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Abstract

Out-of-distribution (OOD) detection aims to identify OOD data based on represen-
tations extracted from well-trained deep models. However, existing methods largely
ignore the reprogramming property of deep models and thus may not fully unleash
their intrinsic strength: without modifying parameters of a well-trained deep model,
we can reprogram this model for a new purpose via data-level manipulation (e.g.,
adding a specific feature perturbation to the data). This property motivates us to
reprogram a classification model to excel at OOD detection (a new task), and thus
we propose a general methodology named watermarking in this paper. Specifically,
we learn a unified pattern that is superimposed onto features of original data, and
the model’s detection capability is largely boosted after watermarking. Extensive
experiments verify the effectiveness of watermarking, demonstrating the signifi-
cance of the reprogramming property of deep models in OOD detection. The code
is publicly available at: github.com/qizhouwang/watermarking.

1 Introduction

Deep learning systems in an open world often encounter out-of-distribution (OOD) inputs whose
label spaces are disjoint with that of training data, known as in-distribution (ID) data. For safety-
critical applications, deep models should make reliable predictions for ID data, meanwhile detecting
OOD data and avoiding making predictions for the detected ones. This leads to the OOD detection
task [28, 38, 41, 50], which has attracted intensive attention in the real world.

Identifying OOD data remains non-trivial since deep models can be overconfident with them [40].
As a promising technique, the classification-based OOD detection [58] relies on various scoring
functions derived by classification models well trained with ID data (i.e., well-trained models), taking
those inputs with small scores as OOD cases. In general, the scoring functions can be defined by
logit outputs [17, 33], gradients [21], and embedding features [28, 44]. Without interfering with the
well-trained models or requiring extra computation, they exploit the inherent capability of models
learned from only ID data. In general, these advantages can be critical in reality, where the cost of
re-training is prohibitively high and the acquisition of true OOD data is very difficult [58].
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Although promising progress has been achieved, previous works largely ignore the reprogramming
property [9] of deep models: a well-trained model can be repurposed for a new task by a proper
transformation of original inputs (e.g., a universal feature perturbation), without modifying any model
parameter. For example, a model pre-trained on ImageNet [6] dataset can be reprogrammed for
classifying biomedical images [49]. This property indicates the possibility of making a well-trained
model adapt for effective OOD detection, motivating us to make the first attempt to investigate if the
reprogramming property of deep models can help to address OOD detection, i.e., can we reprogram
well-trained deep models for OOD detection (a new task)?

In this paper, we propose a novel method, watermarking, to reprogram a well-trained model by
adding a watermark to original inputs, making the model can help detect OOD data well. The
watermark has the same shape with original inputs, which is a static pattern that can be added for
test-time inputs (cf., Figure 1). The pre-defined scoring strategy (e.g., the free energy scoring [33])
is expected to be enhanced, with an enlarged gap of OOD scores between the watermarked ID and
OOD data (cf., Figure 2).

Figure 1: Watermarking on CIFAR-10 [26] with
free energy scoring [33]. The left figure is the
learned watermark; the middle figure is an original
input; the right figure is the watermarked result.

It is non-trivial to find the proper watermark due
to our lack of knowledge about unseen OOD
data in advance. To address the issue, we pro-
pose a learning framework for effective water-
marking. The insight is to make a well-trained
model produce high scores for watermarked ID
inputs meanwhile regularize the watermark such
that the model will return low confidence with-
out perceiving ID pattern. In this case, the model
will have a relatively high score for a water-
marked ID input, while the score remains low
for OOD data (cf., Figure 2). The reason is that
the model encounters a watermarked input but
not seeing any ID pattern. In our realization, we
adopt several representative scoring strategies, devising specified learning objectives and proposing a
reliable optimization algorithm to learn an effective watermark.

