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Abstract

3D detection of traffic management objects, such as traffic lights and road signs,1

is vital for self-driving cars, particularly for address-to-address navigation where2

vehicles encounter numerous intersections with these static objects. This paper3

introduces a novel method for automatically generating accurate and temporally4

consistent 3D bounding box annotations for traffic lights and signs, effective up5

to a range of 200 meters. These annotations are suitable for training real-time6

models used in self-driving cars, which need a large amount of training data. The7

proposed method relies only on RGB images with 2D bounding boxes of traffic8

management objects, which can be automatically obtained using an off-the-shelf9

image-space detector neural network, along with GNSS/INS data, eliminating the10

need for LiDAR point cloud data.11

1 Introduction12

Autonomous driving is currently one of the most actively researched fields. Given the complexity13

of the problem, recent advancements focus on perceiving the entire three-dimensional environment14

around the vehicle. This comprehensive approach is essential because of the myriad traffic scenarios15

and interdependencies between objects, making two-dimensional object detection insufficient due to16

the lack of depth information. For instance, detecting a red light in a self-driving car’s camera image17

does not necessarily mean the vehicle must stop. How far away is the traffic light? Is it relevant to the18

lane in which the ego vehicle is located? To answer these questions, the 3D positions of the objects19

have to be known.20

Deep learning models currently used in self-driving cars require a vast amount of training data to21

ensure accurate predictions in all scenarios. As a consequence, there is a need to label every dynamic22

and static object with 3D bounding boxes and additional attributes over hundreds or thousands of23

hours of driving. However, manually creating these labels is expensive, time-consuming, and error-24

prone. While several datasets with 3D bounding box annotations are available for dynamic objects25

[18], [2], [10], [13], the number of available static object datasets with 3D annotations [8], especially26

those containing distant objects, is remarkably limited. As a result, there is a significant interest27

in automating the generation of such training data without human intervention. Although there are28

several large traffic light and sign datasets (LaRa [4], BSTLD [1], LISA [12], DTLD [9]), these29

contain only two-dimensional bounding box annotations. Our primary goal is to provide accurate 3D30

bounding boxes for traffic management objects, ensuring that the projected 2D bounding boxes in the31

camera image encompass objects from a wide range of viewing angles and distances. This step is32

crucial for all downstream tasks of the proposed method, such as classification or optical character33

recognition. Since the data recording process typically involves multiple sensors and a high frame34

rate, this requirement is easily met.35
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The main contribution of this work is a novel method that provides accurate positioning with an36

average mean distance of 0.2-0.3 meters and temporally consistent 3D bounding boxes of traffic37

management objects up to 200 meters away. Our method also determines additional attributes such38

as traffic light state, traffic light mask type, traffic sign type, and occlusion. The proposed solution is39

simple yet effective, relying solely on 2D images and Global Navigation Satellite System/Inertial40

Navigation System (GNSS/INS) data, without the need for expensive active sensors like LiDAR.41

Furthermore, we publish a representative dataset, automatically generated using our algorithm, under42

a CC BY-NC-SA 4.0 license, allowing the research community to use it for non-commercial research43

purposes1. To our knowledge, no publicly available large-scale dataset including distant objects44

currently exists that contains accurate 3D bounding boxes of traffic management objects, particularly45

traffic lights.46

2 Related Work47

Automatic 3D localization methods for static objects, particularly traffic signs, are already available48

with certain limitations. The three main approaches are the following: 1) using LiDAR point cloud49

data to identify the cluster associated with the object; 2) generating a synthetic point cloud through50

Structure-from-Motion and associating 2D image-space detections to the resulting 3D points; and 3)51

applying triangulation using camera images, GNSS, and orientation information.52

Approach 1) is well-suited for traffic signs due to their highly reflective coating, which produces53

dense point groups in LiDAR data with high-intensity values that can be effectively clustered. Soilán54

et al. in [16] used this technique to localize traffic signs, reprojecting them onto 2D camera images to55

spatially and temporally synchronize with the point cloud data. While this method can yield accurate56

results, separating traffic signs close to each other is challenging. Another drawback, as they noted, is57

that in urban environments, the rate of false positive detections increases due to the higher number58

of reflective objects. A similar approach [11] was presented by Ghallabi et al., but in their case, no59

camera information was used and the method was only tested in a highway environment. Song and60

Myung described a method in [17] that also utilizes 2D image detection and LiDAR point cloud61

data. They first apply a deep learning model to camera images to predict 2D bounding boxes of62

traffic signs. These boxes are then used to filter relevant parts of the point cloud within a frustum,63

and DBSCAN clustering is applied to eliminate non-relevant point groups. However, this group of64

work depends heavily on the quality of the point cloud. For traffic signs located far from the observer65

or higher than the LiDAR detection range, few or no reflective points are detected, leading to low66

localization accuracy and an increased number of false negative detections. Additionally, this method67

is ineffective for traffic lights, as they are mostly black and have lower reflectivity. Moreover, most68

traffic lights are positioned higher than the detection range of LiDAR sensors.69

Approach 2) is primarily used to create large-scale but low-resolution maps of traffic signs. Structure-70

from-Motion relies on identifying features in consecutive camera images, associating them, and71

estimating their 3D position through triangulation, thereby generating a synthetic point cloud from72

the images. Musa’s solution [15] is based on this method and further improves localization accuracy73

using the GNSS coordinates of the images. Although the algorithm runs in real-time, its accuracy74

is around 2.75 meters, which is insufficient for automated ground truth data generation. Mapillary75

