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Predictive Relevance Uncertainty for Recommendation System
Anonymous Author(s)

ABSTRACT

Click-through Rate (CTR) module is the foundation block of rec-
ommendation system and used for search, content selection, ad-
vertising, video streaming etc. CTR is modelled as a classification
problem and extensive research is done to improve the CTR models.
However, uncertainty method for these models are still an unex-
plored area. In this work we analyse popular uncertainty methods
in the context of recommendation system. We found that popular
uncertainty models fails to capture the predictive uncertainty of
the CTR model that exist unique to the recommendation models
and is not prevalent in the traditional classification models. We
empirical show why a different uncertainty measure is required for
the recommendation system CTR prediction models. We propose
PRU (Predictive Relevance Uncertainty), a single forward pass un-
certainty approach for a sample as a distance from the predictive
relevance samples of the training data. We show the efficacy of
the proposed predictive relevance uncertainty (PRU) on selective
prediction. Further, we demonstrate the utility of the proposed
framework on the downstream task of OOD detection and active
learningwhile maintaining the latency of a single pass deterministic
model.

ACM Reference Format:

Anonymous Author(s). 2023. Predictive Relevance Uncertainty for Recom-
mendation System. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Click-through Rate (CTR) prediction problem is ubiquitous in to-
day’s e-commerce, advertising, search and video streaming services.
CTR models predict the likelihood of a user clicking on an item, be
it a product, web article or an ad. The modeling involves two steps:
in the first step (known as inference), one mines short-term and
long-term history of the user and item metadata to rank all eligible
items and surfaces the one (or few) with the highest estimated CTR.
In the second step (referred to as training), the system collects ap-
propriate feedback based on customer’s interaction and retrains
the model with the latest available information.

CTR prediction is challenging for multiple reasons. First, due to
relatively rare occurrence of positive samples, the training data is of-
ten insufficient to fit large parameter space of the model which leads
to variability in its predictions. Moreover, dynamic user behavior,
new customers and items, external events may require the model
to predict on distribution of samples that was not observed during
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Figure 1: Uncertainty experiment on the Avazu dataset using

MC-Dropout, DDU, SNGP and Deep Ensembles. We report

AUC after discarding the least confident predictions from

the test dataset.

training time. Finally, CTR prediction involves out-of-distribution
(OOD) samples by virtue of positional and presentation bias, con-
tent selection bias and user targeting. This results in inaccurate and
over-confident estimation of CTR leading to a drop in its perfor-
mance.

One approach is to identify OOD samples via uncertainty quan-
tification and filter them out at prediction time. Uncertainty cap-
tures the notion of model’s confidence in accurately predicting
the target label and therefore datapoints with high uncertainty
are typically associated with erroneous predictions. Uncertainty
estimates can benefit the model several ways e.g. it allows to make
informed decisions and allocate resources wisely. Uncertainty is
the deciding factor to trade exploration (recommending new items)
with exploitation (recommending popular items) in multi-arm and
contextual bandit algorithms. Finally, uncertainty estimates can
guide active learning strategies, enabling the system to focus on
uncertain predictions and acquire new data to improve the model.
However unlike NLP, computer vision where much progress has
been made on uncertainty-aware learning, reliable and efficient
estimation of uncertainty is an open problem for recommender
systems.

Click through rate estimation is often modeled as a classification
problem where the goal is to classify an input into two classes:
clicked and non-clicked. We expect the model to be inaccurate on
highly uncertain points and hence if we were to remove these low-
confidence predictions, the model performance would improve on
the rest. In Figure 1, we plot the result of this experiment on the
Avazu [5] dataset using state of the art uncertainty quantification
techniques: DDU [21], SNGP [20], MC-Dropout [9] and Deep En-
sembles [17]. We see a reverse trend where instead of improvement,
the performance either stays flat or degrades significantly as we

1
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filter out least confident predictions. This suggests that uncertainty
for CTR models is poorly explained by the current SOTA literature
and needs deeper investigation. Recommendation system setting is
different from the traditional classification setting as in the recom-
mendation setup, neighbourhood of a datapoint has heterogeneous
labels suggesting high degree of overlap between class-conditionals.
Fig 2 shows the class conditionals for two recommendation data-set.

