
Efficient Dynamic Clustering-Based Document Compression
for Retrieval-Augmented-Generation

Anonymous ACL submission

Abstract001

Retrieval-Augmented Generation (RAG) has002
emerged as a widely adopted approach for003
knowledge injection during large language004
model (LLM) inference in recent years. How-005
ever, due to their limited ability to ex-006
ploit fine-grained inter-document relation-007
ships, current RAG implementations face008
challenges in effectively addressing the re-009
trieved noise and redundancy content, which010
may cause error in the generation results.011
To address these limitations, we propose012
an Efficient Dynamic Clustering-based docu-013
ment Compression framework (EDC2-RAG)014
that utilizes latent inter-document relation-015
ships while simultaneously removing irrele-016
vant information and redundant content. We017
validate our approach, built upon GPT-3.5-018
Turbo and GPT-4o-mini, on widely used019
knowledge-QA and Hallucination-Detection020
datasets. Experimental results show that our021
method achieves consistent performance im-022
provements across various scenarios and exper-023
imental settings, demonstrating strong robust-024
ness and applicability. Our code and datasets025
are available at https://anonymous.026
4open.science/r/EDC-2-RAG-5F54.027

1 Introduction028

In recent years, large language models (LLMs)029

have advanced rapidly, excelling in natural lan-030

guage processing (NLP) tasks such as question an-031

swering, code generation, and even medical diagno-032

sis (Yasunaga et al., 2021; He et al., 2025; Yue et al.,033

2023; Singhal et al., 2023; Li et al., 2024a). De-034

spite their success, LLMs face two key challenges:035

expensive knowledge updates due to the large num-036

ber of learnable parameters, and hallucinations that037

lead to misleading content (Honovich et al., 2023;038

Hu et al., 2023; Lin et al., 2024; Xu et al., 2024).039

These issues impact the availability, reliability and040

consistency of LLMs (Zhou et al., 2024). Retrieval-041

augmented generation (RAG) (Lewis et al., 2020;042

Borgeaud et al., 2022; Izacard et al., 2022) ad- 043

dresses these problems by integrating retrieval 044

with generation, allowing LLMs to access external 045

knowledge without parameter updates, reducing 046

hallucinations, and improving reliability. 047

However, the implementation of RAG meth- 048

ods in real-world settings presents significant chal- 049

lenges. From a structural perspective, the effective- 050

ness of RAG frameworks derives from the informa- 051

tion augmentation of integrated databases(Lewis 052

et al., 2020). In practical applications, the databases 053

are often of limited quality due to the scarcity of 054

high-quality data and the high cost of data clean- 055

ing. Therefore, the candidate documents faced by 056

retrievers tend to exhibit the following frequently- 057

encountered quality flaws: 058

• Noise: irrelevant content to the query, which 059

may result in errors during generation. 060

• Redundancy: highly similar content between 061

documents, which will consume more tokens 062

and time in inference. 063

These issues can significantly reduce the effec- 064

tiveness of retrieval and compromise the quality 065

of the final generated output. Faced with these 066

practical challenges, it is increasingly significant to 067

build a reliable RAG system. However, current 068

RAG frameworks predominantly rely on query- 069

document similarity for retrieval, without explic- 070

itly addressing prevalent issues such as noise and 071

redundancy in real-world document corpora. To 072

solve the problems, we propose an efficient dy- 073

namic clustering-based compression method for a 074

reliable document retrieval. 075

Specifically, we first encode the documents to 076

get a denser content representation, then perform 077

clustering to aggregate semantically similar docu- 078

ments, mitigating content repetition. Subsequently, 079

we use prompt-based techniques to guide the LLMs 080

in query-specific compression to improve informa- 081

tion density and eliminate noise. Finally, we con- 082
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Figure 1: Comparison between our method and prior approaches. Unlike Vanilla RAG, which misses key information,
and Chunk Compression, which is redundant and incomplete, our method clusters and compresses documents to
extract concise and accurate answers.