To understand our watermarking, Figure 1 depicts the watermark learned on CIFAR-10 [26] dataset,
with the free energy scoring [33]. As we can see, the centre area of the learned watermark largely
preserves the original input pattern, containing the semantic message that guides the detection
primitively. By contrast, the edge area of the original input is superimposed by the specific pattern
of the watermark, which may encode the knowledge once hidden by the model in boosting OOD
detection. Overall, watermarking can preserve the meaningful pattern of original inputs in detection,
with the improved detection capability that is learned from the trained model and ID data.

Figure 2 demonstrates the effect of our learned watermark, which is an example with the free energy
scoring. After watermarking, the scoring distributions are much concentrated, and the gap between
ID (i.e., CIFAR-10) and OOD (i.e., SVHN [39] and Texture [4] datasets) data is enlarged notably.
We conduct extensive experiments for a wide range of OOD evaluation benchmarks , and the results
verify the effectiveness of our proposal.

The success of watermarking takes roots in the following aspects: (1) a well-trained model on
classification has the potential to be reprogrammed for OOD detection since they are two related
tasks; (2) reprogramming has been widely studied, ranging from image classification to time series
analysis [6, 49], making our proposal general across various domains; and (3) OOD detection suffers
from the lack of knowledge about the real-world OOD distributions. Fortunately, with only data-level
manipulation in low dimensions, watermarking can largely mitigate this issue of limited data. Overall,
this data-level manipulation is orthogonal to existing methods, and thus provides a new road in OOD
detection and can inspire more ways to design OOD detection methods in the future.

2 Related Works

To begin with, we briefly review the related works in OOD detection and model reprogramming.
Please refer to Appendix A for the detailed discussion.
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Figure 2: Experimental results before (a) /after (b) watermarking with CIFAR-10 being the ID
dataset, SVHN and Texture being the OOD datasets. Data with large (small) OOD scores should be
taken as ID (OOD) data, and a larger distribution gap of scoring between ID and OOD data ensures a
better detection performance. After watermarking, the gap between ID and OOD data is enlarged,
demonstrating the improved capability of the original model in OOD detection. The horizontal axes
are ignored for illustration, please refer to Figure 4 for a completed version.

OOD Detection discerns ID and OOD data by their gaps regarding the specified metrics/scores,
and existing methods can be roughly divided into three categories [58], the classification-based
methods, the density-based methods, and the distance-based methods. Specifically, the classification-
based methods [17, 21, 33, 44] use representations extracted from the well-trained models in OOD
scoring; and the distance-based methods [2, 20, 60] measure the distance of inputs from class
centers in the embedding space. Moreover, the density-based methods estimate input density with
probabilistic models [28, 41, 45], identifying those OOD data with small likelihood values. Distance-
based and density-based methods may suffer from complexity in computation [28] and difficulty in
optimization [62]. Therefore, more researchers focus on developing classification-based methods and
have made big progress on benchmark datasets recently [21, 33].

Model Reprogramming repurposes well-trained models for new tasks with only data-level ma-
nipulation [9], indicating that deep models are competent for different jobs without changing any
model parameter. In previous works, the data-level manipulation typically refers to a static padding
pattern (different from our proposal) learned for the target task, which is added to the test-time data.
The effectiveness of the model reprogramming is verified across image classification [9, 49] and
time-series analysis [13, 57]. In this paper, we use the reprogramming property of deep models for
effective OOD detection, which has been overseen previously.

3 Preliminary

LetX ⊂ Rd be the input space and Y = {1, . . . , c} be the label space. We consider the ID distribution
DID

X ,Y defined over X × Y , the training sample Sn = {(xi, yi)}ni=1 of size n independently drawn
from DID

X ,Y , and a classification model f : X → Rc (with logit outputs) well-trained on Sn.