Traffic Sign Dataset (MTSD) [5] provides a world-scale map of traffic management objects using76

dashcam images and Structure-from-Motion. However, based on our experiments, the accuracy is77

also within several meters, and only latitude/longitude positions can be downloaded. No 3D bounding78

boxes are available that could be projected onto camera images. Therefore, this solution cannot be79

used for automated ground truth generation either.80

The last group of methods relies on image-space detections, GNSS, and orientation information.81

Mentasti et al. developed a localization algorithm [14] for traffic lights, which they applied to the82

DriveU Traffic Light Dataset [9]. They estimated individual distances of traffic lights for each 2D83

detection using disparity maps, applied a tracking algorithm, and finally averaged the positions for84

each track ID. However, the 3D position estimation was not validated since the DriveU dataset only85

provides 2D bounding boxes of traffic lights. Fairfield and Urmson used a traffic light detection86

algorithm [7] that identifies brightly colored red, amber, and green blobs in the image. These87

detections are then associated between frames using image-to-image association and least squares88

1https://github.com/aimotive/aimotive_tl_ts_dataset
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triangulation. The orientation of the traffic light is estimated as the reciprocal heading of the mean89

car heading over all the image labels used to estimate the traffic light position. In traffic light online90

detection, the map positions are projected into the image plane, and a region of interest is defined,91

considering a larger area than the predicted bounding box. Finally, the classifier is applied to the92

image cutouts to find the light blobs and classify the colors. Since disparity-based depth estimation is93

known to be inaccurate in long distances and color-based blob detection is not applicable in the case94

of traffic signs, these methods cannot be applied to accurate 3D automatic annotation of traffic lights95

and signs.96

To summarize, there is currently no comprehensive algorithm for automatically generating high-97

precision 3D bounding boxes (including distant objects) of traffic signs and lights with additional98

attributes. The existence of such an algorithm could have a significant impact on the development of99

image-based neural networks used by self-driving vehicles.100

3 Automatic Annotation of Traffic Lights and Signs in 3D101

Figure 1: The main steps of the automatic annotation method.

Our proposed method, depicted by Figure 1, can be used for generating unlimited amounts of102

3D training data for traffic management objects. This automatic annotation algorithm consists of103

five steps: 1) Mask2Former [3] image segmentation model is used to obtain the 2D positions of104

traffic lights and traffic signs; 2) 3D bounding box centers are localized by triangulating the lines105

of sight in the Earth-centered, Earth-fixed coordinate system (ECEF), resulting in a 3D map of106

traffic management objects; 3) 3D bounding box extent and orientation are estimated; 4) 3D boxes107

are transformed into the instantaneous coordinate systems (i.e., vehicle coordinate system) of each108

frame; and 5) 3D boxes are projected onto the camera image plane and 2D image cutouts of traffic109

management objects are classified. The outcome of the proposed method is a dataset containing 3D110

annotations of traffic lights and traffic signs for each frame, including information on color state,111

occlusion, traffic light mask type, and traffic sign type. We describe the details of the main steps of112

our method in the following subsections.113

3.1 3D Localization114

The first step in 3D localization involves acquiring 2D detections of traffic management objects in115

images captured by a single front camera. Then, the bounding boxes are calculated and the centers of116

the bounding boxes are stored. Only predicted 2D bounding boxes with high confidence are used,117

thereby excluding false positive detections. This step does not reduce the recall of 3D detection, as118

traffic management objects will typically be close to the ego vehicle’s trajectory during recording and119

will appear large enough in the images over a sufficient time horizon to ensure highly confident 2D120

predictions.121

The next step is to calculate the 3D positions of these static objects. To apply the triangulation122

technique, 2D observations of the same physical 3D point from multiple viewing angles are needed.123

Since traffic lights are relatively small and compact objects and traffic signs are planar, the center of the124

2D bounding box can be treated as the projection of the same physical point with good approximation.125

Using the GNSS and orientation data of the observer along the ego vehicle’s trajectory, as well as the126

3D lines pointing towards the 2D bounding box centers, 3D positions of the object center in a global127

coordinate system through the triangulation technique illustrated in Figure 2 are determined.128

Specifically, 3D lines that come closer than 10 centimeters to each other are collected. Then, the129

coordinates of the point closest to the lines are calculated by iterating over these line pairs. This130

process generates many candidate points for the centers of 3D boxes, which are then aggregated131
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using the DBSCAN clustering method [6]. A 3D point forms a cluster if there are at least 3-5 points132

within 5-10 centimeters of each other. After identifying these clusters, their average is taken as the133

final prediction of the 3D box center in ECEF coordinates. The distance filtering and clustering134

steps enhance the algorithm’s robustness against random errors related to GNSS position, orientation,135

or camera calibration. It’s important to note that this method does not require object tracking, as136

localization is calculated directly in the global coordinate system. This leverages the fact that the137

likelihood of incorrectly associating two 2D detections from different physical objects in 3D space,138

given such low distance threshold values in the triangulation process, is very low.139

Figure 2: Calculation of 3D bounding box center.

