

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNPAIRED PREFERENCE OPTIMIZATION: ALIGNING VISUAL GENERATIVE MODELS WITH SCALAR FEED- BACK

Anonymous authors

Paper under double-blind review

ABSTRACT

Direct Preference Optimization (DPO) provides a stable and simple alternative to reinforcement learning for aligning large generative models, yet its dependence on paired comparisons remains a critical limitation. In practice, feedback is often collected as unpaired scalar scores, such as human ratings, which cannot be directly used by DPO. To resolve this, we first revisit the KL-regularized alignment objective and show that for individual samples, the optimal policy is determined by an elegant but intractable decision rule: comparing a sample’s reward against an instance-dependent oracle baseline. Building on this insight, we introduce Unpaired Preference Optimization (UPO), a new framework that provides a principled and tractable proxy for this ideal rule. UPO approximates this oracle baseline with a global threshold derived from empirical score distribution, thereby reframing alignment as a classification task on unpaired data. This core mechanism is further enhanced by a confidence-weighting scheme to leverage the full magnitude of the scores. Extensive experiments demonstrate that UPO effectively aligns diverse generative models, including both diffusion and MaskGIT paradigms, significantly outperforming standard fine-tuning baselines. By extending the simplicity of DPO to the more practical setting of unpaired scalar feedback, UPO provides a principled and scalable path for aligning generative models with human preference signals.

1 INTRODUCTION

Aligning large generative models with human preference has become a central challenge in post-training. Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Achiam et al., 2023; Ouyang et al., 2022; Stiennon et al., 2020) was a seminal paradigm, demonstrating that models can be optimized to align complex human values. But its operational complexity and training instability (Rafailov et al., 2023) have motivated a shift towards simpler and more stable “policy fitting” methods, Direct Preference Optimization (DPO). DPO reframes the alignment problem as a simple classification loss over pairs of preferred (y_w) and rejected (y_l) responses. Following prior work (Peters & Schaal, 2007; Peng et al., 2019; Korbak et al., 2022; Go et al., 2023), by leveraging a closed-form solution to the KL-regularized reinforcement learning objective, DPO bypasses the need for explicit reward modeling and the instabilities of RL training. This approach is effective because the intractable partition function, $Z(x)$, cancels out when computing the difference between two responses (Rafailov et al., 2023), and is equivalent to fitting a reparametrized Bradley-Terry model (Bradley & Terry, 1952).

However, the primary limitation of DPO (Rafailov et al., 2023) and its successors (Meng et al., 2024; Ethayarajh et al., 2024; Liu et al., 2024) is their fundamental reliance on paired preference data (preferred vs. dis-preferred). In many practical scenarios, feedback is more naturally collected as unpaired samples with absolute scores. For example, -5 to 5 star ratings (*i.e.*, peer-review ratings) from users or scalar outputs from a reward model. Such unpaired data cannot be easily transformed into preference pairs. This results in a fundamental gap between DPO’s reliance on paired preference data and the unstructured nature of many real-world preference signals.

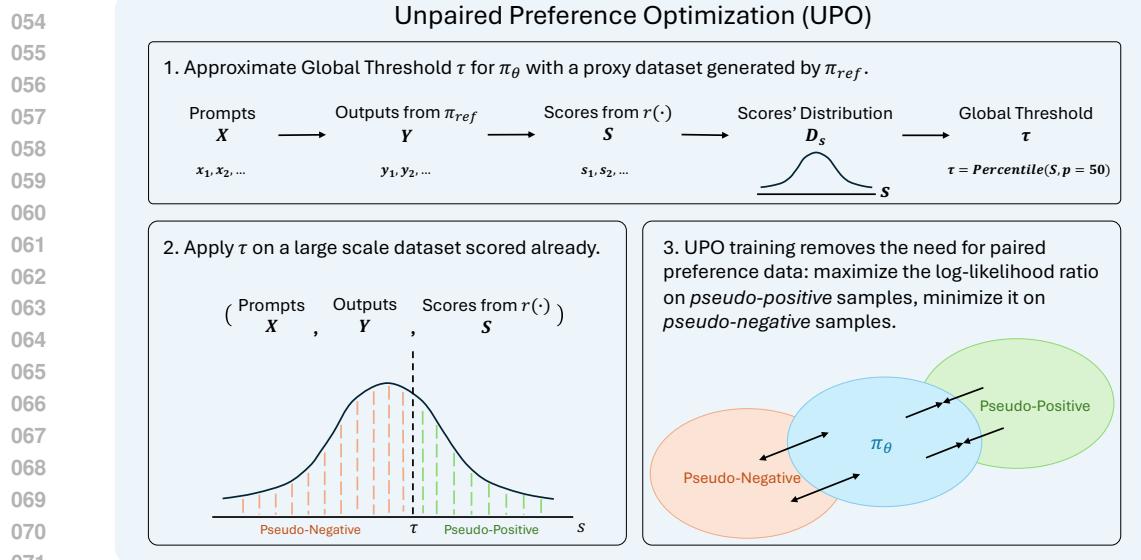


Figure 1: The overview of unpaired preference optimization.

To bridge the gap, we introduce **Unpaired Preference Optimization (UPO)**, a novel alignment algorithm that extends the stability and simplicity of the DPO framework to operate on unpaired, scored data, as presented in Figure 1. The core insight of UPO is to dynamically generate preference signals from absolute scores through a **thresholding mechanism**. By classifying samples as “pseudo-preferred” or “pseudo-rejected” relative to a global threshold (e.g., the median preference score of current policy), UPO constructs the necessary signal for a preference-style loss without requiring explicit pairs. Furthermore, UPO introduces a **reward-weighting mechanism** that modulates the loss for each sample based on the magnitude of its score relative to the threshold. This allows the model to learn more from high-confidence examples, fully leveraging the information latent in absolute scores.

Taking a more theoretical approach, we revisit the KL-regularized alignment objective (Eq. 1) and demonstrate that for any individual sample, the optimal policy’s decision on whether to increase or decrease its probability relative to a reference model is governed by an elegant but intractable decision rule: the sample’s reward must be compared against an instance-dependent baseline: $\tau^*(x) = \beta \log Z(x)$. This reveals the core theoretical challenge that has previously limited direct methods to both paired and unpaired data: the intractability of the oracle baseline $\tau^*(x)$. UPO resolves this challenge by introducing a **principled and tractable proxy for this ideal rule**. Specifically, UPO approximates the instance-dependent oracle baseline with a global threshold τ derived from empirical score distribution. This reframes the alignment problem as a binary classification on unpaired data, where samples are labeled as “pseudo-preferred” or “pseudo-rejected”. This core mechanism is further enhanced by a confidence-weighting scheme that leverages the full informational richness of the scalar scores.

We validate UPO under two dominant paradigms in vision-centric generative modeling: diffusion-based training (Ho et al., 2020) using mean squared error (MSE) loss, and MaskGIT-style masked token modeling (Chang et al., 2022) using cross-entropy loss. Our empirical evaluation covers two popular foundation models (Stable Diffusion v1.4 (Rombach et al., 2022) and Meissonic (Bai et al., 2024)) and four widely used reward models (HPSv2.1 (Wu et al., 2023), PickScore (Kirstain et al., 2023), ImageReward (Xu et al., 2023), and LAION Aesthetic Score (Schuhmann et al., 2022)). Results consistently show that UPO aligns generative outputs with human preferences more effectively than direct supervised fine-tuning. Extensive ablation studies further provide guidance on hyperparameter selection and reveal bottlenecks in the online UPO setting. Together, these findings position UPO as a unified and scalable framework for preference alignment beyond the limitations of pairwise supervision. In summary, our contributions are as follows:

- We propose Unpaired Preference Optimization (UPO) for optimizing vision generative models, a simple yet effective method to align models using unpaired, scored data, addressing a key limitation in current policy fitting algorithms.

- 108 • We provide a principled derivation for UPO, framing it not as a heuristic but as a tractable
109 approximation of the ideal KL-optimal decision rule. This insight leads to our novel global
110 thresholding and weighting mechanisms.
- 111 • We demonstrate through comprehensive experiments on different generative paradigms that
112 UPO successfully aligns generative models with various reward models, outperforming
113 supervised fine-tuning baselines.