Based on the model f(·), the goal of the classification-based OOD detection is to design a detection
model g : X → {0, 1} that can distinguish test-time inputs with the ID distribution DID

X from those
with the OOD distribution DOOD

X . In general, DOOD
X is defined as an irrelevant distribution of which

the label set has no intersection with Y , and thus should not be predicted by f(·). Overall, with 0
denoting the OOD case and 1 the ID case, the detection model g(·) is defined as

g(x; τ) =

{
1 s(x; f) ≥ τ

0 s(x; f) < τ
, (1)

where τ ∈ R is a threshold and s : X → R is the scoring function defined by f(·) whose parameters
are fixed. Here, we focus on two representative methods in the classification-based OOD detection,
namely, the softmax scoring and the free energy scoring.
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Softmax Scoring Function [17] uses the maximum softmax prediction in OOD detection, of which
the scoring function sSM(·) is given by

sSM(x; f) = max
k

softmaxk f(x), (2)

where softmaxk(·) denotes the k-th element of the softmax outputs. In general, with a large (small)
sSM(x; f), the detection model will take the input x as an ID (OOD) case.

Free Energy Scoring Function [33] adopts the free energy function for scoring, defined by the logit
outputs with the logsumexp operation, namely,

sFE(x; f) = log
∑
k

exp fk(x)/T, (3)

where T > 0 is the temperature parameter, fixed to 1 [33]. It aligns with the density of inputs to some
extent, and thus is less susceptible to the overconfidence issue than the softmax scoring [33].

4 Watermarking Strategy

This section introduces the key concepts of watermarking for classification-based OOD detection.

Definition. A watermark w ∈ Rd is a unified pattern with the exact shape as original inputs. It
is added to test-time inputs statically, and we refer w + x a watermarked input for ∀x ∈ X . In
expectation, regarding the specified scoring function s(·), our watermarking should make the model
excel at OOD detection for watermarked data.

Learning Strategy. Given the scoring function s(·), it is challenging to devise the exact watermark
pattern by predefined rules. Therefore, for the proper watermarks in OOD detection, we need to
devise learning objectives with respect to watermarks, which consider both ID and OOD data.

We generally have no information about the OOD distribution DOOD
X ,Y , while we still want the model

excels in discerning ID and OOD data from scoring. For this challenge, we make the model produce
high scores if watermarked ID data are observed; meanwhile, we regularize the watermark such that
the model will return low scores when ID patterns do not exist. From the lens of our model, the
scores should remain low if a watermarked OOD input is given since the watermark is not trained to
perceive OOD data, of which the patterns are very different from the ID data.

Benefits of Watermarking. Watermarking directly reprograms the model to make an adaptation
to our specified task of scoring, such that the detection capability of the original model is largely
improved. By contrast, previous methods typically adapt to their specified tasks by only the threshold
τ as in Eq. (1). However, it requires the trade-off between false positive (ID) and false negative
(OOD) rates when densities of scoring are non-separable (cf., Figure 2(a)).

Further, watermarking enjoys the benefits of previous classification-based methods in that we do not
modify the original training procedure in classification, making our proposal easy to be deployed in
real-world systems. Although the watermark also should be learned, the parameter space is in low
dimension, and the learning procedure could be conducted post-hoc after the systems are deployed.

Comparison with Existing Works. In OOD detection, this paper is a first attempt in using the
reprogramming property of deep models, leading to an effective learning framework named water-
marking. At first glance, our methodology is seemingly similar to ODIN [32], which also conducts
data-level perturbation for OOD detection. However, their instance-specified perturbation relies on
extra backward-forward iterations during the test, which is not required in our method. Further, ODIN
is designed for the softmax scoring, but our proposal is much general in OOD detection.

5 Realizations of Watermarking Strategy

In this section, we discuss our learning framework of watermarking in detail.

Learning Objectives. As mentioned above, we need to consider the ID and OOD situations separately,
with the associated loss functions denoted by ℓID(·) and ℓOOD(·). For the ID case, the ID training data
are required, where we make the high scores for their watermarked counterparts. By contrast, since
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we typically lack knowledge about the test-time OOD data, only the watermark is used here, and we
expect the model to produce the score as low as possible when only perceiving the watermark.

