension n satisfies

$$1307 \quad \dim(V_1 \cap V_2) \geq d_1 + d_2 - n.$$

1308 Applying this to our case, we have

$$1310 \quad \dim(\text{variety satisfying all constraints}) \geq (4p^2 - 1 - p^2) + (4p^2 - 2p - 1) - 4p^2 = 3p^2 - 2p.$$

1312 Hence, the subvariety associated with \mathcal{I}^* has dimension at least $3p^2 - 2p$. □

1314 As shown in [Lemma C.5](#), we need at least extra $3p^2 - 2p - 1$ independent polynomials to cut off \mathcal{V} that
 1315 identify all $2p \times 2p$ augmented kernel matrices.

1316 Note we have p processes; we generally assume we obtain different contextual information from at least K
 1317 environments (i.e., $K = p$), which is a mild condition in causal representation learning. Each sub-ideal $\mathcal{I}_k :$
 1318 $\langle F_{\mathcal{G}} - K_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}) \rangle$ constitutes a polynomial system, denoted by $\mathcal{S}_{\mathbb{P}}^k$ such that:
 1319

$$F_{\mathcal{G}} + K_{\mathcal{G}}^{(k)} \mathcal{M}_{\mathcal{G}}^{(k)} = K_{\mathcal{G}}^{(k)}. \quad (\text{C.7})$$

1320 There are $2n \times 2p$ indeterminates for $F_{\mathcal{G}}$ and $2|e(\mathcal{G})|$ for \mathcal{M} since each environment k introduces a new
 1321 $\mathcal{M}_{k,j}$. Considering all K ideals $(\mathcal{I}_0, \mathcal{I}_1, \dots, \mathcal{I}_K)$, we obtain the union of all K varieties:
 1322

$$V(\mathcal{I}) = \left\{ (F_{\mathcal{G}}, \mathcal{M}_{\mathcal{G}}^{(0)}, \dots, \mathcal{M}_{\mathcal{G}}^{(K)}) \mid F_{\mathcal{G}} - K_{\mathcal{G}}^{(k)}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}^{(k)}) = 0, \forall k \in K \right\}. \quad (\text{C.8})$$

1323 Adding polynomial constraints by subtracting Eq.(C.7) for 0 from that for k obtains:
 1324

$$V(\mathcal{I}^*) = \left\{ V(\mathcal{I}) \mid K_{\mathcal{G}}^{(k)} \mathcal{M}_{\mathcal{G}}^{(k)} - K_{\mathcal{G}}^{(0)} \mathcal{M}_{\mathcal{G}}^{(0)} - (K_{\mathcal{G}}^{(k)} - K_{\mathcal{G}}^{(0)}) = 0, \forall k \in K \right\}. \quad (\text{C.9})$$

1325 that induces a coordinate ring R/\mathcal{I} in a polynomial ring $R = k(F_{\mathcal{G}_{i,j}}, \mathcal{M}_{i,j}^k)$. The order of the coordinate
 1326 ring is the dimension of the original variety. We use $(\begin{array}{|c|} \hline \mathbb{I}_{4np} & \star \\ \hline \mathbf{0} & \star \\ \hline \end{array})$ to represent the blocked system so as not to
 1327 let readers confuse it with the matrix bracket. For each $m \in [n], j \in [p]$, and $i \in \text{ch}_{\mathcal{G}}(j)$, we have $|\text{ch}_{\mathcal{G}}(j)|$
 1328 columns for $\mathcal{M}_{\mathcal{G}}$. $F_v, \mathcal{M}_v^{(k)}$ write entries $f_{i,j}, \mathcal{M}_{m,i}^k$ as vectors, which describe the polynomial constraints
 1329 as a linear system:
 1330

$$\left(\begin{array}{c|c} \mathbb{I}_{4np} & \star \\ \hline \mathbf{0} & \star \\ \hline \end{array} \right) \begin{pmatrix} F_v \\ \mathcal{M}_v^{(0)} \\ \mathcal{M}_v^{(k)} \end{pmatrix} = \begin{pmatrix} K_{\mathcal{G}}^{(k)} \\ K_{\mathcal{G}}^{(k)} - K_{\mathcal{G}}^{(0)} \end{pmatrix}. \quad (\text{C.10})$$

1331 In INAR (∞) , each $\mathcal{M} := \mathcal{M}_{t-s}$ preserves all paths $\{(\varphi(j) \rightarrow \varphi(i)|Z_{\varphi(j),t-s}^{\Delta} \rightarrow Z_{\varphi(i),t}^{\Delta}, \mathcal{M}_{i,j} \neq 0\}$
 1332 from Φ_{t-s} through an isomorphism φ . Therefore, entry $(\mathbb{I}_{2p} - \mathcal{M})_{i,j}^{-1}$ is the product of $\mathcal{M}_{n,m}$ for path
 1333 $j \rightarrow m \rightarrow n \rightarrow i$. We drop the time index and graph label whenever the context is clear. Such $(\mathbb{I}_{2p} - \mathcal{M})_{i,j}^{-1}$
 1334 admits the representation

$$(\mathbb{I}_{2p} - \mathcal{M})^{-1} = \mathbb{I} + \mathcal{M}.$$

1335 Results from (Carreno et al., 2024) are applied to get $\text{rank}(\mathbb{I}_{2p} - \mathcal{M}^{(k)})^{-1} - (\mathbb{I}_{2p} - \mathcal{M}^0)^{-1} \leq 1$. Using
 1336 Lemma C.4, we obtain $\text{rank}(F_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}^{(k)})^{-1} - F_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}^0)^{-1}) \leq 1$. Therefore, the left part of
 1337 Eq.(C.10) has columns that are multiples of each other:

$$(K_{\mathcal{G}}^{(k)} - K_{\mathcal{G}}^{(0)})_{l,j} = (K_{\mathcal{G}}^{(0)})_{l,k} \Delta_{k,i}, \quad \Delta := (I - \mathcal{M}^{(k)})^{-1} - (I - \mathcal{M}^0)^{-1} \quad (\text{C.11})$$

1338 We examine the non-zero sub-blocks of the lower-right block \star in Eq.(C.10), which has size $|\text{de}(j) \setminus \text{ch}(j)| \times |\text{ch}(j)|$. Following the convention, we represent the sunblocks as $M[j]$ and choose the smaller
 1339 blocks $[K_{\mathcal{G}}^{(k)} - K_{\mathcal{G}}^{(0)}]$ corresponding to the size of $M[j]$ and write it as $b[j]$. The dimension of variety $V(\mathcal{I}^*)$
 1340 is the dimension of the points $(\mathcal{M}_{i,j}^0), i \in \text{ch}(j)$ that satisfy:
 1341

$$M[j](\mathcal{M}_{i,j}^0) = b[j] \quad (\text{C.12})$$

1342 The variety is a null set when the above constraints lead to no solutions. Therefore, we require $\text{rank}(M[j]) = \text{rank}(M[j]|b[j])$. $[M[j] \mid b[j]]$ is the common augmented matrix to check the stability of a polynomial
 1343 equation system. We conclude our proof by making a formal statement about the dimension of $V(\mathcal{I}^*)$ in the
 1344 next lemma.

1345 **Lemma C.6.** *For generic F and FH arising from the cumulant decomposition, the full generating model is
 1346 identifiable if and only if the variety $V(\mathcal{I}^*)$ has dimension zero, that is,*

$$\text{dim}(V(\mathcal{I}^*)) = \sum_{j=1}^q \text{ch}(j) - \text{rank}(M[j]) = 0.$$

1363 *Proof.* For the left subset U_s , each node j has outgoing edges only to nodes i in the right subset V_t , all of
 1364 which are direct children of j . By construction, no edges exist within U_s or within V_t . Consequently, for each
 1365 j , we have $M[j] = \emptyset$, since $\text{de}(j) = \text{ch}(j)$. \square
 1366

1367 When \mathcal{M}_{t-s} is fully recovered, the full matrix $\mathcal{F}_{\mathcal{G}}$ can be obtained as
 1368

$$\mathcal{F}_{\mathcal{G}} = K_{\mathcal{G}}(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}}).$$

1370 If F_v is injective, identification of F_v (and hence $\mathcal{F}_{\mathcal{G}}$ and F) is equivalent to identifying each \mathcal{M} individually,
 1371 due to the direct multiplication of F^{-1} (or the pseudo-inverse F^\dagger) with K . However, identification of the full
 1372 generating model is hindered by the genericity of F . Even if $K_{\mathcal{G}}$ is unique up to the usual indeterminacies,
 1373 recovering other kernel matrices $\mathcal{M}_{t-s'}$ requires analogous identifiability conditions for the individual
 1374 kernel matrix. It follows that the identifiability of the model is governed by the geometric complexity of
 1375 its embedding. In particular, at least p generic points in the ambient projective space \mathbb{P}^n are required. If
 1376 such generic points are obtained solely by varying the parameter ϕ , then the resulting points lie in the same
 1377 projective orbit

$$\mathcal{O}_\phi = \{[\Phi(\phi + \delta)] \mid \delta \in \mathbb{R}^k\}$$

1379 under parameter shifts. Consequently, identifiability holds only up to this equivalence, that is,
 1380

$$\phi_1 \sim \phi_2 \iff \Theta(\Phi_{i:}(\phi_1)) = \Theta(\Phi_{i:}(\phi_2)),$$

1382 so that distinct parametrizations of the same process become indistinguishable whenever they correspond
 1383 to pairs of identical parameter rows $\Theta(\Phi_{i:})$. Therefore, in continuous time, the process has a natural shift
 1384 as long as $\Theta(\Phi_{i:})$ is changed. Hence, under $k \in 1, 2, \dots, K$ distinct contexts—each introducing sufficient
 1385 variability in the distribution, or ensuring that each lag k receives at least one intervention that shifts the
 1386 downstream mechanism—the full latent structure is identifiable up to the same indeterminacy.
 1387

1388 **Recovery of baseline U .** Once the full causal structure is recovered up to a scaling and permutation matrix,
 1389 lower level moments of $\mathbb{E}[F(\mathbb{I}_p - \Phi)^{-1} \star (U + \epsilon_t)]$ are can be directly computed to find U up to the same
 1390 indeterminacy.