3.2 Extent Calculation140

The map with the bounding box centers of traffic management objects is provided after the localization141

step. However, the extent of the detected objects is still unknown. To determine this attribute of142

traffic lights, the intersections of the lines pointing towards the 2D bounding box corners with a143

vertically aligned plane that contains the center of the object and is perpendicular to our line of sight144

in the x-y plane are calculated. In this step, the cross-sections of the 3D bounding boxes from various145

viewing angles are measured. Finally, the widths and heights of these cross-sections are averaged to146

estimate the width, depth, and height of the 3D bounding boxes. Note that the width and depth are set147

to the same value, which is a good estimate for the commonly vertically aligned traffic lights. The148

visualization of the traffic light size estimation method is illustrated in Figure 3.149

Traffic signs have a larger variety of shapes and can appear in shapes other than rectangles (e.g.,150

circles, triangles). Therefore, instead of using the corners of the 2D bounding boxes, the intersections151

of the vertical plane and the lines pointing toward the edge points of the bounding box are calculated.152

Since traffic signs are planar objects, the maximum of the measured widths are taken and the depth is153

set to 10 centimeters.154

Figure 3: Calculation of 3D bounding box extent.
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3.3 Orientation Estimation155

Our proposed algorithm employs a heuristic approach to determine the orientation of traffic lights.156

The orientation estimation method identifies the frame where the vehicle is approximately 10 meters157

in front of the traffic light and assumes it is oriented opposite to the direction of travel. While this158

method generally provides accurate orientations for relevant traffic lights, it may be incorrect for159

cross-traffic ones. However, this does not affect the generation of 2D image cutouts for classification160

tasks, as the 2D projection of vertically aligned traffic light boxes remains relatively consistent161

regardless of different rotation angles around the Z axis (see Fig. 4).162

For traffic signs, the algorithm uses the line-of-sight vector to the road sign in the frame where the163

measured width is maximal. The final orientation is the reverse of this vector, indicating the vehicle164

was closest to being directly opposite the corresponding traffic sign.165

Figure 4: Calculation of 3D bounding box orientation.

3.4 Reducing False Positive Detections166

At this stage, a map of 3D bounding boxes for traffic management objects with high positional167

accuracy (within 0.2-0.3 meters from the ground truth, see details in Section 5) is created, which168

can be used in various operational design domains such as rain, night, snow, etc. From this map, we169

generate 2D image cutouts of traffic management objects by projecting them onto the camera image170

plane, up to 200 meters from the ego vehicle position. Based on our experience, measurement errors171

in the triangulation technique can produce false positive boxes that are located on the same 3D lines as172

the true positive box. These false positives can be eliminated by associating their 2D projections with173

the original 2D bounding boxes. During this process, we first calculate the intersection-over-union174

(IoU) between the projections and the 2D bounding boxes, associating the average IoU value over175

the frames for each 3D bounding box. We then group 3D boxes that appear very close to each176

other, defined by an angle between their line of sight vectors below 0.25-0.3 degrees across several177

camera frames. Finally, we select the 3D box with the highest IoU value from each group as the final178

prediction.179

3.5 Classification of Object Attributes180

When considering the attributes of traffic management objects, we differentiate between time-181

dependent and time-independent properties. Time-dependent attributes, such as the traffic light color182

or the occlusion of traffic management objects, must be classified for each frame, which can be183

challenging when the object is far away from the ego vehicle. In contrast, time-independent attributes,184

such as the types of objects (e.g., forward arrow traffic light or yield, stop sign), do not change over185

time. Therefore, we can use high-resolution image cutouts when the ego vehicle is close to the objects.186

To automatically classify these attributes, we utilize standard convolutional neural networks.187

4 3D Traffic Light and Road Sign Dataset188

To facilitate research in static 3D object detection and address the challenges mentioned in Section 1,189

we have published a diverse training dataset of traffic lights and road signs, generated by our method190

described in Section 3. The recordings were captured in two countries (California, US, and Hungary)191

in urban and highway environments, and under different times of day and weather conditions. The192

dataset includes approximately 50,000 3D auto-annotated frames from 220 sequences, each 15193
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Figure 5: Samples from the dataset with 3D traffic sign and light annotations. The bounding boxes
are automatically generated by our method. Traffic light states are color-coded.

[h!]
Table 1: Comparison of datasets.

nuScenes [2] Waymo [19] DTLD (v2.0) [9] MTSD [5] Ours

Hours 5.5 6.4 NA NA 1
Annotated frames 40k 230k 40k 52k 50k
Cameras 6 5 1 (stereo) 1 4
Traffic light 3D boxes - - 2D only (292k) - 320k
Road Sign 3D boxes - 3.2M - 2D only (206k) 550k

seconds long, totaling 55 minutes of driving. In Table 1 we provide a comparison regarding to some194

commonly used autonomous driving datasets. Figure 5 visualizes sample annotations of the dataset.195

The sequences consist of images captured by four different cameras: wide and narrow front cameras,196

as well as left and right cross-traffic cameras. All of the camera frames have been anonymized using197

the DachcamCleaner software tool. Each frame includes a JSON annotation file for the traffic light198

and traffic sign 3D bounding boxes, which provides geometric information along with the traffic light199

state and mask, traffic sign type, object occlusion, and the text on traffic signs (extracted using the200

Google Vision API). The data distribution across the ODDs is shown in Figure 10. The majority of201

the dataset consists of urban scenes, with approximately 320,000 auto-annotated traffic lights and202

550,000 traffic signs. The per-frame annotation distribution is depicted in Figure 9.203

4.1 Compute resources204

We ran the developed algorithm on a computer having Intel Core i9-10900X CPU (3.70GHz × 20)205

processor, and 32 GiB RAM memory. The measured runtime is about 210-270 milliseconds for a206

single frame. This means that the runtime of producing our dataset (containing 220 sequences each207

having 227 frames) took around 2.9-3.7 hours. The mentioned per frame runtime is valid for all208

subsequent experiments described in 5.209

5 Evaluation210

5.1 Validation Challenges211

Precise localization of traffic management objects on a large scale is extremely challenging due to212

issues such as sensor limitations described in Section 2. This challenge explains why there is still no213

publicly available dataset with long-range 3D annotations for traffic signs and traffic lights. Although214

