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Abstract

Recent efforts to apply Large Language Models (LLMs) to time-series anomaly
detection (TSAD) have yielded limited success, often performing worse than even
simple methods. While prior work has focused solely on downstream performance
evaluation, the fundamental question—why do LLMs struggle with TSAD ?—has
remained largely unexplored. In this paper, we present an in-depth analysis that
identifies two core challenges in understanding complex temporal dynamics and ac-
curately localizing anomalies. To address these challenges, we propose a simple yet
effective method that combines statistical decomposition with index-aware prompt-
ing. Our method outperforms 21 existing prompting strategies on the AnomLLM
benchmark, achieving up to a 66.6% improvement in F1 score. We further compare
LLMs with 16 non-LLM baselines on the TSB-AD benchmark, highlighting sce-
narios where LLMs offer unique advantages via contextual reasoning. Our findings
provide empirical insights into how and when LLMs can be effective for TSAD. The
code is publicly available at: https://github.com/junwoopark92/LLM-TSAD.

1 Introduction

Large language models (LLMs) have shown impressive zero-shot numerical reasoning capabilities
across various tasks, including math problem-solving [28, 4 1]], tabular analysis [[19} 27} 55| 166], and
time series forecasting [26) 154} 68]]. These numerical reasoning tasks typically require interpreting
numbers embedded in a natural language prompt, performing arithmetic or logical operations,
and accurately understanding numerical relationships within their domain context. Time series
anomaly detection (TSAD) similarly involves these capabilities, as it requires interpreting numerical
deviations and recognizing temporal patterns within time series. Motivated by these similarities,
recent studies [4} 20} 45| 79} 83| [87, [89]] have shown the potential of LLMs for TSAD, highlighting
their strengths in handling diverse input formats and leveraging domain-specific contexts.

However, while demonstrating the potential of LLMs for TSAD, these studies simultaneously reveal
significant limitations. Specifically, LLMs frequently exhibit false positive detections when time series
are presented in textual form, often misclassifying normal fluctuations or pervasive background noise
as anomalies [4} 20]]. As an alternative, graphical plots have been used; however, LLMs often only
identify prominent spikes or visually salient anomalies, missing more nuanced anomalies [79, [89].
These failure cases have led to a pessimistic view of LLMs’ capabilities at TSAD. However, prior
work has focused predominantly on evaluating downstream detection accuracy, without addressing
the fundamental question: why do LLMs struggle with TSAD? The underlying reasons, whether due
to input representations, temporal modeling, or prompting strategies, remain unclear.

To systematically investigate these unresolved questions, we begin by decomposing the TSAD
problem into two essential subtasks: (1) distinguishing between normal and anomalous patterns
(time-series understanding), and (2) identifying the precise anomaly intervals (anomaly localization).
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Unlike prior works that treat TSAD as a monolithic task [4} 20} 79, 189], this decomposition allows
us to isolate and diagnose the distinct failure modes of LLMs.For the first subtask, our preliminary
analysis reveals that LLMs often miss subtle anomalies when complex normal patterns, such as
overlapping trend and seasonality, obscure their presence. For the second subtask, we observe
that widely used prompts implicitly require LLMs to count sequence tokens to pinpoint anomaly
positions—a capability that LLMs consistently struggle with [22, [78] [85]]. This task decomposition
thus surfaces fine-grained limitations of LLMs that remain hidden under aggregate performance
metrics.

These observations directly inform our solution, which explicitly targets both limitations. To address
the difficulty of detecting anomalies obscured by complex normal patterns, we apply statistical
decomposition to remove only the seasonal component (i.e., de-seasonalization). Since seasonal
patterns exhibit consistent, repeating structure, they are typically treated as normal rather than
anomalous. Removing seasonal patterns enhances the visibility of subtle anomalies that are concealed
within complex normal dynamics, thus facilitating accurate detection by LLMs. To overcome
LLMs’ struggles with position reasoning via token counting, we design index-aware prompting that
explicitly embeds positional cues in the input. This approach highlights the often-overlooked utility
of time-series text, in contrast to prior methods that predominantly rely on visual inputs.

As a result, on the AnomLLM benchmark [89], our method surpasses all 21 existing prompting
strategies, boosting F1 scores by an average of 39.9% and up to 66.6% across both open-source and
proprietary LLMs. Ablation studies further validate the critical role of both statistical decomposition
and explicit indexing. Finally, building on these improvements, we revisit a question often left
unaddressed in earlier work: LLMs’ practical values in TSAD compared to conventional numerical
methods. We benchmark our method against 16 non-LLM methods from the TSB-AD suite [460],
comparing zero-shot accuracy and inference efficiency. We also explore scenarios where the contex-
tual reasoning capabilities of LL.Ms offer practical benefits, such as selectively excluding known or
explainable anomalies by domain-specific contexts.

Our main contributions are as follows:

* We present a comprehensive analysis of the fundamental limitations of LLMs in TSAD,
explicitly identifying the challenges in understanding temporal patterns and accurately
localizing anomalies.

* To address these limitations, we propose a simple yet effective method that combines
statistical decomposition with index-aware prompting, significantly improving the average
F1 score by up to 66.6% compared to existing LLM-based TSAD methods.

* Based on the improved performance, we evaluate the practical justification for employing
LLMs in TSAD by comparing them with diverse non-LLM methods, highlighting specific
scenarios in which the contextual reasoning capabilities of LLMs offer tangible advantages.

2 Analysis: why do LLMs struggle with TSAD?

Throughout our study, we build on the experimental setup proposed in AnomLLM [89], which
systematically categorizes recent prompt designs and anomaly types. For clarity and due to space
constraints, we provide detailed descriptions of representative TSAD methods and other LLM-based
methods in the related work section in Appendix [A.1]

Task Setup. In the LLM-based TSAD, an input time series X;_ .4 = (x4—r,, .. .,x¢) is first converted
into a comma-separated list of normalized values (time-series text) or a simple line plot (time-series
image). These representations are then fed into an LLM, guided by natural language instructions such
as: "Identify all contiguous intervals [a;, b;] that exhibit anomalous behavior." The LLM generates
a free-form textual response, which is post-processed to extract interval predictions of the form
{(a1,b1), (az,b2),...,(an,,bn,)}, where each (a;, b;) denotes an anomaly span. This formulation
differs from conventional TSAD methods, which compute a scalar anomaly score for each timestamp
followed by thresholding.

Analysis of common failure cases. We begin with an analysis of AnomLLM failure cases. Figure
shows two cases that both exhibit an F1 score of zero but reflect distinct types of failure in the
anomaly detection process: (a) the LLM fails to detect any anomaly, despite the presence of a trend
shift anomaly; (b) the LLM produces a prediction; however, the predicted anomaly interval does
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Figure 1: Two representative failure cases of LLM-based TSAD. Although both cases result in an
zero F1 score, the reasoning of LLM outputs reveal that the causes stem from different limitations:
one in understanding the time series and the other in localization ability.

not overlap with the ground truth, resulting in a zero score. Interestingly, when asked to explain its
reasoning in case (b), the model correctly attributes the anomaly to a sudden increase, indicating
a successful understanding of the time series pattern. This suggests that the failure in case (b) lies
primarily in the localization step, not in understanding. On the other hand, in case (a), the model
concludes that there are no anomalies at all, implying a fundamental failure in recognizing the
anomaly in the first place.

These examples highlight two key challenges in LLM-based zero-shot anomaly detection: (1)
understanding time-series dynamics, and (2) accurately localizing the anomaly intervals. To isolate
these two types of failure, we conducted two experiments: instance-level TSAD (Section[2.1) which
focuses on the understanding failures (a) and TSAD with Ground Truth (GT) anomalies (Section [2.2)
which targets the localization failures (b).

2.1 Evaluating LLMs’ time-series understanding capability
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Figure 2: Instance-level TSAD results of 21 prompts (A-U), including two sequence representation
(image: A-H and text: I-U), CoT (A,E,I,O-R), and In-Context (A-D, I-J) strategies (details in Table@
on four anomaly types to estimate understanding capability of LLMs. Even with these prompts,
LLMs still struggle to detect anomalies such as trend shifts and frequency changes.

In TSAD, final performance is ultimately calculated by either sequence-length binary labels or interval
predictions, inevitably depending on localization capability. Thus, we relax the original problem
into a simpler formulation, deciding only whether any anomaly exists in the entire sequence without
precise localization, which we refer to as instance-level anomaly detection. This binary detection
task is inherently easier than identifying multiple anomalous intervals in the sequence. Therefore, if a
model fails to even detect the presence of an anomaly, it clearly lacks the time-series understanding
necessary for TSAD. Experimental details including the task prompt can be found in Appendix [D.1]

Figure [2] illustrates the varying degrees of time-series understanding exhibited by LLMs across
different anomaly types. For trend and frequency anomalies—which involve subtle and intertwined
changes that closely resemble normal patterns—LLMs perform only marginally better, or even worse,
than a trivial baseline that always predicts the same label (normal or abnormal) regardless of the input.
In contrast, for point and range anomalies, LLMs using sequence image prompts (A—H) achieve
near-perfect accuracy, unlike those relying on the time-series text. Overall, despite employing prompt
strategies such as Chain of Thought (CoT) and various in-context exemplars—effective in many NLP
tasks—LLMs exhibit limited capability to understand temporal dynamics.
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Figure 3: TSAD results with GT anomaly labels to estimate localization failure. (a) shows the F1
improvement by GT labels for each model, (b) shows the improvement by GT labels for each anomaly
type, and (c) illustrates the relationship between the number and length of anomalies per type and the
remaining failure.

2.2 Evaluating LLMs’ time-series localization capability

To determine whether the limited performance of LLMs originates from poor localization, we
design a localization-only experiment that explicitly removes the need for time-series understanding.
Specifically, we highlight GT anomaly regions within the time-series image (e.g., (a) and (b) in
Figure[I). Apart from this visual cue, the task setup remains identical to the original TSAD setting:
the model must return anomaly intervals along the x-axis. For clarity, we use time-series images here,
but Section 4.2|also evaluates localization on time-series text. The prompt and additional details for
this experiment are provided in the Appendix [D.2]

In this configuration, the location of anomalies is explicitly given within the input image, and the
model is only required to translate this information into precise coordinate predictions. If localization
were not a bottleneck, we would expect that LLMs could achieve near-perfect scores.

However, as shown in Figure 3(a), although all models benefit from this GT-provided setting, the
performance gains remain limited. This suggests that the bottleneck lies not only in identifying where
anomalies occur but also in precisely localizing those regions. In other words, even when LLMs are
given highlighted regions, they often struggle to translate them into accurate output, indicating a core
limitation in localization capability.

Beyond the overall performance plateau, a closer look at individual anomaly types reveals further
insights into localization difficulty. As shown in Figure [3(b), trend and frequency anomalies—
previously the most challenging for understanding (Figure [2)—exhibit larger F1 improvements than
point and range anomalies. This disparity suggests that localization difficulty is not uniform but is
closely tied to the characteristics of each anomaly type. Figure [3(c) reinforces this interpretation:
residual error rates correlate with the number and fragmentation of anomaly segments. Frequency
anomalies, in particular, often consist of many scattered segments, making precise localization
substantially harder.

3 Methodology
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Figure 4: An overview of our proposed method to mitigate understanding and localization challenges.

From the two preceding experiments, we confirmed that the current performance limitations of LLMs
in TSAD stem from both the understanding and localization challenges. Understanding complex
temporal structures has long been a central challenge in time-series analysis. A representative strategy
is to decompose time series into structural components such as trend, seasonality, and residuals [3].
Existing non-LLM methods [53| [74}75]] have often embedded this decomposition internally within



models through end-to-end learning pipelines. However, for LLMs with strong pretrained reasoning
abilities, training them to perform decomposition may degrade their pretrained capabilities and
introduce inefficiencies, particularly due to the need to decode all outputs as text compared to the use
of numerical algorithms.

Motivated by recent advances in tool-augmented LLM approaches [30, 56l, we introduce a simple
yet effective method that enhances LLM-based TSAD by leveraging lightweight external tools for
time-series decomposition. This design allows the LLM to focus on its core strength—reasoning over
structured prompts—while benefiting from accurate, preprocessed inputs, as illustrated in Figure [

3.1 De-seasonalization: supporting LLLMs’ understanding of time series

Pronounced seasonality often obscures subtle trend shifts and frequency changes, causing LLMs to
overlook anomalies that become obvious once the seasonal cycle is removed. We therefore insert a
lightweight de-seasonalization module directly before the LLM-based detector:

Step 1: Period discovery : Given an input time series x1.7, compute the sample autocorrelation [37]]
function (ACF) p for lags k = 1,...,|7T/2] and identify the dominant period

pP* = 5(k).
arg max p(k)

Step 2: Additive decomposition : Using classic decomposition [} [12] with window length P~*,
decompose x; = s; + T + 1, Where s; is seasonality, 7; the trend, and r; the residual.

Step 3: Residual pass-through : Feed the de-seasonalized sequence Z; = x; — s; to the LLM as
both a time-series text and image.

In this process, global autocorrelation is used to estimate the dominant period, enabling the decompo-
sition to remove only stable, recurring seasonality, while preserving subtle deviations like trend or
frequency changes for LLM-based detection.