1391 **Remark for conditions.** White noise ensures all components of the process ϵ_t are mutually independent,
 1392 causing the integral in line with $\epsilon(\Delta)$ the Fourier transformation to be absolutely zero except for $\Delta = 0$,
 1393 and leaves the algebraic cumulant $\kappa(O_t)$ with a reduced, parsable form that admits a unique decomposition.
 1394 We highlight a case when the proposed condition is seriously violated if a random Wiener process dW_t is
 1395 chosen in place of a white perturbation. Therefore, identifying a completely random stochastic differential
 1396 process remains challenging since the increment-independent perturbation still forms a time-dependent noise
 1397 after the Ito integral is applied. For completeness, in C.5.1, we show how dependent noise can be reduced to
 1398 independent-increment noise while keeping the identifiability.

1399 C.2.4 IDENTIFIABILITY UNDER GAUSSIAN NOISE

1400 Now we focus on the case where non-Gaussianity does not hold for the entire time process. When the noise is
 1401 Gaussian, $\kappa_d(O_t) = 0$ for all $d \geq 3$, which leads to a $\mathbf{0} \in \mathbb{R}^{p \times d}$ (the d -th order zero tensor). The solution
 1402 of decomposition is infinite, thus FH cannot be recovered up to a column scaling and permutation, nor can
 1403 the latent transition graph \mathcal{G} . We argue that preserving only d - order cumulant of order $d \leq 2$ is a minimal
 1404 building block for identification. $\kappa_2(O_t)$ is an order 2 variance-covariance matrix.
 1405

1406 The defining ideal $I(\mathcal{V})$ is generated by all 2×2 minors. The defining ideal $I(\mathcal{V})$ is generated by all 2×2
 1407 minors. More generally, explicit generators include
 1408

$$1409 k_{ij}k_{k\ell} - k_{i\ell}k_{kj} = 0 \quad (1 \leq i, j, k, \ell \leq n).$$

1410 Geometrically, \mathcal{V} satisfies $\dim \mathcal{V} = n - 1$ and it is the quadratic Veronese variety of degree 2^{n-1} .
 1411

1412 Let $M_1, M_2, \dots, M_T \in \mathbb{R}^{p \times p}$ be a collection of order-2 tensors. We define the order-3 tensor $\mathcal{X} \in \mathbb{R}^{T \times p \times p}$
 1413 via concatenation along the first mode (tensor slices):

$$1414 \quad \mathcal{K}_c = \text{con} (M_1, M_2, \dots, M_T), \quad \text{where } \mathcal{X}_{t,:,:} = M_t. \quad (C.13)$$

1416 By standard tensor algebra, an order-3 tensor $\mathcal{X} \in \mathbb{R}^{T \times p \times p}$ can be reshaped or flattened into a higher-order
 1417 tensor, under a specific indexing scheme. More generally, given a desired tensor order d , and assuming
 1418 $T = p^{d-2}$, we define a transformation:

$$1419 \quad \mathcal{T} : \mathbb{R}^{T \times p \times p} \rightarrow \mathbb{R}^{p^d}, \quad \kappa_d(\varepsilon_t) \in \mathbb{R}^{\underbrace{p \times \cdots \times p}_{d \text{ times}}}$$

$$1423 \quad \kappa_2(\varepsilon_t) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix} \in \mathbb{R}^{p \times p}, \quad \kappa_3(X_t) = \begin{bmatrix} \mathbf{0}_{p \times p} \\ \mathbf{0}_{p \times p} \\ \vdots \\ \mathbf{0}_{p \times p} \end{bmatrix} \in \mathbb{R}^{p \times p \times p}$$

1429 that re-indexes the tensor slices M_t to fill the missing indices of an order d cumulant tensor. The replacing
 1430 and re-indexing rule is illustrated in an order 3 tensor as a real plane, assuming $d - 1$ is the maximal order
 1431 such that $\kappa_d = 0$.

1432 Under this transformation, each slice M_t is interpreted as contributing to a specific mode configuration
 1433 of the higher-order tensor. That is, the tensor \mathcal{X} is “lifted” into a d -way tensor by embedding each $p \times p$
 1434 matrix slice as filling in the cumulant entries with fixed positions in the first $d - 2$ indices corresponding to
 1435 $t \in \{1, \dots, T\}$, and varying the remaining two indices over $p \times p$. This leads to the same form as Eq. (C.4)
 1436 where all $\kappa_d(\varepsilon_t) \neq 0$. Under Corollary C.1 and C.2, the new tensor has a unique decomposition of rank-1
 1437 tensor summation. To be specific, we assume v_i has no pair of columns to be collinear. This ensures the
 1438 identification of $F(I - \Phi)^{-1}$ and restricts F to be injective to only $\text{span}(H_j)$.

1439 The sequential steps are the same for non-Gaussian noise since the construction of the ideal \mathcal{I}^* associated
 1440 with its variety is not influenced by ϵ once FH is fixed up to a permutation and scaling.

1442 **Discussion of noise.** Consequently, when Gaussianity is assumed, the distribution of O_t is fully character-
 1443 ized by the first two cumulants. This property implies that the entire cumulant expansion, and hence any
 1444 higher-order dependency, collapses at second order. In this sense, the Gaussian distribution is the unique
 1445 fixed point of the cumulant hierarchy at order two. In temporal parametric transition (Yao et al., 2022b), a
 1446 widely known condition to ensure the component-wise identifiability of the latent process Z_t is to require
 1447 that the driving noise ϵ is not a fully isotropic Gaussian. That is, the Gaussian noise distribution must shift
 1448 under either intervention (Buchholz et al., 2023) or exhibit heterogeneity in its variance. This is because all
 1449 cumulants of order $p > 2$, which encode the exact causal dependencies, vanish for Gaussian noise. As a
 1450 result, sufficient variability can only arise from changes in the second-order cumulant. Our results reflect
 1451 that non-isotropic Gaussian noise is a *necessary* but not a *sufficient* condition for full identifiability of the
 1452 time-delayed generative model and parameters.

1453 C.2.5 IDENTIFYING CAUSAL STRUCTURE

1455 Our proof is constructive: Since our results also apply to any soft interventions with the minimal manifold
 1456 $\kappa_d(O_t)$ such that no fixed value of entry $(i \rightarrow j)$ in $\Phi(w)$ induces a dependence removal: Without loss

1457 of generality, we can safely choose the kernel matrix of order p as weak convergence exists. Therefore,
 1458 we discretize the continuous kernel matrix up to $t - s = \tau$, each $\tau \in (\tau_1, \dots, \tau_p)$. Applying the Fourier
 1459 transformation to the above equation for order p gets:

$$1461 \quad \mathcal{F}[F(\mathbb{I}_{2p} - \mathcal{M}_{\mathcal{G}_K})^{-1}] = \mathcal{F} \left[F \sum_{p=0}^n \mathcal{M}_{\mathcal{G}_K}^{*p} [\tau] \right] = F \sum_{p=0}^n (\mathcal{M}_{\mathcal{G}_K}(\omega))^p \quad (C.14)$$

1464 Provided the rank condition is satisfied, we construct the difference matrix $\Delta = H[\tau]^0 - H[\tau]^k$ and identify
 1465 the source of changes in distribution and their ancestral relations. Therefore, the transitive closure $\bar{\mathcal{G}}$ of the
 1466 ground truth process with its causal structure can be recovered up to the trivial transformation aforementioned.
 1467 A time process without instantaneous influence must have $TC(\mathcal{G}) = \mathcal{G}$, we can recover the original process
 1468 and its causal structure up to the same scaling and permutation π .

1469 C.3 PROOF OF THEOREM 2

1471 C.3.1 PRELIMINARY OF THEOREM 2

1473 We prove our main theorem by showing that the tuple (f, Φ, U) is identifiable up to component-wise
 1474 scaling and permutation. Our proof is based on the dimension of the associated variety defining special
 1475 hypersurfaces in a polynomial ring K^n . We study the nonlinear propagation of the cumulant structure to find
 1476 the identifiability conditions for INAR(∞) processes. Given a generic nonlinear f , its exact cumulant $\kappa_d(O_t)$
 1477 follows an order d expansion with Bell polynomial coefficients. Accordingly, we restate [Assumption 3](#) as
 1478 follows.

1479 **Assumption 3(restatement)** *Let observations be generated by an unknown mixing function f from latent
 1480 stochastic processes $Z_t^{(\Delta)}$ driven by a linear intensity λ_t . Suppose:*

- 1482 1. *f is a generic C_d map with a full-rank Jacobian J_f almost surely.*
- 1483 2. *There exist at least p nonzero tensors $\bar{\kappa}_d(\Delta O_t)$ for $d \in D := \{d \mid \bar{\kappa}_{d+1}(\Delta O_t) = 0\}$, where
 1484 $\bar{\kappa}_d(\Delta O_t)$ is the difference cumulant computed from the first-order Taylor expansion of $O_t := f(Z_t)$.*
- 1485 3. *The ideal $\mathcal{I}^* : \langle J_f - K_{\mathcal{G}}^{(k)}(\mathbb{I}_{2p} - \mathcal{M}^{(k)}), k = 1, 2, \dots, p \rangle$ has a zero-dimensional associated variety
 1486 $\mathcal{V}(\mathcal{I}^*)$*

1488 **Lemma C.7.** *Let \mathbb{Q} be the base field. Suppose f is generic, with Jacobian matrix J_f . Then the following are
 1489 equivalent characterizations of the genericity of J_f :*

- 1491 1. *The entries of J_f are algebraically independent commuting indeterminates over \mathbb{Q} ; equivalently,
 1492 they generate a purely transcendental extension of \mathbb{Q} .*
- 1493 2. *The point $((J_f)_{i,j})$ does not lie in the vanishing locus of any nonzero polynomial in the polynomial
 1494 ring $\mathbb{Q}[x_{ij}]$.*
- 1495 3. *Consequently, J_f is of full rank on a Zariski open dense subset; in particular, it is of full rank almost
 1496 surely.*

1498 In general, as with most assumptions in identifiability analysis, the *genericity* assumption is hardly verifiable
 1499 in practice. Surprisingly, it nevertheless holds *almost surely* in a probabilistic sense. To recall a simple
 1500 demonstration, consider a generic matrix F .