Mapillary provides global latitude and longitude coordinates for traffic signs, the accuracy is low,215

and there is no information about the vertical position, extent, or orientation to accurately place216

these objects in the local coordinate system of a driving scene. Popular autonomous driving datasets217

like nuScenes, KITTI, and Waymo present additional challenges. Among these, only Waymo [19]218

provides 3D bounding boxes for traffic signs and has GNSS information for the camera frames, which219

is necessary to evaluate our algorithm on a dataset. However, it contains annotations up to only 77-78220

meters from the observer, and there is no information about the relevance of the traffic sign to the ego221

vehicle, hence we cannot directly measure precision or recall, but only a distance error between the222

associated ground truth-prediction pairs. Moreover, we are unaware of publicly available traffic light223
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Figure 6: Qualitative comparison of Waymo ground truth (green) and auto-annotated (red) 3D bound-
ing boxes (Left: segment-14811410906788672189_373_113_393_113_with_camera_labels; Right:
segment-10203656353524179475_7625_000_7645_000_with_camera_labels). The annotated traffic
sign types in the ground truth and in the automatic annotation can be very different.

Table 2: Quantitative evaluation results of our automatic annotation method for all traffic signs of the
Waymo validation dataset.

Metric Result

Localization error 0.32 ± 0.22 meters
Orientation error 12.31 ± 2.00 degrees

datasets with 3D annotations, especially those containing distant objects. Given these difficulties,224

we have decided to validate our algorithm not only on the Waymo traffic sign dataset but also using225

manually annotated in-house benchmark datasets.226

5.2 Validation of the method on the Waymo dataset227

We evaluated our proposed method on the validation set of Waymo. Since our algorithm relies on228

egomotion-based triangulation, we filtered out segments where the traveled distance was less than 3229

meters. Hence, we ended up with a final validation set containing 189 segments (each containing230

≈ 200 frames). For the comparison of all detected traffic signs with all Waymo ground-truth boxes,231

we omitted classification metrics such as precision/recall due to the different definitions of the232

classes between Waymo and Mask2Former which we used to determine the existence of traffic signs233

in images. Fig. 6 depicts an example of the class definition mismatch. Our algorithm provides234

3D bounding boxes only for traffic signs detected by the Mask2Former model. All metrics were235

calculated within the range of [-10m, 10m] lateral and [0m, 80m] longitudinal positions of the236

instantaneous coordinate system. The association distance threshold was set to 1 meter. Altogether237

45,257 Waymo ground truth boxes have been associated with the bounding boxes generated by our238

method. The absolute mean distance between the centers is 0.32 ± 0.22 meters and the mean absolute239

difference in the orientation is 12.31 ± 2.00 degrees (see metrics in Table 2). The error distributions240

are shown in Fig. 11, where the performance was evaluated in 4 m x 10 m blocks.241

We also provide validation results with respect to a relevant subset of traffic signs where we manually242

selected speed limit and stop signs from the mentioned 189 segments. In case of four traffic signs243

we did not approach them closer than 40 meters during the segment, and therefore our algorithm244

could not provide reliable bounding box estimation. Ignoring these objects, we measured the recall,245

position, and orientation error on 66 physically different traffic signs. Together, 5,511 ground truth246

boxes have been associated with our detections, where we detected 93.76 % of traffic signs. The247

absolute mean distance between the centers is 0.28 ± 0.23 meters and the mean absolute difference248

in orientation is 8.78 ± 3.37 degrees (see Table 3). Detailed metrics can be seen in Fig. 12. These249

results indicate that the performance of our algorithm is even better if we consider only the traffic250

signs that are critical for self-driving.251
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Table 3: Quantitative evaluation results of our automatic annotation method for speed limit and stop
signs of the Waymo validation dataset.

Metric Result

Recall 93.76 %
Localization error 0.28 ± 0.23 meters
Orientation error 8.78 ± 3.37 degrees

Figure 7: Visualization of the traffic sign validation route.

5.3 Validation of Automatic Traffic Sign Annotation on in-house dataset252

We also validated the traffic sign automatic annotation performance on a 7-kilometer route in San253

José, California, which included both highway and urban sections (see the validation route in Figure254

7). In total, 183 traffic signs were manually annotated with oriented 3D bounding boxes using255

LiDAR point cloud data. This manually created map was projected into the instantaneous coordinate256

systems of the vehicle, allowing for a detailed comparison with the automatic annotation. All metrics257

were calculated within the range of [-10m, 10m] lateral and [0m, 200m] longitudinal positions of258

the instantaneous coordinate system. The association distance threshold was set to 1 meter, and259

we calculated localization precision and recall related to the bounding box center. The automatic260

annotation method achieved 97.08% precision and 95.33% recall (see Table 4 for more detailed261

results). It is worth noting that the lower recall value resulted from only six missed traffic signs on262

the highway section, which included traffic signs with categories less relevant for self-driving (e.g.263

destination distance, interchange advance exit).264

We also evaluated the localization errors of true positive detections using the absolute mean distance265

between the 3D bounding box centers and the annotations. Moreover, the absolute orientation error266

of the annotations is also evaluated. Our algorithm achieves low localization (0.3 ± 0.16 meters)267

and orientation (11.09 ± 6.78 degrees) errors that are similar to the values measured on the Waymo268

dataset. Detailed metrics are shown in Fig. 13 and Fig. 14.269

5.4 Validation of Automatic Traffic Light Annotation on in-house dataset270

Figure 8: Visualization of the traffic light validation route.
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Table 4: Quantitative evaluation results of our automatic annotation method for traffic signs on
in-house dataset.