From a cost perspective, de-seasonalization can be efficiently implemented using a fast Fourier
transform, reducing the complexity to O(T log T'), and incurring negligible overhead relative to LLM
inference. More sophisticated methods, such as STL [58]], Seasonal-HODMD [40]], and Prophet [69]]
can also be integrated with modest additional overhead and without altering the pipeline. Even this
lightweight preprocessing step alone yields consistent improvements in F1 score across all evaluated
LLMs, as demonstrated in Table 3]

Although de-seasonalization using an external algorithm clearly enhances performance, it raises two
key questions. First, might LLMs already possess an implicit ability to perform such a decomposition
without the need for explicit tools or additional training? Second, in a truly tool-augmented framework,
should not an LLM be able to determine whether such preprocessing is necessary? These questions
invite a closer examination of the boundary between what LLMs can do inherently and where external
tools remain essential. We explore this boundary in depth in Section
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LLMs [85]. To assess this limitation for the time-series domain, we designed a simple task that
requires counting the number of values in a numerical sequence. As shown in Figure 5] both open-
source and proprietary LLMs perform surprisingly poorly on this simple task, even when various
separator tokens are used.

To alleviate the counting burden, we introduce index-aware prompting, in which each value in the
input sequence is explicitly paired with its positional index. This design allows the LLM to directly
return the start and end indices of an anomalous segment once detected, eliminating the need for
internal counting and effectively transforming a difficult counting task into a simple lookup. Moreover,
since visualizing indices in time-series plots often leads to clutter and overlap, expressing positional
information in textual form becomes more practical. This highlights the previously underappreciated
utility of time-series text in TSAD.

While we emphasize the use of index-aware prompting to improve anomaly localization, incorporation
of index information is not entirely novel. Liu et al. [45] incorporated time-series text with indices.
However, most prior works [20} 79} 189] have not utilized index information, possibly due to concerns
that longer and more complex prompts could negatively impact task accuracy. To better understand
this trade-off, we revisit the issue through empirical evaluation in Section

4 Experiment

Datasets. We leverage the well-curated datasets introduced by AnomLLM [89], which include
four representative anomaly types—point, range, trend, and frequency—with accurately annotated
intervals. These datasets are designed to facilitate fine-grained evaluation under various anomaly
conditions. To complement these controlled settings, we also incorporate the TSB-AD-U bench-
mark [46]], which reflects unsupervised anomaly detection in more realistic time-series applications.
Certain prompting methods [45} [89]] incorporate domain-specific context that characterizes the type
of anomaly being tested, whereas our method does not utilize any such context in these benchmarks.
The dataset configurations follow the original benchmark and are summarized in Appendix

Metric. AnomLLM [89] uses affiliation metrics [31] as its main evaluation metric, as it offers
the advantage of distance-based correction. However, this metric is less sensitive to localization
errors and does not clearly differentiate between methods. To ensure a more rigorous evaluation, we
therefore employ both the standard and the affiliation metrics.

Baselines. We perform experiments using four representative multi-modal LLMs, two of which
are open-sourced: Qwen2.5-VL-72B-Instruct and InternVL2-Llama3-76B and two of which are
proprietary: GPT-40 (and mini) and Gemini-1.5-Flash. We replicate the 21 prompt variants from
the AnomLLM benchmark [89]], covering text vs. vision modalities, input formats, and reason-
ing styles. For comparison with conventional TSAD models in Section [5} we also report results
from 16 non-LLM baselines such as ML baselines (SR [60], IForest [44], Sub-PCA [2], KMeans-
AD [82]], MatrixProfile [84]), DL baselines (CNN [49], USAD [7]], AnomalyTransformer [77],
OmniAnomaly [65], AutoEncoder [62], TimesNet [75]], FITS [80]) Foundation Model (FM) baselines
(Chronos [6], TimesFM [18]], Lag-Llama [57], MOMENT [24]]) with three thresholding methods:
Percentile [13}/42], MAD [29], EVT-POT [63.67]] to convert anomaly scores to binary labels.

4.1 Comparison with various prompting strategies in LLM-based TSAD

4.1.1 Main results Table |l| shows that our proposed method substantially improves to TSAD
performance across a wide range of LLMs—InternVL-2, Qwen-2.5, Gemini-1.5, and GPT-40. In
every case, both the standard and affiliation-based precision, recall, and F1 scores rise well above
those of existing prompt baselines. Earlier methods often struggled to surpass naive baselines and
occasionally underperformed them. In contrast, our method delivers clear, consistent gains that are
not merely relative improvements among weak baselines, but absolute advances that surpass the naive
baseline by a significant margin.

When comparing our Oshot-text prompt with that of AnomLLM, we observe a substantial performance
gain, even under identical input conditions. While combining vision and text can offer advantages,
our results demonstrate that text alone, when combined with techniques such as de-seasonalization
and index-aware prompting, can effectively support TSAD and challenge the notion that time series
text is inherently limited for TSAD.



Table 1: TSAD results on the AnomLLM benchmark. We report standard and affiliation metrics.
“Avg. Diff.” denotes the average difference from the baseline, helping to reveal meaningful gains
beyond dataset bias. Cells are shaded green/red to indicate values above/below the baseline. The
comparison with the other 18 prompts is provided in Appendix [E]

LLMs | Prompt Methods | Standard Metrics | Affiliation Metrics

| Prec. Recall F1  Avg. Diff. | Prec. Recall F1  Avg. Diff.

Naive baseline (Always Normal Predictor) | 3175 31.75 3175 -] 3175 3175 3175 -

AnomLLM (Oshot-Text) 12.94  22.15 13.38 -1559 | 22.12 2838 24.10 -6.88

InternVL2 AnomLLM (Oshot-Vision) 22.33  46.19 23.92 -0.94 | 5093 60.94 55.53 24.05

(LLaMA3-76B) AnomLLM (Ishot-Vision-CoT) | 33.72 36.28 33.67 2.81 | 53.62 55.55 5393 22.62

Our (Oshot-Text) 27.67 5229 29.21 4.64 | 5431 60.71 55.04 24.94

Our (Oshot-Text-Vision) 30.00 59.35 34.66 9.59 | 58.14 71.79 62.90 32.53

AnomLLM (Oshot-Text) 2599 25.66 25.49 -6.04 | 45.69 4244 43.11 12.00

Qwen-2.5 AnomLLM (Oshot-Vision) 4578 51.00 46.65 16.06 | 69.50 68.99 68.78 37.34

N AnomLLM (1shot-Vision-CoT) | 27.09 29.08 27.23 -3.95 | 39.52  40.07 39.38 791
(VL-72B-Inst.)

Our (Oshot-Text) 7247 54.09 56.13 29.15 | 8291 78.40 78.96 48.34

Our (Oshot-Text-Vision) 7295 69.78 67.56 37.31 | 84.51 81.52 81.87 50.88

AnomLLM (0Oshot-Text) 2.01 2.47 1.89 -29.63 | 2490 25.58 24.14 -6.88

Gemini-1.5 AnomLLM (Oshot-Vision) 39.60 59.62 43.56 15.84 | 62.30 63.00 62.32 30.79

(Flash) : AnomLLM (Ishot-Vision-CoT) | 35.61 37.85 35.20 447 | 66.06 6192 6245 31.73

Our (Oshot-Text) 57.81 43.78  46.62 17.65 | 66.16 64.33 64.12 33.12

Our (Oshot-Text-Vision) 68.29 65.81 63.31 34.05 | 84.12 8194 82.05 50.95

AnomLLM (0Oshot-Text) 19.69 17.62 17.76 -13.39 | 46.35 4551 4473 13.78

AnomLLM (0Oshot-Vision) 39.54 50.60 42.03 1231 | 62.19 61.99 61.68 30.20

GPT-40 AnomLLM (Ishot-Vision-CoT) | 31.48 38.50 32.93 2.55 | 56.43 55.84 55.39 24.14

Our (Oshot-Text) 65.52 5345 5440 26.04 | 75.65 73.88 73.47 42.58

Our (Oshot-Text-Vision) 76.94 68.42 70.04 40.05 | 83.10 78.85 80.11 48.94

Table 2: Comparison of TSAD performance gains across LLMs and their general reasoning ability
benchmarks. The TSAD improvements positively correlate with general reasoning ability, as models
with higher MMLU-Pro/MMMU scores (e.g., GPT-40, Qwen2.5) yield substantial F1 gains, whereas
InternVL2-LLaMA3-76B exhibits only marginal improvement.

LLMs \ GPT-40 Qwen2.5-VL-72B-Inst. Gemini-1.5-Flash InternVL2-LLaMA3-76B

TSAD (F1) - AnomLLM 42.03 46.65 43.56 33.67
TSAD (F1) - Ours 70.04 67.56 63.31 34.66
A TSAD (Ours — AnomLLM) | +28.01 +20.91 +19.75 +0.99
MMMU (Visual Reasoning) 69.10 64.50 56.10 58.20
MMLU-Pro (Language Reasoning) | 74.68 71.59 64.09 56.20

4.1.2 Model-wise performance discrepancy and analysis of underlying factors While our
proposed prompting strategy improved performance across all evaluated LLMs, the magnitude of im-
provement varied notably among models. GPT-40, Qwen2.5-VL-72B-Instruct, and Gemini-1.5-Flash
showed significant gains, whereas InternVL2-LLaMA3-76B achieved only marginal improvement. To
explore this discrepancy, we examined whether general reasoning ability correlates with improvement
in TSAD. We compared models’ scores on MMLU-Pro E] (language reasoning) and MMMU E] (visual
reasoning) benchmarks with their TSAD results. As shown in Table 2] the models with stronger
reasoning capabilities, such as GPT-40 (MMLU 74.68, MMMU 69.10) and Qwen (71.59, 64.50),
exhibited larger F1 improvements (+28.01 and +20.91), while LLaMA3 (MMLU 56.20, MMMU
58.20) improved by only +0.99. This trend suggests that high general reasoning ability contributes to
more effective anomaly detection. Given the computational cost of full TSAD evaluations, aggregate
reasoning benchmarks may offer a practical, lightweight proxy for estimating TSAD capability.

4.2 In-depth analysis

4.2.1 Ablation study Table [3|shows that each component of the proposed method plays a mean-
ingful and complementary role in improving LLM-based TSAD. Removing the de-seasonalization
step consistently leads to a drop of 5.64 F1 points on average across the three LLMs, confirming that

"https://huggingface.co/spaces/TIGER-Lab/MMLU-Pro
Zhttps://mmmu-benchmark.github.io/



Table 3: Results of the ablation study on our method, evaluated with standard metrics.

LLMs | GPT-40 Qwen2.5-VL-72B-Inst. Gemini-1.5-Flash | Ave,

Metric | Prec. Recall F1  Prec. Recall F1  Prec. Recall F1 | Drop
Ours (Full) 76.94 6842 70.04 7295 69.78 67.56 6829 65.81 63.31 ‘ -
w/o De-seasonalization 70.76 6434 65.78 6399 62.89 6146 62.86 60.86 59.44 -5.64

w/o Index of time-series text 41.03 43.99 41.13 38.67 4349 3873 49.03 67.69 5290 | -23.36
w/o Value of time-series text 41.06 46.25 4447 7247 54.09 56.13 4566 61.94 49.11 | -16.88
w/o Time-series image 65.52 5345 5440 6552 5345 5440 57.82 4378 46.62 | -14.24

eliminating dominant seasonal patterns enables the model to better capture subtle trend and frequency
shifts. In particular, the exclusion of index information from the time-series text results in the most
severe performance degradation, indicating that LLMs struggle with implicit positional reasoning
and significantly benefit from explicit indexing for accurate localization. Omitting either the value in-
formation or the sequence image leads to a performance drop, indicating that each modality provides
complementary cues. Their combination consistently enhances detection accuracy, suggesting that
LLMs effectively integrate textual and visual signals for more precise anomaly detection.

4.2.2 Can LLMs perform time-series decomposition without external tool? The above question
holds merit in evaluating the time-series understanding capabilities of LLMs and guiding the design
of corresponding detection frameworks that decide whether or not to invoke external tool or not.
We assess the decomposition ability of LLMs through two tasks: (1) detecting the presence of
components and (2) generating each component’s sequence individually.

(a) Component (b) Component (c) Generation results of each components: Trend (top) and Seaonality (bottom)
Detection Generation

05 Ground Truth Series ~ —— Gemini-1.5-Flash ~ —— Statistical decompoistion
100 BN Statistical decomposition
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80 51 W Gemini-15-Flash 0.0
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Figure 6: Comparison of LL.Ms and statistical decomposition for time-series component analysis.
(a) shows component detection results, highlighting how well LLMs identify underlying component
compared to statistical decomposition. (b) presents quantitative and (c) qualitative results evaluating
the accuracy and fidelity of components generated by the LLM. The prompts used in this experiment
are illustrated in Figure

Figure[6]shows that LLMs perform comparably to statistical decomposition in identifying the presence
of individual components. However, their performance deteriorates significantly when generating
sequences for each component individually, especially for long time series, where qualitative examples
reveal notable errors and failure cases. These findings indicate that they require external tools to
accurately disentangle and reconstruct those components. Nevertheless, as they succeed in identifying
the presence of a component, we argue that LLMs are capable of deciding when to invoke an external
decomposition tool, in line with the emerging paradigm of tool-using LLMs. Further implementation
details and examples of the decomposition experiment, including prompt templates and evaluation
settings, are provided in Appendix [D.4]

4.2.3 Index-Free vs. Index-Aware Existing studies [43}89] have argued that longer input tokens
may degrade LLM performance, and [26, 48] also prefer index-free prompts to keep inputs concise
by omitting position indices. This motivates a direct comparison between index-free and index-aware
prompts in the GT-provided setting. As shown in Table @ LLMs perform worse with index-free
prompts, recording significantly lower F1 scores. Index-aware prompts, despite roughly doubling
the input token length, simplify the task by turning fragile position counting into direct retrieval,
resulting in consistently higher localization accuracy. The input length influences the inference time,
but the wall-clock latency is primarily determined by the number of output tokens. In the specific
case of Qwen, index-free prompts occasionally resulted in verbose or rambling outputs (Appendix



Table 4: Performance comparison of TSAD with GT labels between index-free prompts (using only
values) and index-aware prompts (using both indices and values).