1502 When we say that a matrix is *generic*, we do not mean that it is obtained by fixing arbitrary numerical
 1503 values in its entries. Instead, each entry of the matrix is regarded as a purely formal symbol—an algebraic

variable—that is not assigned any concrete value. Equivalently, we are working over the field of rational functions in these symbols, so that the entries of the matrix are algebraically independent indeterminates. This ensures that the matrix avoids all degenerate algebraic relations, except on a proper algebraic subvariety (a set of measure zero in the Euclidean sense). Thus, while the assumption is untestable numerically, it is valid almost surely under random choices, and it is rigorously formalized by treating the entries as algebraically independent symbols.

Then, we show how naturally we can assume the genericity of mixing functional, by [Example 3](#).

Example 3 (Rectangular Jacobian: $f : \mathbb{R}^2 \rightarrow \mathbb{R}^3$, mixed transcendental entries). Let $x = (x_1, x_2) \in \mathbb{R}^2$ and define

$$\begin{aligned} f_1(x) &= \sin(\alpha_1 x_1) + e^{\beta_1 x_2}, \\ f_2(x) &= \cos(\alpha_2 x_1 + \alpha_3 x_2) + x_1^2, \\ f_3(x) &= x_1 x_2 + e^{\beta_2 x_1 + \beta_3 x_2}, \end{aligned}$$

where all coefficients α_i, β_i are treated as algebraically independent symbols. The Jacobian $J_f(x) \in \mathbb{R}^{3 \times 2}$ is

$$J_f(x) = \begin{pmatrix} \alpha_1 \cos(\alpha_1 x_1) & \beta_1 e^{\beta_1 x_2} \\ -\alpha_2 \sin(\alpha_2 x_1 + \alpha_3 x_2) & -\alpha_3 \sin(\alpha_2 x_1 + \alpha_3 x_2) + 2x_1 \\ x_2 + \beta_2 e^{\beta_2 x_1 + \beta_3 x_2} & x_1 + \beta_3 e^{\beta_2 x_1 + \beta_3 x_2} \end{pmatrix}.$$

Algebraic independence of the entries. Each entry of $J_f(x)$ contains either a unique symbol factor (α_i, β_i) or depends on a distinct linear combination of x_1, x_2 . By treating the coefficients as algebraically independent symbols, one sees that no nontrivial polynomial relation among the entries can exist over \mathbb{Q} . Hence, the entries of $J_f(x)$ are algebraically independent over the base field $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3)$, so that $J_f(x)$ is generic in the sense of identifiability theory.

The generic mixing f is preserved by its Jacobian matrix J_f ; hence, identifying J_f is equivalent to the recovery of f up to a constant. Now, we are ready to prove our main theorem. Without loss of generality, we write J_f as F since they behave the same way in an algebraically closed field.

C.3.2 PROOF OF THEOREM 2

Proof. For a smooth map $f : Z_t \rightarrow f(Z_t)$, we can construct $O := f(Z_{t+\Delta t})$ using Taylor expansion:

$$f(Z_{t+\Delta t}) = f(Z_t) + \frac{\partial}{\partial Z_t} f(Z_t) \Delta Z_t + \frac{1}{2} \frac{\partial^2}{\partial Z_t^2} f(Z_t) (\Delta Z_t)^2 + o(\Delta Z_t^3)$$

At this time, the expansion has rather abnormal behavior, as the order can be prohibitively large. However, the truncated expansion at order 1 has theoretical appeal, as we explain below. Let higher-order components be $\mathcal{R}(1)$, and recall $Z_t = H \star \epsilon_t$, we obtain the truncated differential process $\Delta \tilde{f}(Z_t)$, denoted as:

$$\Delta f(Z_t) - \mathcal{R}(1) = J_f \sum_{k=1}^t H_{t-s} \epsilon_s \quad (C.15)$$

We treat all quantities appearing in Eq. (C.15) as indeterminates in a polynomial ring

$$R = k[\{\Delta f(Z_t)\}_t, \mathcal{R}(1), J_f, \{H_{t-s}\}_s, \{\epsilon_s\}_s],$$

where k is a base field such as \mathbb{R} or \mathbb{C} . For each time index t , the defining polynomial is $g_t := \Delta f(Z_t) - \mathcal{R}(1) - J_f \sum_{s=1}^t H_{t-s} \epsilon_s \in R$. This polynomial generates the principal ideal $\mathcal{I}_t = \langle g_t \rangle \subset R$, and considering

1551 all time indices $t = 1, 2, \dots, T$, we obtain the global ideal $\mathcal{I} = \langle g_1, g_2, \dots, g_T \rangle \subset R$. The corresponding
 1552 variety is then
 1553

$$1554 V(\mathcal{I}) = \left\{ (Z_t, \Delta f(Z_t), J_f, H_{t-s}, \epsilon_s, \mathcal{R}(1)) \in k^N \mid g_t = 0 \text{ for all } t \right\}.$$

1555 It is evident that $V(\mathcal{I})$ is positive-dimensional, since the defining relations do not specify finitely many points.
 1556 To obtain more structure, we consider higher-order statistics. In particular, the d -th order cumulant tensor of
 1557 the transformed increments takes the form.
 1558

$$1559 \kappa_d(\Delta \tilde{f}(Z_t)) = \sum_{s=1}^t \sum_{j=1}^p \kappa_d^{(j)}(\epsilon) \cdot (J_f H_{t-s}^{(:,j)})^{\otimes d}.$$

1561 This expression shows that the cumulant naturally defines a point in the projective tensor space.
 1562

$$1563 \mathbb{P}(V^n \otimes V^n \otimes \cdots \otimes V^n),$$

1564 where the number of tensor factors equals p . Hence, while the affine variety $V(\mathcal{I})$ is too large to give
 1565 identifiability, the cumulant tensors lift the problem into a projective geometric setting, where connections
 1566 to secant varieties of the Veronese embedding provide a natural framework for studying uniqueness and
 1567 decomposition. \square
 1568

1569 Hereafter, the generic f has an algebraic structure from a degenerative linear truncated cumulant. Such a
 1570 degenerative form ensures that the Veronese embeddings are defined in a larger ambient space. Note that
 1571 $\mathcal{R}(1)$ is completely determined by f and thus can be found through an optimization problem: choosing
 1572 an initial $\mathcal{R}(1)$ such that $\kappa_d(\Delta \tilde{f}(Z_t))$ has a stable solution for a unique decomposition. We note that this
 1573 optimization suggests that recovery of the entire generative model be guaranteed as long as the solution exists
 1574 and is unique. One can choose any other techniques to estimate the generative model. As shown in the main
 1575 text, to leverage the computational capacity of generative models, we adopt a variational method to model the
 1576 causal dynamics and the mixing map.
 1577

1578 C.4 PROOF OF THEOREM 3

1580 As a final remark on our identifiability theory, we prove that the proposed conditions are both sufficient and
 1581 necessary for identifying the full generative model of a stochastic process. Note that when discussing a
 1582 stochastic process, it has an infinite number of variables over time (*resp.* time-lag time series); therefore, we
 1583 do not intend to recover the so-called causal "variables" but focus on the generative model of the process with
 1584 full parameters.
 1585

1586 \Rightarrow ASSUMPTIONS LEAD TO IDENTIFIABILITY:

1587 For sufficiency, the proof is trivial by following our proof in [Theorem 2](#).
 1588

1589 \Leftarrow IDENTIFIABILITY INDICATES ASSUMPTIONS :

1590 Suppose that the full generative model is identifiable even when some conditions in [Assumption 3](#) are violated.
 1591 Then there exists a linear mixing of the parameter space, $F\Phi$, that can be uniquely determined only up to a
 1592 component-wise transformation g' and a permutation π' *distinct from* $\kappa(\epsilon)$ and π .
 1593

1594 Consequently, the reconstructed observations O_t satisfy

$$1595 \kappa(O_t) = \sum_{j=1}^p g'(F\hat{H}_j)^{\otimes d},$$

1598 which admits a unique decomposition.
 1599

1600 However, this contradicts the assumed violation of the conditions in [Assumption 3](#), because a unique
 1601 decomposition should only exist when all those conditions hold. Therefore, identifiability of the full
 1602 generative model implies that all the conditions in [Assumption 3](#) must be satisfied.

1603 **C.5 DISCUSSION FOR OTHER CASES**

1605 **C.5.1 VARYING AND DEPENDENT NOISE**

1607 We construct a model with driving noise, which is *not* time-independent but a continuous stochastic process
 1608 R_t . To leverage the aforementioned proof, the Ito lemma is applied to the observed mixed manifold O_t . Plug
 1609 in the causal process with the convolution kernel:

$$\begin{aligned} 1610 \Delta Z_t &= (Z_{t+\Delta t} - Z_t) \\ 1611 &= \left[(u_0 + \int_0^{t+\Delta t} \Phi(t + \Delta t - s) Z_s ds + R_{t+\Delta t}) - (u_0 + \int_0^t \Phi(t - s) Z_s ds + R_t) \right] \\ 1612 &= \left[\left(\int_0^{t+\Delta t} \Phi(t + \Delta t - s) Z_s ds \right) - \left(\int_0^t \Phi(t - s) Z_s ds \right) \right] + \Delta R_t \\ 1613 &= \left[\left(\int_0^{t+\Delta t} \Phi(t + \Delta t - s) Z_s ds \right) - \left(\int_0^t \Phi(t - s) Z_s ds \right) \right] + \Delta R_t \end{aligned}$$

1617 For the first integral, we apply the Taylor expansion at $t - s$:

$$\begin{aligned} 1618 \Delta Z_t &= Z_{t+\Delta t} - Z_t \\ 1619 &= \left\{ \int_0^{t+\Delta t} \left[\Phi(t - s) + \frac{\partial}{\partial \Delta t} \Phi(t - s) \Delta t + \frac{\partial^2}{\partial \Delta t^2} \Phi(t - s) (\Delta t)^2 \right] Z_s ds \right. \\ 1620 &\quad \left. - \int_0^t \Phi(t - s) Z_s ds \right\} + \Delta R_t \\ 1621 &= \int_t^{t+\Delta t} \Phi(t - s) Z_s ds + \int_0^{t+\Delta t} \left[\frac{\partial}{\partial \Delta t} \Phi(t - s) \Delta t + \frac{\partial^2}{\partial \Delta t^2} \Phi(t - s) (\Delta t)^2 \right] Z_s ds + \Delta R_t \\ 1622 &= \int_t^{t+\Delta t} \Phi(t - s) Z_s ds + \int_0^{t+\Delta t} \frac{\partial}{\partial \Delta t} \Phi(t - s) \Delta t Z_s ds + \int_0^{t+\Delta t} \frac{\partial^2}{\partial \Delta t^2} \Phi(t - s) (\Delta t)^2 Z_s ds + \Delta R_t \\ 1623 &= \Phi^* Z_t \Delta t + \Delta t \int_0^{t+\Delta t} \frac{\partial}{\partial \Delta t} \Phi(t - s) Z_s ds + (\Delta t)^2 \int_0^{t+\Delta t} \frac{\partial^2}{\partial \Delta t^2} \Phi(t - s) Z_s ds + \Delta R_t \\ 1624 &= \Phi^* Z_t \Delta t + \Delta t (G^{(1)} \star Z_t) + (\Delta t)^2 (G^{(2)} \star Z_t) + \Delta R_t \end{aligned} \tag{C.16}$$

1625 **Further Remark** Without generality of a convolution, we require $s < t$. Parts for the first and second
 1626 expansion are compactly written as a degraded convolution defined by a new kernel function $G^{(1)} := \Phi'(t - s)$
 1627 and $G^{(2)}$.