Further, since only the watermark is adopted for training in the OOD case, the learned watermark is
pretty sensitive regarding the detection model, i.e., the model may return different predictions when
facing small perturbations. Thus, the watermarked OOD inputs may not guarantee the low scores.
To this end, the watermark is further perturbed during training. Here we adopt the Gaussian noise,
leading to the perturbed watermark of the form ϵ +w with ϵ ∼ N (0, σ1Id) the independent and
identically distributed (i.i.d.) Gaussian noise of d-dimension (the mean 0 and the standard deviation
σ1Id). Then, the overall risk can be written as,

Ln(w) =
∑
n

ℓID(xi +w, yi; f)︸ ︷︷ ︸
LID

n (w)

+β
∑
n

ℓOOD(ϵj +w; f)︸ ︷︷ ︸
LOOD

n (w)

, (4)

with β ≥ 0 the trade-off parameter, LID
n (w) the risk for ID data, and LOOD

n (w) the risk for OOD data.

Optimization. To find the proper watermark, we use the first-order gradient update to iteratively
update watermark’s elements. However, data-level optimization remains difficult in deep learning, of
which the results may get stuck at suboptimal points [52]. A common approach is to use the signum
of first-order gradients, guiding the updating rule of the current watermark via

w ← w − αsign(∇wLn(w)), (5)

where sign(·) denotes the signum function and α > 0 is the step size [35].

Further, for generality and insensibility, we prefer the solution that lies in the neighbourhood having
uniformly low loss, i.e., with a smooth loss landscape [24]. Therefore, we adopt the sharpness-aware
minimization (SAM) [10], an effective optimization framework in the seek of both the low loss value
and the smooth loss landscape. Specifically, given the original risk Ln(w), the SAM problem is:

LSAM
n (w) = max

||κ||2≤ρ
[Ln(w + κ)− Ln(w)]︸ ︷︷ ︸

sharpness

+Ln(w) = max
||κ||2≤ρ

Ln(w + κ) (6)

where ρ ≥ 0 is a constraint. For efficiency, the SAM makes the first-order Taylor expansion w.r.t. κ
around 0, obtaining the approximated solution of the form 3:

κ = ρsign(∇wLn(w))
|∇wLn(w)|q−1

(||∇wLn(w)||qq)1/p
, (7)

where 1/p + 1/q = 1 and we set p = q = 2 for simplicity. Therefore, the estimation form of the
SAM is written as Ln(w + κ), with corresponding updating rule of

w ← w − αsign(∇wLn(w + κ)), (8)

yielding an efficient optimization algorithm that induces the effective watermark.

The Overall Algorithm. In summary, we describe the overall learning framework. To begin with, the
watermark is initialized by the i.i.d. Gaussian noise with the 0 mean and a small standard deviation
σ2Id, and the learning procedure consists of three stages for each updating step:

• Negative sampling: a set of noise data ϵ is sampled, assuming be of the size m as that of the
mini-batch regarding the ID sample;

• Risk calculating: the risk for ID and OOD data are computed, and the overall risk is given
by their sum with a trade-off parameter β as in Eq. (4);

• Watermark updating: the first-order gradient guides the pixel-level update of the watermark,
using the signum of gradients and the SAM to make a reliable update as in Eq. (8).

The learned watermark is added to test-time inputs for OOD detection, and the detection model with
the pre-defined scoring function is then deployed. Appendix B summarizes our learning framework
of watermarking. Moreover, two specifications of watermarking are discussed in the following.

3With an abuse of notation, we denote the estimated solution in the SAM as κ for simplicity.
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Two Realizations. Here, we focus on two representative methods in OOD detection, namely, the
softmax scoring and the free energy scoring. For other representative methods in OOD detection,
please refer to Appendix C for their descriptions and the experiments.

Softmax Scoring-based Watermarking. Following [18], we set ℓID
SM(·) to be the cross entropy loss and

ℓOOD
SM (·) to be the cross entropy regarding the uniform distribution, namely,

ℓID
SM(x, y; f) = − log softmaxyf(x) and ℓOOD

SM (x; f) = −
∑
k

1

c
log softmaxkf(x), (9)

specifying the learning objectives in Eq. (4) for the softmax scoring-based watermarking.