115 2 METHOD

117 In this section, we first review the KL-regularized RL objective that underpins modern alignment
118 methods. We then analyze how existing policy fitting methods like DPO require paired data to
119 ensure tractability. Finally, we formalize how UPO overcomes this constraint through its proxy
120 objective, novel thresholding and weighting mechanisms, enabling direct learning from unpaired,
121 absolute scores.

123 2.1 PRELIMINARIES: KL-REGULARIZED RL AND POLICY FITTING

125 The objective for many alignment methods is to find a policy π_θ that maximizes the expected reward
126 while remaining close to a reference policy π_{ref} (Ziebart et al., 2010; Jaques et al., 2019). This is
127 formally expressed as:

$$128 \max_{\pi_\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot|x)} [\mathcal{R}(x, y)] - \beta \mathbb{D}_{KL}(\pi_\theta(\cdot|x) \parallel \pi_{ref}(\cdot|x)) \quad (1)$$

130 where $\mathcal{R}(x, y)$ is a reward function that scores the quality of a completion y for a prompt x , and β
131 is a hyperparameter controlling the strength of the KL-divergence penalty.

132 This objective has a closed-form optimal solution given by:

$$134 \pi^*(y|x) = \frac{1}{Z(x)} \pi_{ref}(y|x) \exp\left(\frac{1}{\beta} \mathcal{R}(x, y)\right) \quad (2)$$

136 where $Z(x) = \sum_y \pi_{ref}(y|x) \exp(\frac{1}{\beta} \mathcal{R}(x, y))$ is the per-prompt partition function. Direct optimization
137 via this solution is generally intractable because computing $Z(x)$ requires summing over all
138 possible completions y , an infinite space for language and vision models.

139 To avoid computing $Z(x)$, DPO (Rafailov et al., 2023) reparameterizes the reward function by ex-
140 pressing Eq. 2 in logarithmic form. Taking the logarithm of both sides and rearranging, we obtain:

$$142 \mathcal{R}(x, y) = \beta \log \frac{\pi_\theta(y|x)}{\pi_{ref}(y|x)} + \beta \log Z(x), \quad (3)$$

145 and observes that in pairwise preference models such as Bradley–Terry (Bradley & Terry, 1952),
146 only the difference of rewards matters:

$$148 p(y_w \succ y_l|x) = \sigma(\mathcal{R}(x, y_w) - \mathcal{R}(x, y_l)), \quad (4)$$

150 where $\sigma(\cdot)$ denotes the logistic function. Plugging Eq. 3 into Eq. 4, the partition term $\log Z(x)$
151 cancels:

$$153 \mathcal{R}(x, y_w) - \mathcal{R}(x, y_l) = \beta \log \frac{\pi_\theta(y_w|x)}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{ref}(y_l|x)}. \quad (5)$$

156 This leads to the DPO loss:

$$158 \mathcal{L}_{DPO}(\pi_\theta; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{ref}(y_l|x)} \right) \right]. \quad (6)$$

161 Thus, DPO avoids estimating the intractable partition function $Z(x)$ altogether, enabling policy
learning using only a classification-style objective.

162 While effective, this formulation is fundamentally tied to the availability of paired preference data
 163 (y_w, y_l). That is, each training example must provide both a relatively better and a worse sample,
 164 annotated with respect to the same input x . This reliance on relative signals is both the strength and
 165 the primary limitation of existing policy fitting frameworks: they avoid explicit reward modeling,
 166 but cannot directly handle *unpaired* or *absolute* preference signals that are common in real-world
 167 data collection settings. Addressing this gap requires extending policy learning objectives beyond
 168 pairwise comparisons to more flexible forms of supervision.

169 2.2 UNPAIRED PREFERENCE OPTIMIZATION (UPO)

170 While methods like DPO have proven effective, they are fundamentally constrained to datasets with
 171 explicit pairwise preferences (y_w, y_l). In many real-world scenarios, supervision is available in a
 172 more granular, yet unpaired, format: a dataset $\mathcal{D} = \{(x_i, y_i, s_i)\}$ of samples with absolute scalar
 173 scores, such as human ratings or reward model outputs. Our goal is to leverage this prevalent data
 174 format to optimize the same KL-regularized objective in Eq. 1.

175 Directly applying the preference-based paradigm to unpaired data is challenging. The key insight
 176 of DPO, by canceling the intractable partition function $Z(x)$ through a log-ratio of preferences, is
 177 contingent on the availability of pairs. With only individual scored samples, this cancellation is no
 178 longer possible. UPO addresses this challenge by formulating a **principled proxy objective** that
 179 guides the policy π_θ towards higher-reward regions without requiring explicit computation of $Z(x)$
 180 or access to preference pairs.

181 2.2.1 FROM PAIRWISE CANCELLATION TO A POINTWISE INTRACTABILITY

182 To understand the core challenge, we revisit the optimal policy π^* from Eq. 2. By taking the log-
 183 arithmetic and rearranging, we can express the relationship between the optimal and reference policies
 184 for a single sample (x, y) :

$$185 \log \frac{\pi^*(y|x)}{\pi_{\text{ref}}(y|x)} = \frac{1}{\beta} \mathcal{R}(x, y) - \log Z(x). \quad (7)$$

186 This equation reveals a crucial insight: the log-probability gain of the optimal policy over the refer-
 187 ence is determined by the reward $\mathcal{R}(x, y)$ offset by a per-prompt normalization term $\log Z(x)$. This
 188 term acts as an input-dependent baseline reward: only samples with rewards above this threshold
 189 are assigned higher probability by the optimal policy.

190 As proven in Appendix A, this policy ratio is strictly increasing with respect to the reward $\mathcal{R}(x, y)$.
 191 This naturally defines an ideal classification rule for whether a response y should be preferred over
 192 the reference policy’s distribution:

$$193 \pi^*(y|x) > \pi_{\text{ref}}(y|x) \iff \mathcal{R}(x, y) > \beta \log Z(x), \quad (8)$$

194 and similarly, $\pi^*(y|x) < \pi_{\text{ref}}(y|x)$ when $\mathcal{R}(x, y) < \beta \log Z(x)$. This suggests that we could, in
 195 principle, train a policy by classifying samples as “preferred” or “dispreferred” relative to the refer-
 196 ence policy. However, this is intractable because the ideal decision boundary, $\tau^*(x) = \beta \log Z(x)$,
 197 is instance-dependent and relies on the partition function $Z(x)$ we seek to avoid.

198 2.2.2 A TRACTABLE PROXY: THRESHOLDING AS PSEUDO-PREFERENCE GENERATION

199 We replace the intractable ideal rule with a computable proxy with two reasonable assumptions
 200 based on the available data $\mathcal{D} = \{(x_i, y_i, s_i)\}$. First, we treat the observed scalar score s as a proxy
 201 for the true latent reward $\mathcal{R}(x, y)$. Second, we approximate the instance-specific ideal threshold
 202 $\tau^*(x)$ with a global threshold τ , calculated as an empirical quantile (e.g., the median) of scores. By
 203 substituting these components into the ideal inequality, we derive UPO’s pseudo-preference decision
 204 rule:

$$205 (x, y, s) \mapsto \begin{cases} \pi^*(y|x) > \pi_{\text{ref}}(y|x) & (\text{Pseudo-Preferred}) & \text{if } s \geq \tau \\ \pi^*(y|x) < \pi_{\text{ref}}(y|x) & (\text{Pseudo-Rejected}) & \text{if } s < \tau \end{cases} \quad (9)$$

206 By generating a binary pseudo-label $l = \mathbb{1}[s \geq \tau]$ for each sample, UPO effectively classifies it as
 207 “preferred” or “dispreferred” within the context of its batch.