In this work, we investigate uncertainty estimation for CTR
models and recommendation systems in general. We first provide
insights on why recommendation problems need special treatment
for uncertainty quantification. Guided by our insights, we propose
PRU (Predictive relevance Uncertainty), a novel single pass deter-
ministic uncertainty model that can be utilised over any existing
CTRmodel for uncertainty estimation with no changes to the model
architecture. Essentially, PRU is a meta-learning algorithm where
we can plug in any model for CTR estimation and get accurate
and efficient estimation of uncertainty. Experiments on benchmark
datasets show superiority of PRU over state of the art baselines for
uncertainty estimation in recommendation domains across variety
of downstream tasks. We make the following contribution in this
paper:

• We empirically study the SOTA uncertainty quantification
for recommender systems and show that they fail to capture
the true notion of predictive uncertainty.

• We present Predictive Relevance Uncertainty (PRU), a novel
approach to quantify uncertainty for deep CTR prediction
models, which can provide efficient uncertainty estimations
along with the predictions and is compatible with any deep
CTR models.

• We evaluate the effectiveness of PRU on selective prediction,
out of distribution (OOD) detection and active learning. We
perform a thorough and comprehensive set of experiments
on three public benchmark datasets for CTR modeling com-
paring against several SOTA techniques for uncertainty
estimation.

• Our experimental result suggests that PRU achieves statis-
tically significant +16% lift in selective prediction as com-
pared to the strong uncertainty baselines. To highlight the
accuracy of uncertainty quantification, we evaluate PRU on
the downstream task of out of distribution (OOD) detection
and active learning. Compared to strong baselines, PRU
achieves +5% lift in OOD detection and +0.9% , +7% lift in
active learning for different datasets.

2 RELATEDWORKS

2.1 CTR prediction Problem

The purpose of CTR prediction is to estimate the probability that
a user will click on an item. Although loosely used in the context
of click, the definition is broad enough to capture any interaction
such as purchase, video stream etc. One challenge in recommender
systems is to find balance between memorization and generaliza-
tion. Memorization refers to learning frequent co-occurrence of
items from historical data whereas generalization refers the ability
of the model to predict on unseen patterns. Cheng et al [4] pro-
posed Wide&Deep which combines a DNN with a linear model
and are trained jointly. The linear model encodes sparse features

Figure 2: Feature distribution of clicked (in red) and non-

clicked (in green) samples for Avazu (left) and MovieLens

(right) dataset (best viewed in color).

such as item-id, cross features between user and item that helps in
memorization. On the other hand, the DNN component helps in
generalizing to unseen patterns.

DeepFM [11] is another popular technique for CTR estimation
that augments a traditional Factorization Machine (FM [23]) with a
DNN component. Unlike Wide&Deep, DeepFM can be trained end
to end without any feature engineering. DeepFM has further been
extended to incorporate explicit feature interactions [19], adding a
diversity loss in training objective to avoid overfititng [3] etc.

Zhou et al [33] presents Deep Interest Network (DIN)which adap-
tively learns user representation based on historical behavior with
respect to certain ad. Despite learning contextual representation of
users, DIN offers limited support for feature interaction. This was
subsequently addressed in Deep&Cross networks (DCN [29, 30]).

2.2 Uncertainty

Popular methods of quantifying uncertainty includes Bayesian Neu-
ral Network [2], MC Dropout [9] and Deep Ensembles [18]. MC
Dropout is a scalable alternative to the BNN models [9]. Deep en-
semble aggregates collection of trained neural network to quantify
the model uncertainty while MC dropout uses dropout enabled
forward pass to quantify the model uncertainty. These framework
can captures the model uncertainty where the model uncertainty is
quantified by a sample distance from the decision boundary. Also,
these are computationally expensive as it requires multiple forward
passes to obtain the uncertainty measure. Therefore, single pass
deterministic models are proposed where the uncertainty of a sam-
ple is quantified based on the distance/density from the training
data[20, 21, 28].

Predictive uncertainty can be classified into two kinds [8, 13]:
aleatoric or data uncertainty and epistemic or model uncertainty.
While epistemic uncertainty can be reduced by collecting more
data, aleatoric uncertainty, on the other hand requires instrument-
ing new features. Recent research has focused on disentangling
uncertainty into these two components. Disentanglement is helpful
for classification scenario where decision can be refused or delayed
like as in a classifier with reject option [1] or reducing uncertainty
in active learning scenario [25]. There has been recent work on
disentangling uncertainty. For example, Kendall et al [14] define
a model to estimate both aleatoric and epistemic uncertainty for
regression and classification models. Matias et al [26] extends this
techinque to richer class of models.

