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Abstract

3D detection of traffic management objects, such as traffic lights and road signs,
is vital for self-driving cars, particularly for address-to-address navigation where
vehicles encounter numerous intersections with these static objects. This paper
introduces a novel method for automatically generating accurate and temporally
consistent 3D bounding box annotations for traffic lights and signs, effective up
to a range of 200 meters. These annotations are suitable for training real-time
models used in self-driving cars, which need a large amount of training data. The
proposed method relies only on RGB images with 2D bounding boxes of traffic
management objects, which can be automatically obtained using an off-the-shelf
image-space detector neural network, along with GNSS/INS data, eliminating the
need for LiDAR point cloud data.

1 Introduction

Autonomous driving is currently one of the most actively researched fields. Given the complexity
of the problem, recent advancements focus on perceiving the entire three-dimensional environment
around the vehicle. This comprehensive approach is essential because of the myriad traffic scenarios
and interdependencies between objects, making two-dimensional object detection insufficient due to
the lack of depth information. For instance, detecting a red light in a self-driving car’s camera image
does not necessarily mean the vehicle must stop. How far away is the traffic light? Is it relevant to the
lane in which the ego vehicle is located? To answer these questions, the 3D positions of the objects
have to be known.

Deep learning models currently used in self-driving cars require a vast amount of training data to
ensure accurate predictions in all scenarios. As a consequence, there is a need to label every dynamic
and static object with 3D bounding boxes and additional attributes over hundreds or thousands of
hours of driving. However, manually creating these labels is expensive, time-consuming, and error-
prone. While several datasets with 3D bounding box annotations are available for dynamic objects
(L8], [2], [LO], [13]], the number of available static object datasets with 3D annotations [8], especially
those containing distant objects, is remarkably limited. As a result, there is a significant interest
in automating the generation of such training data without human intervention. Although there are
several large traffic light and sign datasets (LaRa [4], BSTLD [1l], LISA [12], DTLD [9]), these
contain only two-dimensional bounding box annotations. Our primary goal is to provide accurate 3D
bounding boxes for traffic management objects, ensuring that the projected 2D bounding boxes in the
camera image encompass objects from a wide range of viewing angles and distances. This step is
crucial for all downstream tasks of the proposed method, such as classification or optical character
recognition. Since the data recording process typically involves multiple sensors and a high frame
rate, this requirement is easily met.
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The main contribution of this work is a novel method that provides accurate positioning with an
average mean distance of 0.2-0.3 meters and temporally consistent 3D bounding boxes of traffic
management objects up to 200 meters away. Our method also determines additional attributes such
as traffic light state, traffic light mask type, traffic sign type, and occlusion. The proposed solution is
simple yet effective, relying solely on 2D images and Global Navigation Satellite System/Inertial
Navigation System (GNSS/INS) data, without the need for expensive active sensors like LiDAR.
Furthermore, we publish a representative dataset, automatically generated using our algorithm, under
a CC BY-NC-SA 4.0 license, allowing the research community to use it for non-commercial research
purposesﬂ To our knowledge, no publicly available large-scale dataset including distant objects
currently exists that contains accurate 3D bounding boxes of traffic management objects, particularly
traffic lights.

2 Related Work

Automatic 3D localization methods for static objects, particularly traffic signs, are already available
with certain limitations. The three main approaches are the following: 1) using LiDAR point cloud
data to identify the cluster associated with the object; 2) generating a synthetic point cloud through
Structure-from-Motion and associating 2D image-space detections to the resulting 3D points; and 3)
applying triangulation using camera images, GNSS, and orientation information.

Approach 1) is well-suited for traffic signs due to their highly reflective coating, which produces
dense point groups in LiDAR data with high-intensity values that can be effectively clustered. Soildn
et al. in [16] used this technique to localize traffic signs, reprojecting them onto 2D camera images to
spatially and temporally synchronize with the point cloud data. While this method can yield accurate
results, separating traffic signs close to each other is challenging. Another drawback, as they noted, is
that in urban environments, the rate of false positive detections increases due to the higher number
of reflective objects. A similar approach [11] was presented by Ghallabi et al., but in their case, no
camera information was used and the method was only tested in a highway environment. Song and
Myung described a method in [17] that also utilizes 2D image detection and LiDAR point cloud
data. They first apply a deep learning model to camera images to predict 2D bounding boxes of
traffic signs. These boxes are then used to filter relevant parts of the point cloud within a frustum,
and DBSCAN clustering is applied to eliminate non-relevant point groups. However, this group of
work depends heavily on the quality of the point cloud. For traffic signs located far from the observer
or higher than the LiDAR detection range, few or no reflective points are detected, leading to low
localization accuracy and an increased number of false negative detections. Additionally, this method
is ineffective for traffic lights, as they are mostly black and have lower reflectivity. Moreover, most
traffic lights are positioned higher than the detection range of LiDAR sensors.