216 2.2.3 THE UPO OBJECTIVE AND LOSS FUNCTION
217

218 By combining the above tractable proxies, we formalize the UPO objective as a weighted binary
219 cross-entropy loss. For a given sample (x, y, s) , we aim to align the sign of our implicit policy score
220 $\hat{s}_{\theta, \text{ref}}$ with a pseudo-label l derived from the scalar score s .

$$222 \quad \mathcal{L}_{\text{UPO}} = -\mathbb{E}_{(x, y, s) \sim \mathcal{D}} [w(s, \tau) (l \log \sigma(\hat{s}_{\theta, \text{ref}}) + (1 - l) \log(1 - \sigma(\hat{s}_{\theta, \text{ref}})))] \quad (10)$$

223 where $\sigma(\cdot)$ is the logistic function and the components are defined as follows:
224

225 **Implicit Policy Score** $\hat{s}_{\theta, \text{ref}}$. This is the core quantity being optimized, representing the log-ratio
226 of the learned policy's likelihood to the reference policy's, scaled by β .
227

$$228 \quad \hat{s}_{\theta, \text{ref}}(x, y) = \beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}.$$

230 The loss encourages \hat{s}_{θ} to be positive for preferred samples and negative for dispreferred ones.
231

232 **Pseudo-Label l .** The ground-truth label for the classification task is determined by comparing the
233 sample's score s against the global threshold τ .
234

$$235 \quad l = \mathbb{1}[s \geq \tau],$$

236 where $\mathbb{1}[\cdot]$ is the indicator function. This effectively converts the continuous score s into a binary
237 preference signal.
238

239 **Global Threshold τ .** To create an adaptive decision boundary, we set τ as the p -th percentile of
240 scores within each batch (or epoch), e.g., $\tau = \text{percentile}(\{s_j\}, p = 50)$.
241

242 **Confidence Weighting $w(s, \tau)$.** Intuitively, samples with scores far from the decision boundary
243 provide a stronger, less ambiguous training signal. We incorporate this by weighting each sample's
244 loss contribution based on its distance to the threshold:

$$245 \quad w(s, \tau) = 1 + c \cdot |s - \tau|,$$

247 where c is a hyperparameter scaling the weighting effect. This prioritizes high-confidence samples,
248 stabilizing training and focusing the model on clear-cut cases.

249 By minimizing \mathcal{L}_{UPO} , we guide the policy π_{θ} to assign higher relative log-probabilities to samples
250 deemed desirable by the scalar feedback s , this provides a robust and effective method for policy
251 alignment from unpaired data.
252

253 2.3 THEORETICAL ANALYSIS
254

255 Although UPO is motivated by practical considerations, it is crucial to ensure its statistical sound-
256 ness. The KL-optimal decision rule states that the probability of a sample y should be increased
257 if and only if its reward exceeds the oracle baseline $\tau^*(x) = \beta \log Z(x)$, which is intractable to
258 compute. UPO replaces this baseline with a tractable proxy τ derived from the empirical score dis-
259 tribution, together with a confidence-weighting scheme $w(s, \tau)$. Our theoretical analysis, detailed
260 in Appendix B, provides strong guarantees for this approach.

261 **Theorem 2.1** (UPO Guarantees, Informal). *Let $\hat{\theta}_n$ be the minimizer of the empirical UPO loss under
262 mild regularity conditions (see Appendix B). Then:*

- 263 1. **Consistency.** $\hat{\theta}_n \rightarrow \theta^*$ as $n \rightarrow \infty$, i.e., UPO recovers the population optimum.
- 264 2. **Controlled Bias.** The estimator is asymptotically unbiased, with leading-order error
265 $\mathbb{E}[\hat{\theta}_n] - \theta^* = O(1/n)$ determined by the curvature (H), variance (S), and asymmetry
266 (J) of the UPO loss.
- 267 3. **Calibration.** The UPO surrogate classifier, based on the empirical threshold τ , aligns with
268 the KL-optimal rule $\mathbb{1}[R(x, y) > \tau^*(x)]$ up to quantifiable estimation error.

270 These results provide a principled foundation for UPO. The estimator is statistically consistent, and
 271 any bias vanishes at the standard $O(1/n)$ rate, ensuring reliability on large datasets. Moreover, the
 272 calibration guarantee formally justifies our key design choice: empirical quantile thresholding yields
 273 pseudo-preference labels that faithfully approximate the intractable KL-optimal rule. Together, these
 274 properties establish UPO as a theoretically grounded framework rather than a heuristic.
 275

276 2.4 IMPLEMENTATION AND ALGORITHMIC DETAILS

277 2.4.1 LOG-LIKELIHOOD COMPUTATION

278 The computation of the log-likelihood term $\log \pi_\theta(y|x)$ in our objective depends on the paradigm of
 279 the generative model. We detail the approaches for continuous-space diffusion models and discrete-
 280 space MaskGIT models.
 281

282 **Diffusion Models (Continuous Outputs).** For diffusion-based generative models, the exact log-
 283 likelihood $\log \pi_\theta(y|x)$ is generally intractable. Following prior work on preference optimization for
 284 diffusion (Lee et al., 2023; Wallace et al., 2024), we approximate the log-likelihood under a Gaussian
 285 observation model. The diffusion training loss (Ho et al., 2020) minimizes the reconstruction error,
 286 which corresponds to the negative log-likelihood of a Gaussian with fixed variance:
 287

$$288 \quad p(y|x) = \mathcal{N}(\hat{y}_\theta(x), \sigma^2 I) \quad \Rightarrow \quad \log p(y|x) = -\frac{1}{2\sigma^2} \|y - \hat{y}_\theta(x)\|^2 + \text{const.} \quad (11)$$

291 Thus, we use the scaled negative mean squared error as a surrogate for the log-likelihood:

$$292 \quad \log \pi_\theta(y|x) \approx -\frac{1}{T} \cdot \text{MSE}(y, \hat{y}_\theta(x)),$$

293 where $\hat{y}_\theta(x)$ is the one-step denoised prediction and T is a temperature hyperparameter controlling
 294 the approximation scale.
 295

296 **MaskGIT (Discrete Outputs).** MaskGIT (Chang et al., 2022) operates in a discrete token space,
 297 where an image y is represented as N tokens (t_1, \dots, t_N) from a VQ-GAN encoder (Esser et al.,
 298 2021). Its training objective is to predict masked tokens given the visible context and condition x .
 299 In this case, the log-likelihood is directly computable as the sum of log-probabilities at the masked
 300 positions:
 301

$$302 \quad \log \pi_\theta(y|x) = \frac{1}{|M|} \sum_{i \in M} \log p_\theta(t_i | y_{\setminus M}, x),$$

303 where M is the set of masked indices and $y_{\setminus M}$ denotes the unmasked tokens. We normalize by $|M|$
 304 to ensure comparability across samples with different mask sizes.
 305

306 2.4.2 ALGORITHMIC DETAILS

307 We present two variants of UPO. The primary approach, Offline UPO, operates on a fixed dataset
 308 $\mathcal{D} = \{(x_i, y_i)\}$. Typically, this dataset is first created by generating outputs y_i using the initial
 309 policy π_θ for a given set of prompts $\{x_i\}$. Reward scores are precomputed for this dataset, and a
 310 global threshold τ is estimated once per epoch. In contrast, Online UPO computes rewards on-the-
 311 fly with a memory bank, allowing adaptation to distributional shift. However, this requires repeated
 312 sampling and reward evaluation, which is computationally demanding. For this reason, offline UPO
 313 serves as the default choice in practice. The step-by-step procedure for offline UPO is given in
 314 Algorithm 1, while the online variant is detailed in Appendix C.
 315