2
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Figure 3: Failure modes for Model uncertainty (Deep ensembles) and Density/Distance aware uncertainty (DDU) in two moons

dataset and Synthetic data-set with class overlap and imbalance. Blue denotes the high uncertainty region and yellow denotes

the low uncertainty region. Red circle denotes the failure points. a) Model uncertainty for twomoons dataset b) Density/Distance

aware uncertainty (DDU) for two moons dataset. c) Model uncertainty for synthetic data d) Density/Distance aware uncertainty

(DDU) for synthetic data

There has been extensive study of uncertainty models in the
classification [16, 24], computer vision [15] and NLP [7, 22, 31] do-
main but remain unexplored in the recommendation literature. One
recent work on recommendation system uncertainty is evaluated
only for Movielens and Netflix dataset where user-item pairs are
used to quantify different form of uncertainty [6]. Further, it doesn’t
quantify uncertainty based on the distance from the training data
distribution. In this work, we propose PRU where the uncertainty
can be quantified on any CTR dataset and model architecture.

3 UNCERTAINTY FOR RECOMMENDATION

PROBLEMS

We argue that uncertainty should be higher for 1) OOD (Out of
Distribution) samples i.e. for the samples that are away from the
training data distribution. As the model has not seen this type
of data samples at the training time, prediction on them cannot
be trusted, 2) points near the decision boundary: as the model is
confused about which class the samples belongs to, it leads to high
variance in the model score. We check the notion of uncertainty
for the traditional classification setting of two-moons dataset 1 and
class overlap with imbalance synthetic dataset in Fig 3.

We plot the uncertainty surface for the two moons dataset in
Fig 3a for model uncertainty using deep ensemble [18] and Fig 3b
for density/distance aware uncertainty (DDU [21]). Yellow denotes
the low uncertainty region and blue denotes the high uncertainty
region. We show the failure modes for the uncertainty algorithm
using red circles in Fig 3. For example in Fig 3a, we observe lower
uncertainty in the red circle, whereas it is expected to be higher
as this region (OOD sample region) is away from the training data
distribution, therefore it is a failure mode for the uncertainty al-
gorithm. Distance aware uncertainty captures the OOD detection
problem better as compared to the model uncertainty as shown in
Fig 3b. We observe high uncertainty for both OOD samples and
decision boundary for density/distance aware uncertainty (DDU) in
the traditional classification setting of two-moons dataset as shown
in Fig 3b.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

We then simulate the behavior of class overlap and imbalance
observed in the recommendation system by using noise of 0.7 and
class imbalance ratio of 0.2 on the two moons dataset. We observe
this setting resembles the recommendation system setting as there is
class overlap (neighbourhood of an instance is not homogeneously
populated by instances of the same true class) and class imbalance
(observe negative class ( non clicks) dominating the positive class
(clicks)) as shown in Fig 3c and 3d. In this setting model and distance
aware uncertainty fails to capture the correct notion of uncertainty.

We observe high uncertainty for the minority class as the de-
cision boundary for the model gets shifted towards the minority
class in case of model uncertainty. Further, OOD samples (points
away from the training data distribution) will be considered as low
uncertainty samples as shown in Fig 3c. This notion of uncertainty
can be harmful to the recommendation system, as the in distribu-
tion minority class samples are assigned higher uncertainty then
the OOD samples. Using density/distance-aware uncertainty in this
setting also fails to provide a true notion of uncertainty. This is be-
cause the uncertainty will be lowest in the class overlapping region,
given that the training data distribution is concentrated mostly for
both classes in that region. Furthermore, uncertainty will be lowest
for the predictive relevance samples (samples where the model is
confident in clicks/No clicks). Although density/distance aware
uncertainty assign high uncertainty to the points away from the
training data distribution. But it also assign high uncertainty to
the predictive relevance samples where the model precision is high.
This can again hurt the performance when utilizing uncertainty for
the downstream task in recommendation system.

4 PREDICTIVE RELEVANCE UNCERTAINTY

In this work we propose, Predictive Relevance Uncertainty (PRU) to
estimate the uncertainty of deep CTR prediction models, which can
provide efficient uncertainty quantification and is compatible with
any deep CTRmodel. We define the notion of predictive uncertainty
as a distance from the training samples that are highly predictive rel-
evant. Highly predictive relevant are the samples where the model
precision is high. In this way, the proposed framework PRU will
capture the uncertainty of the OOD samples that are away from the
training data distribution as well as points that have high variance

3
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Figure 4: High-level architecture of the model and training

steps.

due to the class overlap issue. At high level, PRU implements the
following steps: 1) identify training samples that have high predic-
tive relevance, 2) fit a density estimator on the regularized feature
space of predictive relevant samples, 3) estimate uncertainty of a
test sample by computing likelihood under the density estimator.
Next we describe each of these steps in detail.