Approach 2) is primarily used to create large-scale but low-resolution maps of traffic signs. Structure-
from-Motion relies on identifying features in consecutive camera images, associating them, and
estimating their 3D position through triangulation, thereby generating a synthetic point cloud from
the images. Musa’s solution [[15] is based on this method and further improves localization accuracy
using the GNSS coordinates of the images. Although the algorithm runs in real-time, its accuracy
is around 2.75 meters, which is insufficient for automated ground truth data generation. Mapillary
Traffic Sign Dataset (MTSD) [5] provides a world-scale map of traffic management objects using
dashcam images and Structure-from-Motion. However, based on our experiments, the accuracy is
also within several meters, and only latitude/longitude positions can be downloaded. No 3D bounding
boxes are available that could be projected onto camera images. Therefore, this solution cannot be
used for automated ground truth generation either.

The last group of methods relies on image-space detections, GNSS, and orientation information.
Mentasti et al. developed a localization algorithm [14]] for traffic lights, which they applied to the
DriveU Traffic Light Dataset [9]]. They estimated individual distances of traffic lights for each 2D
detection using disparity maps, applied a tracking algorithm, and finally averaged the positions for
each track ID. However, the 3D position estimation was not validated since the DriveU dataset only
provides 2D bounding boxes of traffic lights. Fairfield and Urmson used a traffic light detection
algorithm [7] that identifies brightly colored red, amber, and green blobs in the image. These
detections are then associated between frames using image-to-image association and least squares

! https://github.com/aimotive/aimotive_tl_ts_dataset
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triangulation. The orientation of the traffic light is estimated as the reciprocal heading of the mean
car heading over all the image labels used to estimate the traffic light position. In traffic light online
detection, the map positions are projected into the image plane, and a region of interest is defined,
considering a larger area than the predicted bounding box. Finally, the classifier is applied to the
image cutouts to find the light blobs and classify the colors. Since disparity-based depth estimation is
known to be inaccurate in long distances and color-based blob detection is not applicable in the case
of traffic signs, these methods cannot be applied to accurate 3D automatic annotation of traffic lights
and signs.

To summarize, there is currently no comprehensive algorithm for automatically generating high-
precision 3D bounding boxes (including distant objects) of traffic signs and lights with additional
attributes. The existence of such an algorithm could have a significant impact on the development of
image-based neural networks used by self-driving vehicles.

3 Automatic Annotation of Traffic Lights and Signs in 3D

Detecting traffic Calculate 3D lines Calculate Set the mean of
management - going through the - intersection points of ‘ these point groups as
objects in 2D bbox centers lines the 3D box center
Providing precise 3D False positive filtering . Calculate extents of
annotation of traffic — and annotating extra PrOJeCt. the SD boxes _ 3D boxes using the
) " to the image plane )
management objects attributes 2D detections

Figure 1: The main steps of the automatic annotation method.

Our proposed method, depicted by Figure [I] can be used for generating unlimited amounts of
3D training data for traffic management objects. This automatic annotation algorithm consists of
five steps: 1) Mask2Former [3]] image segmentation model is used to obtain the 2D positions of
traffic lights and traffic signs; 2) 3D bounding box centers are localized by triangulating the lines
of sight in the Earth-centered, Earth-fixed coordinate system (ECEF), resulting in a 3D map of
traffic management objects; 3) 3D bounding box extent and orientation are estimated; 4) 3D boxes
are transformed into the instantaneous coordinate systems (i.e., vehicle coordinate system) of each
frame; and 5) 3D boxes are projected onto the camera image plane and 2D image cutouts of traffic
management objects are classified. The outcome of the proposed method is a dataset containing 3D
annotations of traffic lights and traffic signs for each frame, including information on color state,
occlusion, traffic light mask type, and traffic sign type. We describe the details of the main steps of
our method in the following subsections.