316 In production-scale training, reward scores for massive datasets are often available, but their distri-
 317 bution may not match that of the policy π_θ under training. Consequently, these scores cannot be
 318 directly used to define thresholds. To address this, we construct smaller proxy sets by sampling
 319 prompts, generating outputs from π_{ref} , and scoring them with the reward model. The thresholds τ
 320 estimated from these proxy sets can then be transferred to the much larger pre-scored dataset. As
 321 more proxy sets are accumulated, the estimate of τ becomes increasingly reliable. As established
 322 in our theoretical analysis (Theorem 2.1), the asymptotic bias vanishes at rate $O(1/n)$, ensuring
 323 that thresholds estimated from sufficiently large proxy sets generalize robustly to production-scale
 324 datasets.
 325

```

324 Algorithm 1 Unpaired Preference Optimization (UPO)
325
326 Require: Initial policy  $\pi_\theta$ , reward model  $r(\cdot)$ , dataset  $\mathcal{D} = \{(x_i, y_i)\}$ , batch size  $B$ , threshold
327 percentile  $p$ , scaling coefficient  $c$ , temperature  $\beta$ 
328
329 1: Initialize reference policy:  $\pi_{\text{ref}} \leftarrow \pi_\theta$  ▷ Frozen copy at initialization
330 2: Compute all reward scores  $s_i = r(x_i, y_i)$  for  $(x_i, y_i) \in \mathcal{D}$ 
331 3: Compute global threshold:  $\tau = \text{percentile}(\{s_i\}, p)$ 
332 4: for each training epoch do
333 5:   for each batch  $\{(x_j, y_j, s_j)\}_{j=1}^B \sim \mathcal{D}$  do
334 6:     for each sample  $(x_j, y_j, s_j)$  in the batch do
335 7:       Compute pseudo-label  $l = \mathbb{1}[s_j \geq \tau]$ 
336 8:       Compute weight  $w = 1 + c \cdot |s_j - \tau|$ 
337 9:       Compute implicit score  $\hat{r}_j = \beta \cdot [\log \pi_\theta(y_j | x_j) - \log \pi_{\text{ref}}(y_j | x_j)]$ 
338 10:      Compute per-sample loss  $\ell_j = -w \cdot [l \log \sigma(\hat{r}_j) + (1 - l) \log(1 - \sigma(\hat{r}_j))]$ 
339 11:      end for
340 12:       $\mathcal{L} = \frac{1}{B} \sum_{j=1}^B \ell_j$ 
341 13:      Update  $\pi_\theta \leftarrow \text{GradientStep}(\pi_\theta, \nabla_\theta \mathcal{L})$ 
342 14:    end for
343 15:    Update reference policy:  $\pi_{\text{ref}} \leftarrow \pi_\theta$ 
344 16: end for

```

3 EXPERIMENTS

3.1 TEXT-TO-IMAGE SYNTHESIS WITH UPO

We collect 10,000 high-quality prompts, termed *MeiPrompts*, for both supervised fine-tuning (SFT) and unpaired performance optimization (UPO). Figure 2 presents an analysis of the prompt set, including (a) the prompt length distribution, (b) the most frequent keywords, and (c) a CLIP-based t-SNE visualization comparing the semantic space of MeiPrompts (train set) and HPS Prompts (test set). The clear distributional divergence indicates no data leakage between the training and test sets.

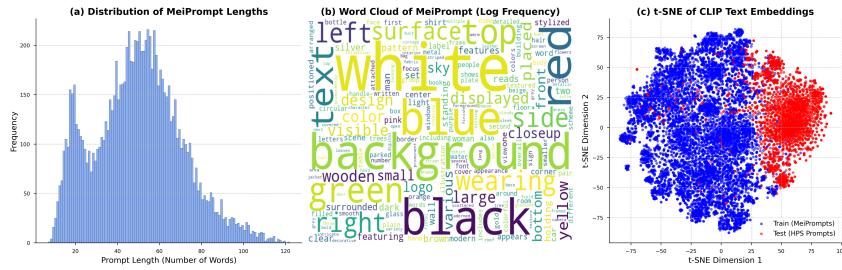


Figure 2: (a) Prompt length distribution, (b) word cloud, and (c) CLIP+tSNE semantic visualization of MeiPrompts and HPS Prompts.

We conduct text-to-image experiments using two foundation models: Stable Diffusion v1.4 (Rombach et al., 2022) and Meissonic (Bai et al., 2024). First, each model is used to generate images conditioned on MeiPrompts. Second, we score these generated image-text pairs using four reward models: HPSv2.1 (Wu et al., 2023), PickScore (Kirstain et al., 2023), ImageReward (Xu et al., 2023) and Laion Aesthetic Score (Schuhmann et al., 2022), and obtain their median values as threshold τ . Third, for supervised finetuning, we finetune the original model with generated image-text pairs whose reward scores above the threshold τ , and for unpaired preference optimization, we apply the unpaired optimization method introduced in the previous section. To ensure fairness, both SFT and UPO are trained with identical hyperparameters: batch size (128), training steps (78), and learning rate (1e-5). We set $\beta = 1$, $T = 0.001$ and $c = 5$ in UPO loss function (Eq. 10) and present ablations in the subsequent section.

We report both the mean and median scores on HPS Prompts (Wu et al., 2023) across the four reward models in Table 1, we also visualize the full score distributions for Stable Diffusion v1.4 in Figure 5. Besides, we present qualitative comparisons between SFT and UPO on HPSv2.1 rewarding for stable diffusion v1.4 in Figure 3. For a more comprehensive comparison, we adopt GPT-5 as an automated judge for the full 3,200 image pairs in Figure 4.

Figure 3: Qualitative comparisons between SFT and UPO for SD v1.4.

Figure 4: Win rate between SFT and UPO for SD v1.4.

Table 1: Quantitative comparison of text-to-image generation across original, supervised fine-tuned (SFT), and unpaired performance optimized (UPO) methods. Higher is better. SD v1.4 denotes Stable Diffusion v1.4; Evaluation is conducted on HPS Prompts using four different reward models.

Model	Version	HPSv2.1 (\uparrow)		PickScore (\uparrow)		ImageReward (\uparrow)		Aesthetic (\uparrow)	
		Mean	Median	Mean	Median	Mean	Median	Mean	Median
SD v1.4	Original	0.2454	0.2462	20.8040	20.7784	0.1406	0.1773	5.4277	5.4293
	+SFT	0.2506	0.2520	20.7217	20.7006	0.2348	0.2870	5.4927	5.4948
	+UPO	0.2618	0.2631	20.9001	20.8907	0.3523	0.4246	5.6036	5.6122
Meisisonic	Original	0.2810	0.2837	21.8315	21.7686	0.8230	0.9674	5.7692	5.7578
	+SFT	0.2912	0.2928	21.9105	21.8419	0.9215	1.0985	5.8013	5.7999
	+UPO	0.2915	0.2934	21.9421	21.8946	0.9369	1.1233	5.8270	5.8234

From both the quantitative and qualitative results, we observe that UPO consistently surpasses SFT for four reward models in most cases. This demonstrates the effectiveness of our unpaired preference optimization method in improving text-to-image alignment without requiring supervision from paired preference data.

3.2 TEXT-TO-VIDEO SYNTHESIS WITH UPO

We present text-to-video experiments on Wan 1.3B (Wan et al., 2025) in Appendix E.

3.3 ONLINE UPO

We present UPO and Online UPO comparisons in Appendix D.

3.4 ABLATION STUDY

We ablate the key hyperparameters of UPO, including the temperature T used to approximate log-probability, the difference scaling factor c , and the preference strength coefficient β . All experiments are conducted by fine-tuning Stable Diffusion v1.4 with MeiPrompt and evaluating with MeiPrompt on the median HPSv2.1 score.

3.4.1 EFFECT OF TEMPERATURE T

The temperature T scales the negative MSE used to approximate $\log \pi_\theta(y|x)$. As shown in Table 2a, a moderate temperature ($T = 0.001$) achieves the highest score. When T is too large (e.g., 0.1 or 1.0), the distribution over preferences becomes nearly uniform, causing instability and sharp performance degradation.

3.4.2 EFFECT OF DIFFERENCE SCALING FACTOR c

The factor c amplifies the absolute difference between reward and threshold τ , thereby increasing the weight of confident preferences. Table 2b shows that performance improves as c increases from 2 to 5, but further growth (e.g., $c = 20$) provides no consistent gain. Setting $c = 5$ offers a good balance.