Metric Result

Association precision 97.08 %
Association recall 95.33 %
Localization error 0.30 ± 0.16 meters
Orientation error 11.09 ± 6.78 degrees

Table 5: Quantitative evaluation results of our automatic annotation method for traffic lights on
in-house dataset.

Metric Result

Association precision 91.13 %
Association recall 95.87 %
Localization error 0.22 ± 0.20 meters
Orientation error 10.49 ± 9.39 degrees
Color state classification accuracy 94 %

We validated the automatic traffic light annotation algorithm at several intersections in Palo Alto,271

California. The validation route is approximately 1.3 kilometers long and includes 40 traffic lights (see272

the validation route in Figure 8). The 3D bounding boxes of the traffic lights, as well as their states,273

were manually annotated. Consequently, we measured both localization performance and traffic light274

state classification accuracy. In the association metrics, a true positive means the prediction is within275

1 meter of the ground truth and the predicted class is correct. All metrics were calculated within the276

range of [-10m, 10m] lateral and [0m, 200m] longitudinal positions of the instantaneous coordinate277

system. Our method achieved 91.13% precision and 95.87% recall. The absolute localization error278

between the bounding box centers is 22 centimeters, and the orientation absolute error is 10.49 ±279

9.39 degrees. The traffic light color state classification accuracy is 94%. Detailed metrics are shown280

in Fig. 15 and Fig. 16.281

6 Conclusion282

Despite self-driving developments that have been conducted for several decades, there is still no283

publicly available large-scale dataset with 3D annotated traffic lights and traffic signs. This indicates284

that annotating traffic management objects is challenging, even with manual resources. This is285

especially true for traffic lights, which are difficult to detect in LiDAR point clouds even for humans, as286

their physical characteristics (e.g., small size, high placement, and black coating) make it challenging287

for the sensor to produce easily detectable reflections. In this work, we developed a fully automated288

method to generate temporally consistent 3D bounding boxes with high localization precision for289

traffic lights and traffic signs, which can be used to train image-based perception models for self-290

driving cars. Additionally, we released a public dataset generated by our algorithm, available under a291

CC BY-NC-SA 4.0 license, allowing the research community to use it for non-commercial research292

purposes2.293

Limitations The dataset is automatically annotated and, despite our extensive quality assurance294

process aimed at minimizing errors, it is still subject to annotation errors. Furthermore, the validation295

dataset size is limited which might hinder to measure the generalization ability of the proposed296

method.297

Future work In the future, we aim to increase the manually annotated validation set’s size continually.298

Furthermore, the traffic light detection precision shall be investigated on a larger sample.299

2https://github.com/aimotive/aimotive_tl_ts_dataset
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A Appendix358

A.1 Figures359

Figure 9: Data distribution of per frame annotations.

Figure 10: Data distribution across the different operational design domains.

Figure 11: Evaluation results (in 4 m x 10 m blocks until 80 meters) of the proposed algorithm
measured on all traffic sign boxes related to the Waymo validation set (Left: Mean error in bounding
box center estimation (0.32 meters). Right: Mean absolute error in box orientation (12.31 degrees).
(best viewed by zooming in)
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Figure 12: Evaluation results (in 4 m x 10 m blocks until 80 meters) of the proposed algorithm
measured on the manually selected speed limit and stop signs related to the Waymo validation set.
Left: Mean error in bounding box center estimation (0.28 meters). Right: Mean absolute error in
box orientation (8.78 degrees).

Figure 13: Evaluation results (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic sign dataset. Left: Mean error in bounding box
center estimation (0.3 meters). Right: Mean absolute error in box orientation (11.09 degrees).
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Figure 14: Precision and recall (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic sign dataset. Left: Precision (97.08 %). Right:
Recall (95.33 %).

Figure 15: Evaluation results (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic light dataset. Left: Mean error in bounding box
center estimation (0.22 meters). Right: Mean absolute error in box orientation (10.49 degrees).
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Figure 16: Precision and recall (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic light dataset. Left: Precision (91.13 %). Right:
Recall (95.87 %).
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A.2 aiMotive 3D Traffic Light and Traffic Sign Dataset Description360

A.2.1 Dataset file structure description361

In Fig. 17 you can see the file structure of the dataset. In the root directory the dataset is sorted into362

four different operational design domains (ODDs): highway, night, rainy and urban. In each ODD363

you can find sequence folders that contain 15 sec long records. Under each sequence folder there364

is a sensor directory containing the calibration, camera image and GNSS/INS data as well as the365

traffic_light and traffic_sign folders with the relevant 3D annotation data.366

Figure 17: Description of aiMotive 3D Traffic Light and Traffic Sign Dataset file structure.

A.2.2 Sensor setup367

The recording vehicle is equipped with four cameras, IMU and GPS. Details of the cameras are listed368

below:369

• Sony IMX490 (front & cross-traffic cams)370

• 30 to 40 Hz capture frequency371

• 1/1.55” CMOS sensor of 2896 x 1876 resolution372

Parameters of IMU and GPS:373

• Novatel PwrPak7374

• Up to 100 Hz measurement frequency375

• Position accuracy of 100 mm (RTK)376

• Heading accuracy of 0.08° (baseline = 2m)377

• Roll & pitch accuracy of 0.02°378
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A.2.3 Coordinate systems379

The reference coordinate system used for defining the annotated objects is called the body coordinate380

system. The body coordinate system is a coordinate system that is attached to the object holding381

the sensor system; for example, the vehicle body. The origin is the projected ground plane point382

under the center of the vehicle’s rear axis at nominal vehicle body height and zero velocity. If looking383

towards the vehicle’s forward direction from the driver’s point of view, then:384

• the X-axis points forward along the vehicle body,385

• the Y-axis points left to the vehicle body,386

• and the Z-axis points up along the vehicle body,387

• where the measurement unit is defined in meters.388

The body coordinate system is depicted in Fig. 18.389

Figure 18: Illustration of the body coordinate system.