Backbone \ Prompt \ GT | Avg. Input | Avg. Output | Avg. Inference |  Standard Metric |  Affiliation Metric
P Tokens Tokens Time (s)
| | | | | | Prec. Recall F1 | Prec. Recall F1

Geminils | Baseline | X | 4968 | 5306 | 084 [ 201 247 189 [2490 2558 24.14
(Flash) Index-free v 5167 50.72 0.87 27.66 28.12 27.74 | 52.03 47.77 4897

Index-aware | v 10058 50.83 1.20 64.79 62.46 62.83 | 67.88 67.54 67.39
Qwenzs | Bascline | X | 4965 | 13291 | 1046 [ 2599 2566 2549 | 4569 4244 4311
(VL-72B-Inst.) | Index-free v 5161 573.05 29.79 20.31 2039 20.33 | 31.06 29.37 29.84

Index-aware | v 10051 59.01 6.45 60.44 6447 60.16 | 73.71 72.87 72.57

Figure[I9), which in turn substantially increased decoding length and inference time. Although we
cannot pinpoint the exact cause, the lack of positional indices may have contributed by offering
less concrete structure for the model to follow. Ultimately, including index tokens adds minor input
overhead, but consistently leads to more dependable and accurate TSAD.

5 Discussion and limitation

In this section, we evaluate the practical value of using LLMs for TSAD. Although our simple
method improves detection performance, it remains important to assess whether LLMs offer tangible
advantages over conventional models. Previous works highlight two main benefits: (1) zero-shot
capability without domain-specific training and (2) the ability to incorporate contextual information
expressed in natural language. However, these advantages have not been extensively evaluated in
comparison to non-LLM methods. we examine the extent to which current LLM-based methods
deliver on these promises in real-world scenarios.

5.1 Comparison with conventional non-LLM TSAD methods
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Figure 7: Comparison of F1 score and inference speed on the TSB-AD-U benchmark between 16
domain-specific ML/DL models and zero-shot FM/LLM-based models without any training.

We begin by comparing the accuracy and inference time of conventional AD methods and LLM-based
methods using the TSB-AD-U benchmark. Unlike LLM-based methods, conventional methods
typically produce an anomaly score for each timestamp, followed by a thresholding step to determine
anomaly segments or binary label sequences. Since these methods are designed to compute scores
that optimally separate anomalies from normal patterns, thresholding is treated as an orthogonal task.
Consequently, evaluations are typically based on score-based metrics or the best F1 score obtained
using GT labels.

To enable a fair comparison with LLM-based methods that directly predict anomaly labels, we adopt
label-based evaluation metrics across all models. For conventional methods, we employ three widely
used thresholding methods, such as percentile, MAD, and EVT-POT, and report the best-performing
result among them. In terms of inference time, we measure the average inference time per sample for
each method. To reduce the overall experimental cost, we limit the evaluation set by selecting time
series from eight categories in the TSB-AD-U benchmark, focusing on those with relatively shorter
lengths. Detailed model descriptions, full benchmark results, and dataset statistics are provided in
Appendix [C.3] Appendix Table[9] and Appendix [B.2] respectively.

Figure [/|demonstrates that our LLM-based method achieves the highest average F1 score on the
benchmark, indicating strong accuracy compared to non-LLM methods. While the method performs



reasonably well even in the absence of domain-specific training, its inference speed is significantly
slower because of the overhead of decoding anomaly segments into textual descriptions. This trade-
off underscores the promise of the method in low-resource or offline settings, while simultaneously
revealing a key limitation in real-time scenarios.

5.2 Excluding known anomalies using context
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electricity usage restriction was implemented. end of each month for maintenance.

Pattern Context: The usage is occasionally restricted to below Pattern Context: A flat time-series pattern may simply result
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Figure 8: Qualitative results on two real-world time series, including anomalies commonly detected
by conventional TSAD models and our (GPT-40). The LLM incorporates sequential and contextual
information to exclude explainable patterns while retaining other anomalies. The full prompt and the
response are provided in Figure @

Another advantage of LLM-based methods over conventional models is their ability to use context
through reasoning. We explore whether LLMs can perform context-aware anomaly filtering to
remove uninteresting anomalies and to concentrate novel anomalies. Previous studies [45, [81] have
focused mainly on detecting predefined anomaly types by using the context, but this is closer to
pattern recognition than true anomaly detection. Also, real-world scenarios demand the discovery
of previously unseen anomalies—those that deviate from normal behavior without prior examples.
Using context to enhance the detection of known anomalies may bias the system toward those specific
patterns, potentially reducing its sensitivity to unknown or novel failures. Thus, we pivot the use of
contextual information in TSAD toward excluding known or uninteresting anomalies.

Figure [§] illustrates qualitative results on time series data commonly used in forecasting [}, B8],
including anomalous patterns commonly detected by conventional models. We compare LLM
predictions under different contexts. Without context, the LLM behaves similarly to conventional
models, identifying abrupt dips or flat patterns as anomalies. However, when a temporal context and
prior knowledge of expected time-series behavior are provided, the LLM can filter out explainable
anomalies from its predictions. This demonstrates a distinctive strength of LLMs: the ability to
integrate natural language context directly into inference, enabling interpretable context-aware
filtering without rule-based systems or low-level code inspection.

Further implementation details, including the full prompt template (Figure 20) and the complete
experimental setup for the context-aided TSAD analysis, are presented in Appendix [D.6] We hope
these findings inspire future research on LLM-based TSAD, particularly through the development of
diverse datasets and evaluation benchmarks that reflect a wide range of real-world scenarios.

6 Conclusion

In this paper, we revisit the use of LLMs for TSAD by identifying two key challenges: temporal
understanding and anomaly localization. Unlike prior work that focused solely on performance, we
analyze these failure modes and propose a simple method, statistical decomposition with index-aware
prompting, that improves detection accuracy without requiring additional training. The experimental
results on benchmark datasets verify that our method consistently outperforms existing prompts and
baseline models. We also discuss both a drawback of using LLMs in real-time settings: their latency
compared to conventional TSAD methods, and a unique strength: context-aware filtering that better
aligns with the semantic definition of anomalies. We believe our findings offer practical guidance on
how and when to use LLMs effectively for TSAD.
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A Related Work

A.1 Time-series Anomaly Detection

Problem Formulation. Let x1.7 = (z1,...,27) € RT*d pe a time series sampled at a regular
interval. Time-series anomaly detection seeks a function f : RT*4 5 (s1.p, y1.7) that, given the
entire sequence, returns a vector of continuous anomaly scores s;.7 € R* and, optionally, a binary
label vector y1.7 € {0, 1} obtained through a rule y; = I[s; > 7]. Each score s; quantifies how
strongly the statistical properties of observation z; diverge from those expected under the normal
generative process—after accounting for trend, seasonality and stochastic noise—while the label
flags the corresponding time point (or minimal enclosing interval) as anomalous when the divergence
exceeds a threshold 7. The objective is thus to isolate individual timestamps or contiguous segments
whose behavior departs significantly from the normal regime, signaling faults, rare events, or structural
changes in the underlying system.

Within this formulation, we primarily consider two TSAD settings based on assumptions about
label availability: unsupervised, where no label information is available beyond the input time
series, and semi-supervised, where only data known to be normal is accessible. While certain
existing methods [45) [89] incorporate anomaly information and thus deviate from these settings,
we concentrate on the more realistic unsupervised and semi-supervised scenarios. Approaches in
this area have evolved from classical statistical techniques to modern deep learning and foundation
models.

Statistical and Classical Models. Traditional methods such as STL decomposition [[17], Matrix
Profile [84], and statistical thresholding [29] detect anomalies by explicitly modeling components
like trend and seasonality. These approaches are efficient and interpretable but often struggle with
non-stationary and multivariate data.

Machine Learning-based Models. Classical unsupervised models include Isolation Forest [44],
Subspace PCA [2], and clustering-based methods [82]. While these algorithms are lightweight
and interpretable, they often rely on handcrafted features and are limited in their ability to capture
temporal dependencies.

Deep Learning-based Models. Deep models such as AutoEncoders [62]], USAD [7], and Omni-
Anomaly [[65] reconstruct normal patterns to identify anomalies. More advanced architectures like
the Anomaly Transformer [[77]] and TimesNet [[75] leverage attention mechanisms to model long-term
dependencies. These models achieve superior performance but require extensive training and tuning,
and they often lack interpretability.

Time-Series Foundation Models (TS-FMs). Recent efforts like Chronos [[6], TimesFM [18],
MOMENT [24], and Lag-Llama [57]] pretrain large models on diverse time-series datasets to enable
zero-shot anomaly detection. These models show promise in generalization and transferability but
still rely on scalar anomaly scores and thresholding for detection, limiting interpretability and precise
localization.

Comparison Across Models. Table [5|summarizes key differences:

Table 5: Comparison of unsupervised TSAD model families in terms of modeling capacity, training
requirements, and output type.

Model Type Temporal Modeling Component Awareness Domain Training Output
Statistical Low Explicit None Score
ML-based Moderate Implicit Light (generic heuristics) ~ Score
DL-based High Implicit Required Score
TS-FM High Learned Pretrained Score
LLM-based (ours) Moderate Structured (via prompt) Pretrained Label

Toward LLM-based TSAD. In contrast, Large Language Models (LLMs) offer a novel paradigm
for TSAD by generating structured, interpretable anomaly reports through prompt-based natural
language reasoning [4} 20} [89]]. Rather than producing scalar anomaly scores, LLMs can identify and
explain anomalous intervals in plain text. However, existing LLM-based TSAD methods struggle
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with precise localization and temporal abstraction, especially when relying on visual inputs [79] or
unstructured token prompts [35} 43]].

Our approach addresses these challenges by combining statistical preprocessing (e.g., de-
seasonalization) with index-aware prompting to improve both detection and localization. This
structured fusion of classical time-series principles and generative language reasoning establishes a
new direction for interpretable and flexible unsupervised TSAD.

A.2 LLM-based Time-series Anomaly Detection

Recent advances have explored the potential of using LLMs for TSAD, particularly in zero-shot or
few-shot settings without domain-specific training. This line of research centers on a core question:

Can LLMs detect time-series anomalies without training? Studies [89, 20} 4, [79} [83) [45]] have
evaluated LLMs’ ability to detect anomalies directly from raw or lightly preprocessed sequences
via prompting. While some setups succeed in identifying simple anomalies, key limitations per-
sist—namely, low detection accuracy, sensitivity to prompt variations, and hallucinations leading
false positive cases. These investigations largely assess outcomes without examining the underlying
causes of failure.

Vision-based anomaly detection with MLLMs. To bypass the difficulties LLMs face in capturing
temporal patterns from textual input, some works [79, [89] propose converting time series into images
and applying MLLMs to interpret the visualizations. This approach shows robustness to missing data
and gross anomalies. However, it remains ineffective at detecting subtle irregularities hidden within
complex, overlapping components. The transformation from sequence to image can also introduce
distortions, particularly in high-dimensional settings, leading to inaccurate or unstable predictions.

Context-aware and interpretable detection. Other efforts [83 45] investigate context-aware
strategies that incorporate in-context learning, AnoCoT, and domain priors to improve both accuracy
and interpretability. Although such methods enhance detection performance and support reasoning,
they often rely on labeled anomaly examples during inference, which constrains their applicability to
unsupervised or semi-supervised TSAD scenarios.

While earlier research has focused on whether LLMs can perform anomaly detection, our work shifts
attention to understanding why they frequently fail. We identify two major barriers: (1) insufficient
temporal abstraction and comprehension of latent components, and (2) structural misalignment
between the input format and the task of localizing anomalies. Furthermore, we argue that visual
representations alone are inadequate for precise localization, especially when positional indexing is
essential. Instead, we advocate for structured textual representations that maintain explicit reference
to index positions. Finally, unlike prior methods that leverage known anomalies to boost performance,
we show that excluding such priors and instead using contextual cues better aligns with realistic,
unsupervised TSAD conditions. All evaluations are conducted on the AnomLLM benchmark [89] to
ensure consistency and fair comparison.

B Benchmark Details

In this paper, we use two benchmark datasets. The first is the synthetic AnomLLM benchmark,
and the second is the real-world TSB-AD benchmark dataset. In this section, we describe the
characteristics and statistical properties of each dataset.

B.1 AnomLLM benchmark

This appendix provides detailed information about the AnomLLLM benchmark [89]] datasets, which
cover representative types of anomalies commonly discussed in time-series literature [[16}52]. The
original dataset consists of 8 datasets in total: point anomalies, range anomalies, trend anomalies,
frequency anomalies, noisy point anomalies, noisy trend anomalies, noisy frequency anomalies, and
flat trend anomalies.

Among these, the first 4 are basic data forms, and the latter 4 are noisy variant forms. We only
used the first 4 datasets, and we will provide an explanation of these datasets. As shown in the first
three rows of Table [/} the four datasets differ in the presence or absence of the three components.
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Table 6: Descriptions of the 21 prompt variants used in the AnomLLM benchmark. Prompts vary by
supervision level (0-shot vs 1-shot), modality (text vs image), and auxiliary strategies such as CoT,
statistical prefixing (PaP), arithmetic cues, and input formatting.