Free-Energy Scoring-based Watermarking. [33] use a set of learning objectives for model re-training
with free energy scoring. However, their logsumexp operation originating from the free energy
function is difficult for optimization, posing notorious computing issues [36]. To this end, we drop
the log operation and make the overall risk always positive by the following learning objectives:

ℓID
FE(x; f) =

∑
k

exp−fk(x)/T1 and ℓOOD
FE (x; f) =

∑
k

exp fk(x)/T2, (10)

realizing the learning objectives in Eq. (4) for the free energy scoring.

6 Experiments

In this section, we conduct extensive experiments for watermarking in OOD detection. Specifically,
we demonstrate the effectiveness of our method on a wide range of OOD evaluation benchmarks; we
conduct experiments for the important hyper-parameters in our learning framework; and we provide
further experiments for an improved interpretation of our proposal.

Baselines results are achieved by our re-run of the publicly available codes. The source code of
our proposal is released at github.com/qizhouwang/watermarking. All the methods are realized by
Pytorch 1.81 with CUDA 11.1, where we use several machines equipped with GeForce RTX 3090
GPUs and AMD Ryzen Threadripper 3960X Processors.

ID and OOD Datasets. We use CIFAR-10, CIFAR-100 [26], and ImageNet [42] datasets as three ID
datasets, with data pre-processing including horizontal flip and normalization. Furthermore, for the
OOD datasets, we adopt several commonly-used benchmarks, including Textures [4], SVHN [39],
Places365 [63], LSUN [59], and iSUN [56]. Referring to Appendix C.7 for hyper-parameter settings.

Evaluation Metrics. The performance in OOD detection is measured via three representative metrics,
which are all threshold-independent [5]: (1) the false positive rate of OOD sample when true positive
rate of ID data is at 95% (FPR95); (2) the area under the receiver operating characteristic curve
(AUROC), interpreted as the probability that an ID input has a greater score than an OOD one; and
(3) the area under the precision-recall curve (AUPR), which further adjusts for different base rates.

Configuration. Following previous works [33], we employ WideResNet [61] (WRN-40-2) as the
backbone model. For the CIFAR benchmarks, the models are trained for 200 epochs via the stochastic
gradient descent, with the batch size 64, the momentum 0.9, and the initial learning rate 0.1. The
learning rate is divided by 10 after 100 and 150 epochs. For the ImageNet Benchmark, the model is
trained for 120 epochs via the stochastic gradient descent, with the batch size 32, the momentum 0.9
and the initial learning rate 0.05. The learning rate is divided by 10 after 60 and 90 epochs.

CIFAR Benchmarks. We depict the learned watermarks in Figure 3. As we can see, the centre areas
maintain the pattern of original inputs, which are helpful in OOD detection primitively. By contrast,
the edge areas of the watermarks distort the original features, superimposed with the pattern that may
further boost the capability of the original models in OOD detection.

Then, we demonstrate the improvement of watermarking on CIFAR-10 and CIFAR-100 datasets.
For the results of the softmax scoring in Table 1, our watermarking reduces the average FPR95 by
2.99 ∼ 12.84, boosts the average AUROC by 3.09 ∼ 3.69 and the average AUPR by 1.10 ∼ 1.18.
Moreover, for each of the considered test-time OOD dataset, there also exist stable improvements
after watermarking, except for the comparable results regarding Places365 on CIFAR-100 dataset.

For the results of the free energy scoring in Table 2, the improvement via watermarking is also
substantial, with 4.54 ∼ 13.98, 3.43 ∼ 4.65, and 1.13 ∼ 1.37 better performance regarding the
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(a) softmax scoring on CIFAR-10 (b) softmax scoring on CIFAR-100

(c) free energy scoring on CIFAR-10 (d) free energy scoring on CIFAR-100

Figure 3: The learned watermarks (left) and the example images with (middle) and without (right)
the watermarks. All the pictures are clamped between 0 and 255 for the purpose of illustration.