For cameras, the camera coordinate system can be used for projecting 3D points onto the camera390

image and vice versa. The origin is the camera’s viewpoint and the axes are defined as follows:391

• +X is right392

• +Y is down393

• +Z is forward (viewing into the scene),394

where the measurement unit is defined in meters. The camera coordinate system is depicted in Fig 19.395

Figure 19: Illustration of the body coordinate system.

The sensor layout is illustrated in Fig. 20396

A.2.4 Sensor synchronization397

All of the recorded sensors are synchronized. The annotation files (named frame_#.json, where #398

refers to the camera frame identifier number) contain the traffic light and sign objects on the given399

camera frame. The camera sensors are rolling shutter-type sensors. This means that the exposure400

starts from the top of the sensor, going downwards, row by row.401
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Figure 20: Illustration of the body coordinate system.
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B NeurIPS Paper Checklist402

1. Claims403

Question: Do the main claims made in the abstract and introduction accurately reflect the404

paper’s contributions and scope?405

Answer: [Yes]406

Justification: Yes, we highlighted the advantages of our new method as well as the published407

dataset.408

Guidelines:409

• The answer NA means that the abstract and introduction do not include the claims410

made in the paper.411

• The abstract and/or introduction should clearly state the claims made, including the412

contributions made in the paper and important assumptions and limitations. A No or413

NA answer to this question will not be perceived well by the reviewers.414

• The claims made should match theoretical and experimental results, and reflect how415

much the results can be expected to generalize to other settings.416

• It is fine to include aspirational goals as motivation as long as it is clear that these goals417

are not attained by the paper.418

2. Limitations419

Question: Does the paper discuss the limitations of the work performed by the authors?420

Answer: [Yes]421

Justification: Yes, we discuss it in the Limitations section just after the conclusions.422

Guidelines:423

• The answer NA means that the paper has no limitation while the answer No means that424

the paper has limitations, but those are not discussed in the paper.425

• The authors are encouraged to create a separate "Limitations" section in their paper.426

• The paper should point out any strong assumptions and how robust the results are to427

violations of these assumptions (e.g., independence assumptions, noiseless settings,428

model well-specification, asymptotic approximations only holding locally). The authors429

should reflect on how these assumptions might be violated in practice and what the430

implications would be.431

• The authors should reflect on the scope of the claims made, e.g., if the approach was432

only tested on a few datasets or with a few runs. In general, empirical results often433

depend on implicit assumptions, which should be articulated.434

• The authors should reflect on the factors that influence the performance of the approach.435

For example, a facial recognition algorithm may perform poorly when image resolution436

is low or images are taken in low lighting. Or a speech-to-text system might not be437

used reliably to provide closed captions for online lectures because it fails to handle438

technical jargon.439

• The authors should discuss the computational efficiency of the proposed algorithms440

and how they scale with dataset size.441

• If applicable, the authors should discuss possible limitations of their approach to442

address problems of privacy and fairness.443

• While the authors might fear that complete honesty about limitations might be used by444

reviewers as grounds for rejection, a worse outcome might be that reviewers discover445

limitations that aren’t acknowledged in the paper. The authors should use their best446

judgment and recognize that individual actions in favor of transparency play an impor-447

tant role in developing norms that preserve the integrity of the community. Reviewers448

will be specifically instructed to not penalize honesty concerning limitations.449

3. Theory assumptions and proofs450

Question: For each theoretical result, does the paper provide the full set of assumptions and451

a complete (and correct) proof?452

Answer: [NA]453
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Justification: The paper does not include theoretical results.454

Guidelines:455

• The answer NA means that the paper does not include theoretical results.456

• All the theorems, formulas, and proofs in the paper should be numbered and cross-457

referenced.458

• All assumptions should be clearly stated or referenced in the statement of any theorems.459

• The proofs can either appear in the main paper or the supplemental material, but if460

they appear in the supplemental material, the authors are encouraged to provide a short461

proof sketch to provide intuition.462

• Inversely, any informal proof provided in the core of the paper should be complemented463

by formal proofs provided in appendix or supplemental material.464

• Theorems and Lemmas that the proof relies upon should be properly referenced.465

4. Experimental result reproducibility466

Question: Does the paper fully disclose all the information needed to reproduce the main ex-467

perimental results of the paper to the extent that it affects the main claims and/or conclusions468

of the paper (regardless of whether the code and data are provided or not)?469

Answer: [Yes]470

Justification: We explained the steps of our proposed algorithm.471

Guidelines:472

• The answer NA means that the paper does not include experiments.473

• If the paper includes experiments, a No answer to this question will not be perceived474

well by the reviewers: Making the paper reproducible is important, regardless of475

whether the code and data are provided or not.476

• If the contribution is a dataset and/or model, the authors should describe the steps taken477

to make their results reproducible or verifiable.478

• Depending on the contribution, reproducibility can be accomplished in various ways.479