Code Variant Description

A 1shot-vision-cot One-shot prompt with visual input and chain-of-thought (CoT) reasoning
to guide step-by-step anomaly detection.

B 1shot-vision-calc One-shot visual input with a correct arithmetic example to test numeracy-
based reasoning.

C 1shot-vision-dyscalc One-shot visual input with an incorrect arithmetic example to impair
numeric reasoning.

D 1shot-vision Basic one-shot visual prompt without CoT or arithmetic guidance.

E Oshot-vision-cot Zero-shot visual input with CoT prompting to induce explicit anomaly
reasoning.

F Oshot-vision-calc Zero-shot visual input with a correct arithmetic example included.

G Oshot-vision-dyscalc Zero-shot visual input with an incorrect arithmetic example to test robust-
ness to misleading signals.

H Oshot-vision Basic zero-shot visual prompt with only the time series image.

I 1shot-text-s0.3-cot One-shot text input (subsampled to s0.3) with a CoT reasoning trace.

J Ishot-text-s0.3 One-shot prompt with s0.3 subsampled time series as plain text without
reasoning.

K Oshot-text-s0.3-tpd Zero-shot text with Token-per-Digit formatting to aid digit-level model-
ing.

L Oshot-text-s0.3-pap Subsampled text with Prompt-as-Prefix: statistical summaries (mean,
trend, etc.) precede the sequence.

M Oshot-text-s0.3-dyscalc ~ Subsampled text with a misleading arithmetic example to degrade arith-
metic reasoning.

N Oshot-text-s0.3-csv Text input formatted as CSV (index, value) to test structured data han-
dling.

(0] Oshot-text-s0.3-cot-tpd ~ Combines CoT prompting with tokenized digit input for fine-grained
reasoning.

P Oshot-text-s0.3-cot-pap ~ Combines CoT reasoning with Prompt-as-Prefix statistical context.

Q Oshot-text-s0.3-cot-csv  Structured CSV input with CoT reasoning to examine logical behavior
over tabular text.

R Oshot-text-s0.3-cot Basic CoT prompt with subsampled text input (no format enhancements).

S Oshot-text-s0.3-calc Subsampled text with a correct arithmetic example for numeracy-
augmented detection.

T Oshot-text-s0.3 Plain zero-shot text prompt using s0.3-length series in space-separated

format.

8] Oshot-text Full-length zero-shot text prompt with raw values (space-separated).

In addition, [89] specifies appropriate values for minimum anomaly duration, normal duration, and
other parameters for each dataset. These details are presented in Table[/] Also, AnomLLM provided
21 prompt variants including CoT. The descriptions for each variant are in Table[6] And also, the
results of experiments using these variants are in Table [E]

B.1.1 Point Anomalies.

Normal data consists of a periodic sine wave between -1 and 1. Anomalies present as noisy and
unpredictable deviations from the normal periodic pattern, with frequency 0.03, normal duration rate
800.0, anomaly duration rate 30.0, minimum anomaly duration 5, minimum normal duration 200,
and anomaly standard deviation 0.5. The example series is illustrated in Figure 0]

B.1.2 Range Anomalies

Normal data comprises Gaussian noise with mean 0. Anomalies manifest as sudden spikes with
values much further from 0 than the normal noise, with normal duration rate 800.0, anomaly duration
rate 20.0, minimum anomaly duration 5, minimum normal duration 10, and anomaly size range (0.5,
0.8). The example series is illustrated in Figure [T0}
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Table 7: Comparison of anomaly statistics across different synthetic anomaly types.

Statistic Point Range Trend Frequency
Trend component X X v X
Seasonality component v X v v
Noise component X v X X

# Time series 400 400 400 400

# Samples per time series 1000 1000 1000 1000
Minimum anomaly duration 5 5 50 7
Minimum normal duration 200 10 800 20
Average anomaly ratio 0.0320 0.0236 0.0377 0.0341

# Time series without anomalies 117 (29.25%) 121 (30.25%) 230 (57.50%) 40 (10.00%)
Average anomalies per series 1.17 1.20 0.42 2.16
Maximum anomalies per series 4 5 1 7
Average anomaly length 27.26 19.73 88.61 15.77
Maximum anomaly length 165.0 113.0 200.0 111.0

1000

Figure 9: Example time series from the Point Anomalies dataset, with anomalies regions highlighted
in blue.
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Figure 10: Example time series from the Range Anomalies dataset, with anomalies regions highlighted
in blue.

B.1.3 Trend Anomalies.

Normal data follows a steady but slowly increasing trend from -1 to 1. Anomalies appear as sections
where the data increases much faster or decreases, deviating from the normal trend, with trend
negation probability 50%, frequency 0.02, normal duration rate 1700.0, anomaly duration rate 100.0,
minimum anomaly duration 50, minimum normal duration 800, normal slope 3.0, and abnormal slope
range (6.0, 20.0). The example series is illustrated in Figure[TT]

1000 -1 0 200 400 600 800 1000

Figure 11: Example time series from the Trend Anomalies dataset, with anomalies regions highlighted
in blue.

B.1.4 Frequency Anomalies.

Normal data is characterized by a periodic sine wave between -1 and 1. Anomalies occur as sudden
changes in frequency, producing irregular periods between peaks, with frequency 0.03, normal
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duration rate 450.0, anomaly duration rate 15.0, minimum anomaly duration 7, minimum normal
duration 20, and frequency multiplier 3.0. The example series is illustrated in Figure[T2]

)] V /
1000 ! 0 200 400 600 800 1000

Figure 12: Example time series from the Frequnecy Anomalies dataset, with anomalies regions
highlighted in blue.

B.2 TSB-AD Benchmark

This section describes the real-world dataset, TSB-AD benchmark [46], used in Section [d] The
benchmark initially collected 13 univariate and 20 multivariate datasets. Following the curation
process within TSB-AD, they obtained a total of 23 univariate and 17 multivariate datasets. Internally,
datasets with a dimension of 1 were referred to as TSB-AD-U, among which we used the evaluation
subset for our experiments.

To reduce the overall experimental cost, we restrict the evaluation set by selecting time series from
eight categories (highlighted in green in Table [§) within the TSB-AD-U benchmark, focusing on
those with relatively shorter lengths.

Table 8: TSB-AD-U evaluation benchmark dataset statistics. The total length is computed as the
product of the average time series length and the number of series (Count).

Dataset Count Dim Total Len Avg. # Anomaly Avg. Len Anomaly Ratio Category
NEK [64] 8 1 8,584 29 51.1 8.0% P&Seq
TAO [50] 2 1 20,000 838.7 1.1 9.4% P&Seq
MSL [32] 7 1 23,111 1.3 130.0 5.8% Seq
Power [36] 1 1 35,040 4.0 750.0 8.5% Seq
Daphnet [8] 1 1 38,774 6.0 384.3 5.9% Seq
YAHOO [39] 30 1 45,270 5.5 2.5 0.6% P&Seq
SED [11] 2 1 59,998 14.7 64.0 4.1% Seq
TODS [38] 13 1 65,000 97.3 18.7 6.3% P&Seq
NAB [3] 23 1 114,758 1.6 370.1 10.6% Seq
Stock [72] 8 1 130,000 1246.9 1.1 9.4% P&Seq
SMAP [32] 17 1 133,770 1.2 210.1 2.8% Seq
CATSv2 [21] 1 1 300,000 19.0 778.9 4.9% Seq
WSD [86] 20 1 348,639 5.1 25.4 0.6% Seq
SWaT [47] 1 1 419,919 27.0 1876.0 12.1% Seq
OPP [61] 27 1 449,396 14 653.4 6.4% Seq
MGAB [71] 8 1 780,000 9.7 20.0 0.2% Seq
SMD [65] 33 1 791,393 2.4 173.7 2.0% Seq
LTDB [23] 8 1 800,000 127.5 144.5 18.6% Seq
IOPS [33] 15 1 1,048,682 25.6 48.7 1.3% Seq
Exathlon [34] 30 1 1,324,295 3.1 1577.3 11.0% Seq
SVDB [25] 20 1 3,016,800 36.4 292.5 3.6% Seq
UCR [76] 70 1 3,806,932 1.0 198.9 0.6% P&Seq
MITDB [23] 7 1 4,400,000 68.7 451.9 4.2% Seq

C Model details

C.1 LLMs

To evaluate whether our proposed strategies generalize across different LLMs, we conduct exper-
iments using two open-source LLMs and two commercial API-based LLMs. For the open-source
models, we employ InternVL2-Llama3-76B and Qwen2.5-VL-72B-Instruct. For the API-based
models, we use Gemini-1.5-Flash by Google and GPT-40 by OpenAl.
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The open-source models are hosted on an A100 4-GPU machine using the Imdeploy library, and
queries are issued locally through this setup. For Gemini-1.5-Flash and GPT-40, we directly send
requests to their respective APIs without using multi-threading, in order to accurately measure
per-query latency.

Intern-VLM [[15} [14]], also known as InternVL2, is an open-source multimodal LLLM designed to
close the performance gap between open and commercial models in multimodal understanding. It
combines a powerful vision encoder, InternViT, with support for dynamic high-resolution processing
(up to 4K), and a bilingual training corpus. The language component is initialized with Hermes-
2-Theta-LLaMA3-70B. InternVL2 achieves state-of-the-art results on 8 out of 18 benchmarks,
outperforming some proprietary models in tasks like chart understanding.

In the AnomLLM experiments, performance with and without visual input was assessed using a
trivial image. The model achieved an MMLU-Pro [73]] score of 52.95 without the image and 53.26
with the image. This suggests that visual input does not negatively affect language performance.
It is also noted that the slightly lower MMLU score is attributable to the Hermes-based language
backbone, which underperforms compared to Meta’s official LLaMA3-70B-Instruct.

Qwen [9], specifically Qwen2.5-VL-72B-Instruct, is a large-scale multimodal language model
developed by Alibaba Group. It builds upon the Qwen2.5 architecture and integrates a visual encoder
to support image-text understanding tasks. The model features a 72-billion parameter transformer-
based language backbone and leverages a high-resolution vision module. Pretrained on a mixture
of web-scale bilingual corpora and diverse vision-language data, Qwen2.5-VL is optimized for
instruction-following scenarios with multimodal inputs.

Qwen2.5-VL-72B-Instruct demonstrated strong reasoning capabilities, maintaining consistent perfor-
mance both with and without visual input. For example, it achieved an MMLU-Pro score of 71.2 [10],
compared to GPT-40’s 72.6. On the MathVision_FULL benchmark, Qwen scored 38.1 while GPT-40
scored 30.4—suggesting a slight advantage for Qwen when leveraging multimodal context. These
results highlight the robustness of Qwen’s visual-language integration and training pipeline.

Gemini-1.5-Flash [70] is a proprietary multimodal language model developed by Google, optimized
for high-throughput and cost-efficient inference. It supports long-context processing and performs
well across a wide range of multimodal tasks such as image understanding, classification, summariza-
tion, and content generation from visual, audio, or video inputs. Despite its speed-oriented design, it
maintains competitive quality comparable to other Gemini Pro models while significantly reducing
operational cost.

In the AnomLLM study, a small white image (10x10 pixels) was added to text prompts to test
whether including visual inputs would affect model performance. The MMLU-Pro score remained
stable—59.12 without image and 59.23 with image—indicating that the same model backend is likely
used regardless of input modality, and that vision input does not degrade text reasoning capabilities.

GPT-4o [51], specifically the gpt-40-2024-08-06 version, is OpenAl’s latest flagship multimodal
model that unifies vision and text understanding. Unlike earlier versions that relied on separate
encoders for different modalities, GPT-40 adopts a fully integrated transformer capable of jointly
processing and reasoning across modalities with native support.

In the AnomLLM experiments, GPT-40 showed robust performance on both textual and multimodal
benchmarks. Its MMLU-Pro score was 72.6 and GPQA score was 53.6. GPT-4o stands out for its
balanced strength across diverse tasks and its ability to seamlessly integrate visual context without
requiring explicit prompting strategies or auxiliary modules.

C.2  Our strategies

Statistical time-series decomposition. To compare with LLM-based TSAD approaches, we con-
ducted experiments using conventional statistical decomposition techniques. Specifically, we em-
ployed the seasonal_decompose function from the statsmodels package, which decomposes a
univariate time series into three components: trend, seasonality, and residual. This method assumes
that the observed signal consists of systematic patterns combined with random noise, and supports
both additive and multiplicative models. Following prior work [46], we adopt the additive model,
defined as:

Yt] = T[t] + S[t] + elt],
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where Y'[t] is the observed value at time ¢, T[] is the trend component, S[t] is the seasonal component,
and e[t] is the residual.

The decomposition process uses moving averages to isolate the seasonal component, with the period
either inferred from the time index or specified manually. When two_sided=True, a centered
moving average is used; when False, the filter is causal, relying only on past values.

This method yields a structured separation of the time series into long-term trends, recurring seasonal
patterns, and residuals. Anomalies are detected by analyzing the residuals, which capture deviations
unexplained by the expected structure.

Our prompts. In our experiments, we conducted tests using both Oshot-Text and Oshot-Text-Vision
while providing the corresponding indexes. We used the prompt shown in Figure |[13| for these
experiments.

Our (0Oshot-Text-Vision)

I will provide you with time-series data recorded at hourly intervals, along with a plotted time-series image.
Here is time-series data in (index, value) format:

<history>

(index, value)

(index, value)

(index, value)

</history>
Assume there are up to 5 anomalies.

Detect ranges of anomalies in this time series, in terms of the index of time-series data, considering the plotted
image.

List one by one, in JSON format.