4.1 Predictive Relevant Instance Selection

We define predictive relevant samples as the ones where model pre-
cision is high, thereby, predicted score and the ground truth labels
are close. Model will have lower loss on the predictive relevance
samples. We fit a Gaussian Mixture Model (GMM) to cluster data-
points on their observed training loss i.e. points with similar loss are
put in the same cluster. Samples belonging to the GMM component
with the smallest mean can be selected as high predictive relevant
samples. This modeling procedure however is class-agnostic, and
reflect the same degree of loss for both the classes (click/no click).
Given that in recommender systems, majority of the data is biased
towards the negative class (i.e. no click), this approach will end up
picking the predicted relevant samples primarily from the majority
class. To avoid this behavior, we use class specific GMM to deter-
mine the predictive relevant samples for each class individually.

4.2 Density Estimation

A deep learning CTR model is typically composed of a feature
transformation layer ℎ(𝑥) that maps input instances to a hidden
representation space and an output function 𝑔(ℎ(𝑥)) that maps the
hidden representations to an output space. To utilize the feature
space for distance awareness and density estimation, the hidden
representation space is required to follow the bi-Lipschitz constraint
so that distance in the latent space 𝑑ℎ (ℎ(𝑥), ℎ(𝑥 ′)) is bounded by
the distance𝑑𝑥 (𝑥, 𝑥 ′) in the input datamanifold, for any inputs 𝑥, 𝑥 ′.
More formally, we require ℎ(·) to satisfy the bi-Lipschitz condition
[20],

𝐿 ∗ 𝑑𝑥 (𝑥, 𝑥 ′) ≤ 𝑑ℎ (ℎ(𝑥), ℎ(𝑥 ′)) ≤ 𝑈 ∗ 𝑑𝑥 (𝑥, 𝑥 ′) (1)
for positive and bounded constants 0 < 𝐿 < 1 < 𝑈 . Here 𝑑𝑥 and
𝑑ℎ denote any meaningful distance metric in the input and hidden
representation space. The upper Lipschitz bound 𝑑ℎ (ℎ(𝑥), ℎ(𝑥 ′)) ≤
𝑈 ∗ 𝑑𝑥 (𝑥, 𝑥 ′) is an important requirement to ensure robustness of
the feature transformation layer which prevents the hidden repre-
sentation ℎ(𝑥) to be overly sensitive to perturbations in the input

space. On the other hand, the lower Lipschitz bound 𝐿 ∗𝑑𝑥 (𝑥, 𝑥 ′) ≤
𝑑ℎ (ℎ(𝑥), ℎ(𝑥 ′)) prevents the hidden representations to be unneces-
sarily invariant to large changes in the input space. Together, the
bi-Lipschitz condition ensures that distances in the representation
space are truthful representation of distances in the input space.

Algorithm 1 PRU Density Estimation

1: procedure TRAIN
2: Train Baseline DNN model 𝑝 (y|f𝜃 (x) with (X,Y)
3: Get predictive relevance samples Xpr ⊂ X
4: for each class 𝑐 with samples Xc ⊂ Xpr do
5: compute feature representation 𝑧 (𝑥) = ℎ𝜃 (𝑥)
6: Compute mean 𝜇𝑐 :
7: 𝜇𝑐 ← 1

|Xc |
∑
x∈Xc ℎ𝜃 (𝑥)

8: Compute covariance Σ𝑐 :
9: Σ𝑐 ← 1

|Xc |−1
∑
x∈Xc (ℎ𝜃 (𝑥) − 𝜇𝑐 ) · (ℎ𝜃 (𝑥) − 𝜇𝑐 )

𝑇

10: Compute Cluster weights 𝜋𝑐 :
11: 𝜋𝑐 ← |Xc |

|Xpr |
12: 𝑞(𝑧 |𝑦 = 𝑐) ∼ N (𝜇𝑐 ; Σ𝑐 ), 𝑞(𝑦 = 𝑐) = 𝜋𝑐

Gradient penalty and spectral normalization are two techniques
of enforce the bi-Lipschitz condition [27]. Spectral normalization is
a simpler technique used in distance aware uncertainty frameworks.
It is applied to hidden weights in order to enforce bi-Lipschitz
smoothness in representations [20, 21] Techniques proposed in
[20, 21] restrict the framework to ResNet [12] to ensure sensitivity
to the change in input. To utilize the existing architectures, we use
two side gradient penalty, regularising the Jacobian with respect
to the input embedding of the model. Therefore, the proposed
PRU framework requires no changes in the model architecture and
thereby compatible to any CTR framework. Overall we use spectral
normalization to ensure stabilized training and two-sided Jacobian
regularisation to encourage sensitivity to the inputs as shown in
Fig 4.