3.1 3D Localization

The first step in 3D localization involves acquiring 2D detections of traffic management objects in
images captured by a single front camera. Then, the bounding boxes are calculated and the centers of
the bounding boxes are stored. Only predicted 2D bounding boxes with high confidence are used,
thereby excluding false positive detections. This step does not reduce the recall of 3D detection, as
traffic management objects will typically be close to the ego vehicle’s trajectory during recording and
will appear large enough in the images over a sufficient time horizon to ensure highly confident 2D
predictions.

The next step is to calculate the 3D positions of these static objects. To apply the triangulation
technique, 2D observations of the same physical 3D point from multiple viewing angles are needed.
Since traffic lights are relatively small and compact objects and traffic signs are planar, the center of the
2D bounding box can be treated as the projection of the same physical point with good approximation.
Using the GNSS and orientation data of the observer along the ego vehicle’s trajectory, as well as the
3D lines pointing towards the 2D bounding box centers, 3D positions of the object center in a global
coordinate system through the triangulation technique illustrated in Figure 2] are determined.

Specifically, 3D lines that come closer than 10 centimeters to each other are collected. Then, the
coordinates of the point closest to the lines are calculated by iterating over these line pairs. This
process generates many candidate points for the centers of 3D boxes, which are then aggregated
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using the DBSCAN clustering method [6]]. A 3D point forms a cluster if there are at least 3-5 points
within 5-10 centimeters of each other. After identifying these clusters, their average is taken as the
final prediction of the 3D box center in ECEF coordinates. The distance filtering and clustering
steps enhance the algorithm’s robustness against random errors related to GNSS position, orientation,
or camera calibration. It’s important to note that this method does not require object tracking, as
localization is calculated directly in the global coordinate system. This leverages the fact that the
likelihood of incorrectly associating two 2D detections from different physical objects in 3D space,
given such low distance threshold values in the triangulation process, is very low.

3D Bounding Box Center
Calculation Process

Figure 2: Calculation of 3D bounding box center.

3.2 Extent Calculation

The map with the bounding box centers of traffic management objects is provided after the localization
step. However, the extent of the detected objects is still unknown. To determine this attribute of
traffic lights, the intersections of the lines pointing towards the 2D bounding box corners with a
vertically aligned plane that contains the center of the object and is perpendicular to our line of sight
in the x-y plane are calculated. In this step, the cross-sections of the 3D bounding boxes from various
viewing angles are measured. Finally, the widths and heights of these cross-sections are averaged to
estimate the width, depth, and height of the 3D bounding boxes. Note that the width and depth are set
to the same value, which is a good estimate for the commonly vertically aligned traffic lights. The
visualization of the traffic light size estimation method is illustrated in Figure 3]

Traffic signs have a larger variety of shapes and can appear in shapes other than rectangles (e.g.,
circles, triangles). Therefore, instead of using the corners of the 2D bounding boxes, the intersections
of the vertical plane and the lines pointing toward the edge points of the bounding box are calculated.
Since traffic signs are planar objects, the maximum of the measured widths are taken and the depth is
set to 10 centimeters.

3D Bounding Box Extent
Calculation Process

5

Figure 3: Calculation of 3D bounding box extent.
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3.3 Orientation Estimation

Our proposed algorithm employs a heuristic approach to determine the orientation of traffic lights.
The orientation estimation method identifies the frame where the vehicle is approximately 10 meters
in front of the traffic light and assumes it is oriented opposite to the direction of travel. While this
method generally provides accurate orientations for relevant traffic lights, it may be incorrect for
cross-traffic ones. However, this does not affect the generation of 2D image cutouts for classification
tasks, as the 2D projection of vertically aligned traffic light boxes remains relatively consistent
regardless of different rotation angles around the Z axis (see Fig. [).

For traffic signs, the algorithm uses the line-of-sight vector to the road sign in the frame where the
measured width is maximal. The final orientation is the reverse of this vector, indicating the vehicle
was closest to being directly opposite the corresponding traffic sign.

3D Bounding Box Orientation
Calculation Process

d = Min(distances)
& distances > 10m

Figure 4: Calculation of 3D bounding box orientation.