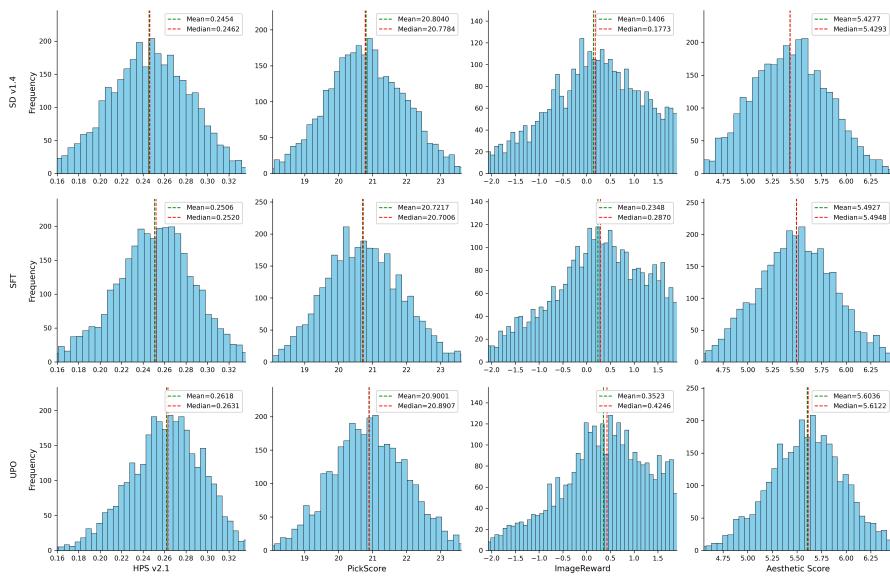


Figure 5: Score distributions by model and reward metric for SD v1.4.

(a) Temperature T		(b) Scaling Ratio c		(c) Preference Strength β	
T	Median	c	Median	β	Median
0.00001	0.2378	1	0.2478	0.5	0.2469
0.0001	0.2438	2	0.2480	1.0	0.2526
0.001	0.2526	5	0.2526	2.0	0.2481
0.01	0.2319	10	0.2481		
0.1	0.1411	20	0.2482		

Table 2: Ablation on UPO hyperparameters using SD v1.4 fine-tuned with MeiPrompt. Reported values are median HPSv2.1 scores.

3.4.3 EFFECT OF PREFERENCE STRENGTH β

The coefficient β controls the sharpness of the log-probability ratio in the UPO loss. As Table 2c illustrates, $\beta = 1.0$ works well across experiments, while larger or smaller values do not confer additional benefits.

Overall, the best UPO configuration for SD v1.4 is $\beta = 1$, $c = 5$, and $T = 0.001$. While other foundation models or reward models may work better with different values, this setting provides a default starting point for practice.

4 CONCLUSION

In this work, we introduced Unpaired Preference Optimization (UPO), a framework that extends direct preference optimization to settings without paired comparisons, enabling alignment directly from unpaired scalar scores. Our derivation revisits the KL-regularized objective and reveals an ideal but intractable decision rule governed by an instance-dependent oracle baseline. UPO provides a principled and tractable proxy to this rule via global thresholding and confidence-weighting mechanisms. Extensive experiments demonstrate that UPO consistently improves alignment of generative models, outperforming supervised fine-tuning across diverse settings. Our analysis further shows that the proxy becomes increasingly reliable as more scored samples are used to estimate the reward distribution, approaching the oracle decision rule in the large-data limit. Taken together, UPO establishes a flexible, efficient, and theoretically grounded approach to aligning generative models with unpaired real world human values.

486 REFERENCES
487

488 Abbas Abdolmaleki, Bilal Piot, Bobak Shahriari, Jost Tobias Springenberg, Tim Hertweck, Rishabh
489 Joshi, Junhyuk Oh, Michael Bloesch, Thomas Lampe, Nicolas Heess, et al. Preference optimiza-
490 tion as probabilistic inference. *arXiv e-prints*, pp. arXiv-2410, 2024.

491 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
492 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
493 report. *arXiv preprint arXiv:2303.08774*, 2023.

494 Jinbin Bai, Tian Ye, Wei Chow, Enxin Song, Xiangtai Li, Zhen Dong, Lei Zhu, and Shuicheng
495 Yan. Meissonic: Revitalizing masked generative transformers for efficient high-resolution text-
496 to-image synthesis. *arXiv preprint arXiv:2410.08261*, 2024.

497 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
498 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
500 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

501 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
502 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

503 Black-Forest-Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

504 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
505 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

506 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
507 image transformer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
510 recognition*, pp. 11315–11325, 2022.

511 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
512 reinforcement learning from human preferences. *Advances in neural information processing sys-
513 tems*, 30, 2017.

514 Fei Deng, Qifei Wang, Wei Wei, Tingbo Hou, and Matthias Grundmann. Prdp: Proximal reward
515 difference prediction for large-scale reward finetuning of diffusion models. In *Proceedings of the
516 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7423–7433, 2024.

517 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
518 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
519 tion*, pp. 12873–12883, 2021.

520 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
521 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

522 Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
523 man. Aligning language models with preferences through f-divergence minimization. *arXiv
524 preprint arXiv:2302.08215*, 2023.

525 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
526 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
527 ACM*, 63(11):139–144, 2020.

528 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
529 arXiv:2207.12598*, 2022.

530 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
531 neural information processing systems*, 33:6840–6851, 2020.

532 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
533 Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
534 implicit human preferences in dialog. *arXiv preprint arXiv:1907.00456*, 2019.

535 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

540 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 541 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural*
 542 *information processing systems*, 36:36652–36663, 2023.

543

544 Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement learn-
 545 ing and distribution matching for fine-tuning language models with no catastrophic forgetting.
 546 *Advances in Neural Information Processing Systems*, 35:16203–16220, 2022.

547

548 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 549 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 550 feedback. *arXiv preprint arXiv:2302.12192*, 2023.

551

552 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Align-
 553 ing diffusion models by optimizing human utility. *Advances in Neural Information Processing*
 554 *Systems*, 37:24897–24925, 2024.

555

556 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 557 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv*
 558 *preprint arXiv:2505.05470*, 2025a.

559

560 Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin
 561 Wang, Wenyu Qin, Menghan Xia, et al. Improving video generation with human feedback. *arXiv*
 562 *preprint arXiv:2501.13918*, 2025b.

563

564 Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Moham-
 565 mad Saleh, Simon Baumgartner, Jialu Liu, et al. Lipo: Listwise preference optimization through
 566 learning-to-rank. *arXiv preprint arXiv:2402.01878*, 2024.

567

568 Simon Matrenok, Skander Moalla, and Caglar Gulcehre. Quantile reward policy optimiza-
 569 tion: Alignment with pointwise regression and exact partition functions. *arXiv preprint*
 570 *arXiv:2507.08068*, 2025.

571

572 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 573 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 574 2024.

575

576 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 577 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 578 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 579 27730–27744, 2022.

580

581 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 582 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

583

584 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 585 space control. In *Proceedings of the 24th international conference on Machine learning*, pp. 745–
 586 750, 2007.

587

588 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 589 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 590 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

591

592 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 593 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 594 *in neural information processing systems*, 36:53728–53741, 2023.

595

596 Jie Ren, Yuhang Zhang, Dongrui Liu, Xiaopeng Zhang, and Qi Tian. Refining alignment framework
 597 for diffusion models with intermediate-step preference ranking. *arXiv preprint arXiv:2502.01667*,
 598 2025.

599

600 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 601 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 602 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

594 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 595 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 596 open large-scale dataset for training next generation image-text models. *Advances in neural in-*
 597 *formation processing systems*, 35:25278–25294, 2022.

598 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 599 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

600 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 601 learning using nonequilibrium thermodynamics. In *International conference on machine learn-*
 602 *ing*, pp. 2256–2265. pmlr, 2015.

603 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 604 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances*
 605 *in neural information processing systems*, 33:3008–3021, 2020.

606 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 607 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 608 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 609 *and Pattern Recognition*, pp. 8228–8238, 2024.

610 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 611 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 612 models. *arXiv preprint arXiv:2503.20314*, 2025.