catenate the compressed content into the prompts083

for response generation. In summary, our method084

leverages the latent relationships between docu-085

ments to reduce noise and redundant content.086

To validate the effectiveness of our approach, we087

selected two types of widely used datasets cover-088

ing open-domain question answering, and hallu-089

cination detection tasks. Systematic experiments090

conducted on GPT-3.5-Turbo demonstrate that our091

method achieves significant performance improve-092

ments across different settings. Meanwhile, our093

method also exhibits strong robustness and gener-094

alization potential to other scenarios. These find-095

ings indicate that by deeply exploring and utilizing096

fine-grained relationships among documents, RAG097

methods can reach new performance heights, pro-098

viding a novel direction for addressing the halluci-099

nation problem and knowledge update challenges100

in LLMs.101

The main contributions of our work are:102

• To the best of our knowledge, we are the first103

to apply similarity-based semantic clustering at104

the post-retrieve stage to tackle practical chal-105

lenges encountered by in-the-wild RAG sys-106

tems.107

• Our method effectively improves the perfor-108

mance and robustness of the LLM-based RAG109

systems and also enhances their long context110

capability.111

• As a post-retrieval method, our approach is112

plug-and-play, requiring no additional train-113

ing, and can be integrated into various retrieval114

methods.115

2 Related Works 116

Reranking and Compression. Post-retrieval 117

methods for frozen large language models (LLMs) 118

can be categorized into reranking and compression 119

approaches (Gao et al., 2023b). Reranking refines 120

the order of retrieved documents to improve LLMs- 121

generation performance. Re3val (Song et al., 2024) 122

uses reinforcement learning (RL) and targeted 123

queries, while REAR (Wang et al., 2024) utilizes 124

LLaMA 2 (Touvron et al., 2023) for reranking, 125

enhancing response quality. Compression meth- 126

ods condense retrieved content, primarily through 127

fine-tuned models(Xu et al., 2023; Liu et al., 2023; 128

Yu et al., 2024) or LLMs native capabilities. For 129

instance, SURE (Kim et al., 2023) generates and 130

selects the best answer by summarizing multiple re- 131

sponses. However, existing methods rarely address 132

document noise and redundancy issues, whereas 133

our approach tackles them with dynamic clustering 134

and prompt-guided compression. 135

Retrieval Semantic Relation Modeling. Be- 136

yond post-retrieval methods, some studies focus on 137

refining relationships between documents, chunks 138

or entities. Recent approaches frame RAG as a 139

multi-agent collaboration, where each agent pro- 140

cesses a subset of retrieved content. LONGA- 141

GENT (Zhao et al., 2024) supports large con- 142

texts through chunk-level conflict resolution, while 143

MADAM-RAG (Wang et al., 2025) uses agents to 144

address conflicting responses. Multi-agent RAG is 145

also applied to data integration (Salve et al., 2024), 146

but these methods increase inference costs and la- 147

tency, limiting real-world applicability. Knowledge 148

Graphs (KGs) structure document information by 149

2



Phase 1: Initialization

1: Input: Document set V = {d1, d2, . . . , dn},
query q, similarity function sim(·, ·), embedding
model f(·), initial cluster size τ , threshold Λ

2: Output: Clusters {C1, C2, . . . , Ck}
3: Compute query embedding: vq ← f(q)
4: for all dj ∈ V do
5: Compute embedding: vj ← f(dj)
6: end for
7: Select initial cluster root:

C.R1 ← argmaxd∈V sim(vq,vj)
8: for all dj ∈ V do
9: Compute similarity: sj ← sim(vC.R1

,vj)
10: end for
11: Form C1 with top-τ documents from V sorted

by sj
12: Remove C1 members from V

Phase 2: Iterative Subgraph Formation

1: k ← 2
2: while V ̸= ∅ do
3: Select new root:

C.Rk ← argmaxd∈V sim(vq,vj)
4: for all dj ∈ V do
5: Compute similarity:

sj ← sim(vC.Rk
,vj)

6: end for
7: Determine cluster size:

size← min(2× |Ck−1|,Λ)
8: Form Ck with top-size documents from V

sorted by sj
9: Remove Ck members from V

10: k ← k + 1
11: end while

Algorithm 1: Efficient Dynamic Graph-based Document Clustering

providing contextual relationships (Ji et al., 2021).150

KAPING builds a KG for retrieval (Baek et al.,151

2023), while G-Retriever queries subgraphs (He152

et al., 2025). Despite their effectiveness in entity-153

rich tasks, KG-based methods face scalability and154

adaptability challenges (Peng et al., 2023; Li et al.,155

2024b). Our method dynamically constructs se-156

mantic relationships post-retrieval, avoiding multi-157

agent systems and pre-built graphs, thereby improv-158

ing retrieval quality by reducing redundancy and159

noise.160

3 Problem Definition161

Consider a set of retrieved documents V =162

{d1, d2, . . . , dn}, where each document di is as-163

sociated with a query q. These documents are re-164

trieved based on their relevance to q, but their exact165

utility in answering q is initially unknown. Fur-166

thermore, there may exist potential overlaps and167

redundancies among the documents in V , as some168

documents may share similar or identical informa-169

tion, while others may provide complementary or170

conflicting details.171

Let E = {eij} represent the relationships be-172

tween pairs of documents di and dj , where i, j ∈173

{1, 2, . . . , n}. These relationships can be catego-174

rized as:175

• Overlapping: eij = Overlap, indicating that176

di and dj share redundant or highly similar177

content.178

• Complementary: eij = Complementary, indi-179

cating that di and dj provide distinct but rele-180

vant information to q. 181

Additionally, let U = {u1, u2, . . . , un} denote 182

the utility scores of the documents, where ui repre- 183

sents the degree to which di contributes to answer- 184

ing q. These scores are initially unknown and must 185

be inferred based on the relationships E and the 186

content of the documents. 187

The goal is to effectively utilize the retrieved 188

documents V , their relationships E, and their in- 189

ferred utilities U to construct a comprehensive and 190

accurate response to the query q. This involves 191

addressing the challenges of redundancy, inconsis- 192

tency, and varying utility among the documents, 193

while ensuring that the final output maximizes rele- 194

vance and minimizes noise. 195

4 Method 196

4.1 Overview 197

The core of our approach involves clustering docu- 198

ments using embedding models guided by prede- 199

fined rules, followed by applying compression tech- 200

niques to eliminate noise. These refined documents 201

are then integrated into the prompt, enabling the 202

LLM to more effectively utilize the information and 203

enhance its performance. Our methodology is pre- 204

sented in accordance with the processing workflow, 205

and Figure 1 provides a comparative visualization 206

of our method against current RAG frameworks. 207

4.2 Efficient Dynamic Clustering of 208

Documents 209

In RAG frameworks, retrieved documents often 210

contain redundancy and noise, which can nega- 211
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tively impact the reasoning quality of LLMs. Tra-212

ditional post-retrieval methods primarily rely on213

reranking or compression strategies to refine re-214

trieved results, but they often fail to fully utilize the215

fine-grained relationships between documents.216

To address this, we propose an efficient dynamic217

clustering-based approach to structure the retrieved218

documents before further processing. By organiz-219

ing documents into clusters based on similarity, we220

aim to reduce redundancy and group related con-221

tent together, creating a more coherent input for222

downstream tasks. Specifically, we prioritize doc-223

uments with high similarity to the query, as these224

are most likely to contribute valuable information.225

Additionally, we adopt a dynamically expanding226

clustering strategy, where the cluster size increases227

iteratively, ensuring efficient grouping while keep-228

ing computational costs manageable.229

4.3 Query-Aware Compression230

After constructing the subgraphs C1, C2, . . . , Ck,231

it is essential to further refine the retrieved content232

by eliminating redundancy and distilling key infor-233

mation. While clustering helps organize documents234

based on similarity, it does not inherently resolve235

the issue of overlapping or extraneous details.236

To address this, we introduce a compression237

step that leverages a large language model (LLM)238

to generate concise yet informative summaries.239

Specifically, we concatenate each Ci (i ∈ [1, k])240

with the query q and prompt the LLM to produce a241

query-aware summary, ensuring that only the most242

relevant and essential content is preserved. The243

goal of this step is to maximize the information244

density of retrieved documents while removing re-245

dundant or marginally relevant details, preparing a246

high-quality input for final generation. An example247

prompt is an follows:248

Compression Prompt

Few-shots:
{example 1}
{example 2}
{...}
Instruction:
Given a question and a set of reference documents,
extract only the verifiable, relevant information that
directly supports the question.
Avoid inferences or conclusions.
If nothing is relevant, output: "No content to
extract".