1628 Then, the $(\Delta Z_t)^2$ needs an expansion of all its quadratic terms with orders of 1, 2, and 4, respectively:

$$\begin{aligned} 1629 (\Delta Z_t)^2 &= \left(\Phi^* Z_t \Delta t + \Delta t (G^{(1)} \star Z_t) + (\Delta t)^2 (G^{(2)} \star Z_t) + \Delta R_t \right)^2 \\ 1630 &= \left(\Phi^{*2} Z_t^2 \Delta^2 t + \Delta^2 t (G^{(1)} \star Z_t)^2 + \Delta^4 t (G^{(2)} \star Z_t)^2 + \Delta^2 R_t \right) \\ 1631 &\quad + 2 (AB + AC + AD + BC + BD + CD) \\ 1632 &= \left(\Phi^{*2} Z_t^2 \Delta^2 t + \Delta^2 t (G^{(1)} \star Z_t)^2 + o(\Delta^4 t) + \Delta^2 R_t \right) \\ 1633 &\quad + 2 (AB + o(\Delta^3 t) + AD + o(\Delta^3 t) + BD + CD) \end{aligned} \tag{C.18}$$

$$\tag{C.19}$$

We shall argue that all terms in $(\Delta Z_t)^2$ are obtained via Taylor expansion on the kernel $\Phi(t - s)$ and $f(Z_{t+\Delta t})$. Therefore, derivation of the Ito Lemma from convolution kernels needs meticulous study of the order of each infinitesimal and their limiting distributional behavior with respect to the order of increments in random noise. Next, we show that the order of incremental perturbation is tightly coupled with the degree and difficulty to which the full identifiability of the latent causal stochastic process can be achieved. Since the noise is assumed white, that eliminates all dependence over time but still allows for heterogeneity.

C.5.2 IDENTIFICATION WITH INSTANTANEOUS INFLUENCE

In this section, we give a brief discussion on cases in which the model has instantaneous influences, and we highlight the complexity of recovering the entire generative model, which agrees with the complexity of solving a system of quadratics.

Identifiability results have been shown in our main theorem, given a model without instantaneous influence. In such a case, \mathcal{M} is not only an upper-triangular matrix whose entries are indeterminates in a projective variety \mathbb{P}^{4p^2-2p-1} defined by a characteristic polynomial, but indeed a matrix with strictly non-zero entries in the upper-right block of size $p \times p$. Consider the augmented matrix $F_{\mathcal{G}}$ in the form of:

$$\left[\begin{array}{ccc|ccc} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1 & \cdots & f_q & e_{q+1} & \cdots & e_{2q} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ e_1 & \cdots & e_q & f_1 & \cdots & f_q \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right]$$

We regard this augmentation matrix as generic because, in the projective space \mathbb{P}^d , almost every point corresponds to a configuration in which no two directions collapse, i.e., the associated lines intersect only at infinity and thus do not exhibit linear degeneracy. The augmentation matrix is generic in the sense of lying in a Zariski-open dense set of \mathbb{P}^d , so replacing $F_{\mathcal{G}}$ with its augmented form does not alter $\dim(V)$. However, in the presence of instantaneous influences, the defining equations impose algebraic constraints that collapse this open set. In this case, the only admissible augmentation corresponds to forcing all other blocks to vanish, hence no non-trivial generic matrix can be constructed. Assume the INAR model with instantaneous influences encoded in a matrix B . Such a model is presented as follows,

$$BX_t = A_1 X_{t-1} + A_2 X_{t-2} + \cdots + A_p X_{t-p} + u_t, \quad (\text{C.20})$$

where:

B is a non-diagonal matrix capturing contemporaneous (instantaneous) effects among variables.
 u_t represents structural shocks, often assumed to satisfy $\text{Cov}(u_t) = I$.

It follows that the infinite order model is

$$O_t = FB^{-1}(\mathbb{I}_p - \Phi)^{-1} \star \epsilon_t \quad (\text{C.21})$$

It is evident that, following our reasoning, one can still recover the mixed parameter space $K' = FB^{-1}(\mathbb{I}_p - \Phi)^{-1}$ up to scaling and permutation. However, the obtained matrices constitute a degree 3 polynomial system that needs more constraints to cut out the individual parameter spaces.

Claim 1. *For the INAR model with instantaneous influences, Theorem 2 is never sufficient to recover the entire generative model.*

1692 D EXTENDED IDENTIFIABILITY RESULTS
16931694 D.1 EXISTENCE OF HIERARCHY MINIMALITY
1695

1696 We have shown that causal disentanglement under INAR (∞) is guaranteed by [Theorem 1](#) and [Theorem 2](#).
 1697 This problem is then reduced to finding the minimal cumulant hierarchical structure (complexity) and
 1698 searching d to minimally achieve this complexity. As an inspiration, we also show that the algebraic geometry
 1699 properties uniquely determine the minimality of cumulant complexity. Therefore, the Identifiability of latent
 1700 causal structure can be controlled from the geometric perspective. Then, we present several demonstrations to
 1701 find the minimal complexity under any data manifolds.

1702 *Remark 1.* In this section, we tentatively ignore our weak convergence class and consider all generalized
 1703 situations where weak convergence is no longer required. As a simple demonstration, we consider linear
 1704 and full-rank polynomial mixing of a latent causal time process driven by any noise family as a variation
 1705 of [Theorem 1](#).

1706 We first discuss a spectrum of variations for different noise processes as a path-wise nondifferentiable process
 1707 or a semi-martingale. We recall two basic identification theories and elucidate our theorem spans them strictly
 1708 by finding different hierarchy minimality.

1709 **Proposition 2** (further identifiability under special noise). *Given a sequence of stochastic processes defined
 1710 in [Theorem 2](#), the latent causal representation \mathcal{G} is identifiable up to the sign flipping and a permutation if
 1711 and only if the noise follows a Laplacian distribution.*

1712 **Proposition 3** (reduced identifiability under linear mixing F , adapted from [Carreno et al. \(2024\)](#)). *Given
 1713 a sequence of stochastic processes defined in [Theorem 2](#), the latent causal structure \mathcal{G} is identifiable up to
 1714 scaling and permutation.*

1716 Now, we focus on a more complicated but more useful scenario in which the noise process arbitrarily behaves.

1717 **Theorem A4** (identification on the limited noise support).

1719 (1.) *Under [Theorem 1](#), the identifiability is guaranteed by finding d_0 to satisfy the minimal cumulant
 1720 hierarchy proposed in [Assumption 2](#).*

1721 (2.) *d_0 and T is tractable.*

1723 (3.) *[Assumption 2](#) is still both sufficient and necessary.*

1725 According to standard tensor algebra, a linear transformation F propagates cumulant information from the
 1726 observed space to the latent space either via a multilinear transformation—when F is a linear map—or via
 1727 a multi-polynomial mapping—when F is a full-rank polynomial function. In the latter case, the resulting
 1728 system of polynomial equations grows combinatorially in complexity, reflecting the interaction between the
 1729 polynomial structure and the higher-order cumulants of the latent variables. Notably, all such equations are
 1730 governed by the same scale and distributional structure of the underlying noise process.

1731 D.2 PROOF OF [PROPOSITION 2](#)
1732

1733 We adopt a **frequency-domain transformation** to characterize both continuous-time causal influences and
 1734 standard causal transitions. Importantly, this transformation is applied *only in the latent space*, while the
 1735 observables remain real-valued in the time domain, consistent with real-world data.

1736 **Remark** *In the frequency domain, the variable f serves as a continuous index that characterizes the
 1737 spectral behavior of a signal. However, distributional shifts in this domain—especially those involving*

1739 complex-valued structures—often manifest at fine-grained levels that standard likelihood-based density
 1740 modeling fails to capture. Instead, statistical representations such as the **power spectral density** (PSD) and
 1741 its higher-order extensions (e.g., bispectrum, trispectrum) provide more faithful characterizations of the
 1742 distribution’s structural dependencies across frequencies. These quantities are directly connected to the
 1743 underlying cumulants of the signal and thus offer a natural multiscale lens to detect and interpret intervention-
 1744 induced shifts. Unlike traditional criteria, such as sufficient variability, which are often coarse, higher-order
 1745 cumulants and spectra enable more granular identification of structural changes at each statistical order.