Post-training, we fit a Gaussian mixture model on the loss resid-
uals i.e. log 𝑓 (𝑥) or log(1 − 𝑓 (𝑥)) depending on the true label. The
GMM returns𝑚 mixing components {(𝜇𝑖 , Σ𝑖 )}𝑖=1· · ·𝑚 and a vector
of mixing coefficient 𝜋𝑘 for each sample 𝑥𝑘 . Datapoints are mapped
to the cluster based on max probability in 𝜋𝑖 and we pick the cluster
with lowest mean as the relevant sample set Xpr .

As a final step, we identify the positive and negative samples in
Xpr. For each class 𝑐 , letXc ⊂ Xpr be the subset of relevant samples.
We fit a multi-variate normal distribution 𝑞(𝑧 | 𝑦 = 𝑐) = N(𝑧 |
𝜇𝑐 , Σ𝑐 ) via maximum likelihood estimation. Algorithm 1 highlights
the pseudocode of our algorithm.

4.3 Uncertainty Quantification using PRU

We quantify uncertainty by calculating the marginal likelihood of
the hidden feature representation under density estimator on the
regularized predictive relevance samples as 𝑞(𝑧) = ∑

𝑦=𝑐 𝑞(𝑧 |𝑦 =

𝑐) · 𝑞(𝑦 = 𝑐)

4.3.1 Epistemic and Aleatoric Uncertainty: PRU captures both epis-
temic and aleotoric uncertainty similar to other distance aware
uncertainty frameworks [20, 28]. When a point is far from the train-
ing data distribution (epistemic uncertainty), PRU uncertainty will

4
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be high as the likelihood of belonging to any of the class will be low.
When a point lies in class overlapping data distribution (aleotoric
uncertainty), PRU uncertainty will be high as these samples will be
far from the predicted relevance samples of the classes.

5 EXPERIMENTS

In this section, we will evaluate the efficacy of the proposed frame-
work. First, we will assess the uncertainty estimates of the proposed
framework in the traditional CTR setting to determine the level
of trust we can place in the model predictions. Then, we will eval-
uate how the proposed framework would perform if utilized for
the downstream tasks of OOD detection and active learning. We
evaluate the performance of the proposed Predictive Relevance Un-
certainty (PRU) with the following SOTA uncertainty quantification
methods.

• MC-Dropout[10] : MC-Dropout provides a distribution over
predictions via a sequence of forward passes by dropout-
enabled pre-trained network. We use 10 forward passes and
compute the variance in predictions to get the uncertainty
estimates.

• Deep Ensembles[18]: Deep Ensembles aggregates a collec-
tion of trained neural networks with different initialization.
We use 5-ensemble models to compute the uncertainty esti-
mates.

• Spectral-Normalized Neural Gaussian Process (SNGP) [20]:
SNGP is a single-pass, deterministic model that encode
predictive uncertainty via distance-awareness.

• Deep Deterministic Uncertainty (DDU) [21] : DDU first fit
each class component by computing the empirical mean
and covariance, of each class feature vectors. Then com-
pute the likelihood of a test sample belonging to each class
component to quantify confidence.

5.1 Relevance to Prediction Scores

We use the following Evaluation Metrics to evaluate the uncertainty
estimates.

• Selective prediction : High uncertainty is linked with low
prediction performance. Therefore, the obtained confidence
scores are thresholded and model is only evaluated on low
uncertainty samples. Since we are filtering high uncertainty
samples, it is expected that on the remaining samples, the
model performance metric will improve. We report the
increase/ decrease in AUC and PRAUC after filtering the
high uncertainty samples.

• Latency: We report the time in (ms) to compute the uncer-
tainty for 1k samples (ms/1k examples).

5.1.1 Datasets. We experiment with two open benchmark CTR
datasets, 1) MovieLens:

2 Movielens data contains tagging record
(user ID, movie ID, tag). Tag denotes the target and is assigned class
1 if user tags the movie. 2) Avazu:3 This dataset contains 22 feature
fields including user features and advertisement features for mobile
advertisements and uses click records by users as the labels. We
reuse the preprocessed data by [5] and follow the same settings

2https://grouplens.org/datasets/movielens/
3https://www.kaggle.com/c/avazu-ctr-prediction

on data splitting and preprocessing. Further details on creating the
data split and preprocessing is provided by BARS [34].