Table 1: Softmax scoring with/without water-
marking on CIFAR benchmarks. ↓ (↑) indicates
smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 43.60 (55.55) 93.53 (90.14) 98.67 (97.84)
Places365 60.75 (62.50) 87.85 (87.41) 96.98 (96.94)

Texture 42.00 (59.30) 92.83 (88.37) 98.43 (97.14)
SVHN 27.25 (49.10) 96.00 (91.69) 99.17 (96.54)
LSUN 40.70 (52.05) 94.36 (91.50) 98.86 (98.16)

average 42.86 (55.70) 92.91 (89.82) 98.42 (97.32)

CIFAR-100

iSUN 77.85 (83.35) 79.91 (75.28) 95.35 (94.00)
Places365 83.25 (82.20) 74.28 (74.40) 93.47 (93.44)

Texture 79.10 (83.80) 77.14 (72.83) 94.26 (92.81)
SVHN 82.95 (85.05) 76.92 (70.64) 94.72 (92.61)
LSUN 76.75 (80.45) 79.60 (76.25) 95.27 (94.32)

average 79.98 (82.97) 77.57 (73.88) 94.61 (93.43)

Table 2: Free energy scoring with/without wa-
termarking on CIFAR benchmarks. ↓ (↑) indi-
cates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

CIFAR-10

iSUN 16.30 (32.10) 96.97 (92.84) 99.39 (98.33)
Places365 36.25 (41.45) 91.87 (89.65) 97.94 (97.21)

Texture 32.60 (52.05) 93.14 (85.43) 98.08 (95.52)
SVHN 16.45 (35.25) 97.11 (90.91) 99.39 (97.68)
LSUN 16.85 (27.50) 96.97 (93.98) 99.38 (98.59)

average 23.69 (37.67) 95.21 (90.56) 98.83 (97.46)

CIFAR-100

iSUN 75.05 (81.80) 83.07 (79.04) 96.15 (94.98)
Places365 80.45 (80.50) 77.78 (74.99) 94.45 (93.37)

Texture 75.15 (80.20) 79.55 (76.00) 94.79 (93.53)
SVHN 82.85 (85.10) 75.26 (74.20) 94.18 (93.70)
LSUN 71.85 (80.45) 84.01 (78.29) 96.33 (94.69)

average 77.07 (81.61) 79.93 (76.50) 95.18 (94.05)

average FPR95, AUROC, and AUPR. Overall, Table 1 and Table 2 not only justify the effectiveness of
watermarking and also demonstrate the generality of the proposed watermarking. Further, comparing
between CIFAR-10 and CIFAR-100 datasets, the improvements of watermarking on CIFAR-10 is
much greater than that of CIFAR-100, aligning with the previous observations [22] that a large
semantic space can exaggerate the challenge in effective OOD detection.

Figure 4 illustrates the scoring distributions before (a) and after (b) watermarking on CIFAR-10,
where we take the free energy scoring as an example. Due to the space limit, we only consider
two test-time OOD datasets, namely, Texture and SVHN. As we can see, after watermarking, the
distribution gap between the ID (i.e., CIFAR-10) and the OOD (i.e., Texture and SVHN) data is
enlarged, and thus the detection capability is improved.

ImageNet Benchmark. Huang and Li [22] show that many advanced methods developed on the
CIFAR benchmarks can hardly work for the ImageNet dataset due to its large semantic space with 1k
classes. In order to verify the power of watermarking in large semantic space, we conduct experiments
with ImageNet being the ID dataset, and the results regarding the softmax scoring and the free energy
scoring are summarized in Table 3 and Table 4. For the softmax scoring, we decrease the average
FPR95 from 54.93 to 40.50 after watermarking; for the free energy scoring, we reduce the average
FPR95 from 52.73 to 43.23. It demonstrates that our watermarking still works well in the case of the
large semantic space, with considerable improvements in OOD detection power.
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Figure 4: An illustration on CIFAR-10 dataset regarding the free energy scoring. (a) depicts the
scoring distributions before watermarking, and (b) is the scoring distributions after watermarking.