1746 Let $S_X(f)$ denote the power spectral density of a random time-domain signal X_t , and define the autocorrela-
 1747 tion function as

$$1748 \quad R_X(\Delta) := \mathbb{E}[X_t X_{t+\Delta}].$$

1749 According to the Wiener–Khinchin theorem, $S_X(f)$ is the Fourier transform of $R_X(\Delta)$.

1750 We apply this PSD analysis to the transformed latent variable defined as a convolution:

$$1753 \quad Z_t^\Delta = K_t \star R_t,$$

1754 and analyze its structure in the frequency domain.

$$1756 \quad S_Z(f) = S_{K \star R}(f) = \|K(f)\|_F^2 S_R(f) \quad (\text{D.1})$$

$$1757 \quad = \|K(f)\|_F^2 S_{\epsilon+u}(f)$$

$$1758 \quad = \|K(f)\|_F^2 (S_\epsilon(f) + S_u(f))$$

$$1760 \quad = \|K(f)\|_F^2 \frac{1}{2\pi} \int_G R_R(\Delta) e^{-i\Delta f} d\Delta \quad (\text{D.2})$$

1762 The first equation features the relation between the origin and the composite signal to which a filter kernel
 1763 is applied. One followed by the next two equations obtained by applying the Fourier transformation to the
 1764 field G that is separated into two cases: $\Delta = 0$ and otherwise. The result above is called the Power Spectrum
 1765 Density matrix, each entry $[S_Z(f)]_{ij}$ describing the entire density information for all time lags Δ . $\delta(f)$ is a
 1766 Dirac delta function and A^H is the Hermitian transpose. Our identifiability is built upon the reasoning in the
 1767 latent space PSD and the reconstruction equivalence between $Z_t^{(\Delta)}$ and $\hat{Z}_t^{(\Delta)}$.
 1768

1769 We start with an overly simplified case indicated by Eq.(D.5). Note that the power spectrum density matrix
 1770 serves as a representation of the distribution of the total power in different frequencies, and thus it has
 1771 cross-spectrum components that capture interactions among different latent stochastic processes. Let $S_Z(f)$
 1772 be a diagonal matrix such that all cross-spectra in the frequency domain disappear, such that

$$1773 \quad [S_Z]_{ij} = \sum_{j=1}^p \sum_{i=1}^p K_{ik} S_{R,kl} \overline{K_{lj}} = 0, \quad i \neq j \quad (\text{D.3})$$

1776 We begin our technical analysis by revisiting the change-of-variable transformation, a fundamental technique
 1777 frequently employed in causal representation learning frameworks. Here, we derive its counterpart in the
 1778 frequency domain.

1779 **Fact 2.** Let Z_t be a real-valued latent process and let $h := \hat{f} \circ f^{-1}$ be the reconstruction map applied to Z_t .
 1780 If the noise is Laplacian-distributed, then the power spectral density (PSD) of the transformed differential
 1781 process $dh^{-1}(Z_t) := d\hat{Z}_t$ satisfies:

$$1783 \quad S_{dh(Z)}(f) = J_{h^{-1}} S_{dZ}(f) J_{h^{-1}}^T, \quad (\text{D.4})$$

1784 where J_h is the Jacobian of h .

1786 *Proof.* From the definition of the power spectral density, we have:
 1787

$$1788 \quad 1789 \quad S_Z(f) = \frac{1}{2\pi} \int_0^\infty R_Z(\Delta) e^{-i\Delta f} d\Delta,$$

1790 where $R_Z(\Delta) := \mathbb{E}[Z_t Z_{t+\Delta}^T]$ denotes the autocorrelation function. For the transformed process $h(Z_t)$, its
 1791 autocorrelation is:
 1792

$$1793 \quad R_{h(Z)}(\tau) = \mathbb{E}[h(Z_t)h(Z_{t+\tau})^T].$$

1794 Applying the change-of-variable formula to the differential $dh(Z_t)$, we need:
 1795

$$1796 \quad 1797 \quad \mathbb{E}[dh(Z_t)dh(Z_{t+\tau})^T] = J_h \mathbb{E}[dZ_t dZ_{t+\tau}^T] J_h^T.$$

1798 That holds when the map h is an affine, meaning h^{-1} must be a linear map, a result adapted from [Klindt et al. \(2021\)](#). Therefore, the autocorrelation function of the transformed variable is linearly related to that
 1799 of Z_t through the Jacobian, and so is the power spectral density via the Fourier transform. This proves the
 1800 identity in Eq. (D.4). \square
 1801

1802 By the derived PSD equivalence formula, a similar condition as in a regular time-domain probability space is
 1803 satisfied if a learner encoder matches the distribution between the estimated and ground variable:
 1804

$$1805 \quad S_{\hat{Z} := h(Z)}(f) = S_Z(f) \quad (D.5)$$

1806 Plug in all terms we have derived beforehand:
 1807

$$1809 \quad 1810 \quad \mathcal{F}\{(I - \Phi_t)^{-1}\}(S_\epsilon + uu^T \delta(f)) \mathcal{F}\{(I - \Phi_t)^{-1}\}^H = J_h S_Z J_h^T \quad (D.6)$$

1811 Getting each entry of this relation:
 1812

$$1813 \quad \begin{bmatrix} K_{f,11} & \dots & \dots \\ \vdots & \ddots & \vdots \\ K_{f,1p} & \dots & K_{f,pp} \end{bmatrix} \begin{bmatrix} S_\epsilon(f)_{11} + u_1^2 \delta(f) & \dots & \dots \\ \vdots & \ddots & \vdots \\ S_\epsilon(f)_{p1} + u_p u_1 \delta(f) & \dots & S_\epsilon(f)_{pp} + u_p u_p \delta(f) \end{bmatrix} \begin{bmatrix} \overline{K_{f,11}} & \dots & \dots \\ \vdots & \ddots & \vdots \\ \overline{K_{f,1p}} & \dots & \overline{K_{f,pp}} \end{bmatrix}^T \quad (D.7)$$

$$1817 \quad = J_h S_Z J_h^T \quad (D.8)$$

1819 where the $\overline{X(f)}$ is the complex conjugate of the spectrum with respect to f and ϕ_{ij} the filter kernel function.
 1820 Next, we focus on the identifiability of the ground true stochastic process Z_t .
 1821

1822 If the immigrant parameter $u = 0$ and the noise processes are white, that means their variance is not
 1823 time-varying. Then S_R is a diagonal matrix in that Eq.(D.2) has a more explicit form:
 1824

$$1825 \quad 1826 \quad \|K\|_F^2 \frac{1}{2\pi} \int_0^\infty \mathbb{E}[R_t R_{t+\Delta}] e^{-i\Delta f} d\Delta \\ 1827 \quad = \|K\|_F^2 \frac{1}{2\pi} \int_G \mathbb{E}[(\epsilon_t) \epsilon_{t+\Delta}] \delta(\Delta) e^{-i\Delta f} d\Delta \quad (D.9)$$

$$1829 \quad 1830 \quad = \|K\|_F^2 \frac{1}{2\pi} \left\{ \int_{G=0} \mathbb{E}[(R_t)(R_{t+\Delta})] \delta(t) e^{-i\Delta f} d\Delta + \int_{G \neq 0} \mathbb{E}[(R_t)(R_{t+\Delta})] \delta(t) e^{-i\Delta f} d\Delta \right\} \quad (D.10)$$

$$1831 \quad 1832 \quad = \mathcal{F}\{(I - \Phi_t)^{-1}\} \Sigma_{\epsilon_t} \mathcal{F}\{(I - \Phi_t)^{-1}\}^H \quad (D.11)$$

Therefore, to make the condition hold, the only solution is to make K (consequently K^H) a diagonal matrix, causing K and K^T should be a permutation scaling matrix. Namely, we have:

$$P_\pi \begin{bmatrix} K_{f,11} & \dots & \dots \\ \vdots & \ddots & \vdots \\ 0 & \dots & K_{f,pp} \end{bmatrix} \Sigma \begin{bmatrix} K_{f,11} & \dots & \dots \\ \vdots & \ddots & \vdots \\ 0 & \dots & K_{f,pp} \end{bmatrix}^H P_\sigma = J_h S_Z J_h^T \quad (\text{D.12})$$

The inverse of K is still a permutation scaling matrix, so it means $\mathcal{F}\{(I - \Phi_t)^{-1}\}$ also has only one non-zero value in each column and row. A stochastic delayed process should at least be correlated to itself, so $[(I - \Phi_t)_f^{-1}]_{ii} \neq 0$ and make $I - \Phi_f$ a permutation scaling matrix only when its (i, j) entry is 0. Therefore, $I - \Phi_f$ and its inverse K are both diagonal and

$$\phi_{f,ij} = 0, i \neq j \quad (\text{D.13})$$

which is equivalent to $\int_G \phi(t)_{ij} e^{2\pi i t} dt = 0$ and means $\phi(t)_{ij} = 0$. By construction, the RHS should thus be diagonal, and so is S_Z . It reduces the condition to:

$$\Lambda_Z = J_h \Lambda_Z J_h^T \quad (\text{D.14})$$

We can always left multiply J_h^{-1} and right multiply J_h^{-T} to get $J_h^{-1} \Lambda_Z J_h^{-T} = \Lambda_Z$. Since Λ_Z is a diagonal matrix, then J_h must not have more than one non-zero element, indicating J_h can be written as $P_\sigma \text{diag}(k_1, k_2, k_3, \dots, k_p)$ and thus a mixing of permutation and a scaling matrix. We now show that the identifiability can be further improved. Since we have established that $K_f S_R K_f^H = J_h K_f S_R K_f^H J_h^T$ and fixed both sides to be diagonal. If we first consider a real permutation scaling matrix of order 2, then we have:

$$P_\pi D(K_{11}, K_{22}, K_{33}) \Lambda(\sigma_{11}, \sigma_{22}, \sigma_{33}) D(K_{11}, K_{22}, K_{33}) P_\sigma = Q \Sigma Q^T \quad (\text{D.15})$$

Since $P_\sigma = P_\pi^T$, we also get $PD\Lambda DP^T = (PD)\Lambda(DP^T) = (DP)\Lambda(P^T D) = D(P\Lambda P^T)D$. The resulting matrix is a similarity transformation that scales by the value of K_{ii} each entry in the original noise spectrum density matrix. This relationship still holds when considering a complex-valued spectrum density matrix as in our setting, because what only needs to be changed is to replace a with $a + bi$, resulting in each entry of Λ scaled by $(a + pi)\overline{(a + pi)} = a^2 + p^2 = A, (b + mi)\overline{(b + mi)} = b^2 + m^2 = B$, and similarly C :

$$\begin{bmatrix} a + pi & 0 & 0 \\ 0 & 0 & c + qi \\ 0 & b + mi & 0 \end{bmatrix} \begin{bmatrix} \sigma_{11}^2 & 0 & 0 \\ 0 & \sigma_{22}^2 & 0 \\ 0 & 0 & \sigma_{33}^2 \end{bmatrix} \begin{bmatrix} a - pi & 0 & 0 \\ 0 & 0 & b - mi \\ 0 & c - qi & 0 \end{bmatrix} \quad (\text{D.16})$$

$$= \begin{bmatrix} A\sigma_{11}^2 & 0 & 0 \\ 0 & C\sigma_{33}^2 & 0 \\ 0 & 0 & B\sigma_{22}^2 \end{bmatrix} \quad (\text{D.17})$$

We know the fact that J_h is a permutation scaling matrix such that $\Lambda = J_h \Lambda J_h^T$. This means the Jacobian cannot change the values in the main diagonal. Leveraging a permutation scaling matrix magnifies the main diagonal entry and reorders the elements. Let the entry of the permutation scaling Jacob be A, B , and C . We can conclude $A^2 = B^2 = C^2 = 1$. This leads to the component-wise identifiability up to a permutation and sign flipping. The permutation is due to the random labeling of each process, for example, letting K_{11} to K_{22} , which does not change the diagonal form of the matrix but just re-numbers the process.