If there are no anomalies, answer with an empty list []. Do not say anything other than the answer.

Response: [(start, end), (start, end), ...]

Our (0Oshot-Text)

I will provide you with time-series data recorded at regular intervals.
Here is time-series data in (index, value) format:

<history>

(index, value)

(index, value)

(index, value)

</history>
Assume there are up to 5 anomalies.
Detect ranges of anomalies in this time series, in terms of the index of time-series data.

List one by one, in JSON format.
If there are no anomalies, answer with an empty list []. Do not say anything other than the answer.

Response: [(start, end), (start, end), ...]

Figure 13: The prompts used in the experiments: Oshot Text-Vision and Oshot Text.
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C.3 Conventional non-LLM-based TSAD Methods in Section

(i) ML baseline

* SR [59] first applies the Fourier Transform to the input data and then computes the
spectral residual from the log-amplitude spectrum. This modified spectrum is converted
back to the time domain using the Inverse Fourier Transform, resulting in a saliency
map. Anomaly scores are derived by measuring how much each value in the saliency
map deviates from its moving average.

* IForest [44] builds a binary tree where the length of the path from the root to a given
node indicates the likelihood of an anomaly—shorter paths imply a higher chance that
the point is anomalous.

* Sub-PCA [2] projects subsequences into a lower-dimensional subspace, and large
deviations from this projection space are treated as anomalies due to the breakdown of
linear assumptions.

* KMeans-AD [82] assigns each subsequence to the nearest cluster centroid using k-
means and then calculates anomaly scores as the distance between the subsequence
and its assigned centroid.

* MatrixProfile [84] detects anomalies by identifying subsequences with unusually large
distances to their nearest neighbors, thus uncovering patterns that differ from the rest
of the time series.

(ii) DL baseline

e CNN [49] trains a convolutional network to predict future time steps from recent
observations, and the anomaly score is derived from the prediction error at each point.

e USAD [7]] combines reconstruction and adversarial loss from two autoencoders, where
discrepancies between input and reconstruction, amplified by a discriminator, yield the
anomaly score.

¢ AnomalyTransformer [[77]] introduces an Anomaly-Attention mechanism that captures
temporal dependencies and assigns anomaly scores based on deviations in attention-
based associations.

¢ OmniAnomaly [65]] uses a stochastic recurrent neural network with variational infer-
ence and normalizing flows to learn representations of normal patterns, identifying
anomalies via reconstruction probabilities.

* AutoEncoder [62] projects vector to the lower-dimensional latent space and reconstruct
it through the encoding-decoding phase, where anomalies are typically characterized
by evident reconstruction deviations.

* TimesNet [75] adopts a general-purpose block for multivariate time series that adap-
tively learns multiple periodicities via a hierarchical temporal convolutional structure.

» FITS [80] interpolates time series into the complex frequency domain to detect anoma-
lies, leveraging the efficiency of frequency-domain manipulation with minimal parame-
ters.

(iii) Foundation Model-based Method

* Chronos [6] tokenizes time series values through scaling and quantization into discrete
tokens and trains a TS5 model using a standard cross-entropy loss for anomaly detection.

* TimesFM [18] pretrains a decoder-style attention model using input patching on a
large-scale time series corpus to learn general representations for various forecasting
and detection tasks.

* Lag-Llama [57] introduces a decoder-only transformer architecture that conditions on
lagged inputs, making it suitable for probabilistic forecasting and anomaly detection
on univariate time series.

* MOMENT [24] is a T5-based encoder model pre-trained using masked time-series
modeling to reconstruct masked values, enabling fine-tuning for downstream anomaly
detection tasks.

(iv) Thresholding Method

* Precentile [0] selects a fixed quantile (e.g., top 5%) of the anomaly scores as the
threshold to label outliers, assuming the score distribution reflects normal vs. abnormal
points.
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* MAD [29] computes the median absolute deviation to identify outliers, offering robust-
ness against extreme values and non-Gaussian distributions.

* EVT-POT [63}167] fits the tail of the anomaly score distribution with the Generalized
Pareto Distribution via Peaks Over Threshold, enabling dynamic anomaly thresholding.

D Experiment details

D.1 Understanding experiments in Section 2.1]

Determining whether anomaly exists

Determine whether this time series contains any anomalies.
Respond with exactly "True’ if anomalies are present, or "False’ otherwise.
Output only True’ or ’False’.

Response: "True’ or "False’

Figure 14: A prompt that determines the presence of anomalies and outputs a binary result.

To evaluate how well LLMs understand different types of anomalies in the TSAD setting, we design
an experiment using datasets that cover four representative anomaly types: trend shift, frequency
change, context-deviating point, and out-of-range anomalies, as proposed in AnomLLM. The dataset
consists of 1,600 time series samples, with 400 instances per anomaly type. We convert the original
interval-based labels into binary labels by marking whether any anomaly interval is present in a
given time series, effectively framing the task as instance-level TSAD without requiring localization.
Accordingly, the prompt output format is modified from interval prediction to a binary decision, as
illustrated in Figure[T4]

The experimental setup follows the same configuration as the TSAD task in AnomLLM, with the
only modification being the binary output format. We adopt the F1-Macro score to fairly assess
performance across both normal and anomalous classes. As a lower-bound reference, we include a
constant classifier baseline to delineate the threshold for meaningful predictions. The experiment
leverages the 21 prompt variants proposed in AnomLLM, with detailed descriptions provided in
Table 6] and full dataset statistics presented in Table[7]

D.2 Localization experiments in Section [2.2]

A Oshot-Vision prompt for image sequences with ground truth labels

Detect ranges of anomalies, highlighted by blue-colored regions, in this time series, in terms of the x-axis
coordinate.

List one by one, in JSON format. If there are no anomalies, answer with an empty list [].

Output template:
[{ "start": number , "end": number } , ...]

Response: [{ "start": number , "end": number } , ...]

Figure 15: The Oshot-vision prompt for localization-only experiment.

This section provides detailed information about the experiment designed to evaluate how well the
model localizes anomalies during TSAD using AnomLLM. The dataset and evaluation protocol
follow the AnomLLM benchmark. To minimize performance degradation caused by failures in
understanding, we explicitly provide the ground-truth anomaly segments during the detection process
for each sample as shown in Figure [0}

Specifically, this experiment uses the 0-shot vision-based prompt, which demonstrated strong per-
formance in the original AnomLLM benchmark. When presenting the image, the ground-truth
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anomaly segments are visually highlighted within the image to clearly indicate the anomalous regions.
TSAD is then performed using a prompt (Figure that explicitly instructs the model to utilize this
information.

D.3 Counting experiments in Section [3.2]

Counting prompt

Below is a numerical sequence:
{selected_series}

Count the total number of elements in this sequence.
Please return only the count as a single integer without any additional text or explanation.

Response: integer

Figure 16: The prompt used in the experiment to count elements in a given sequence.

This section offers additional details on the experiment introduced earlier. First, we conduct a
sequence-length counting task by randomly sampling 100 sequences from the AnomLLM benchmark.
Sequence lengths range from 1 to 1,000 and are binned into ten 100-step intervals (1-100, 101-200,
..., 901-1,000), with exactly ten sequences drawn from each interval to ensure a uniform distribution.
We test four large language models and four different separator tokens used to delimit values within a
sequence. Each model is instructed to return a single integer representing the sequence length. As
shown in Figure [16] The prompt template is identical to the one adopted in Oshot-text variant of
AnomLLM, except that the desired output is replaced with the sequence length.

D.4 Time-series decomposition experiments in Section[d.2]

This section provides further details on our evaluation of LLMs’ ability to perform time-series
decomposition without relying on external tools. We consider two subtasks: (1) identifying whether
a time-series contains trend and/or seasonality components, and (2) generating the corresponding
component sequences.

For the detection task, we constructed prompts that directly asked whether the given time-series
contains trend or seasonal structure. Example prompts are provided in Figure We used synthetic
sequences with known decomposition structure sampled from AnomLLM as ground truth. As a
baseline, we apply statistical decomposition and use a threshold to determine whether each component
is present in a time series. The algorithm is shown in Algorithm [I] Specifically, a component is
considered present if its amplitude exceeds a certain percentage of the original series’ value range.
For example, with a threshold set to 10%, we compute the range of the original time series (i.e.,
max minus min), and if the amplitude of the seasonal component exceeds 10% of this range, we
classify the series as containing seasonality. This threshold-based rule transforms the continuous
decomposition output into a binary detection result. A comparison of F1 scores across models is
presented in Figure[6fa)

Specifically, we used the following hyperparameters.

e thresh_trend=0.57
¢ thresh_seasonal=0.1

¢ thresh_resid=0.15

For the generation task, models were asked to output the trend and seasonality as separate numerical
sequences given the original input. Prompt examples for this task are shown in Figure[T7] While some
responses preserved global shape, most models failed to accurately reproduce the true components.
In particular, errors increased with sequence length, and artifacts such as baseline drift and amplitude
attenuation were frequently observed. A comparison of mean absolute errors across models is
presented in Figure[f[b), and representative examples are illustrated in Figure [f[c).
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Component detection prompt

Time series data can typically be decomposed into three main components such as Trend, Seasonality, and
Residuals.
In this analysis, Residuals are further divided into Noise and Anomalies.

The four components exhibit the following characteristics:
Trend: A long-term directional pattern or consistent upwarddownward movement.
Seasonality: Regular and predictable cycles repeating at consistent intervals.
Residuals: The remaining noise or anomalies in the data.

Below is the given time series data:
{time_series}

Analyze the provided time series carefully.
Determine if each of these components (Trend, Seasonality, Residuals) is present (1) or absent (0).

Provide your answer strictly in the following JSON format:
{"Trend": 0 or 1, "Seasonality": 0 or 1, "Residuals": 0 or 1}

Response: {"Trend": 0 or 1, "Seasonality": 0 or 1, "Residuals": 0 or 1}

Component generation prompt

Time series data can typically be decomposed into three main components: Trend, Seasonality, and Residual.

The three components exhibit the following characteristics: Trend: A long-term directional pattern or consistent
upward/downward movement.

Seasonality: Regular and predictable cycles repeating at consistent intervals.

Residual: The remaining noise or anomalies in the data.

Below is the given time series data:
{sampled_series}

CRITICAL INSTRUCTION: Extract ONLY the trend component from this time series.

EXACT LENGTH REQUIREMENT: Your output MUST contain EXACTLY {num_samples} values one trend
value for EACH value in the original time series.

DECIMAL PRECISION: Maintain the same level of precision as the original data (2 decimal places). Example:
If original values are like "-0.63", "-0.57", trend values should also have 2 decimal places like "-0.62", "-0.61".

Count the values in the original data carefully. The original has exactly {num_samples} values, so your trend
component must also have exactly num_samples values, no more and no less.

Return your answer of {component} as space-separated numbers in the following JSON format:

{ " n

"{component}": "valuel value2 value3 ... value{num_samples}"

DO NOT abbreviate or shorten the output. Include EVERY single trend value with 2 decimal places.

non

Response: "{component}": "valuel value2 value3 ... value{num_samples}"

Figure 17: Component detection and generation prompts used in the decomposition experiment.

D.5 Index-free vs. Index-aware experiments in Section[4.2]

Prior works have often favored the index-free approach, as it requires only a simple list of values that
compose the sequence, resulting in a short and concise format. This simplicity can make it easier for
LLMs to understand the sequence, potentially contributing positively to task performance. However,
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Algorithm 1 Component Detection in Time Series

Require: Time series sequence, seasonality period, Threshold values threshiyend, threshscasonals
thresh,esia
Ensure: Binary indicators for trend, seasonal, and residual components
1: function DETECTCOMPONENTS(seq, period, threshiyend, threshseasonals thresheesid)
2: decomposition < SeasonalDecompose(seq, model = “additive”, period = period)
3: tr < decomposition.trend
4 se < decomposition.seasonal
5 re < decomposition.resid
6: pir < 1(max(|tr]) > threshirend) > Binary indicator for trend
7: Pse < 1(max(|se|) > threshseasonal) > Binary indicator for seasonal
8: Dre < 1(max(|re|) > threshresid) > Binary indicator for residual
9: return Ptr,Pses Pre
10: end function

TSAD with GT labels with text sequence only (Index-aware)

.. (968,-0.03), (969,-0.1), (970,0.12), (971,0.1), (972,0.24), (973,0.11), (974,0.03), (975,-0.02), (976,0.09),
(977,0.14), (978,-0.03), (979,-0.01), (980,-0.18), (981,0.06), (982.,-0.0), (983,0.14), (984,0.74), (985,0.73),
(986,0.78), (987,0.56), (988,0.98), (989,0.78), (990,0.7), (991,0.8), (992,0.64), (993,0.82), (994,0.69), (995,0.55),
(996,0.51), (997,0.9), (998,0.78), (999,0.58)

Assume there are up to 5 anomalies. Detect the ranges of anomalies in this time series based on the x-axis
coordinate, where the x-axis coordinate refers to the x value in (X, y) data. The patterns of anomalies are as
follows.

anomaly data 1: 0.07 -0.4 -0.71 -0.8 -0.58 -0.46

anomaly data 2: 0.12 0.46 0.75 0.7 0.82 0.65

anomaly data 3: 0.14 0.74 0.73 0.78 0.56 0.98 0.78 0.7 0.8 0.64 0.82 0.69 0.55 0.51 0.9 0.78 0.58
List one by one, in JSON format. If there are no anomalies, answer with an empty list [].

Output template: [{"start": ..., "end": ...}, {"start": ..., "end": ...}...]