Table 3: The softmax scoring with/without wa-
termarking on ImageNet. The notion ↓ (↑) indi-
cates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

iSUN 11.54 (52.45) 97.41 (92.52) 99.45 (98.70)
Places365 70.59 (73.25) 82.03 (80.78) 95.62 (94.58)

Texture 61.20 (67.18) 84.00 (82.27) 98.60 (97.85)
SVHN 44.58 (28.49) 93.56 (95.60) 98.70 (99.00)
LSUN 11.84 (54.62) 97.97 (91.52) 99.57 (98.25)

average 40.50 (54.93) 91.22 (88.57) 98.42 (97.69)

Table 4: The free energy scoring with/without
watermarking on ImageNet. The notion ↓ (↑)
indicates smaller (larger) values are preferred.

FPR95 ↓ AUROC ↑ AUPR ↑
w/ (w/o) watermark

iSUN 32.83 (45.40) 94.35 (94.00) 98.89 (98.20)
Places365 71.85 (75.01) 79.85 (78.54) 94.65 (94.40)

Texture 67.75 (68.77) 80.80 (80.22) 97.00 (96.51)
SVHN 12.85 (27.60) 97.68 (95.17) 99.45 (99.00)
LSUN 33.75 (46.47) 93.71 (90.59) 98.80 (97.94)

average 43.23 (52.73) 89.10 (86.14) 97.73 (97.15)

Table 5: The performance of our watermark-
ing on near OOD detection regarding the soft-
max scoring and the free energy scoring.

FPR95 AUROC AUPR

softmax scoring

w/o watermark 90.10 55.47 86.16
common 88.25 53.16 84.75
permute 86.45 60.04 86.33

rotate 81.50 65.69 88.67

free energy scoring

w/o watermark 52.25 86.49 96.44
common 49.75 88.52 96.98
permute 48.55 88.40 97.03

rotate 47.85 88.90 97.08

Near OOD Detection. The above experiments focus
on the far OOD detection setups where ID and OOD
data are different regarding semantics and styles.
Now, we further demonstrate the power of our wa-
termarking strategy in a near OOD situation [54],
covering a challenging situation where ID and OOD
data have similar styles (i.e., near OOD data). Except
for the common learning setup in Section 5, we fur-
ther consider the use of shifting augmentations [47],
which are data augmentations that are harmful to the
standard contrastive learning but can be used to con-
struct near OOD data similar to ID data. We consider
two representative shifting augmentations: “permute”
(permute evenly partitioned data) and “rotate” (rotate
90 degrees of original data). The shifting-augmented
ID data are taken as OOD data fed into ℓOOD(·) along
with random Gaussian noise.

The near OOD experiments are summarized in Table 5, where we take CIFAR-10 as ID data and
CIFAR-100 as OOD data. Here, the common learning setup (common) already leads to improved
performance compared to the cases without watermarking (w/o watermark). Moreover, watermarking
with shifting augmentations (permute and rotate) can further boost the detection power of the models,
leading to at most 8.60 and 4.70 improvements in FPR95 for the softmax and the free energy scoring.

Effect of Hyper-parameters. To further interpret our learning framework, we compare the per-
formance of the learned watermarks regarding various setups of hyper-parameters, focusing on the
standard deviation σ1 in the Gaussian noise and the perturbation constraint ρ in the SAM, which are
both critical. As a case study, we conduct experiments regarding the softmax scoring on CIFAR-10.
For detailed results about the ablation study, please refer to Appendix C.

Table 6 lists the results with various values of σ1, ranging from 0.00 to 2.00. Note that σ1 is the
standard deviation of the Gaussian noise added to the watermark, with different values indicating
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Table 6: The average performance of the soft-
max scoring on CIFAR-10 dataset with various
values of the parameter σ1. The notion ↓ (↑)
indicates smaller (larger) values are preferred.