D.3 PROOF OF PROPOSITION 3

As one of the most interesting results for identifiability under a generic map f , we show our theorem covers the autoregressive model as a special case but requires less strict conditions on f . We adapt notations from (Yao et al., 2022a) and recall some important notations for f , g and latent variable $z_t = \{z_t^i\}_{i \in p}$:

$$x_t = g(z_t); z_t^i = f_i(\{z_{j,t-\tau} | z_{j,t-\tau} \in \mathbf{Pa}(z_{it})\}, \epsilon_t^i, \theta_r^c, \theta_r^o) \quad (\text{D.18})$$

1880 where f is a generic map and $g = \sum_{\tau=1}^p B_\tau Z_{t-\tau} + E_t$ is an autoregressive causal model of order τ (i.e.,
 1881 conditional independence holds for every $t - \tau$ time stamps). Since it is a VAR (p) model, no convergence is
 1882 needed for identification of the latent model.

1884 To connect our work to a sufficient number of prior works on causal representation learning and time-delayed
 1885 causal models, we present an analogue, time-varying time series and filter systems to standard autoregressive
 1886 time-delayed causal models. We view a continuous-time series X_t as a source signal passed to a filter $A(L)$,
 1887 which is a real-valued matrix or matrix-value functions, to generate a new signal series:
 1888

$$Y_t = A(L)X_t + B_t \quad (\text{D.19})$$

1890 that can be expanded more explicitly as $Y_t = \sum_{k=1}^T A_k X_{t-k} + B_t$. A_k is a matrix whose values may vary with
 1891 time, and B_t is another random, noisy process. In many applications, B_t represents a Brownian motion or a
 1892 stationary $I(0)$ Poisson process. These processes are widely considered in stochastic differential equation
 1893 systems that reflect the random motion of a physical object, such as particles or molecules. One more
 1894 special case is to choose $B_t := \text{Bernoulli}(p, q)$ which changes Y_t into an integer-value autoregressive process
 1895 (INAR) accompanied with a thinning operator $A \circ Y$ (Weiβ, 2008). No dependence between the filter matrix
 1896 and time leads to a reduced form of autoregressive models.
 1897

1898 Our theory supports VAR models with any fixed time lag by identifying the $\text{VAR}(\infty)$ first and letting $\tau_{\geq p} = 0$.
 1899 Since the second step of our proof induces a GL representation and thus 0 will always be mapped to the
 1900 original 0 in the kernel, completing the proof.
 1901

1902 E DETAILED MUTATE CONFIGURATION

1903 **Comparison to methods of learning latent causal variables** Throughout this paper, the identifiability
 1904 guarantees hold for any generic map f . In particular, our framework allows multiple latent processes $Z_t^{i,j,k}$
 1905 to be mapped to a smaller number of observed variables $O_t^{s,m}$, as well as a single latent process Z_t^i to be
 1906 mapped to multiple observations O_t . We intend to compare our model to those focusing on the recovery of
 1907 latent causal variables. Therefore, we also use an invertible mixing in simulations.
 1908

1909 E.1 SIMULATION REGIME

1910 We demonstrate the generative process for INAR equivalent classes. For a fair comparison to those baselines
 1911 mainly addressing step-wise conditional independence, we generate for both time-step dynamics and denser
 1912 dynamics by changing the setup to very short kernel effects with $\tau \in (0.001, 0.01) = t - t'$. We generate
 1913 stochastic point processes from three basic kernel response functions:
 1914

$$\phi_{\text{exponential}}(t) = \alpha e^{-\beta t'}, \alpha \sim \text{uniform}(0.1, 0.5) \text{ and } \beta \sim \text{uniform}[0.5, 2)$$

$$\phi_{\text{powerlaw}}(t) = \frac{\alpha}{(t + c)^\beta} \cdot \mathbf{1}, \alpha \sim \text{uniform}(0.5, 1.2), \beta \sim \text{uniform}[0.1, 0.8] \text{ and } \gamma \in \text{uniform}(1, 3, 1.8)$$

$$\phi_{\text{rectangular}}(t) = \frac{1}{T - T'} \cdot \mathbf{1}_{\{t' \leq T\}}$$

1915 The baseline intensity u_0 is sampled from $\text{uniform}(0, 1, 0.2)$. All parameters of the basic kernel are uniformly
 1916 sampled by ensuring $\alpha < \beta$ with exponential response, $\alpha < \gamma$ with a power-law response, respectively, to
 1917 satisfy the stationary increment condition such that $|\phi| < 1$. In simulations, we also consider two extreme
 1918 cases for simple nonlinear intensity and nonparametric intensity. We construct the conditional intensity
 1919

1927 function by mixing latent features through a linear transformation followed by a non-linear activation.
 1928 Specifically, we first compute a log-linear intensity using the expression
 1929

$$1930 \quad \lambda_t = \log(1 + \exp(z_\ell - r_\ell[:, \Delta, :]))$$

1931 that ensures positivity and controls the scale of the output through a smoothed ReLU (i.e., softplus). In an
 1932 alternative setting (`kernel == "np"`), we learn the intensity function using a small neural network (MLP):
 1933 a two-layer perceptron with ReLU activation, ending in a Softplus to maintain positive outputs. This setup
 1934 enables flexible, data-driven modeling of intensity dynamics beyond purely additive or linear forms. We
 1935 define the mixing intensity function using a two-layer feedforward neural network with ReLU and Softplus
 1936 activations. Formally, the architecture is given by:

$$1937 \quad \lambda_t = \sigma_+(W_2 \cdot \text{ReLU}(W_1 \lambda_t(l) + b_1) + b_2), \quad (\text{E.1})$$

1938 where

- 1941 • $\lambda_t(l) \in \mathbb{R}^d$ is the input linear basic intensity at time t ,
- 1942 • $W_1 \in \mathbb{R}^{64 \times d}$, $b_1 \in \mathbb{R}^{64}$ are the weights and bias of the first layer,
- 1943 • $W_2 \in \mathbb{R}^{d \times 64}$, $b_2 \in \mathbb{R}^d$ are the weights and bias of the second layer,
- 1944 • $\sigma_+(x) := \log(1 + e^x)$ denotes the Soft-plus activation.

1946 This design ensures the output λ_t remains strictly positive and can model complex dependencies in the latent
 1947 dynamics while maintaining numerical stability.

1949 We model the transformation from the latent variable $Z_t \in \mathbb{R}^d$ to the observational space via a multi-layer
 1950 mixing network. Specifically, for each layer $l = 1, \dots, L - 1$, the transformation is given by $Z_t^{(l)} =$
 1951 $\mathbf{A}^{(l)} \cdot \sigma_{\text{leaky}}(Z_t^{(l-1)})$, where $\mathbf{A}^{(l)} \in \mathbb{R}^{d \times d}$ is an orthogonal mixing matrix and σ_{leaky} denotes the leaky ReLU
 1952 activation with slope $\alpha = 0.2$. The initial input is $Z_t^{(0)} = Z_t$, and the final output $Z_t^{(L-1)}$ represents the
 1953 observation-space signal.

1955 E.2 PRIOR DECOMPOSITION OF TIME-ADAPTIVE MODULE

1957 Without loss of generality, we consider non-finite steps for a latent stochastic generative process, as discussed
 1958 in [Lemma 2](#), where $\Delta t \rightarrow 0$. This induces an equivalence that the intrinsic history—the filtration $\mathcal{F}_t :=$
 1959 $\sigma(\bigcup_{0 < t < T} \sigma(Z_t^\Delta))$ —ensures that the process Z_t^Δ is \mathcal{F}_t -adaptive and measurable.