Figure 5: TSNE plots of the feature extractor layer from the

baseline model for Avazu. a) denotes the distribution of fea-

tures mapped to class: Not clicked (green) and class: Clicked

(Red). b) High Uncertainty samples fromMC dropout in blue.

c) High Uncertainty samples from DDU in blue. d) High Un-

certainty samples from PRU (proposed) in blue.

5.1.2 Implementation: We use the two popular backbone model
(DeepFM and Wide&Deep) based on FuxiCTR [34, 35]. We set the
embedding dimension to 16, default MLP size to [200, 200], learning
rate 0.01 to train the backbone model. We use the batch size of
8192 and 20480 for MovieLens and Avazu respectively. We use 10
forward passes for the MC-Dropout, 5 ensemble model for Deep
Ensembles. We evaluate PRU for (𝑚 = 3, 4, 5) gaussian mixture
components. Note that we fit the𝑚 GMM modes on the training
loss to determine the predictive relevant samples.

5.1.3 Experimentation. We report AUC metric at different cover-
age in Table 1. AUC-95 denotes the bps (increase/decrease) in AUC
if 5% of the data samples are removed from the evaluation set based
on high uncertainty i.e (AUC after filtering - AUC without filtering)
× 10000. We report the AUC at different coverage of 95, 90, 80 by
filtering 5%, 10% and 20% of the most uncertain data based on the
uncertainty algorithm. AUC metric can be biased to the majority
data, therefore we also report the PRAUC-90. While the baseline
algorithms observe a drop in majority of cases. PRU outperforms
and improves the AUC on selective prediction for all the scenarios.
The performance of PRU is consistent across modes for the Movie-
lens, but for Avazu we observe a drop for higher modes. As we keep
on increasing the modes, the sampled data for density estimator
decreases and if we fit higher modes, the density estimator lose
out the useful training data distribution. MC Dropout improves on
the Movielens dataset, but the performance of MC Dropout signif-
icantly drops for Avazu dataset. The drop is even higher for the
PRAUC-90 in Avazu. To understand the trend, we plot the TSNE
feature distribution of Avazu from the feature extractor layer in
Fig 5. Fig 5a represents the class distribution for clicks/not clicked.
We observe overlap and imbalance in the data. The samples inside
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Table 1: Selective prediction at different coverage. (
∗
) indicates the statistically significant of PRU improvement over the best

baseline (two-sided t-test with 𝑝 < 0.05)

DeepFM Wide&Deep
AUC-95 AUC-90 AUC-80 PRAUC-90 latency AUC-95 AUC-90 AUC-80 PRAUC-90 latency

Movielens MC Dropout 25.63 38.47 49.21 53.90 70.23 23.97 34.65 41.34 46.05 67.87
5-ensemble 7.69 -1.51 -37.19 -33.42 35.39 10.32 8.40 -12.38 -12.74 36.74
DDU -38.19 -41.81 -25.86 -83.09 7.22 -40.20 -49.33 -35.52 -103.34 6.99
SNGP -21.91 -37.20 -58.71 -65.71 18.20 -20.72 -35.06 -55.09 -56.55 15.54

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PRU (m=3) 28.84 47.86 66.97 77.01 7.36 29.55 48.59 66.53 77.36 7.02
PRU (m=4) 29.81

∗
49.32

∗
68.03

∗
79.89

∗ 7.43 30.66
∗

50.64
∗

68.20
∗

81.16
∗ 6.98

PRU (m=5) 29.28 48.45 67.49 78.23 7.23 30.01 49.41 67.32 78.90 7.12
Avazu MC Dropout -144.19 -134.92 -67.62 -774.35 107.69 -150.24 -146.55 -91.82 -805.23 103.35

5-ensemble -58.49 -39.50 -8.82 -359.42 64.68 -98.34 -80.25 -12.79 -544.92 60.45
DDU -115.72 -246.89 -534.00 -196.55 16.47 -122.66 -258.80 -546.25 -275.46 14.91
SNGP -62.63 -108.43 -172.99 -50.63 28.78 -64.55 -106.17 -155.34 -82.22 28.35

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PRU (m=3) 23.28
∗

73.34
∗

146.16
∗

30.19
∗ 16.25 27.95

∗
72.54

∗ 132.02 14.65 15.01
PRU (m=4) 9.24 41.14 101.28 7.03 15.91 10.28 55.49 113.67 12.05 14.84
PRU (m=5) 15.90 59.75 124.59 21.54 16.21 23.28 69.40 132.30

∗
15.06

∗ 14.96

the red circle denotes the higher confident samples for the minority
class (click). MC-Dropout flags all the highly confident samples of
the minority class as uncertain, therefore suffers the highest drop
in the PRAUC. DDU flags confident samples from the minority as
well as minority as uncertain, while PRU flags the majority of the
points in the overlapping region as uncertain. Therefore, PRU is
able to achieve the improved performance while maintaining the
latency of a single pass backbone model.