σ1 FPR95 ↓ AUROC ↑ AUPR ↑

2.00 42.11 92.01 98.24
1.60 41.41 92.14 98.25
1.20 41.98 91.91 98.20
0.80 43.38 91.89 98.21
0.40 38.66 93.03 98.45
0.00 48.71 91.43 98.11

Table 7: The average performance of the soft-
max scoring on CIFAR-10 dataset with various
values of the parameter ρ. The notion ↓ (↑) in-
dicates smaller (larger) values are preferred.

ρ FPR95 ↓ AUROC ↑ AUPR ↑

5.00 60.02 87.36 97.15
1.00 39.12 92.96 98.42
0.50 43.55 92.38 98.34
0.10 41.99 92.77 98.41
0.05 42.06 92.84 98.42
0.00 43.04 92.44 98.32

various degrees of the perturbation. As we can see, a mild perturbation of the watermark (e.g.,
σ1 = 0.40) can truly lead to improved results in detection, with 10.05, 1.60, and 0.34 improvements
regarding the average FPR95, AUROC, and AUPR. It indicates that the learned watermark is sensitive
when facing small perturbations, if the Gaussian noise is not applied during training. However, some
extreme values (e.g., σ1 = 2.00) may overwhelm the watermark pattern and thus be detrimental.

In Table 7, we summarize the experimental results given by various values of ρ for the SAM. Overall,
a large value of ρ indicates that a wide range in the solution’s neighbours should be smooth, and thus
the stability of the result is expected to be improved. However, such a solution may consume too much
capacity of the watermark, misleading the learning procedure to some unsatisfactory results. On the
other side, our watermarking truly benefits from the SAM with a mild choice of the hyper-parameter.
Specifically, comparing with the results without the SAM (i.e., ρ = 0.00), the detection capability of
the watermark with a suitable ρ (i.e., ρ = 1.0) is largely improved, with 3.92, 0.52, and 0.10 better
results regarding the average FPR95, AUROC, and AUPR.

Table 8: Transferability of watermarking
across scoring functions. SM denotes softmax
scoring and FE denotes free energy scoring.

learn score FPR95 ↓ AUROC ↑ AUPR ↑

CIFAR-10

SM SM 42.86 92.91 98.42
FE SM 40.19 94.83 98.99

FE FE 23.69 95.21 98.83
SM FE 28.22 94.70 98.81

CIFAR-100

SM SM 79.98 77.57 94.61
FE SM 77.07 76.27 94.02

FE FE 77.07 79.93 95.18
SM FE 78.48 79.24 94.56

Transferability of watermarking. Further, we ex-
plore the transferability of the watermarking strat-
egy learned with different scoring functions, e.g., we
study the effect of the watermark learned with the
softmax scoring when it is deployed with the free
energy scoring. The results are summarized in Ta-
ble 8. Note that, a “learn” with FE and “score” with
SM indicates that the watermark is learned with the
free energy scoring and tested regarding the softmax
scoring. As we can see, the watermarks learned with
the free energy scoring can be reused for the softmax
scoring (even with better results), while the reverse
leads a deterioration. It indicates that our learning
objectives in Eq. (10) are general and effective for
both the softmax scoring and the free energy scoring.
However, we do not observe any transferability be-
tween different datasets. For example, for the softmax
scoring, when the watermark learned on CIFAR-10
is adopted for CIFAR-100, there is a drop of perfor-
mance with 51.93 (from 42.86 to 94.79), 35.29 (from 92.91 to 57.62) and 12.00 (98.42 to 86.42)
regarding the average FPR95, AUROC, and AUPR. Further studies may be required here.

7 Conclusion

This paper demonstrates that the model’s inherent capability in OOD detection can be largely
improved with only data-level manipulation, where we propose a general and effective methodology
named watermarking. Overall, we learn a discriminative pattern that could be superimposed onto
original inputs, such that the OOD scores become much separable between ID and OOD data. Our
results indicate a promising direction in OOD detection that warrants our exploration in the future.
Further investigation should focus on the stability in optimization and general learning objectives
regarding advanced OOD detection methods.
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