3.4 Reducing False Positive Detections

At this stage, a map of 3D bounding boxes for traffic management objects with high positional
accuracy (within 0.2-0.3 meters from the ground truth, see details in Section [5) is created, which
can be used in various operational design domains such as rain, night, snow, etc. From this map, we
generate 2D image cutouts of traffic management objects by projecting them onto the camera image
plane, up to 200 meters from the ego vehicle position. Based on our experience, measurement errors
in the triangulation technique can produce false positive boxes that are located on the same 3D lines as
the true positive box. These false positives can be eliminated by associating their 2D projections with
the original 2D bounding boxes. During this process, we first calculate the intersection-over-union
(IoU) between the projections and the 2D bounding boxes, associating the average IoU value over
the frames for each 3D bounding box. We then group 3D boxes that appear very close to each
other, defined by an angle between their line of sight vectors below 0.25-0.3 degrees across several
camera frames. Finally, we select the 3D box with the highest IoU value from each group as the final
prediction.

3.5 Classification of Object Attributes

When considering the attributes of traffic management objects, we differentiate between time-
dependent and time-independent properties. Time-dependent attributes, such as the traffic light color
or the occlusion of traffic management objects, must be classified for each frame, which can be
challenging when the object is far away from the ego vehicle. In contrast, time-independent attributes,
such as the types of objects (e.g., forward arrow traffic light or yield, stop sign), do not change over
time. Therefore, we can use high-resolution image cutouts when the ego vehicle is close to the objects.
To automatically classify these attributes, we utilize standard convolutional neural networks.

4 3D Traffic Light and Road Sign Dataset

To facilitate research in static 3D object detection and address the challenges mentioned in Section
we have published a diverse training dataset of traffic lights and road signs, generated by our method
described in Section 3] The recordings were captured in two countries (California, US, and Hungary)
in urban and highway environments, and under different times of day and weather conditions. The
dataset includes approximately 50,000 3D auto-annotated frames from 220 sequences, each 15



Figure 5: Samples from the dataset with 3D traffic sign and light annotations. The bounding boxes
are automatically generated by our method. Traffic light states are color-coded.

[h!]
Table 1: Comparison of datasets.

nuScenes Waymo DTLD (v2.0) [O] MTSD [3] Ours
Hours 5.5 6.4 NA NA 1
Annotated frames 40k 230k 40k 52k 50k
Cameras 6 5 1 (stereo) 1 4
Traffic light 3D boxes - - 2D only (292k) - 320k
Road Sign 3D boxes - 3.2M - 2D only (206k) 550k

194 seconds long, totaling 55 minutes of driving. In Table[I| we provide a comparison regarding to some
195 commonly used autonomous driving datasets. Figure [5|visualizes sample annotations of the dataset.
196 The sequences consist of images captured by four different cameras: wide and narrow front cameras,
197 as well as left and right cross-traffic cameras. All of the camera frames have been anonymized using
198 the DachcamCleaner software tool. Each frame includes a JSON annotation file for the traffic light
199 and traffic sign 3D bounding boxes, which provides geometric information along with the traffic light
200 state and mask, traffic sign type, object occlusion, and the text on traffic signs (extracted using the
201 Google Vision API). The data distribution across the ODDs is shown in Figure[I0} The majority of
202 the dataset consists of urban scenes, with approximately 320,000 auto-annotated traffic lights and
203 550,000 traffic signs. The per-frame annotation distribution is depicted in Figure 9]

204 4.1 Compute resources

205 We ran the developed algorithm on a computer having Intel Core 19-10900X CPU (3.70GHz x 20)
206 processor, and 32 GiB RAM memory. The measured runtime is about 210-270 milliseconds for a
207 single frame. This means that the runtime of producing our dataset (containing 220 sequences each
208 having 227 frames) took around 2.9-3.7 hours. The mentioned per frame runtime is valid for all
200 subsequent experiments described in 3]

210 5 Evaluation

211 5.1 Validation Challenges

212 Precise localization of traffic management objects on a large scale is extremely challenging due to
213 issues such as sensor limitations described in Section 2} This challenge explains why there is still no
214 publicly available dataset with long-range 3D annotations for traffic signs and traffic lights. Although
215 Mapillary provides global latitude and longitude coordinates for traffic signs, the accuracy is low,
216 and there is no information about the vertical position, extent, or orientation to accurately place
217 these objects in the local coordinate system of a driving scene. Popular autonomous driving datasets
218 like nuScenes, KITTI, and Waymo present additional challenges. Among these, only Waymo [[19]
219 provides 3D bounding boxes for traffic signs and has GNSS information for the camera frames, which
220 is necessary to evaluate our algorithm on a dataset. However, it contains annotations up to only 77-78
221 meters from the observer, and there is no information about the relevance of the traffic sign to the ego
222 vehicle, hence we cannot directly measure precision or recall, but only a distance error between the
223  associated ground truth-prediction pairs. Moreover, we are unaware of publicly available traffic light
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Figure 6: Qualitative comparison of Waymo ground truth (green) and auto-annotated (red) 3D bound-
ing boxes (Left: segment-14811410906788672189_373_113_393_113_with_camera_labels; Right:
segment-10203656353524179475_7625_000_7645_000_with_camera_labels). The annotated traffic
sign types in the ground truth and in the automatic annotation can be very different.

