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Abstract

For induction heads to copy forward informa-
tion successfully, heads in earlier layers must
first load previous token information into every
hidden state, a process Olsson et al. (2022) call
key shifting. While this information is hypoth-
esized to exist, there have been few attempts
to explicitly locate it in models. In this work,
we use linear probes to identify the subspaces
responsible for storing previous token informa-
tion in Llama-2-7b and Llama-3-8b. We show
that these subspaces are causally implicated
in induction by using them to “edit” previous
token information and trigger random token
copying in new contexts.

1 Introduction

What information encoded in a token allows it to
be copied via induction? Although the workings
of induction heads have been carefully studied (El-
hage et al., 2021; Olsson et al., 2022), there has yet
to be work explicitly isolating the presumed previ-
ous token information that enables induction heads
to function as they do. Using linear probes from
Feucht et al. (2024), we identify low-dimensional
subspaces in Llama-2-7b (Touvron et al., 2023) and
Llama-3-8b (Meta, 2024) that contain previous to-
ken information used for random token copying.
To show this, we take information identified by
linear probes for one input and substitute it into
a completely different context (Figure 1), which
artificially triggers copying in certain layers.

2 Related Work

Elhage et al. (2021) and Olsson et al. (2022) de-
scribe induction circuits as consisting of two stages:
(1) key shifting, where one set of attention heads
copies previous token information into succeeding
token positions, and (2) prefix matching, where an-
other set of heads later attends to that information
to copy previously-seen sequences. While they

1. Generate source sequence

A B C … A Bs =

2. Generate base sequence

D E F …b = D E

3. Modify base sequence

D E F …b* = D B

4. Replace previous token info.

A← B←

D← E←

A B C … A Bs =

D E F …b* = D B F

B←

Figure 1: We artificially induce copying behavior in
Llama, using probes from Feucht et al. (2024) to modify
previous token information.

characterize these heads through direct examina-
tion of weights and attention patterns, we show
causal evidence of this process by editing previous
token information in Llama models.

3 Method

3.1 Random Copying Task

First, we define a simple copying task wherein a se-
quence of l uniformly sampled tokens is duplicated
and separated by a newline. We measure Llama’s
ability to predict the last token of such a sequence,
which it can only achieve via in-context copying
(e.g. land.id.Pale \n land.id → Pale). For
l = 30 with random tokens, Llama-2-7b has a com-
pletion accuracy of 87.9% for this task, whereas
Llama-3-8b reaches 100% accuracy.

3.2 Probe Intervention

Next, we show that previous token information
measured by probes from Feucht et al. (2024) is
causally implicated in this random token copying
task. Figure 1 shows the setup for this experi-
ment. We first randomly generate source and base
sequences s and b, following the same newline-
separated template as in Section 3.1. We then re-
place the last token of b with the last token of s to
create b∗, which prevents models from completing
the copying task: Llama-2-7b copying accuracy
drops to 0% with this change, whereas Llama-3-8b
accuracy drops to 13%. Finally, we show that we
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Figure 2: Results for experiment described in Figure 1, which show previous token information implicated in
token copying at either layer 5 (Llama-2-7b) or layer 14 (Llama-3-8b). The leftmost column indicates results
for sequences consisting of fully-random tokens, whereas the four right-hand columns show results for source
sequences ending in multi-token words from Wikipedia. While unigrams act similarly to random tokens as expected,
we see a divergence for multi-token words, where interventions being to fail for Llama-2-7b but become shaper for
Llama-3-8b. Accuracy is calculated across one hundred examples for each cell.

can restore copying behavior for b∗ by modifying
the hidden state of the token we want to copy (i.e.
F in Figure 1). We use linear probes to extract
previous token information [← B] from the hidden
representation for C at layer ℓ (Figure 1), and then
substitute this “flag” into the hidden state for F at
the same layer, measuring the resulting accuracy
for prediction of F over 100 sequences.

To do this, we calculate the SVD of the probe,
P ℓ = UΣV ∗, and then take the top d rows of V ∗,
which form an orthonormal basis for a subspace
A of dimension d. To substitute previous token
information from a source hidden state sℓt into a
hidden state from the modified base sequence b∗ℓt ,
we take the projection of sℓt onto A and add it to
the projection of b∗ℓt onto the orthogonal comple-
ment of A. Thus, the formula for an intervened
hidden state at token position t and layer ℓ is sim-
ply hℓt = AAT sℓt + (I − AAT )b∗ℓt . We perform
this intervention for every layer ℓ.

3.3 Entity Copying

In addition to testing on random sequences of to-
kens, we also test sequences that end in multi-token
words (MTWs) taken from Wikipedia (Foundation,
2022). We then modify s so that it ends with
a Wikipedia MTW (e.g. land.id.task.ed \n
land.id.task→ ed). This means that the previ-
ous token information inserted into b∗ now comes
from the final token of a MTW. Motivated by re-
sults from Feucht et al. (2024) showing “erasure” of
that information in early layers, we ask whether this

will affect induction behavior for those sequences.

4 Results
The leftmost column of Figure 2 shows that this
intervention causes a 34% increase in accuracy
above baseline for Llama-2-7b and a 26% increase
for Llama-3-8b on random sequences of tokens,
suggesting that models attend to the artificially-
inserted [← B] information to promote the output
of F as hypothesized. Results for MTW copying are
more mixed. For Llama-2-7b, interventions cease
to be effective with MTWs. However, Llama-3-8b
interventions are arguably stronger.

5 Discussion
Results in Figure 2 indicate that there is some
mechanism after layer 5 in Llama-2-7b (layer 14 in
Llama-3-8b) that refers to previous token informa-
tion in order to copy tokens from its context. We
interpret this result as direct evidence of hypothe-
sized “key shifting” being used for copying in full-
scale models. Although this effect is strong for ran-
dom tokens, MTWs are treated differently. Since
prior work shows that previous token information
is “erased” for MTWs in both models, we expected
interventions to become less effective for MTWs;
however, this is only true for Llama-2-7b. For
Llama-3-8b, interventions instead become more ef-
fective, with fewer dimensions required to achieve
high accuracy (d = 16 instead of d = 32). This
difference in MTW induction mechanisms may in-
dicate a fundamental difference between how these
two models represent multi-token words.
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