Response: json [ {"start": 414, "end": 460}, {"start": 215, "end": 221}, {"start": 984, "end": 999} ]

Figure 18: A successful case in querying index-aware prompts for text-only TSAD with ground-truth
labels.

in TSAD, the absence of index information introduces a significant drawback: when models are
required to output anomaly intervals, they must internally perform a counting task to determine
positions.

In contrast, the index-aware approach explicitly includes index—value pairs, requiring additional
separator tokens and leading to longer and more complex input formats. This added complexity can
potentially degrade task accuracy, especially when the context window becomes too long.

To evaluate the trade-offs between these two approaches, we conducted an experiment designed
to isolate the effect of index formatting. To control for other variables, we only used text-based
sequences without any accompanying image sequences. Similar to the localization experiment in
Section we provided ground-truth anomaly labels and compared localization performance under
two conditions: with and without index information.

When using only text sequences, we included the ground-truth anomaly segments in the prompt and
designed the task such that the model had to identify these anomalies in the sequence as shown in
Figure [I§]

As aresult, consistent with our earlier discussion, we found that even though the index-aware prompts
were longer and more complex, they outperformed index-free prompts. The benefit of eliminating
the need for internal counting outweighed the cost of increased input length. In the case of Qwen,
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Unnecessary code generation and reasoning outputs when using index-free prompts.

Response: To detect anomalies, we compute the mean (i) and standard deviation (o) of the series,
and declare any point more than 3o away from p an anomaly.

Steps:
1. Compute the mean (p).
2. Compute the standard deviation (o).
3. Mark points further than 3¢ from p as anomalies.

Let’s calculate these values and identify the anomalies.
### Calculations:

1. **Mean (u)**: The average value of the dataset.
2. **Standard Deviation (c)**: A measure of the amount of variation or dispersion of a set of values.

python
import numpy as np

data = [0.05, -0.02, -0.06, -0.01, 0.14, 0.12, -0.04, 0.05, -0.04, 0.1, 0.03, 0.02, 0.1, -0.0, 0.1, -0.06,
-0.01, 0.09, -0.1, ...

mean = np.mean(data)
std_dev = np.std(data)
anomaly_threshold = 3 * std_dev

anomalies = []

for i, value in enumerate(data):
if abs(value - mean) > anomaly_threshold:
anomalies.append(i)

# Grouping anomalies into ranges
anomaly_ranges = []
if anomalies:
start = anomalies[0]
for i in range(1, len(anomalies)):
if anomalies[i] != anomalies[i - 1] + 1:
anomaly_ranges.append("start": start, "end": anomalies[i - 1])
start = anomalies][i]
anomaly_ranges.append({"start": start, "end": anomalies[-1]})

print(anomaly_ranges)
### Output: “‘json [ {"start": 18, "end": 18}, {"start": 25, "end": 25}, {"start": 27, "end": 27}, ...

Figure 19: A failure case in querying index-free prompts for text-only TSAD with ground-truth
labels. The quantitative evaluation results of the index-free and index-aware prompts are presented in

Section [1;2}

index-free prompts occasionally resulted in the generation of unnecessary code or reasoning steps
(Figure [I9), suggesting that the inherent difficulty of the task without index cues may be responsible
for such verbose outputs.
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D.6 Context-aided TSAD experiments in Section[5.2]

Prompt and Response of ETTh2 example

I will provide you with time-series data recorded at hourly intervals, along with a plotted time-series image.
Here is time-series data in (timestamp, value) format:

<history>

(2016-08-20 01:00:00, 46)

(2016-08-20 02:00:00, 45)

(2016-08-20 03:00:00, 44)

(2016-09-11 08:00:00, 34)

(2016-09-11 09:00:00, 35)

</history>

Here is context to understand the time series.

The following event occurred in given period. A time-series pattern that can be explained by this event not
considered an anomaly.

* A flat time-series pattern may simply result from handling missing values caused by system shutdowns.

Assume there are up to 3 anomalies.

Detect ranges of anomalies, which are not explained by context in this time series, in terms of the timestamp of
time-series data, considering the plotted image.

Step1) Present possible anomalies with reason.

Step2) Remove explainable anomalies by context.

Step3) List one by one, in JSON format. If there are no anomalies, answer with an empty list []. Do not say
anything other than the answer.

Output template:

[{"start timestamp": ..., "end timestamp": ...}, {"start timestamp": ..., "end timestamp": ...}...]

Please answer to all steps.

Response:
Step1) Present possible anomalies with reason.

1. From 2016-08-31 00:00:00 to 2016-08-31 23:00:00, the time series shows a flat pattern at a value of 33,
which could be considered an anomaly due to its deviation from the usual pattern of fluctuations.

2. From 2016-09-06 22:00:00 to 2016-09-07 08:00:00, the time series shows a sudden drop to a lower value
range, which could be considered an anomaly due to its deviation from the usual pattern.

Step2) Remove explainable anomalies by context.

1. The flat pattern from 2016-08-31 00:00:00 to 2016-08-31 23:00:00 can be explained by the context provided,
which mentions that flat patterns may result from handling missing values due to system shutdowns. Therefore,
this is not considered an anomaly.

2. The sudden drop from 2016-09-06 22:00:00 to 2016-09-07 08:00:00 does not have an explanation provided
by the context, so it remains a potential anomaly.

Step3) List one by one, in JSON format.

“‘json [{"start timestamp": "2016-09-06 22:00:00", "end timestamp": "2016-09-07 08:00:00"}] “*

Figure 20: The prompt and response of qualitative result on (b) potential range anomalies in ETTh2.

Conventional TSAD has relied heavily on numerical sequences, using statistical or neural network-
based models. While there have been attempts to incorporate textual information into these models,
such approaches often depend on synthetic datasets due to the difficulty of collecting paired text
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and time-series data. As a result, they fall short in terms of generality and reasoning capabilities
compared to LLMs. Thus, without other modality, these conventional models generally depend on an
assumption in which anomalies are defined by sparsity or abrupt changes in the time-series patterns.

However, in real-world applications, not all sparse or abrupt patterns are of actual concern. For
instance, in e-commerce platforms, promotional events can cause a sudden surge in product sales.
Traditional models may flag such a change as an anomaly, despite it being an expected and well-
known outcome. While it is possible to exclude known time windows using rule-based filters, this
quickly becomes labor-intensive and inflexible when many events or patterns need to be handled.
In contrast, simply describing these contexts in natural language would be a far more scalable and
user-friendly solution.

In this situation, the reasoning ability of LLMs to interpret natural language context offers a valuable
control interface for TSAD. To explore this capability, we conducted a study using real-world
datasets—ETTh?2 and Electricity. We first ran eight conventional anomaly detection models on these
datasets and extracted time segments that were commonly detected as anomalies. We then generated
domain-informed contextual descriptions for each of these segments, simulating plausible scenarios
such as a known event causing a sudden drop, or a specific pattern being aligned with external factors.
These contexts provided time-related or value-specific cues in natural language.

Using the prompt as shown in Figure 20| we evaluated the anomaly decisions of the LLM both with
and without these contextual inputs. Our results show that the LLM could effectively integrate tempo-
ral cues, numerical patterns, and contextual knowledge to suppress false positives—i.e., anomalies
detected by conventional models that users would not consider problematic.

Unlike conventional models that rigidly detect anomalies based on pattern shifts alone, LLM-based
context-aided TSAD can reinterpret these shifts in light of the user’s intent and domain knowledge.
This allows for “justifiable detection,” where the LLM not only detects changes but reasons whether
those changes are relevant anomalies given the context. The LLM thus transforms anomaly detection
into an interactive, user-aligned process that prioritizes interpretability and flexibility.

This paradigm shift points to several promising directions for future work: improving generalization
across domains, ensuring real-time applicability of context-aware detection, and defining minimal
requirements for effective contextual prompts. Notably, because the meaning of "anomaly" can vary
depending on the user’s objective or operational context, LLMs open the door to a new class of
objective-aware anomaly detection systems—systems that adapt dynamically to changing definitions
of what matters, rather than adhering to a fixed statistical criterion.
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Table 9: TSAD results on the evaluation set of TSB-AD-U benchmark. The summarized results are
presented in Section [5.1]

| | Standard Metrics |  Affiliation Metrics | Inference
Method | Thresholding | Prec. Recall F1 | Prec. Recall Fl1 | Time
AnomLLM (GPT-40) - 1279 1196 9.32 | 39.59 30.54 31.59 25.52
AnomalyTransformer Percentile 1521 4035 1391 | 54.04 86.67 64.13 8.49
FITS MAD 13.88 38.54 16.54 | 56.03 86.48 65.73 4.05
TimesNet MAD 1440 39.63 17.71 | 56.87 8548 66.02 591
MatrixProfile MAD 19.73  28.82 18.29 | 61.87 59.30 54.80 33.58
MOMENT-ZS Percentile 26.07 2735 2042 | 6533 71.04 63.82 8.90
OmniAnomaly MAD 2791 30.81 20.46 | 63.14 8335 68.08 2.66
KMeansAD-U Percentile 31.58 2528 22.14 | 66.57 50.01 50.77 1.28
AutoEncoder MAD 27.12 2744 2227 | 66.21 60.82 57.25 3.16
Lag-Llama MAD 24.17 45.67 2354 | 6520 9270 74.54 118.85
Sub-PCA MAD 26.55 28.00 23.72 | 62.37 5431 54.74 0.18
USAD MAD 2392 3454 2446 | 59.84 61.60 55.24 1.57
TimesFM MAD 2547 52.18 2498 | 66.32 94.65 75.72 130.09
Chronos MAD 23.58 55.65 25.08 | 64.87 9633 75.90 69.10
[Forest MAD 3399 26.62 2679 | 68.24 68.44 64.72 0.52
SR MAD 32.61 40.77 30.57 | 66.80 95.11 75.94 0.02
Our (GPT-40) - 47.60 31.88 3420 | 76.10 8149 74.64 140.63
E Full benchmark results
Gemini-1.5-Flash Standard Affiliation
Datasets Code Prompt | Prec. Recall F1 | Prec. Recall F1
A 1shot-vision-cot 41.07 40.88 39.55 | 5091 53.18 51.82
B Ishot-vision-calc 63.33 63.63 62.75 | 67.09 6743 67.25
C Ishot-vision-dyscalc 62.01 6222 61.86 | 64.12 6437 64.24
D Ishot-vision 57.59 5773 56.75 | 62.41 62.81 62.59
E Oshot-vision-cot 5793 5794 5793 | 57.99 58.00 57.99
F Oshot-vision-calc 59.70 59.44 59.48 | 60.15 60.20 60.18
G Oshot-vision-dyscalc 59.08 59.03 5895 | 5943 5947 5945
H Oshot-vision 59.77 59.57 59.60 | 60.17 60.22 60.19
I 1shot-text-s0.3-cot 5.64 796 632 | 19.15 2430 21.23
J Ishot-text-s0.3 2.03 2.15 1.88 | 11.72  17.19 13.70
K Oshot-text-s0.3-tpd 0.00 0.00  0.00 3.03 5.81 3.97
L Oshot-text-s0.3-pap 0.00 0.00 0.00 | 3.37 7.25 456
Trend M Oshot-text-s0.3-dyscalc 0.00 0.00  0.00 3.90 7.85 5.20
N Oshot-text-s0.3-csv 0.00 0.00  0.00 3.15 7.16 431
0] Oshot-text-s0.3-cot-tpd 3.25 3.25 3.25 7.83  10.62 8.88
P Oshot-text-s0.3-cot-pap 0.25 025 0.25 3.26 5.66  4.07
Q Oshot-text-s0.3-cot-csv 0.50 0.50  0.50 5.51 9.70 6.88
R Oshot-text-s0.3-cot 0.52 1.01 0.63 7.83 1390 9.94
S Oshot-text-s0.3-calc 0.00 0.00 0.00 | 4.59 8.98 6.06
T Oshot-text-s0.3 2.12 2.58 2.07 | 1228 17.76 14.31
U Oshot-text 0.00 0.00 0.00 3.99 7.79  5.27
Our  Oshot-text 65.38 61.87 6252 | 67.47 7049 68.28
Our  Oshot-text-vision (w/o value) 70.87  71.07 7030 | 88.41 91.37 89.62
Our  Oshot-text-vision (w/o index) 7495 75770 7438 | 85.63 86.40 85.95
Our  Oshot-text-vision (w/o deseason) | 58.76  58.45 58.47 | 59.69 61.47 60.27
Our  Oshot-text-vision 8290 81.81 81.28 | 90.08 92.70 91.11
A Ishot-vision-cot 1429 16.89 13.80 | 54.19 41.68 43.93
B 1shot-vision-calc 23.10 20.50 20.73 | 3476 24.87 27.46
C Ishot-vision-dyscalc 2373  21.83 21.61 | 36.35 2437 27.57
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D 1shot-vision 21.78 21.31 20.52 | 35.84 25.89 28.46
E Oshot-vision-cot 12.65 1271 1245 | 14.16 1252 1298
F Oshot-vision-calc 17.82 19.68 18.14 | 23.65 17.80 19.39
G Oshot-vision-dyscalc 16.71 17.84 16.83 | 21.44 16.58 17.88
H Oshot-vision 13.56  13.77 13.54 | 1547 13.15 13.76
I 1shot-text-s0.3-cot 12.81 17.30 12.31 | 56.67 50.63 51.30
J Ishot-text-s0.3 10.20 14.73 1045 | 56.37 52.78 52.61
K Oshot-text-s0.3-tpd 2.57 1.57 1.63 | 39.54 29.61 32.22
L Oshot-text-s0.3-pap 1.97 0.73 094 | 3336 2271 25.54
M Oshot-text-s0.3-dyscalc 3.74 324 291 | 3695 28.19 30.32
N Oshot-text-s0.3-csv 2.77 2.21 2.08 | 4648 33.66 37.03
o Oshot-text-s0.3-cot-tpd 2.61 2.37 1.97 | 2596 19.14 21.00
P Oshot-text-s0.3-cot-pap 3.92 2.35 2.61 | 2946 19.21 22.12
Q Oshot-text-s0.3-cot-csv 2.55 2.34 1.94 | 30.81 2337 25.37
R Oshot-text-s0.3-cot 3.46 478 336 | 21.76 1993 19.99
S Oshot-text-s0.3-calc 3.29 2.61 2.51 | 36.76  27.58 29091
T Oshot-text-s0.3 11.28 1424 1091 | 5842 52.67 53.59
U Oshot-text 4.01 430 3.63 | 3924 31.84 33.65
Our  Oshot-text 3792 24.04 2575 | 62.71 5237 54.95
Our  Oshot-text-vision (w/o value) 30.17 50.64 33.71 | 80.53 70.80 73.25
Our  Oshot-text-vision (w/o index) 30.20 4550 3256 | 7749 67.14 69.69
Our  Oshot-text-vision (w/o deseason) | 48.87 33.96 36.87 | 5599 41.00 45.47
Our  Oshot-text-vision 46.23 47.13 3998 | 81.57 70.16 73.03
A 1shot-vision-cot 43.09 67.37 4931 | 82.62 83.34 82.61
B 1shot-vision-calc 5595 7736 61.54 | 9488 94.55 94.17
C Ishot-vision-dyscalc 5429 7890 60.44 | 95.18 96.15 95.25
D 1shot-vision 53.54 78.76 59.96 | 9342 93.83 93.19
E Oshot-vision-cot 51.87 84.03 59.20 | 91.78 89.43 89.75
F Oshot-vision-calc 51.56 87.56 59.74 | 9428 95.88 94.63
G Oshot-vision-dyscalc 5140 88.72 59.53 | 94.18 9587 94.52
H Oshot-vision 5235 90.69 6090 | 9422 9546 94.38
I Ishot-text-s0.3-cot 8.19 9.11 8.05 | 45.60 43.79 43.26
J 1shot-text-s0.3 3.63 420 3.61 | 4349 41.13 4093
K Oshot-text-s0.3-tpd 1.83 1.76 1.77 | 22.66  20.71 20.94
L Oshot-text-s0.3-pap 0.00 0.00 0.00 | 15.58 14.10 14.28
Point M Oshot-text-s0.3-dyscalc 0.20 0.10 0.12 | 18.22 18.78 18.08
N Oshot-text-s0.3-csv 3.81 2.85 274 | 3427 2922 3044
o Oshot-text-s0.3-cot-tpd 3.89 379 3776 | 1841 16.85 17.14
P Oshot-text-s0.3-cot-pap 3.31 3.51 330 | 17.68 1621 16.44
Q Oshot-text-s0.3-cot-csv 2.88 2.86 2.19 | 24.03 20.64 21.46
R Oshot-text-s0.3-cot 2.66 372 254 | 19.37 2022 19.12
S Oshot-text-s0.3-calc 0.10 0.05 0.06 | 18.67 1937 18.53
T Oshot-text-s0.3 2.75 360 2.83 | 43.01 41.02 40.64
U Oshot-text 1.09 1.06 093 | 23.84 2438 23.35
Our  Oshot-text 67.99 3556 4339 | 69.75 67.17 67.79
Our  Oshot-text-vision (w/o value) 56.52 8142 6276 | 95.86 9595 95.52
Our  Oshot-text-vision (w/o index) 5721 76.78 62.52 | 93.78 96.26 94.54
Our  Oshot-text-vision (w/o deseason) | 87.85  88.36 85.44 | 98.91 97.12 97.64
Our  Oshot-text-vision 90.89 7493 78.41 | 9845 96.81 97.11
A 1shot-vision-cot 22.85 50.51 28.87 | 69.16 71.62 70.05
B Ishot-vision-calc 36.28 64.25 4240 | 81.41 84.05 82.40
C Ishot-vision-dyscalc 3552 61.50 41.15 | 81.49 83.06 81.82
D Ishot-vision 33.77 63.17 40.02 | 80.05 82.67 81.07
E Oshot-vision-cot 28.58 61.32 34.67 | 7591 73.62 73.75
F Oshot-vision-calc 2096 6042 28.02 | 68.04 7094 69.07
G Oshot-vision-dyscalc 2694 66.70 34.00 | 74.17 7729 75.34
H Oshot-vision 32770 7446 40.19 | 79.35 83.16 80.95