1960 We decompose the ELBO objective as follows:

$$\begin{aligned} 1962 \quad \text{ELBO} &= \log p(O) - D_{\text{KL}}(q_\phi(Z|O) \| p(Z)) \\ 1963 &= \mathbb{E}_{z \sim q(Z_t|O_t)} [\log p(O_t|Z_t)] + \mathbb{E}_{z \sim q(Z_t|O_t)} \left[\log \frac{q(Z_t|O_t)}{p(Z_t)} \right] \\ 1964 &= \mathbb{E}_{z \sim q(Z_t|O_t)} [\log p(O_t|Z_t)] - \mathbb{E}_{z \sim q(Z_t|O_t)} [\log q(Z_t|O_t) - \log p(Z_t)] \\ 1965 &= \mathbb{E}_{z \sim q(Z_t|O_t)} [\log p(O_t|Z_t) - \log q(Z_t|O_t)] + \mathbb{E}_{z \sim q(Z_t|O_t)} [\log p(Z_t)] \\ 1966 &= \mathbb{E}_{z \sim q(Z_t|O_t)} [\log p(O_t|Z_t) - \log q(Z_t|O_t)] + \mathbb{E}_{z \sim q(Z_t|O_t)} \left[\sum_{\mathcal{F}_0^+}^{\mathcal{F}_T} \log p(Z_t^\Delta | \mathcal{F}_t) \right] \\ 1967 & \end{aligned}$$

1972 The reason we can segment the increasing filtration in the last term is due to the nice property of \mathcal{F}_t -measurable
 1973 sequence. We can show the filtration of $Z_t|Z_s, R_t$ and $Z_t|R_s$ is equal because it is well known that any

1974 p -order INAR sequence with stationary increments admits a moving average (MA) representation. The further
 1975 construction of their filtration $\tilde{\mathcal{F}}_t$ (resp. $R_{s < t}$) and \mathcal{F}_t (resp. $Z_{s < t}, R_t$) can show
 1976

$$\tilde{\mathcal{F}}_t = \mathcal{F}_t$$

1978 We prove the result in the sequel. For $\tilde{\mathcal{F}}_t$, Z_t is a measurable function for $s < t$. By causality of the convolution
 1979 kernel $\Psi = (I - \Phi)^{-1}$ satisfying $\Psi_\tau = 0$ for $\tau < 0$, which indicates $Z_t \in \sigma(R_s : s < t)$. Then, we construct
 1980 another filtration $\tilde{\mathcal{F}}_s : \sigma(R_u : u < s)$. By adaptivity, $\tilde{\mathcal{F}}_s : \sigma(R_u : u < s) \subseteq \tilde{\mathcal{F}}_t : \sigma(R_u : u < t)$. Therefore,
 1981 Z_s is also $\sigma(R_u : u < t)$ -measurable. Since the minimal σ -algebra of the original \mathcal{F}_t measurable function
 1982 must be contained in its σ -algebra, we have $\sigma(Z_s) \subseteq \sigma(R_u : u < t)$ and $\sigma(\bigcup_{s \leq t} \sigma(Z_s)) \subseteq \sigma(R_u : u < t)$. For
 1983 \mathcal{F}_t , $R_t = Z_t - \Psi \star Z_t$ so R_t is $\sigma(Z_s : s \leq t)$ measurable. Therefore, by a similar construction, it is evident
 1984 that $\sigma(\bigcup_{s < t} \sigma(R_s)) \subseteq \sigma(Z_s : s \leq t)$. Therefore, because $\tilde{\mathcal{F}}_t \subseteq \mathcal{F}_t$ and $\mathcal{F}_t \subseteq \tilde{\mathcal{F}}_t$, there must be $\tilde{\mathcal{F}}_t = \mathcal{F}_t$.
 1985
 1986

1987 Following this set-up, the prior becomes:

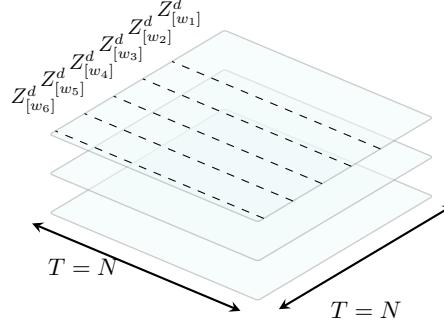
$$1988 \quad 1989 \quad 1990 \quad 1991 \quad Z_t | \mathcal{F}_t \sim \mathcal{N} \left(\begin{bmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_p(t) \end{bmatrix} \sum_{t' < t} (I - \Phi)^{-1}, \sum_{t' < t} (I - \Phi)^{-1} \Sigma_{t'} (I - \Phi)^{-T} \right)$$

1992 The latents are generated by $Z_t = (I - \Phi) \star R_t$, where R_t is modeled as isotropic Gaussian noise with
 1993 mean U and variance Σ . Note that the variance matrix Σ_{Z_t} is zero for any $t - t' \neq 0$. By Wiener-Khinchin
 1994 Theorem (Wiener, 1949), we have the covariance matrix $C_{Z_t}(0) = \frac{1}{N} \sum_{k=0}^{N-1} S_z(w_k)$, we drop the sub-index
 1995
 1996 Z_t whenever the context is clear. Now we can derive the decomposition of the convolution prior as
 1997

$$1998 \quad 1999 \quad 2000 \quad \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p(Z_t^{(\Delta)} | \mathcal{F}_t) \right\} \\ 2001 \quad 2002 \quad 2003 \quad = \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[(I - \Phi_t) \star \hat{R}_t^{(\Delta)} \right] \right\} = \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[\int_0^t (I - \Phi_{t-t'}) \hat{R}_{t'}^{(\Delta)} dt \right] \right\} \\ 2004 \quad 2005 \quad 2006 \quad = \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{U}_R, \sum_{\hat{R}_t^{(\Delta)}} H_t^{-1} \Sigma_{\hat{R}_t^{(\Delta)}} H_t^{-T}) \right] \right\} \\ 2007 \quad 2008 \quad 2009 \quad = \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{U}_R, \underbrace{\sum_{\hat{R}_t^{(\Delta)}} H_t^{-1} (PSD_{\hat{Z}_t}) \Sigma_{\hat{R}_t^{(\Delta)}} H_t^{-T} (PSD_{\hat{Z}_t})}_{C_p(Z_t)(0)}) \right] \right\} \\ 2010 \quad 2011 \quad 2012 \quad 2013 \quad = \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{U}_R, \underbrace{\sum_{\hat{R}_t^{(\Delta)}} H_t^{-1} (I - \Phi(t-t'))^{-1}}_{(1-\Phi)(w_k)^{-1} \Sigma (1-\Phi)(w_k)^{-H} = S_Z(w_k)}, \frac{1}{N} \sum_{k=0}^{N-1} S_{Z_t}(w_k)) \right] \right\} \quad (\text{E.2}) \\ 2014 \quad 2015 \quad 2016 \quad 2017 \quad 2018 \quad 2019 \quad 2020$$

$$\begin{aligned}
2021 &= \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{U} \underbrace{\sum_{\tau > 0, w=0} (I - \Phi(\tau))^{-1} e^{-jw\tau}, \frac{1}{N} \sum_{k=0}^{N-1} S_{Z_t}(w_k)}_{\text{the inverse Fourier at } w=0} \right] \right\} \\
2022 &= \mathbb{E}_{z \sim q(Z_t | O_t)} \left\{ \sum_{\mathcal{F}_0^+, Z_t, N \in (N_0, T)}^{\mathcal{F}_T} \log p \left[\mathcal{N}(\hat{U} \text{PSD}_{Z_t}(H(0)), \frac{1}{N} \sum_{k=0}^{N-1} S_{Z_t}(w_k)) \right] \right\} \tag{E.3}
\end{aligned}$$

2031 E.3 EXPLICIT CONTROL FOR CONVOLUTION PRIOR



2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

Figure A4: Visually Time-adaptive PSD Computation

Remark. The summation of kernel products and integrated noise variables is guaranteed to converge to the true time-adaptive process under \mathcal{F}_t , provided that the time discretization is sufficiently dense. The latent variable Z_t^Δ is sampled from the encoder distribution q_ϕ and passed to the PSD decomposition module to compute the frequency-domain representation of the full kernel matrix $F_w[1 - \Phi_t]$ and the power spectral density $S_{\hat{R}_t}$.

Encoder-PSD flow As shown in Eq. (E.3), a key component of our module is to efficiently compute the decomposition of the PSD matrix. However, under milder regularity conditions, the PSD decomposition is not unique, and thus can only be recovered up to the minimal-phase. Therefore, the encoded distribution is not sufficient to decompose the PSD matrix for which a reparameterization is needed. An encoder receives a T -length sequence O_t and returns the latent variable vector. Fast Fourier Transformation converts the latent sequence to a vector of equal length up to t :

$$[Z_{\mathcal{F}_0}, Z_{\mathcal{F}_t}, \dots, Z_T] \Rightarrow \{[Z[f_0], Z[f_k], \dots, Z[K]] | K = 0, 1, 2, \dots, T\},$$

and the flow method is enforced by solving the following Wilson Factorization optimization problem for each $[Z[f_0], Z[f_k], \dots, Z[K]]$, finding the transferring matrix

$$H^\dagger = \arg \min_{\Sigma_t = \sigma^2 I} PSD(Z_t) - H^\dagger \Sigma_t H^{\dagger H}.$$

It is then sent to evaluate the true prior distribution, supporting the joint optimization of all loss components. The prior distribution is more complicated when a PSD decomposition program is used. We evaluate the

2068 causal prior with a discretized filtration, which otherwise should be defined path-wise. The continuous
 2069 filtration (or the intrinsic history) \mathcal{F}_t is estimated as $\mathcal{F}_{t-}^{\Delta}$ controlling the subsequence operator Δ . This
 2070 module shares conceptual similarities with prior causal representation learning (CRL) approaches that rely on
 2071 posterior inference. However, a key distinction lies in the fact that we do not require an explicit transition map
 2072 of the form $f : [Z_{HX}, \epsilon_t] \rightarrow [Z_{HX}, Z_t]$. Instead, due to the self-convolution structure and the convergence
 2073 guarantees we establish, the transition is implicitly realized without additional modeling overhead. Crucially,
 2074 the causal structure within the latent space is preserved in an explicit form.

2075 We further remark that the key step, spectrum decomposition, is completed for the entire encoded trajectory
 2076 $\hat{Z}_{t_0:T}$, and the prior structure is ensured by segmenting filtration. This features the major difference in prior
 2077 work that recursively constructs an equal-length sliding window for each latent. Filtration segmentation can
 2078 work with causal masks that a more expressive encoder leverages. Note that transformer modules are not
 2079 a required component for shorter sequences, i.e. $T < 100$. However, when the sequence is extremely long
 2080 as simulated in the conventional class of stochastic point processes, a transformer can be used in place of a
 2081 common MLP encoder to learn much more expressive latent embeddings by utilizing the filtration attention
 2082 from arbitrarily long past events.

2083 **Overall training loss** To encourage sparsity in transferring kernels, we follow the widely-used penalty to
 2084 jointly optimize:

$$\mathcal{L}_{Total} = \mathcal{L}_{Recon} - \beta \mathcal{L}_{KLD} - \gamma |\Phi| - \omega \mathcal{L}_{PSD} \quad (E.4)$$

2085 This training objective ensures the learned latent process is driven by a family of generalized white processes,
 2086 as, in the Encoder-PSD flow, the decomposition is enforced by the prescribed isotropic noise, which omits
 2087 any discriminator module as used in [Yao et al. \(2022b\)](#). The coefficients in sparsity loss and PSD accuracy
 2088 are registered as tunable hyperparameters.