613 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 614 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 615 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

616 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 617 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 618 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

619 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 620 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv*
 621 *preprint arXiv:2505.07818*, 2025.

622 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li.
 623 Using human feedback to fine-tune diffusion models without any reward model. In *Proceedings of*
 624 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8941–8951, 2024a.

625 Shentao Yang, Tianqi Chen, and Mingyuan Zhou. A dense reward view on aligning text-to-image
 626 diffusion with preference. *arXiv preprint arXiv:2402.08265*, 2024b.

627 Xiaomeng Yang, Zhiyu Tan, and Hao Li. Ipo: Iterative preference optimization for text-to-video
 628 generation. *arXiv preprint arXiv:2502.02088*, 2025.

629 Jiacheng Zhang, Jie Wu, Weifeng Chen, Yatai Ji, Xuefeng Xiao, Weilin Huang, and Kai Han. On-
 630 linevpo: Align video diffusion model with online video-centric preference optimization. *arXiv*
 631 *preprint arXiv:2412.15159*, 2024.

632 Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
 633 maximum causal entropy, 2010.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

APPENDIX

A PROOF OF MONOTONICITY FOR THE POLICY RATIO

Theorem A.1 (Monotonicity of the Policy Ratio). *Let the optimal policy $\pi^*(y|x)$ be defined by the KL-regularized objective:*

$$\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right), \quad (12)$$

where the partition function $Z(x) = \sum_{y' \in \mathcal{Y}} \pi_{\text{ref}}(y'|x) \exp\left(\frac{1}{\beta}r(x,y')\right)$. Then, for any $y_k \in \mathcal{Y}$ such that $\pi_{\text{ref}}(y_k|x) > 0$, the ratio $\frac{\pi^*(y_k|x)}{\pi_{\text{ref}}(y_k|x)}$ is a strictly increasing function of its reward $r(x,y_k)$, provided there exists at least one alternative response $y' \neq y_k$ with $\pi_{\text{ref}}(y'|x) > 0$.

Proof. Fix $y_k \in \mathcal{Y}$ and define $r := r(x,y_k)$ to simplify notation. We analyze the function:

$$f(r) := \frac{\pi^*(y_k|x)}{\pi_{\text{ref}}(y_k|x)} = \frac{\exp(r/\beta)}{Z(x)}, \quad (13)$$

where the normalization constant $Z(x)$ depends on r , since $r(x,y_k)$ is one of the terms in its summation.

To determine if $f(r)$ is strictly increasing, we compute its derivative with respect to r using the quotient rule. Let $u(r) := \exp(r/\beta)$ and $v(r) := Z(x)$. Then $\frac{df}{dr} = \frac{u'v - uv'}{v^2}$.

The derivatives of $u(r)$ and $v(r)$ are:

$$u'(r) = \frac{1}{\beta} \exp(r/\beta), \quad (14)$$

$$v'(r) = \frac{d}{dr} \left[\sum_{y' \in \mathcal{Y}} \pi_{\text{ref}}(y'|x) \exp\left(\frac{r(x,y')}{\beta}\right) \right] = \pi_{\text{ref}}(y_k|x) \cdot \frac{1}{\beta} \exp(r/\beta). \quad (15)$$

The derivative $v'(r)$ only contains the term corresponding to y_k because all other rewards $r(x,y')$ for $y' \neq y_k$ are treated as constants with respect to r .

Substituting these into the quotient rule expression:

$$\frac{df}{dr} = \frac{\left(\frac{1}{\beta} \exp(r/\beta)\right) Z(x) - \exp(r/\beta) \left(\pi_{\text{ref}}(y_k|x) \cdot \frac{1}{\beta} \exp(r/\beta)\right)}{Z(x)^2} \quad (16)$$

$$= \frac{\exp(r/\beta)}{\beta Z(x)^2} \cdot [Z(x) - \pi_{\text{ref}}(y_k|x) \exp(r/\beta)]. \quad (17)$$

The term in the brackets simplifies to:

$$\begin{aligned} Z(x) - \pi_{\text{ref}}(y_k|x) \exp(r/\beta) &= \left(\sum_{y' \in \mathcal{Y}} \pi_{\text{ref}}(y'|x) \exp\left(\frac{r(x,y')}{\beta}\right) \right) - \pi_{\text{ref}}(y_k|x) \exp\left(\frac{r}{\beta}\right) \\ &= \sum_{y' \neq y_k} \pi_{\text{ref}}(y'|x) \exp\left(\frac{r(x,y')}{\beta}\right). \end{aligned} \quad (18)$$

Since $\pi_{\text{ref}}(y'|x) \geq 0$ and $\exp(\cdot) > 0$, each term in this sum is non-negative. By the theorem's condition, there is at least one $y' \neq y_k$ with $\pi_{\text{ref}}(y'|x) > 0$, so this sum is strictly positive.

Therefore, the derivative in Eq. 17 is a product of strictly positive terms:

$$\frac{df}{dr} = \underbrace{\frac{\exp(r/\beta)}{\beta Z(x)^2}}_{>0} \cdot \underbrace{\left(\sum_{y' \neq y_k} \pi_{\text{ref}}(y'|x) \exp\left(\frac{r(x,y')}{\beta}\right) \right)}_{>0} > 0. \quad (20)$$

Since the derivative is strictly positive, the function $f(r)$ is strictly increasing in r . \square

702 B PROOFS OF UPO GUARANTEES 703

704 This appendix provides the formal assumptions, theorems, and proofs for the guarantees of UPO
705 summarized in Theorem 2.1 of the main text.

707 B.1 ASSUMPTIONS 708

709 **Assumption B.1** (Regularity Conditions for UPO). *Let $\ell(\theta; z)$ denote the per-sample UPO loss.
710 Assume:*

- 712 1. **(Identifiability)** The population loss $L(\theta) = \mathbb{E}_z[\ell(\theta; z)]$ has a unique minimizer θ^* in an
713 open neighborhood \mathcal{N} .
- 714 2. **(Smoothness)** $\ell(\theta; z)$ is three-times continuously differentiable in \mathcal{N} almost surely. The
715 population derivatives $\nabla^k L(\theta)$ for $k = 1, 2, 3$ exist and are continuous at θ^* .
- 716 3. **(Regularity)** The Hessian $H = \nabla^2 L(\theta^*)$ is positive definite. The score $\nabla \ell(\theta^*; z)$ has finite
717 second moments with covariance $S = \text{Cov}(\nabla \ell(\theta^*; z))$. A Central Limit Theorem holds for
718 $\sqrt{n} \nabla L_n(\theta^*)$.

720 B.2 CONSISTENCY OF THE UPO ESTIMATOR 721

722 **Corollary B.2** (Consistency of UPO). *Under Assumption B.1, the UPO estimator*

$$724 \hat{\theta}_n = \arg \min_{\theta} L_n(\theta), \quad L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; z_i)$$

727 is consistent: $\hat{\theta}_n \xrightarrow{p} \theta^*$ as $n \rightarrow \infty$.

729 *Proof.* This follows directly from standard M-estimation theory: $L_n(\theta)$ converges uniformly to
730 $L(\theta)$, which has a unique minimizer θ^* under Assumption B.1. The argmin consistency theorem
731 then yields $\hat{\theta}_n \xrightarrow{p} \theta^*$. \square

733 B.3 ASYMPTOTIC BIAS OF THE UPO ESTIMATOR 734

735 **Theorem B.3** (Asymptotic Bias of UPO). *Under Assumption B.1, the expectation of $\hat{\theta}_n$ satisfies*

$$737 \mathbb{E}[\hat{\theta}_n] - \theta^* = \frac{1}{n} B_1(\theta^*) + o(1/n),$$

739 where

$$740 (B_1(\theta^*))_a = -\frac{1}{2} H_{ab}^{-1} J_{bcd} (H^{-1} S H^{-1})_{cd}, \quad (21)$$

741 with $H = \nabla^2 L(\theta^*)$, $S = \text{Cov}(\nabla \ell(\theta^*; z))$, and $J_{bcd} = \mathbb{E}[\partial^3 \ell(\theta^*; z) / \partial \theta_b \partial \theta_c \partial \theta_d]$.