Range
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I 1shot-text-s0.3-cot 12.04  14.57 12.31 | 46.38  49.43 46.57
J Ishot-text-s0.3 712 13.71 842 | 47.06 56.95 50.69
K Oshot-text-s0.3-tpd 2.30 2,63  2.13 ] 2922 2856 27.96
L Oshot-text-s0.3-pap 1.97 0.88 1.08 | 30.66 27.80 28.09
M Oshot-text-s0.3-dyscalc 2.20 1.95 1.85 | 33.94 36.51 34.22
N Oshot-text-s0.3-csv 5.00 452 462 | 35.17 3331 3328
0] Oshot-text-s0.3-cot-tpd 2.87 303 286 | 16.75 1498 15.26
P Oshot-text-s0.3-cot-pap 6.59 6.17 6.17 | 2546 22.12 23.01
Q Oshot-text-s0.3-cot-csv 2.70 2.24 2.34 | 16.85 1547 15.75
R Oshot-text-s0.3-cot 4.28 490 4.18 | 20.54 2227 20.84
S Oshot-text-s0.3-calc 2.24 1.92 1.81 | 35.13 3694 3499
T Oshot-text-s0.3 7.15 12776 8.34 | 46.77 5631 50.25
U Oshot-text 2.92 453 298 | 32.52 3830 34.27
Our  Oshot-text 59.97 53.65 54.81 | 64.74 6729 65.47
Our  Oshot-text-vision (w/o value) 3854 67.64 4481 | 83.56 86.21 84.57
Our  Oshot-text-vision (w/o index) 20.27 49.77 2697 | 61.38 68.83 64.52
Our  Oshot-text-vision (w/o deseason) | 54.54  61.60 55.60 | 66.94 68.64 67.60
Our  Oshot-text-vision 53.15 59.37 53.57 | 66.36 68.09 66.96
InternVL2-Llama3-76B Standard Affiliation
Datasets Code Prompt | Prec. Recall F1 | Prec. Recall Fl1
A Ishot-vision-cot 4490 4490 4429 | 4692 47.32 47.08
B 1shot-vision-calc 33.76  39.43 32.67 | 40.33 44.13 41.61
C Ishot-vision-dyscalc 39.61 4323 38.34 | 4848 51.02 49.37
D 1shot-vision 3898 42.27 3793 | 47.54 50.00 48.43
E Oshot-vision-cot 51.13 5134 51.06 | 53.27 54.16 53.60
F Oshot-vision-calc 41.31 4480 41.82 | 46.76 5222 48.64
G Oshot-vision-dyscalc 3648 4576 36.67 | 4549 54.89 48.67
H Oshot-vision 2727 4587 27.82 | 37.77 49.50 41.68
I 1shot-text-s0.3-cot 37.44  36.65 3574 | 42.01 4232 42.14
J Ishot-text-s0.3 30.18 31.05 29.77 | 36.14 37.59 36.68
K Oshot-text-s0.3-tpd 2.06 473 230 | 5.5 9.78  7.09
Trend L Oshot-text-s0.3-pap 46.08 46.75 46.14 | 47.07 48.13 47.43
M Oshot-text-s0.3-dyscalc 11.38  13.71 11.63 | 1430 17.62 1541
N Oshot-text-s0.3-csv 0.50 0.50 050 | 545 9.52 6.83
o Oshot-text-s0.3-cot-tpd 10.76 ~ 11.00 10.77 | 11.39 12.00 11.60
P Oshot-text-s0.3-cot-pap 20.40 20.84 2042 | 21.31 2232 21.65
Q Oshot-text-s0.3-cot-csv 4.52 475  4.54 8.09 9.73 8.66
R Oshot-text-s0.3-cot 13.26  13.50 13.27 | 1542 17.52 16.12
S Oshot-text-s0.3-calc 11.20 1258 11.34 | 12.87 1477 13.50
T Oshot-text-s0.3 33.58 32.66 31.95 | 38.68 39.79 39.07
U Oshot-text 19.21  23.60 19.56 | 22.80 26.84 24.16
Our  Oshot-text 3232 5220 35.72 | 47.85 5493 50.59
Our  Oshot-text-vision 5690 66.60 58.83 | 68.36 74.21 70.60
A Ishot-vision-cot 2.76 8.41 358 | 3598 42.04 36.75
B 1shot-vision-calc 455 1345 5.19 | 35.04 3820 33.78
C Ishot-vision-dyscalc 411 1228  5.37 | 35.10 38.41 33.73
D 1shot-vision 431 1522 492 | 3893 44.67 38.43
E Oshot-vision-cot 4.97 9.25 5.37 | 30.18 27.70 27.27
F Oshot-vision-calc 4.68 15.55 541 | 2642  29.19 25.80
G Oshot-vision-dyscalc 7.16 1874  8.88 | 32.78 33.72 31.01
H Oshot-vision 6.51 17.82  8.81 | 3594 35.14 33.37
I 1shot-text-s0.3-cot 3.05 2.69 240 | 30.54 26.81 26.86
J Ishot-text-s0.3 4.24 4.93 322 | 37.50 3279 32.66
Freq
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K Oshot-text-s0.3-tpd 4.01 7.60 4.01 | 2488 2146 2145
L Oshot-text-s0.3-pap 8.36 929 838 | 13.77 12.68 12.77
M  Oshot-text-s0.3-dyscalc 7.15 820 7.22 | 16.55 13.84 14.39
N Oshot-text-s0.3-csv 3.65 897  3.62 | 37.52 31.89 32.68
(0] Oshot-text-s0.3-cot-tpd 3.13 3.73  3.15 | 10.65 8.46  8.98
P Oshot-text-s0.3-cot-pap 3.79 3.68 371 6.45 5.57 5.8
Q Oshot-text-s0.3-cot-csv 2.60 4.52 2.69 | 1944 17.81 17.71
R Oshot-text-s0.3-cot 6.51 771 6.2 1 12.89  11.98  12.06
S Oshot-text-s0.3-calc 8.18 948 830 | 1436 13.50 13.45
T Oshot-text-s0.3 3.38 7.18 333 | 37.12  33.84 33.16
U Oshot-text 566 1239 6.04 | 15.82 17.30 15.53
Our  Oshot-text 20.35 4890 19.72 | 60.36 63.00 57.04
Our  Oshot-text-vision 13.42 46.70 17.22 | 57.58 73.33 62.47
A Ishot-vision-cot 387 12,65 4.61 | 33.66 4565 37.30
B Ishot-vision-calc 10.01 2992 12.26 | 4434 57.93 48.86
C Ishot-vision-dyscalc 898 31.81 11.90 | 42.77 59.47 48.65
D Ishot-vision 997 2984 1299 | 4476 57.62 49.26
E Oshot-vision-cot 435 1295 547 | 31.51  39.00 33.61
F Oshot-vision-calc 2297 58.75 28.77 | 66.27 76.14 70.44
G Oshot-vision-dyscalc 1731 5436 2336 | 5949 70.15 63.79
H Oshot-vision 1426 53.10 20.64 | 56.18 67.83 60.77
I Ishot-text-s0.3-cot 10.20 998 943 | 30.63 30.69 29.49
J Ishot-text-s0.3 8.69 9.80 7.70 | 32.37 3295 31.19
K Oshot-text-s0.3-tpd 7.00 7.00 7.00 | 1489 15.08 14.88
Point L Oshot-text-s0.3-pap 2526 25,50 2527 | 27.14 2726 27.16
M Oshot-text-s0.3-dyscalc 18.89 19.66 18.94 | 23.35 23.80 23.46
N Oshot-text-s0.3-csv 11.92 1391 11.20 | 40.05 38.01 37.78
o Oshot-text-s0.3-cot-tpd 9.21 9.82 881 | 26.12 2475 24.70
P Oshot-text-s0.3-cot-pap 10.58 10.83 10.58 | 11.56 11.76 11.62
Q Oshot-text-s0.3-cot-csv 9.00 9.00 9.00 | 11.69 11.68 11.63
R Oshot-text-s0.3-cot 15.82  16.50 15.86 | 1851 19.07 18.68
S Oshot-text-s0.3-calc 2142 2325 2152 | 2562 2672 25093
T Oshot-text-s0.3 10.21  11.34 996 | 33.19 3447 32.60
U Oshot-text 19.26 2248 19.47 | 25.08 2732 25.84
Our  Oshot-text 37.76 5321 37.08 | 59.81 65.15 60.64
Our  Oshot-text-vision 28.86 60.61 3492 | 56.23 69.93 61.22
A 1shot-vision-cot 3.57 590 3.66 | 31.10 3497 31.58
B Ishot-vision-calc 19.32 3523 2191 | 60.17 65.54 61.65
C 1shot-vision-dyscalc 17.24 3425 20.14 | 5985 6548 61.53
D Ishot-vision 17.79 3339 2035 | 58.16 61.04 58.53
E Oshot-vision-cot 825 12.05 8.64 | 3421 36.28 33.99
F Oshot-vision-calc 27.58 56.64 32.82 | 72.83 78.02 74.93
G Oshot-vision-dyscalc 439 1378 5.03 | 32.84 3945 34.03
H Oshot-vision 27.08 56.67 32.58 | 73.52 79.03 75.84
I 1shot-text-s0.3-cot 8.70 890  8.48 | 28.66 28.08 27.47
J Ishot-text-s0.3 8.61 995 837 | 27.64 26.60 2594
K Oshot-text-s0.3-tpd 7.83 12772 8.05 | 22.23 2344 21.88
Range L Oshot-text-s0.3-pap 2543 27.34 2551 | 28.87  29.71 29.00
M  Oshot-text-s0.3-dyscalc 7.56 1699  7.92 | 21.17 25.37 22.00
N Oshot-text-s0.3-csv 7.83 824 749 | 38.79 3459 3552
(0] Oshot-text-s0.3-cot-tpd 6.40 646 634 | 11.74 11.09 11.12
P Oshot-text-s0.3-cot-pap 12.58 1240 1237 | 1820 17.09 17.31
Q Oshot-text-s0.3-cot-csv 4.83 5.71 475 | 19.71 18.08 18.24
R Oshot-text-s0.3-cot 9.85 1045 994 | 16.89 17.87 17.13
S Oshot-text-s0.3-calc 1049 1355 10.29 | 2098 2134 20.46
T Oshot-text-s0.3 7.45 8890 748 | 2594 25.18 24.59
U Oshot-text 895 2730 9.39 | 27.16 3632 29.81
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Our  Oshot-text 20.27 5487 2433 | 49.22 59.77 51.89