2092 E.4 EXTENDED RESULTS

2093 Table A2: Reporting best performance for each baseline

Method	Metric	Kernel Ave.	Exp	Power.	Rect.	Nonlin.	Nonpar.
TDRL	MCC	0.657	0.629	0.653	0.773	0.584	0.644
\mathcal{L}_{vae}	0.449	0.308	0.302	0.302	0.871	0.461	
BetaVAE	MCC	0.419	0.395	0.414	0.420	0.433	0.433
	\mathcal{L}_{vae}	9.480	8.538	7.533	8.424	11.683	11.220
SlowVAE	MCC	0.410	0.384	0.405	0.420	0.425	0.412
	\mathcal{L}_{vae}	362.890	395.107	448.105	452.472	238.520	280.247
PCL	MCC	0.440	0.469	0.379	0.430	0.474	0.449
	$\mathcal{L}_{vae}(\text{train})$	0.693	0.693	0.694	0.693	0.693	0.693
MUTATE	MCC	0.811	0.922	0.784	0.964	0.885	0.501
	\mathcal{L}_{vae}	0.670	0.448	0.508	0.253	0.942	1.201

2110 F RELATED WORK

2111 **Causal disentanglement and learning time series.** Although estimating and predicting time series is
 2112 a classical problem in both traditional statistics and modern machine learning, representation learning has
 2113 opened new avenues for leveraging latent information to better characterize time series data ([Wu et al., 2021](#);

2115 Liu et al., 2024). Recently, learning causal representations in time series has become a foundational approach
 2116 for enabling new scientific discoveries. This line of research primarily focuses on establishing identifiability
 2117 of causal latent variables by exploiting nonstationary data (Yao et al., 2022b;a) and modular distribution
 2118 shifts (Song et al., 2023; Cai et al., 2024) with sparsity constraints (Song et al., 2024; Zhang et al., 2024)
 2119 on the latent transition. Those works solve the identifiability problem of latent causal models by leveraging
 2120 sufficient variability that can come from proper interventions or passive distribution shifts. Another line of
 2121 research focuses on learning the underlying causal graph among latent variables.

2122
 2123 **Learning causal influences in stochastic processes.** While learning causality remains a considerably
 2124 more challenging task than causal discovery or representation learning, several efforts have been made to
 2125 bridge these areas. Here, we review existing approaches that link causal learning with stochastic modeling.
 2126 Our scope is not limited to causal representation learning with stochastic processes, but extends to a broader
 2127 set of problems that are closely related to either domain.

2128 One representative direction in causal learning for dynamical systems is the study of Granger causality—a
 2129 broader and looser notion compared to strictly structured causal models (Achab et al., 2018). It is widely
 2130 acknowledged that full causal recovery in such systems is impossible. Consequently, even the most recent
 2131 work on stochastic processes can only determine whether a point process a is Granger-causal or non-causal
 2132 with respect to another process b , typically formalized through *local independence* and the δ -separation
 2133 rule (Didelez, 2008). Another active line of work concerns identifiability in dynamical systems (Lippe et al.,
 2134 2023). However, to the best of our knowledge, none of these models provides provable guarantees for highly
 2135 dynamical systems such as self-exciting or more general stochastic processes.

2136 Connections between causal representation and dynamical systems have also been explored through ordinary
 2137 differential equations (ODEs) (Yao et al., 2024). Technically, these approaches recover only a set of parameters
 2138 that are difficult to interpret as causal in the latent space, or at best allow stochastic dynamics in the observed
 2139 variables. More recently, causal diffusion models have been proposed (Karimi Mamaghan et al., 2024;
 2140 Lorch et al., 2024), yet they largely treat diffusion as a standard denoising process and thus do not permit a
 2141 well-structured stochastic latent causal representation.

2142 Another important research direction is investigate interventions on stochastic processes and the corresponding
 2143 post-intervention distributions, which serve as the basis for causal inference (Sokol, 2013; Bongers et al.,
 2144 2018; 2022; Boeken & Mooij, 2024; Lorch et al., 2024). The first attempt to introduce a causal interpretation
 2145 into stochastic differential equations (SDEs) was made by authors of (Sokol & Hansen, 2014), where
 2146 interventions are defined as the removal of single variables in SDEs. They showed that causal principles in
 2147 SDEs can be formalized as interventions, with the resulting post-interventional distribution identifiable via the
 2148 infinitesimal generator. However, such interventions are too restrictive to capture more complex dynamical
 2149 scenarios. Following this initial line of work, (Bongers et al., 2018) further develops methods for estimating
 2150 stationary causal models by minimizing the deviation of stationarity of diffusion. Nevertheless, they consider
 2151 only observed diffusion processes that model causal effects from soft interventions that change the drifting
 2152 term.

2153 G EXTENDED DISCUSSION

2157 CONNECTION TO THREE LATENT DYNAMIC PROCESSES

2159 The identifiability guarantee is built on the proper weak convergence to finite-dimensional distributions,
 2160 which reflects a two-way path between each pair of processes. We link them by the diagram of coupling and
 2161 degeneration shown in A5.

2162 DIFFERENT LEVEL IDENTIFICATION
2163

2164 Although causal representation learning is often regarded as resolved through identifiability guarantees, a
2165 deeper understanding of identifiability itself has been largely overlooked in the current literature. Here, we
2166 emphasize the distinction among different identifiability objectives, each presenting unique challenges, and
2167 argue that identifiability can be categorized into three major lines of research.

2168 **Identifying \mathcal{G} .** Recovering the causal structure from observations is widely considered the most fundamental
2169 goal in causal representation learning—the very task that gave the field its name. Identifying \mathcal{G} is central,
2170 as knowledge of the causal structure is often sufficient to uncover the underlying mechanisms, particularly
2171 for predicting post-intervention distributions. Given a set of representations for causal variables, the causal
2172 structure is fully recovered if the associated conditional independence constraints are uniquely determined.
2173 From a modeling perspective, the encoder outputs the distribution of a random variable \hat{Z} , which may not
2174 coincide exactly with the true causal variable Z . Nevertheless, this potentially “misaligned” representation
2175 still induces a valid causal structure, providing a principled way to decompose the observed distribution.
2176 Research along this direction is commonly referred to as latent causal structure learning (Jiang & Aragam,
2177 2023; Jin & Syrgkanis, 2023; Zhang et al., 2023).

2178 **Identifying latent Z .** This objective is more ambitious than merely recovering the latent structure \mathcal{G} , as
2179 it requires an exact component-wise correspondence for each causal variable. In general, the assumptions
2180 necessary for identifying the full latent variables tend to be stronger and less realistic. To recover Z , we
2181 assume that the unknown mixing function f is noiseless and diffeomorphic. Leveraging information from the
2182 entire distribution allows us to guarantee an exact alignment between the estimated and true causal variables,
2183 thereby ensuring that the Jacobian of the construction map $f^{-1} \circ \hat{f}$ exhibits a sparse, permutation-like form.
2184 Most of prior works follow this line of research; we just name several representatives of them (Yao et al.,
2185 2022b; Zhang et al., 2024; Song et al., 2023; Hyvarinen & Morioka, 2016)

2186 **Identifying full parameters and mixing f .** Finally, we conclude this section by comparing parameter-level
2187 identification, the most challenging one, to the two aforementioned goals. Note that identifying only \mathcal{G} or Z ,
2188 under some reduced conditions, could overlap with full parameter identification since \mathcal{G} must be obtained
2189 if all causal parameters are identified. If the mixing is invertible or injective, one can easily recover latent
2190 variables by simply recovering the mixing function f from the observation. However, when nothing is linear
2191 in both latent causal models and the mixing function, recovery of parameters means recovery of the entire
2192 generative model, which is an exacting task since the parameter space lives in an arbitrarily large ambient
2193 space but is not equipped with any closed form.

2194 DISCUSSION ON NONPARAMETRIC INTENSITY
2195

2196 For completeness in identifiability theory, we complement our Theorem 2 and Theorem 3 with a discussion
2197 of a stochastic process featured by a nonlinear, flexible conditional intensity. Note that for real-world
2198 applications, Theorem 2 and Proposition 3 suffice. Following our reasoning, we can reformulate the nonlinear
2199 intensity process as follows:

$$2202 O_t = f(Z_t^\Delta) \tag{G.1}$$

$$2203 Z_t^\Delta = \psi(\lambda_t) + \epsilon_t \tag{G.2}$$

2204 One may argue that it bears resemblance to the nonlinear time series process mostly addressed in Song et al.
2205 (2023); Yao et al. (2022b;a), such a model $z_t = f(\text{Pa}(z_t), z_{t-1,j}) + \epsilon_t$. A conjecture is that the nonlinear
2206 mixing of linear intensity may or may not override the influence of the drastically increasing \mathcal{F}_t up to the
2207 current sequence. Also, the intensity may be defined with an arbitrarily dense interval, which reflects the
2208

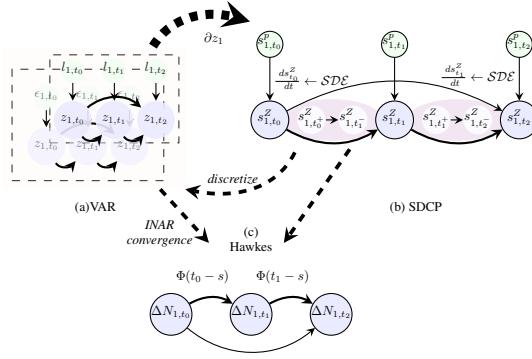


Figure A5: Connect three causal processes: revolution and degradation of causal process.

(a) classic autoregressive model that allows time-delayed causal influences. (b) causal process featured by a stochastic differential dynamics. (c) Hawkes process, a special self-exciting process.

kernel effect. Therefore, we do not have the guarantee of strict identifiability for a rather long \mathcal{F}_t -predictive process. Using the spectrum method can be a beneficial direction in future work.

THE USE OF LARGE LANGUAGE MODELS

This paper uses LLM for an auxiliary purpose, including checking for typos and formatting. When some knowledge of a certain field cannot be accessed via a formal academic record (i.e., the publication does not have a trackable link, or the manuscripts contain handwriting rather difficult to parse), LLM is used just for such information acquisition.