For example, if the contribution is a novel architecture, describing the architecture fully480

might suffice, or if the contribution is a specific model and empirical evaluation, it may481

be necessary to either make it possible for others to replicate the model with the same482

dataset, or provide access to the model. In general. releasing code and data is often483

one good way to accomplish this, but reproducibility can also be provided via detailed484

instructions for how to replicate the results, access to a hosted model (e.g., in the case485

of a large language model), releasing of a model checkpoint, or other means that are486

appropriate to the research performed.487

• While NeurIPS does not require releasing code, the conference does require all submis-488

sions to provide some reasonable avenue for reproducibility, which may depend on the489

nature of the contribution. For example490

(a) If the contribution is primarily a new algorithm, the paper should make it clear how491

to reproduce that algorithm.492

(b) If the contribution is primarily a new model architecture, the paper should describe493

the architecture clearly and fully.494

(c) If the contribution is a new model (e.g., a large language model), then there should495

either be a way to access this model for reproducing the results or a way to reproduce496

the model (e.g., with an open-source dataset or instructions for how to construct497

the dataset).498

(d) We recognize that reproducibility may be tricky in some cases, in which case499

authors are welcome to describe the particular way they provide for reproducibility.500

In the case of closed-source models, it may be that access to the model is limited in501

some way (e.g., to registered users), but it should be possible for other researchers502

to have some path to reproducing or verifying the results.503

5. Open access to data and code504

Question: Does the paper provide open access to the data and code, with sufficient instruc-505

tions to faithfully reproduce the main experimental results, as described in supplemental506

material?507
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Answer: [Yes]508

Justification: Yes, the dataset and code can be accessed here:509

https://github.com/aimotive/aimotive_tl_ts_dataset510

Guidelines:511

• The answer NA means that paper does not include experiments requiring code.512

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/513

public/guides/CodeSubmissionPolicy) for more details.514

• While we encourage the release of code and data, we understand that this might not be515

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not516

including code, unless this is central to the contribution (e.g., for a new open-source517

benchmark).518

• The instructions should contain the exact command and environment needed to run to519

reproduce the results. See the NeurIPS code and data submission guidelines (https:520

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.521

• The authors should provide instructions on data access and preparation, including how522

to access the raw data, preprocessed data, intermediate data, and generated data, etc.523

• The authors should provide scripts to reproduce all experimental results for the new524

proposed method and baselines. If only a subset of experiments are reproducible, they525

should state which ones are omitted from the script and why.526

• At submission time, to preserve anonymity, the authors should release anonymized527

versions (if applicable).528

• Providing as much information as possible in supplemental material (appended to the529

paper) is recommended, but including URLs to data and code is permitted.530

6. Experimental setting/details531

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-532

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the533

results?534

Answer: [Yes]535

Justification: Yes, we made experiments on in-house and public benchmark datasets that536

can be found in Evaluation section.537

Guidelines:538

• The answer NA means that the paper does not include experiments.539

• The experimental setting should be presented in the core of the paper to a level of detail540

that is necessary to appreciate the results and make sense of them.541

• The full details can be provided either with the code, in appendix, or as supplemental542

material.543

7. Experiment statistical significance544

Question: Does the paper report error bars suitably and correctly defined or other appropriate545

information about the statistical significance of the experiments?546

Answer: [Yes]547

Justification: Yes, we provided several error metrics of the method that can be found in the548

Evaluation section as well as in the appendix.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551

• The authors should answer "Yes" if the results are accompanied by error bars, confi-552

dence intervals, or statistical significance tests, at least for the experiments that support553

the main claims of the paper.554

• The factors of variability that the error bars are capturing should be clearly stated (for555

example, train/test split, initialization, random drawing of some parameter, or overall556

run with given experimental conditions).557

• The method for calculating the error bars should be explained (closed form formula,558

call to a library function, bootstrap, etc.)559
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• The assumptions made should be given (e.g., Normally distributed errors).560

• It should be clear whether the error bar is the standard deviation or the standard error561

of the mean.562

• It is OK to report 1-sigma error bars, but one should state it. The authors should563

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis564

of Normality of errors is not verified.565

• For asymmetric distributions, the authors should be careful not to show in tables or566

figures symmetric error bars that would yield results that are out of range (e.g. negative567

error rates).568

• If error bars are reported in tables or plots, The authors should explain in the text how569

they were calculated and reference the corresponding figures or tables in the text.570

8. Experiments compute resources571

Question: For each experiment, does the paper provide sufficient information on the com-572

puter resources (type of compute workers, memory, time of execution) needed to reproduce573

the experiments?574

Answer: [Yes]575

Justification: Yes, we described the necessary compute resources in section 4.1.576

Guidelines:577

• The answer NA means that the paper does not include experiments.578

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,579

or cloud provider, including relevant memory and storage.580

• The paper should provide the amount of compute required for each of the individual581

experimental runs as well as estimate the total compute.582

• The paper should disclose whether the full research project required more compute583

than the experiments reported in the paper (e.g., preliminary or failed experiments that584

didn’t make it into the paper).585

9. Code of ethics586

Question: Does the research conducted in the paper conform, in every respect, with the587

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?588

Answer: [Yes]589

Justification: Yes, it does.590

Guidelines:591

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.592

• If the authors answer No, they should explain the special circumstances that require a593

deviation from the Code of Ethics.594

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-595

eration due to laws or regulations in their jurisdiction).596

10. Broader impacts597

Question: Does the paper discuss both potential positive societal impacts and negative598

societal impacts of the work performed?599

Answer: [NA]600

Justification: There is no societal impact of the work performed.601

Guidelines:602

• The answer NA means that there is no societal impact of the work performed.603

• If the authors answer NA or No, they should explain why their work has no societal604

impact or why the paper does not address societal impact.605

• Examples of negative societal impacts include potential malicious or unintended uses606