Our  Oshot-text-vision 20.82 63.50 27.68 | 50.37 69.70 57.33
GPT-40 Standard Affiliation

Datasets Code Prompt | Prec. Recall F1 | Prec. Recall F1

A Ishot-vision-cot 57.50 57.50 57.50 | 57.50 57.50 57.50

H Oshot-vision 57.50 57.50 57.50 | 57.50 57.50 57.50

U Oshot-text 6.67 591 6.04 | 1485 2253 1748

Trend Our  Oshot-text 8347 68.97 70.84 | 87.48 8793 87.41

Our  Oshot-text-vision (w/o value) 58.13  57.82 5790 | 58.23 5821 58.22

Our  Oshot-text-vision (w/o index) 64.25 6440 63.80 | 71.40 71.87 71.63

Our  Oshot-text-vision (w/o deseason) | 57.50 57.50 57.50 | 57.50 57.50 57.50

Our  Oshot-text-vision 79.12 7548 76.27 | 79.66 79.43 79.54

A 1shot-vision-cot 15.66 1793 16.12 | 28.10 22.09 23.65

H Oshot-vision 13.68 15.69 14.27 | 19.02 16.13 16.98

U Oshot-text 1501 1054 11.20 | 34.05 2471 27.40

Freq Our  Oshot-text 50.38 27.15 29.34 | 72.56 60.06 62.88

Our  Oshot-text-vision (w/o value) 16.27 2095 16.82 | 37.87 31.69 33.40

Our  Oshot-text-vision (w/o index) 16.80 20.87 17.06 | 52.02 41.44 44.39

Our  Oshot-text-vision (w/o deseason) | 37.86  19.01 22.13 | 39.54 27.41 30.80

Our  Oshot-text-vision 4542 36.09 35.16 | 65.85 5144 55.66

A 1shot-vision-cot 30.12  46.21 33.57 | 72.69 7324 72.08

H Oshot-vision 4520 68.00 5048 | 87.71 87.70 87.09

U Oshot-text 3349 3211 3231 | 7321 73.64 72.87

Point Our  Oshot-text 72.50 36.66 44.00 | 74.48 74.86 73.52

Our  Oshot-text-vision (w/o value) 46.67 63.10 5096 | 87.29 85.85 85.87

Our  Oshot-text-vision (w/o index) 4410 44.11 4330 | 86.06 8298 83.65

Our  Oshot-text-vision (w/o deseason) | 98.87 90.33 93.57 | 99.96 97.76 98.54

Our  Oshot-text-vision 90.51 73.14 78.71 | 92.66 9148 91.79

A Ishot-vision-cot 22.65 3235 2452 | 6743 70.52 68.34

H Oshot-vision 4176  61.19 4587 | 84.52 86.62 85.15

U Oshot-text 23.58 21.90 2147 | 63.27 61.17 61.18

Range Our  Oshot-text 72.56  66.75 67.40 | 76.20 77.96 76.43

Our  Oshot-text-vision (w/o value) 4221  58.69 4599 | 83.33 83.35 82.81

Our  Oshot-text-vision (w/o index) 41.77 46.07 4270 | 84.21 83.73 83.44

Our  Oshot-text-vision (w/o deseason) | 96.39  88.93 91.67 | 97.75  96.20 96.72

Our  Oshot-text-vision 9270 88.95 90.00 | 94.25 93.05 9345
Qwen2.5-VL-72B-Instruct Standard Affiliation

Datasets Code Prompt | Prec. Recall F1 | Prec. Recall F1

A 1shot-vision-cot 54.59 55.00 54.66 | 5494 55.00 54.97

B Ishot-vision-calc 4378 4479 4279 | 48.13  48.69 48.37

C Ishot-vision-dyscalc 4298 46.53 42.82 | 4949 50.76 50.03

E Oshot-vision-cot 5593 5589 55.81 | 56.19 56.22 56.20

F Oshot-vision-calc 61.30 60.87 60.69 | 62.07 62.06 62.06

G Oshot-vision-dyscalc 60.75 60.74 6043 | 61.56 61.62 61.58

H Oshot-vision 60.19 59.95 59.79 | 60.64 60.64 60.64

J Ishot-text-s0.3 45.52 4551 4552 | 4748 47.99 47.69

L Oshot-text-s0.3-pap 40.50 40.50 40.50 | 40.76  40.84 40.79

Trend M Oshot-text-s0.3-dyscalc 10.25 10.25 10.25 | 10.98 11.38 11.13
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N Oshot-text-s0.3-csv 16.75 16775 16.75 | 19.08 20.10 19.44
P Oshot-text-s0.3-cot-pap 1875 18.75 1875 | 19.01 19.15 19.06
S Oshot-text-s0.3-calc 8.81 8.80  8.81 | 10.03 10.88 10.33
T Oshot-text-s0.3 46.81 46.77 46.78 | 48.76  49.48 49.02
U Oshot-text 56.00 56.00 56.00 | 56.08 56.14 56.11
Our  Oshot-text 86.06 83.24 82.00 | 91.96 93.96 92.69
Our  Oshot-text-vision (w/o value) 61.38 60.66 60.77 | 62.70 62.86 62.77
Our  Oshot-text-vision (w/o index) 66.82 68.73 6634 | 81.77 84.62 82.88
Our  Oshot-text-vision (w/o deseason) | 60.80 59.36 59.68 | 61.37 6127 61.31
Our  Oshot-text-vision 85.61 81.49 81.09 | 89.95 91.19 90.20
A 1shot-vision-cot 5.16 729 535 | 16.12 1446 14.67
B 1shot-vision-calc 1098 11.84 10.00 | 28.72 23.05 23.95
C Ishot-vision-dyscalc 10.15 11.80  9.17 | 31.71 2634 26.81
E Oshot-vision-cot 933 1326 993 | 17.26 16.61 16.33
F Oshot-vision-calc 1429 1552 14.15 | 31.78 2487 26.59
G Oshot-vision-dyscalc 1640 18.10 16.39 | 31.99 2442 26.38
H Oshot-vision 1547 18.62 1575 | 29.05 26.55 26.64
J 1shot-text-s0.3 16.39 1631 1545 | 63.17 50.72 54.66
L Oshot-text-s0.3-pap 6.75 6.75 6.75 7.98 736 752
Freq M Oshot-text-s0.3-dyscalc 3.72 356 350 | 19.20 14.15 15.51
N Oshot-text-s0.3-csv 11.16 9.81 998 | 33.34 2373 26.37
P Oshot-text-s0.3-cot-pap 4.81 4.82 481 5.26 5.06 5.12
S Oshot-text-s0.3-calc 5.51 4.96 476 | 19.25 13.76 15.27
T Oshot-text-s0.3 19.30 18.79 18.14 | 64.73 5241 56.38
U Oshot-text 11.45 10.11 10.20 | 18.80 14.19 1543
Our  Oshot-text 56.91 30.77 33.57 | 80.90 62.84 67.54
Our  Oshot-text-vision (w/o value) 23.87 2834 2297 | 61.32 51.76 53.90
Our  Oshot-text-vision (w/o index) 21.97 27.84 2122 | 63.38 53.50 55.76
Our  Oshot-text-vision (w/o deseason) | 42.81  28.58 31.05 | 4743  37.21 40.30
Our  Oshot-text-vision 4941 41.14 37.88 | 79.18 64.95 68.57
A 1shot-vision-cot 18.47 22.57 1898 | 35.89 38.85 36.88
B 1shot-vision-calc 41.02 4332 40.04 | 73.97 79.19 75.82
C Ishot-vision-dyscalc 37.43 42,19 37.49 | 70.08 75.13 71.84
E Oshot-vision-cot 25.04 32.84 26.86 | 4471 46.66 45.33
F Oshot-vision-calc 46.25 51.14 4636 | 82.45 83.61 82.77
G Oshot-vision-dyscalc 4730 5339 47098 | 82.86 84.52 83.4l
H Oshot-vision 60.09 67.56 61.62 | 9493 96.19 95.34
J 1shot-text-s0.3 33.19 3196 32.18 | 70.90 65.03 66.95
L Oshot-text-s0.3-pap 16.25 1625 16.25 | 18.21 17.68 17.83
Point M Oshot-text-s0.3-dyscalc 12.62  12.19 12.27 | 26.96 2393 24.80
N Oshot-text-s0.3-csv 18.06 16.77 17.03 | 39.32 34.06 35.67
P Oshot-text-s0.3-cot-pap 8.50 8.50  8.50 8.85 8.70  8.75
S Oshot-text-s0.3-calc 6.61 6.36 6.41 | 1827 15.88 16.57
T Oshot-text-s0.3 29.66 29.23 29.16 | 68.38 62.84 64.63
U Oshot-text 30.33  29.85 29.83 | 62.56 54.68 57.09
Our  Oshot-text 94.52 56.07 63.16 | 98.31 91.50 93.78
Our  Oshot-text-vision (w/o value) 56.83 5855 5557 | 92.67 90.89 91.23
Our  Oshot-text-vision (w/o index) 52.61 5497 52.19 | 89.04 89.42 88.50
Our  Oshot-text-vision (w/o deseason) | 90.61 95.63 91.74 | 99.36 99.53 99.36
Our  Oshot-text-vision 94.19 83.80 8598 | 99.01 9694 97.70
A 1shot-vision-cot 30.14 31.44 2992 | 51.12 5195 51.00
B Ishot-vision-calc 49.75 5122 4858 | 94.28 91.52 92.25
C Ishot-vision-dyscalc 49.84 51.61 4897 | 94.03 90.73 91.68
E Oshot-vision-cot 36.46 43.52 37.61 | 6141 6155 61.27
F Oshot-vision-calc 46.03 55.76 48.02 | 92.50 91.52 91.57
G Oshot-vision-dyscalc 46.97 58.48 49.17 | 91.06 91.02 90.67

Range

40



H Oshot-vision 4735 57.86 4943 | 93.36 92.56 92.49
J Ishot-text-s0.3 1426 16.71 1476 | 50.94 5536 52.01
L Oshot-text-s0.3-pap 9.65 930 939 | 22.67 20.76 21.09
M Oshot-text-s0.3-dyscalc 2.35 230 231 8.47 7.66  7.84
N Oshot-text-s0.3-csv 9.77 9.14  9.20 | 32.94 28.68 29.93
P Oshot-text-s0.3-cot-pap 3.94 333 340 | 6.23 532 552
S Oshot-text-s0.3-calc 0.69 0.56  0.59 3.37 292  3.03
T Oshot-text-s0.3 1142 1358 11.85 | 46.77 51.10 4791
U Oshot-text 6.19 6.68 5.93 | 4532 4474 43.80
Our  Oshot-text 5240 46.27 45778 | 60.49 6531 61.84
Our  Oshot-text-vision (w/o value) 47770 5344 48.04 | 91.94 89.46 90.06
Our  Oshot-text-vision (w/o index) 1326 2241 15.17 | 53.77 61.26 56.37
Our  Oshot-text-vision (w/o deseason) | 61.49 66.94 62.43 | 70.08 73.02 71.26
Our  Oshot-text-vision 59.79 67.18 61.21 | 6991 73.02 71.03
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work is empirical and does not include formal theoretical results or proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All settings, datasets, and prompts are detailed in Section 4] and Appendix

D

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Public datasets are used, and anonymized code is provided in the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits, prompts, LLM versions, and ablation setups are described in
Sectiond]and Appendix D}

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports precision, recall, F1 scores, and includes ablation studies
with clear performance breakdowns (Tables [TH4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification:Inference times and token lengths are reported in Table 4 latency limitations
are discussed in Section[5.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with NeurIPS ethical guidelines and uses public data/-
models.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section[5.2]discusses potential positive applications and concerns related to
misuse or latency.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any high-risk models or datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external models and datasets are cited with proper attribution and licensing
(e.g., AnomLLM, GPT-40).

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets or models are introduced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve any human subjects or crowd workers.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable as the study does not involve human participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:[Yes]

Justification: The paper’s core method involves prompting and evaluating LLMs (Section
[2H4), and usage is clearly described.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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