Table 2: Quantitative evaluation results of our automatic annotation method for all traffic signs of the
Waymo validation dataset.

Metric Result

Localization error  0.32 + 0.22 meters
Orientation error ~ 12.31 % 2.00 degrees

datasets with 3D annotations, especially those containing distant objects. Given these difficulties,
we have decided to validate our algorithm not only on the Waymo traffic sign dataset but also using
manually annotated in-house benchmark datasets.

5.2 Validation of the method on the Waymo dataset

We evaluated our proposed method on the validation set of Waymo. Since our algorithm relies on
egomotion-based triangulation, we filtered out segments where the traveled distance was less than 3
meters. Hence, we ended up with a final validation set containing 189 segments (each containing
~ 200 frames). For the comparison of all detected traffic signs with all Waymo ground-truth boxes,
we omitted classification metrics such as precision/recall due to the different definitions of the
classes between Waymo and Mask2Former which we used to determine the existence of traffic signs
in images. Fig. [6] depicts an example of the class definition mismatch. Our algorithm provides
3D bounding boxes only for traffic signs detected by the Mask2Former model. All metrics were
calculated within the range of [-10m, 10m] lateral and [Om, 80m] longitudinal positions of the
instantaneous coordinate system. The association distance threshold was set to 1 meter. Altogether
45,257 Waymo ground truth boxes have been associated with the bounding boxes generated by our
method. The absolute mean distance between the centers is 0.32 £ 0.22 meters and the mean absolute
difference in the orientation is 12.31 & 2.00 degrees (see metrics in Table2). The error distributions
are shown in Fig. [T1] where the performance was evaluated in 4 m x 10 m blocks.

We also provide validation results with respect to a relevant subset of traffic signs where we manually
selected speed limit and stop signs from the mentioned 189 segments. In case of four traffic signs
we did not approach them closer than 40 meters during the segment, and therefore our algorithm
could not provide reliable bounding box estimation. Ignoring these objects, we measured the recall,
position, and orientation error on 66 physically different traffic signs. Together, 5,511 ground truth
boxes have been associated with our detections, where we detected 93.76 % of traffic signs. The
absolute mean distance between the centers is 0.28 + 0.23 meters and the mean absolute difference
in orientation is 8.78 + 3.37 degrees (see Table[3). Detailed metrics can be seen in Fig. [T2] These
results indicate that the performance of our algorithm is even better if we consider only the traffic
signs that are critical for self-driving.
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Table 3: Quantitative evaluation results of our automatic annotation method for speed limit and stop
signs of the Waymo validation dataset.

Metric Result
Recall 93.76 %

Localization error  0.28 4 0.23 meters
Orientation error ~ 8.78 £ 3.37 degrees

\le
\%. Cupertino
\

Figure 7: Visualization of the traffic sign validation route.

5.3 Validation of Automatic Traffic Sign Annotation on in-house dataset

We also validated the traffic sign automatic annotation performance on a 7-kilometer route in San
José, California, which included both highway and urban sections (see the validation route in Figure
[7). In total, 183 traffic signs were manually annotated with oriented 3D bounding boxes using
LiDAR point cloud data. This manually created map was projected into the instantaneous coordinate
systems of the vehicle, allowing for a detailed comparison with the automatic annotation. All metrics
were calculated within the range of [-10m, 10m] lateral and [Om, 200m] longitudinal positions of
the instantaneous coordinate system. The association distance threshold was set to 1 meter, and
we calculated localization precision and recall related to the bounding box center. The automatic
annotation method achieved 97.08% precision and 95.33% recall (see Table [ for more detailed
results). It is worth noting that the lower recall value resulted from only six missed traffic signs on
the highway section, which included traffic signs with categories less relevant for self-driving (e.g.
destination distance, interchange advance exit).