5.2 OOD Detection

Figure 6: Feature distribution for the two settings used to

create the OOD samples

For the OOD detection task, we expect OOD data samples (data
distribution on which the model is not trained) to have higher un-
certainty compared to the IID samples (data distribution on which

the model is trained). We label OOD samples as class 1 and IID sam-
ples as class 0, and report the AUC score based on the uncertainty
estimates. If the uncertainty is high, the sample is expected to be
OOD.

5.2.1 Datasets: We use category information to define the OOD
samples. Datasets defined in section 5.1.1 either doesn’t contain
category information or it is anonymized. Therefore, we use the
following datasets for the OOD detection task setup.

MovieLens-1M
4 :The data consists of 1 million movie ranking

instances over thousands of movies and users. Each movie has
features including its title, year of release, and genres. Titles and
genres are lists of tokens. Each user has features including the user’s
ID, age, gender, and occupation. We transform ratings into binary
(The ratings at least 4 are turned into 1 and the others are turned
into 0).

Taobao Display Ad Click
5 : It contains 1,140,000 users from

the website of Taobao for 8 days of ad display / click logs (26 million
records). Each ad can be seen as an item in our paper, with features
including its ad ID, category ID, campaign ID, brand ID, Advertiser
ID. Each user has 9 categorical attributes: user ID, Micro group
ID, cms-group-id, gender, age, consumption grade, shopping depth,
occupation, city level.

We use the same terminology and processing steps used in [32]
to pre-process the MovieLens-1M and Taobao Ad datasets.

5.2.2 Experimentation: We use two settings to create the OOD
samples. In the first setting, we hold out a subset of data based on
category information (e.g., genre in MovieLens-1M and category-
id in Taobao Ad). We choose the genre and categories based on
their frequency in the data. For MovieLens-1M, we select the least
frequent genre as Genre#1 OOD set, corresponding to the docu-
mentary genre, and pick the three least frequent genres as Genre#3
OOD set. For Taobao Ad, we pick the bottom 29 category-ids based

41 http://www.grouplens.org/datasets/movielens
5https://tianchi.aliyun.com/dataset/56
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Table 2: Overall Performance comparison with uncertainty baselines. AUROC on the OOD/IID detection (Backbone model:

Wide&Deep). (
∗
) indicates the statistically significant improvement over the best baseline (two-sided t-test with 𝑝 < 0.05)

MovieLens-1M Taobao Ad
Genre#1 Genre#1 Genre#3 Genre#3 Category_id Category_id

(𝑒 + 𝜂) (𝑒 + 𝜂) (𝑒 + 𝜂)
MC Dropout 0.5608 0.4633 0.5695 0.4744 0.5255 0.4630
5-ensemble 0.5122 0.4597 0.5353 0.4977 0.4207 0.4680
DDU 0.3432 0.4680 0.3480 0.4658 0.4976 0.6018
SNGP 0.5317 0.5667 0.4573 0.5887 0.5782 0.5950
PRU (m=3) 0.5710 0.6192

∗ 0.6028 0.6088 0.5958 0.6255
PRU (m=5) 0.6170

∗ 0.6171 0.6096
∗

0.6226
∗

0.6537
∗

0.6346
∗

(a) (b) (c)

Figure 7: Active learning setup for the MovieLens-1M dataset. (a) and (b) denotes the AUC after each acquisition step of 1k

samples on warm and cold test dataset. (c) AUC improvement using PRU (m=5) for 150 acquisition steps

(a) (b)

Figure 8: Active learning setup for the Taobao Ad dataset. (a)

and (b) denotes the AUC after each acquisition step of 50k

samples on warm and cold test dataset.

on their frequency out of the total 139 categories, resulting in 1%
of the total samples, denoted as Category_id OOD set. We don’t
train the model on these categories and use them as the OOD test
set. We sample an equal number of samples from the rest of the
data and use it as the IID test set. We then train the model on the
remaining training data using a 90-10 train-val split.

In the second setting, we add noise (𝜂) to the dense embedding
(𝑒) for 25% of the OOD test set. This results in more confident
scores and maps the OOD samples away from the overall data
distribution. Note that this is not an ideal setting, as themodel might
not experience this type of data distribution in the future. However,

we obtain the OOD test samples that are mapped away from the
data distribution. This second setting contains both realistic OOD
samples, which the model has not seen and mapped mainly to
the overlapping region, and also unrealistic OOD samples that are
mapped away from the data distribution.