743 *Proof. Step 1: First-order condition and Taylor expansion.* By optimality, $0 = \nabla L_n(\hat{\theta}_n)$. Ex-
744 panding around θ^* gives

$$745 0 = \nabla L_n(\theta^*) + \nabla^2 L_n(\theta^*)(\hat{\theta}_n - \theta^*) + \frac{1}{2} \nabla^3 L_n(\bar{\theta})[\hat{\theta}_n - \theta^*, \hat{\theta}_n - \theta^*] + r_n, \quad (22)$$

747 where $\bar{\theta}$ lies between $\hat{\theta}_n$ and θ^* , and $r_n = o_p(\|\hat{\theta}_n - \theta^*\|^2) = o_p(n^{-1})$.

749 **Step 2: Isolate $\Delta = \hat{\theta}_n - \theta^*$.** Rearranging Eq. 22:

$$751 \Delta = -[\nabla^2 L_n(\theta^*)]^{-1} \nabla L_n(\theta^*) - \frac{1}{2} [\nabla^2 L_n(\theta^*)]^{-1} \nabla^3 L_n(\bar{\theta})[\Delta, \Delta] + o_p(n^{-1}). \quad (23)$$

753 **Step 3: Take expectations.** Since $\mathbb{E}[\nabla L_n(\theta^*)] = 0$ and $\nabla^2 L_n(\theta^*) \xrightarrow{p} H$, we replace random
754 Hessian and third derivatives by H and J up to $o(n^{-1})$ terms:

$$755 \mathbb{E}[\Delta] = -\frac{1}{2} H^{-1} J \mathbb{E}[\Delta \otimes \Delta] + o(n^{-1}). \quad (24)$$

756 **Step 4: Insert asymptotic covariance.** From standard M-estimator theory,

$$758 \quad \mathbb{E}[\Delta \otimes \Delta] = \frac{1}{n} H^{-1} S H^{-1} + o(n^{-1}). \quad (25)$$

760 Substituting Eq. 25 into Eq. 24 gives

$$761 \quad \mathbb{E}[\Delta] = -\frac{1}{2n} H^{-1} J(H^{-1} S H^{-1}) + o(n^{-1}),$$

763 which matches Eq. 21. \square

765 **Remark.** If $\ell(\theta; z)$ is the negative log-likelihood of a correctly specified model, then $S = H =$
766 $I(\theta^*)$ (Fisher information), further simplifying the bias term.

768 B.4 CALIBRATION OF UPO PSEUDO-LABELS

770 **Proposition B.4** (Calibration of UPO). *Let $\tau^*(x) = \beta \log Z(x)$ be the KL-optimal baseline. Suppose scores satisfy $s = g(R(x, y)) + \xi$, where g is strictly increasing and ξ is sub-Gaussian. If τ is estimated as the empirical p -quantile with error $\varepsilon_\tau = O(1/\sqrt{n})$, then*

$$773 \quad \Pr[l \neq l^*] = O(\varepsilon_\tau + \|\xi\|_{\psi_2}),$$

774 where $l = \mathbb{1}[s \geq \tau]$ and $l^* = \mathbb{1}[R(x, y) \geq \tau^*(x)]$.

776 *Proof.* By Theorem A.1 in Appendix A, the KL-optimal rule reduces to thresholding $R(x, y)$ against
777 $\tau^*(x)$. Since g preserves order, classification by s matches that by R up to noise ξ . The empirical
778 quantile τ concentrates around the true quantile, so label flips occur only if ξ or ε_τ is large enough
779 to cross the boundary, yielding the stated bound. \square

781 C THE ALGORITHM PROCEDURE OF ONLINE UPO

784 Algorithm 2 Online Unpaired Preference Optimization (Online-UPO)

785 **Require:** Initial policy π_θ , Prompt-only dataset $\mathcal{X} = \{x_i\}$, reward model $r(\cdot)$, memory bank \mathcal{M} ,
786 memory size M , threshold percentile p , scaling coefficient c , temperature β , batch size B

787 1: Initialize reference policy $\pi_{\text{ref}} \leftarrow \pi_\theta$
788 2: Initialize memory bank $\mathcal{M} \leftarrow \emptyset$
789 3: **for** each training epoch **do**

790 4: **for** each batch of prompts $\{x_j\}_{j=1}^B \sim \mathcal{X}$ **do**
791 5: Sample outputs $y_j \sim \pi_{\text{ref}}(\cdot | x_j)$
792 6: Compute rewards $s_j = r(x_j, y_j)$
793 7: Update memory bank $\mathcal{M} \leftarrow \text{FIFO_Update}(\mathcal{M}, \{s_j\})$
794 8: **if** $|\mathcal{M}| < M/2$ **then**
795 9: **continue** \triangleright Delay updates until memory bank is warm
796 10: **end if**
797 11: Compute threshold $\tau = \text{percentile}(\mathcal{M}, p)$
798 12: **for** each sample (x_j, y_j, s_j) in the batch **do**
799 13: Compute pseudo-label $l = \mathbb{1}[s_j \geq \tau]$
800 14: Compute weight $w = 1 + c \cdot |s_j - \tau|$
801 15: Compute implicit score $\hat{r}_j = \beta \cdot [\log \pi_\theta(y_j | x_j) - \log \pi_{\text{ref}}(y_j | x_j)]$
802 16: Compute per-sample loss $\ell_j = -w \cdot [l \log \sigma(\hat{r}_j) + (1 - l) \log(1 - \sigma(\hat{r}_j))]$
803 17: **end for**
804 18: Compute batch loss: $\mathcal{L} = \frac{1}{B} \sum_{j=1}^B \ell_j$
805 19: Update policy: $\pi_\theta \leftarrow \text{GradientStep}(\pi_\theta, \nabla_\theta \mathcal{L})$ \triangleright Train current policy on data from ref
806 20: **end for**
807 21: Update reference policy: $\pi_{\text{ref}} \leftarrow \pi_\theta$
22: **end for**

808 Online UPO is an adaptive variant of UPO, designed for scenarios where the data distribution may
809 significantly shift during training. Instead of using a pre-computed dataset, it generates samples and

810
811 Table 3: Comparison between standard UPO and Online UPO under the HPSv2.1 metric. All models
812 are trained and evaluated with MeiPrompt.

Method	c	T	β	Median HPSv2.1
Original SD1.4	-	-	-	0.2364
SFT	-	-	-	0.2426
UPO (v1)	10	0.001	1	0.2443
Online UPO (v1)	10	0.001	1	0.2355
UPO (v2)	20	0.001	1	0.2482
Online UPO (v2)	20	0.001	1	0.2449
UPO (v3, best)	5	0.001	1	0.2526
Online UPO (v3)	5	0.001	1	0.2381

822
823
824 computes rewards on-the-fly at each step. A memory bank \mathcal{M} stores recent reward scores, allowing
825 the decision threshold τ to be dynamically re-estimated. This adaptability comes at a significant
826 computational cost, making the offline version (Algorithm 1) the more practical choice for most
827 large-scale applications. The detailed procedure is provided in Algorithm 2.

830 D ONLINE UPO

831
832 We compare UPO and Online UPO on the HPSv2.1 metric in Table 3. All models are fine-tuned on
833 Stable Diffusion v1.4 using MeiPrompt and evaluated on the same prompt set. We report the median
834 score to assess performance.

835
836 Across all configurations, Online UPO performs slightly worse than the offline variant. Two factors
837 appear central. First, Online UPO estimates the reward threshold τ on the fly from a memory bank
838 of 1024 samples. This introduces higher variance and occasional inaccuracies compared to the
839 offline method, which computes τ once from the full reward distribution (10k samples). Second,
840 Online UPO requires image generation and reward evaluation during training, leading to roughly
841 $10\times$ higher wall-clock cost.