We also evaluated the localization errors of true positive detections using the absolute mean distance
between the 3D bounding box centers and the annotations. Moreover, the absolute orientation error
of the annotations is also evaluated. Our algorithm achieves low localization (0.3 + 0.16 meters)
and orientation (11.09 + 6.78 degrees) errors that are similar to the values measured on the Waymo
dataset. Detailed metrics are shown in Fig. [T3]and Fig. [T4}

5.4 Validation of Automatic Traffic Light Annotation on in-house dataset
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Figure 8: Visualization of the traffic light validation route.



271
272
273
274
275
276
277
278
279
280
281

282

284

294

296

297

298
299

Table 4: Quantitative evaluation results of our automatic annotation method for traffic signs on
in-house dataset.

Metric Result

Association precision  97.08 %

Association recall 95.33 %
Localization error 0.30 £ 0.16 meters
Orientation error 11.09 £ 6.78 degrees

Table 5: Quantitative evaluation results of our automatic annotation method for traffic lights on
in-house dataset.

Metric Result

Association precision 91.13 %

Association recall 95.87 %
Localization error 0.22 + 0.20 meters
Orientation error 10.49 4 9.39 degrees

Color state classification accuracy 94 %

We validated the automatic traffic light annotation algorithm at several intersections in Palo Alto,
California. The validation route is approximately 1.3 kilometers long and includes 40 traffic lights (see
the validation route in Figure[§). The 3D bounding boxes of the traffic lights, as well as their states,
were manually annotated. Consequently, we measured both localization performance and traffic light
state classification accuracy. In the association metrics, a true positive means the prediction is within
1 meter of the ground truth and the predicted class is correct. All metrics were calculated within the
range of [-10m, 10m] lateral and [Om, 200m] longitudinal positions of the instantaneous coordinate
system. Our method achieved 91.13% precision and 95.87 % recall. The absolute localization error
between the bounding box centers is 22 centimeters, and the orientation absolute error is 10.49 +
9.39 degrees. The traffic light color state classification accuracy is 94%. Detailed metrics are shown

in Fig. [T3]and Fig.
6 Conclusion

Despite self-driving developments that have been conducted for several decades, there is still no
publicly available large-scale dataset with 3D annotated traffic lights and traffic signs. This indicates
that annotating traffic management objects is challenging, even with manual resources. This is
especially true for traffic lights, which are difficult to detect in LIDAR point clouds even for humans, as
their physical characteristics (e.g., small size, high placement, and black coating) make it challenging
for the sensor to produce easily detectable reflections. In this work, we developed a fully automated
method to generate temporally consistent 3D bounding boxes with high localization precision for
traffic lights and traffic signs, which can be used to train image-based perception models for self-
driving cars. Additionally, we released a public dataset generated by our algorithm, available under a
CC BY-NC-SA 4.0 license, allowing the research community to use it for non-commercial research

purposeﬂ

Limitations The dataset is automatically annotated and, despite our extensive quality assurance
process aimed at minimizing errors, it is still subject to annotation errors. Furthermore, the validation
dataset size is limited which might hinder to measure the generalization ability of the proposed
method.

Future work In the future, we aim to increase the manually annotated validation set’s size continually.
Furthermore, the traffic light detection precision shall be investigated on a larger sample.

2https:// github.com/aimotive/aimotive_tl_ts_dataset
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box center estimation (0.32 meters). Right: Mean absolute error in box orientation (12.31 degrees).
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Figure 12: Evaluation results (in 4 m x 10 m blocks until 80 meters) of the proposed algorithm
measured on the manually selected speed limit and stop signs related to the Waymo validation set.
Left: Mean error in bounding box center estimation (0.28 meters). Right: Mean absolute error in
box orientation (8.78 degrees).
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Figure 13: Evaluation results (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic sign dataset. Left: Mean error in bounding box
center estimation (0.3 meters). Right: Mean absolute error in box orientation (11.09 degrees).
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Figure 14: Precision and recall (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic sign dataset. Left: Precision (97.08 %). Right:
Recall (95.33 %).
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Figure 15: Evaluation results (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic light dataset. Left: Mean error in bounding box
center estimation (0.22 meters). Right: Mean absolute error in box orientation (10.49 degrees).
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Figure 16: Precision and recall (in 4 m x 10 m blocks until 200 meters) of the proposed algorithm
measured on our manually annotated in-house traffic light dataset. Left: Precision (91.13 %). Right:
Recall (95.87 %).
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A.2 aiMotive 3D Traffic Light and Traffic Sign Dataset Description
A.2.1 Dataset file structure description

In Fig. [T7]you can see the file structure of the dataset. In the root directory the dataset is sorted into
four different operational design domains (ODDs): highway, night, rainy and urban. In each ODD
you can find sequence folders that contain 15 sec long records. Under each sequence folder there
is a sensor directory containing the calibration, camera image and GNSS/INS data as well as the
traffic_light and traffic_sign folders with the relevant 3D annotation data.