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations607

(e.g., deployment of technologies that could make decisions that unfairly impact specific608

groups), privacy considerations, and security considerations.609
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• The conference expects that many papers will be foundational research and not tied610

to particular applications, let alone deployments. However, if there is a direct path to611

any negative applications, the authors should point it out. For example, it is legitimate612

to point out that an improvement in the quality of generative models could be used to613

generate deepfakes for disinformation. On the other hand, it is not needed to point out614

that a generic algorithm for optimizing neural networks could enable people to train615

models that generate Deepfakes faster.616

• The authors should consider possible harms that could arise when the technology is617

being used as intended and functioning correctly, harms that could arise when the618

technology is being used as intended but gives incorrect results, and harms following619

from (intentional or unintentional) misuse of the technology.620

• If there are negative societal impacts, the authors could also discuss possible mitigation621

strategies (e.g., gated release of models, providing defenses in addition to attacks,622

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from623

feedback over time, improving the efficiency and accessibility of ML).624

11. Safeguards625

Question: Does the paper describe safeguards that have been put in place for responsible626

release of data or models that have a high risk for misuse (e.g., pretrained language models,627

image generators, or scraped datasets)?628

Answer: [NA]629

Justification: The paper poses no such risks.630

Guidelines:631

• The answer NA means that the paper poses no such risks.632

• Released models that have a high risk for misuse or dual-use should be released with633

necessary safeguards to allow for controlled use of the model, for example by requiring634

that users adhere to usage guidelines or restrictions to access the model or implementing635

safety filters.636

• Datasets that have been scraped from the Internet could pose safety risks. The authors637

should describe how they avoided releasing unsafe images.638

• We recognize that providing effective safeguards is challenging, and many papers do639

not require this, but we encourage authors to take this into account and make a best640

faith effort.641

12. Licenses for existing assets642

Question: Are the creators or original owners of assets (e.g., code, data, models), used in643

the paper, properly credited and are the license and terms of use explicitly mentioned and644

properly respected?645

Answer: [Yes]646

Justification: Yes, they are.647

Guidelines:648

• The answer NA means that the paper does not use existing assets.649

• The authors should cite the original paper that produced the code package or dataset.650

• The authors should state which version of the asset is used and, if possible, include a651

URL.652

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.653

• For scraped data from a particular source (e.g., website), the copyright and terms of654

service of that source should be provided.655

• If assets are released, the license, copyright information, and terms of use in the656

package should be provided. For popular datasets, paperswithcode.com/datasets657

has curated licenses for some datasets. Their licensing guide can help determine the658

license of a dataset.659

• For existing datasets that are re-packaged, both the original license and the license of660

the derived asset (if it has changed) should be provided.661
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• If this information is not available online, the authors are encouraged to reach out to662

the asset’s creators.663

13. New assets664

Question: Are new assets introduced in the paper well documented and is the documentation665

provided alongside the assets?666

Answer: [Yes]667

Justification: Yes, we provided a detailed description of the published dataset and the used668

sensor setup in the appendix.669

Guidelines:670

• The answer NA means that the paper does not release new assets.671

• Researchers should communicate the details of the dataset/code/model as part of their672

submissions via structured templates. This includes details about training, license,673

limitations, etc.674

• The paper should discuss whether and how consent was obtained from people whose675

asset is used.676

• At submission time, remember to anonymize your assets (if applicable). You can either677

create an anonymized URL or include an anonymized zip file.678

14. Crowdsourcing and research with human subjects679

Question: For crowdsourcing experiments and research with human subjects, does the paper680

include the full text of instructions given to participants and screenshots, if applicable, as681

well as details about compensation (if any)?682

Answer: [NA]683

Justification: The paper does not involve crowdsourcing nor research with human subjects.684

Guidelines:685

• The answer NA means that the paper does not involve crowdsourcing nor research with686

human subjects.687

• Including this information in the supplemental material is fine, but if the main contribu-688

tion of the paper involves human subjects, then as much detail as possible should be689

included in the main paper.690

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,691

or other labor should be paid at least the minimum wage in the country of the data692

collector.693

15. Institutional review board (IRB) approvals or equivalent for research with human694

subjects695

Question: Does the paper describe potential risks incurred by study participants, whether696

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)697

approvals (or an equivalent approval/review based on the requirements of your country or698

institution) were obtained?699

Answer: [NA]700

Justification: The paper does not involve crowdsourcing nor research with human subjects.701

Guidelines:702

• The answer NA means that the paper does not involve crowdsourcing nor research with703

human subjects.704

• Depending on the country in which research is conducted, IRB approval (or equivalent)705

may be required for any human subjects research. If you obtained IRB approval, you706

should clearly state this in the paper.707

• We recognize that the procedures for this may vary significantly between institutions708

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the709

guidelines for their institution.710

• For initial submissions, do not include any information that would break anonymity (if711

applicable), such as the institution conducting the review.712
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16. Declaration of LLM usage713

Question: Does the paper describe the usage of LLMs if it is an important, original, or714

non-standard component of the core methods in this research? Note that if the LLM is used715

only for writing, editing, or formatting purposes and does not impact the core methodology,716

scientific rigorousness, or originality of the research, declaration is not required.717

Answer: [NA]718

Justification: The core method development in this research does not involve LLMs as any719

important, original, or non-standard components.720

Guidelines:721

• The answer NA means that the core method development in this research does not722

involve LLMs as any important, original, or non-standard components.723

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)724

for what should or should not be described.725
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