We plot the feature distribution of OOD/IID test set for Genre#1
MovieLens-1M dataset in Fig 6. The feature distribution for the
first scenario is shown in Fig 6 (a,b). Since the model is not trained
on OOD samples, we observe that OOD samples get mapped to
the class overlapping region, and the model is not confident about
the scores for the OOD samples compared to the IID samples. The
feature distribution for the second scenario is shown in Fig 6 (c,d).
We observe that the majority of the noisy embeddings (𝑒 + 𝜂) get
mapped away from the actual data distribution and obtain highly
confident scores from the model.

We use Wide&Deep as the backbone network and report the
AUROC performance for the OOD/IID detection in Table 2. For
both settings, we observe that PRU is able to obtain better OOD
detection performance compared to the other baseline methods.
MC-Dropout and Deep ensemble suffer more in the presence of
noisy embeddings, as they are not able to detect OOD samples with
highly confident prediction scores. On the other hand, DDU and
SNGP performance improve in the presence of noisy embeddings.
However, the performance of DDU suffers mainly for the first set-
ting, as DDU flags high confidence prediction IID samples as OOD
because high confidence prediction samples lie in the low-density
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region for the recommendation system. PRU is able to handle both
the cases and thereby improving the performance of OOD/IID de-
tection in both the settings.

5.3 Active Learning

Data annotation is an expensive problem for deep learning models.
The goal of active learning is to select a small portion of data for
labelling from large pool of unlabelled data such that the model con-
structed with the labeled data has the optimal performance. The key
idea behind active learning is that a machine learning algorithm can
achieve greater accuracy with fewer training labels if it is allowed
to choose the data from which it learns. In uncertainty based active
learning, the learner queries samples from the unlabelled set which
is least confident (high uncertainty samples), presumably because
such labels contain the most information about the downstream
task. We follow the active learning setup in the recommendation
setting, where at each acquisition step, top N unlabelled samples are
picked based on uncertainty and the model is trained on the new
generated training set. We start with an initial model trained with
10% of the randomly sampled training data and at each acquisition
step push top N uncertain samples from the unlabelled set to the
training data. We run it for all uncertainty techniques and report
the results for MovieLens-1M and Taobao Ad dataset defined in
section 5.2.1.

We divide the dataset into two groups, warm and cold based
on their frequency. We use the same terminology and processing
used in [32], to define the Warm items (The items whose number
of labeled instances is larger than a threshold K). We use K of 200
and 2000 for Movielens-1M and Taobao Ad data. Cold item samples
are sorted by timestamp and divided in four equal groups. We use
the last (fourth) cold data set sorted based on timestamp as the cold
test data set. We sample 10% of the Warm item data as warm test
dataset. We use rest of the data as the training data pool. We use
Wide&Deep as the backbone model and report the results on the
warm and cold dataset. We use N=1k samples for MovieLens-1M
and N=50k samples for Taobao Ad in each acquisition step which
corresponds to 0.13% and 2% of the unlabelled pool of training data.
We run 50 acquisition steps for MovieLens-1M and 15 acquisition
steps for Taobao Ad (since each acquisition step of Taobao Ad is
expensive) and report the AUC after each acquisition step in Fig 7
and 8. PRU clearly outperforms the baseline uncertainty algorithms.
MC-dropout is competitive for the Taobao Ad warm test dataset
but require 10 times inference time at each acquisition step. Also,
note that we have to train 5 ensemble model at each acquisition
step to obtain 5-ensemble uncertainty.

Further the gains are higher for the cold test data set. We plot the
AUC improvement performance of PRU on warm and cold test set
for extended 150 acquisition steps in Fig 7c. We observe that PRU
achieve better performance for the cold test set as uncertainty can be
higher for the cold samples as compared to the warm samples in the
unlabelled training data. Also we obtain 95% of the baseline model
performance (trained with all training data) with 96 acquisition
step in MovieLens-1M that is around 13% of the unlabelled pool of
data.

6 CONCLUSION

In this work, we proposed PRU (Predictive Relevance Uncertainty)
for recommendation system. We showed that existing uncertainty
estimation techniques suffers for recommendation problems be-
cause of the class overlap and class imbalance. We defined the
notion of uncertainty for a sample as a distance from the predic-
tive relevance sample of the training data. We showed that the
proposed framework is able to correctly define uncertainty for the
OOD region and the class overlapping region. We showed the effi-
cacy of the proposed framework in the selective prediction and the
downstream task of OOD detection and active learning.
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