0DD[highway/night/rainy/urban]
—sequence folder 1

L—sensor

L——catibration

| | calibration.json

| | extrinsic_matrices.json

——camera
I

|  L—F cTcAM_L
| | | F_CTCAM_L 0000081.]jpg
I -
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| L—F cTcAM R
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(| °
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L MIDRANGECAM_C
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L—gnssins
|  egomotionz.json
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—box
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| L—3d_body
| |  frame_8066661.json
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L —traffic_sign

—box

|
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L—sequence_folder_2
[ I
[

Figure 17: Description of aiMotive 3D Traffic Light and Traffic Sign Dataset file structure.

A.2.2 Sensor setup

The recording vehicle is equipped with four cameras, IMU and GPS. Details of the cameras are listed
below:

* Sony IMX490| (front & cross-traffic cams)
* 30 to 40 Hz capture frequency
¢ 1/1.55” CMOS sensor of 2896 x 1876 resolution

Parameters of IMU and GPS:

¢ Novatel PwrPak7

Up to 100 Hz measurement frequency

* Position accuracy of 100 mm (RTK)
» Heading accuracy of 0.08° (baseline = 2m)
Roll & pitch accuracy of 0.02°
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A.2.3 Coordinate systems

The reference coordinate system used for defining the annotated objects is called the body coordinate
system. The body coordinate system is a coordinate system that is attached to the object holding
the sensor system; for example, the vehicle body. The origin is the projected ground plane point
under the center of the vehicle’s rear axis at nominal vehicle body height and zero velocity. If looking
towards the vehicle’s forward direction from the driver’s point of view, then:

* the X-axis points forward along the vehicle body,
* the Y-axis points left to the vehicle body,
* and the Z-axis points up along the vehicle body,

¢ where the measurement unit is defined in meters.

The body coordinate system is depicted in Fig. [T8]

Figure 18: Illustration of the body coordinate system.

For cameras, the camera coordinate system can be used for projecting 3D points onto the camera
image and vice versa. The origin is the camera’s viewpoint and the axes are defined as follows:

* +X is right
* +Y is down
* +7 is forward (viewing into the scene),

where the measurement unit is defined in meters. The camera coordinate system is depicted in Fig[T9]

L Y
Figure 19: Illustration of the body coordinate system.

The sensor layout is illustrated in Fig. [20]

A.2.4 Sensor synchronization

All of the recorded sensors are synchronized. The annotation files (named frame_#.json, where #
refers to the camera frame identifier number) contain the traffic light and sign objects on the given
camera frame. The camera sensors are rolling shutter-type sensors. This means that the exposure
starts from the top of the sensor, going downwards, row by row.
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Left camera

Right camera

Figure 20: Illustration of the body coordinate system.
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B NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we highlighted the advantages of our new method as well as the published
dataset.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss it in the Limitations section just after the conclusions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We explained the steps of our proposed algorithm.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, the dataset and code can Dbe accessed here:
https://github.com/aimotive/aimotive_tl_ts_dataset

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we made experiments on in-house and public benchmark datasets that
can be found in Evaluation section.

Guidelines:

* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provided several error metrics of the method that can be found in the
Evaluation section as well as in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we described the necessary compute resources in section 4.1}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, it does.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, they are.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provided a detailed description of the published dataset and the used
sensor setup in the appendix.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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713 16. Declaration of LLLM usage

714 Question: Does the paper describe the usage of LLMs if it is an important, original, or
715 non-standard component of the core methods in this research? Note that if the LLM is used
716 only for writing, editing, or formatting purposes and does not impact the core methodology,
717 scientific rigorousness, or originality of the research, declaration is not required.

718 Answer: [NA]

719 Justification: The core method development in this research does not involve LLMs as any
720 important, original, or non-standard components.

721 Guidelines:

722 * The answer NA means that the core method development in this research does not
723 involve LLMs as any important, original, or non-standard components.

724 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
725 for what should or should not be described.
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