842 Overall, under our setup the offline variant is both more stable and more efficient.

844 E TEXT-TO-VIDEO SYNTHESIS WITH UPO

845
846 We extend our study to text-to-video generation. To this end, we collect 15,218 high-quality
847 prompts, denoted as *MeiPrompts-V*, and split them into training and test sets with an 8:2 ratio.
848 We randomly subsample a portion of the dataset for our experiments. We adopt Wan 1.3B (Wan
849 et al., 2025) as the foundation model and VideoReward (Liu et al., 2025b) as the reward model.

850
851 Table 4 reports results on the VideoAlign benchmark, including VQ (visual quality), MQ (motion
852 quality), TA (temporal alignment), and the overall score. UPO improves over supervised fine-tuning
853 (SFT-LoRA) in most cases.

854
855 Table 4: Text-to-video results on the VideoAlign benchmark. UPO-LoRA improves over SFT-LoRA
856 in most cases.

Method	VQ Score	MQ Score	TA Score	Overall Score
Original	-0.7963	-0.4316	-0.8639	-2.0918
SFT-LoRA	-0.6054	-0.4159	-0.6705	-1.6918
UPO-LoRA	-0.5631	0.0627	-1.0753	-1.5757

864

F RELATED WORK

865

F.1 GENERATIVE MODELS.

866 Generative modeling has witnessed a rapid evolution, from Generative Adversarial Networks
 867 (GANs) (Goodfellow et al., 2020) and Variational Autoencoders (VAEs) (Kingma et al., 2013),
 868 to the current dominance of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Podell
 869 et al., 2023; Betker et al., 2023; Black-Forest-Labs, 2024). Denoising diffusion probabilistic
 870 models (DDPMs) have established a new state-of-the-art in high-fidelity image synthesis by iteratively
 871 reversing a noise-injection process. Their remarkable generative quality and training stability have
 872 made them the *de-facto* architecture for large-scale text-to-image systems.
 873

874 A key breakthrough enabling granular control over the generation process was classifier-free guid-
 875 ance (Ho & Salimans, 2022), which allows for a trade-off between sample fidelity and diversity
 876 without needing an external classifier model. While classifier-free guidance provides a powerful
 877 mechanism for conditioning on explicit text prompts, it does not inherently address alignment with
 878 more abstract or ineffable human preferences, such as aesthetic appeal, compositional coherence, or
 879 stylistic nuance. This limitation necessitates a more direct approach to learn from human feedback.
 880

881

F.2 IMPROVING LANGUAGE MODELS USING PREFERENCE OPTIMIZATION.

882 The challenge of aligning powerful base models with human intent was first tackled systematically
 883 in the domain of large language models (LLMs). The seminal paradigm of Reinforcement Learn-
 884 ing from Human Feedback (RLHF) (Christiano et al., 2017) demonstrated that models could be
 885 fine-tuned to align with complex human values. The canonical RLHF pipeline, famously used to
 886 train InstructGPT and ChatGPT (Ouyang et al., 2022), involves three stages: supervised fine-tuning
 887 (SFT), training a reward model (RM) on human preference labels, and then fine-tuning the SFT
 888 policy using reinforcement learning (e.g., PPO (Schulman et al., 2017)) to maximize the learned
 889 reward.
 890

891 Despite its success, RLHF is notoriously complex and unstable, requiring the training and orchestra-
 892 tion of multiple models and inheriting the hyperparameter sensitivity of deep RL algorithms. This
 893 motivated a search for simpler, more direct alignment methods. Direct Preference Optimiza-
 894 tion (DPO) (Rafailov et al., 2023) emerged as an elegant and effective alternative. DPO reframes the
 895 preference learning problem as a simple binary classification task on pairs of preferred and rejected
 896 responses. By deriving a direct mapping from this loss to the optimal policy under a KL-divergence
 897 constraint, DPO bypasses the need for explicit reward modeling and unstable RL training, offering
 898 a more stable and efficient alignment procedure. This shift from explicit reward modeling to direct
 899 preference optimization represents a significant advance in the field.
 900

901 Recent work has sought to generalize direct preference optimization beyond the constraint of paired
 902 data, enabling learning from more flexible feedback structures. Viewing the problem from a proba-
 903 bilistic inference perspective, Abdolmaleki et al. (2024) propose a framework that handles unpaired
 904 positive (accepted) and negative (rejected) examples, even when only one feedback type is avail-
 905 able. Derived via an Expectation-Maximization (EM) approach, their method extends prior work
 906 by explicitly incorporating dis-preferred samples, resulting in an intuitive objective: maximizing
 907 the likelihood of preferred outcomes while minimizing that of dis-preferred ones, all regularized
 908 by a KL divergence to a reference policy. Addressing the same limitation from a different angle,
 909 Matrenok et al. (2025) introduce Quantile Reward Policy Optimization (QRPO) to enable offline
 910 policy fitting directly on absolute scalar rewards. Their key insight is that by transforming rewards
 911 into their quantiles, the resulting reward distribution becomes uniform. This masterstroke makes the
 912 otherwise intractable partition function $Z(x)$ analytically solvable, eliminating the need for prefer-
 913 ence pairs to cancel it out. The final algorithm learns via a simple regression objective, retaining the
 914 simplicity of policy fitting while leveraging the full information of absolute scores.
 915

916

F.3 IMPROVING VISION MODELS USING PREFERENCE OPTIMIZATION.

917 Inspired by successes in LLMs, preference-based alignment has been increasingly adapted for dif-
 918 fusion models (Lee et al., 2023; Yang et al., 2024b; Deng et al., 2024; Yang et al., 2024a; Li
 919 et al., 2024; Ren et al., 2025; Yang et al., 2025; Zhang et al., 2024). Early approaches mirrored
 920

the RLHF paradigm, first training an explicit reward or aesthetic-scoring model from human judgments (Schuhmann et al., 2022) and then using reinforcement learning to fine-tune the diffusion process, as exemplified by DDPO (Black et al., 2023). While effective, these methods reintroduced the complexities and training instabilities inherent to RL. More recently, the conceptual elegance of DPO (Rafailov et al., 2023), optimizing a KL-regularized objective under the Bradley–Terry preference model, spurred the development of direct preference optimization for diffusion (Wallace et al., 2024). These methods adapt the DPO loss to the diffusion framework, directly fine-tuning text-to-image models on preference pairs to enhance qualities like aesthetics and prompt faithfulness without the overhead of RL. Besides, Generalized Reinforcement Policy Optimization (GRPO) (Xue et al., 2025; Liu et al., 2025a) emerges as a variant of proximal policy optimization recently.

However, a common thread unites this entire line of work: a fundamental reliance on paired preference data. This constraint limits their applicability in scenarios where feedback is only available as unpaired, absolute scores, highlighting a critical gap that our work, unpaired preference optimization (UPO), is designed to address.

G PSEUDOCODE OF UPO

We provide PyTorch-style pseudocode for the UPO loss function. The implementation closely follows the formulation in Section 2.4, using log-likelihood ratios between the current policy and the reference model, reweighted by relative scores:

```

1 import torch
2 import torch.nn.functional as F
3
4 def compute_upo_loss(log_probs, ref_log_probs, relative_scores,
5     beta=1.0, c=1.0):
6     """Args:
7         log_probs: log pi_theta(y/x), shape (B, )
8         ref_log_probs: log pi_ref(y/x), shape (B, )
9         relative_scores: r(y) - tau, shape (B, )
10        beta: temperature for reward difference
11        c: weight scaling for RM difference
12    """
13    # Implicit reward difference
14    reward_diff = beta * (log_probs - ref_log_probs) # (B, )
15
16    # Preference direction and confidence weighting
17    signs = torch.sign(relative_scores) # (B, )
18    weights = 1 + c * relative_scores.abs() # (B, )
19
20    # Binary logistic loss (use log1p for stability)
21    sig = torch.sigmoid(reward_diff)
22    pos_loss = -weights * torch.log(sig + 1e-12)
23    neg_loss = -weights * torch.log1p(-sig + 1e-12)
24
25    loss = torch.where(signs >= 0, pos_loss, neg_loss)
26    return loss.mean()

```

H THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models were used only for language polishing and minor editing. All research ideas, methods, and experimental results were carried out entirely by the human authors.