249

Question:
{query}
Documents:
{docs}
Extracted Summary:
{to be filled}

250

4.4 Generation 251

After clustering and compression refine the docu- 252

ments, the system generates a contextually relevant 253

response. Our query-aware integration ensures the 254

output is based on coherent, information-rich con- 255

tent tailored to the query. 256

To accommodate diverse dataset characteristics, 257

our method flexibly adapts the generation process. 258

In scenarios where compression may risk omitting 259

critical details due to LLM limitations (such as in 260

Knowledge-QA tasks), we strategically integrate 261

response generation with the compression phase, 262

allowing the system to dynamically refine answers. 263

This approach enhances the retention of essential 264

information and improves response accuracy, par- 265

ticularly in complex question-answering tasks. If 266

compression yields poor summaries, the system 267

falls back to original documents, ensuring robust- 268

ness. 269

Unlike traditional RAG methods, which often 270

rely on loosely structured retrieved documents, 271

our approach enhances the informativeness of re- 272

trieved content by distilling critical insights in a 273

query-driven manner. This structured input en- 274

ables the LLM to reason more effectively, reducing 275

hallucinations and improving response precision. 276

Moreover, our method efficiently balances com- 277

putational costs and performance by limiting the 278

number of API calls required for summarization, 279

ensuring practical deployment feasibility. 280

By optimizing the input for the final response 281

generation step, our method improves both the pre- 282

cision and efficiency of the system, leading to more 283

reliable and contextually relevant outputs while re- 284

ducing computational overhead. 285

5 Experimental Settings 286

5.1 Overview 287

To validate the effectiveness of our method, we 288

employe three types of datasets in the experiments: 289

Knowledge-QA datasets, Hallucination-Detection 290

datasets, and Redundancy dataset built by us. The 291

retrieval settings and implementation details for 292
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these datasets vary slightly, which are presented in293

Appendix A.294

We utilize GPT-3.5-Turbo-1106 and GPT-4o-295

mini-2024-07-18 as the backbone LLMs. For sim-296

plicity, we refer to GPT-3.5-Turbo-1106 as ”Chat-297

GPT” and GPT-4o-mini-2024-07-18 as ”GPT-4o-298

mini”. In most cases, the decoding temperature is299

set to 0 to ensure the reproducibility of the LLM-300

generated responses.301

5.2 Datasets302

Knowledge-QA Datasets: Knowledge Question303

Answering (KQA) datasets assess a large lan-304

guage model’s ability to reason over retrieved ex-305

ternal knowledge sources from knowledge graphs306

or textual corpora. We use three common KQA307

datasets (Yu et al., 2024; Lv et al., 2024; Song et al.,308

2025): WebQ (Berant et al., 2013) (single-hop),309

and 2WikiMultiHopQA (Ho et al., 2020) (here-310

after referred to as 2Wiki) plus Musique (Trivedi311

et al., 2022) (both multi-hop). To analyze noise312

robustness, following prior work (Lv et al., 2024;313

Yu et al., 2024), we employ DPR retrieval and its314

reader to identify noisy documents, constructing315

cases with varying noise proportions by filtering316

samples from these three datasets. Details are in317

the Appendix A.1.318

Redundancy dataset: To evaluate the capability319

of our method in handling redundancy, we used320

DPR to retrieve Top-20 documents per question321

from the WebQ dataset. The redundancy rate r is322

defined as323

r =
number of rewritten documents

20
324

Implementation details are provided the in Ap-325

pendix A.1.326

Hallucination-Detection Datasets: Hallucina-327

tion Detection is an NLP task that verifies whether328

generated or stated content—like summaries or an-329

swers—is factual or nonfactual by checking against330

available information sources. We conducte experi-331

ments on three widely used fact-checking tasks (Li332

et al., 2024c; Lv et al., 2024): the FELM World333

Knowledge Subset (Chen et al., 2023), the Wik-334

iBio GPT-3 Dataset (Manakul et al., 2023), and the335

HaluEval Dataset (Li et al., 2023). Details are in336

the Appendix A.2.337

5.3 Baselines and Evaluation Metrics338

We compare with several baselines: 1) Vanilla339

RALM (Borgeaud et al., 2022), the standard340

RAG process; 2) Chunk Compression (Jiang et al., 341

2024), which compresses documents using an 342

LLM; 3) LongAgent (Zhao et al., 2024), which di- 343

vides long documents among collaborating agents 344

with a leader agent aggregating outputs; 4) CEG (Li 345

et al., 2024c), a strong post-hoc RAG baseline 346

for hallucination detection; and 5) task-specific 347

methods including HalluDetector (Wang et al., 348

2023), Focus (Zhang et al., 2023), SelfCheckGPT 349

w/NLI (Manakul et al., 2023), CoT-augmented 350

prompting (Kojima et al., 2022), and prompts aug- 351

mented with hyperlinks to reference documents and 352

with human-annotated reference documents (Chen 353

et al., 2023). Full details are in Appendix A.3. 354

We use F1 score as the evaluation metric for 355

the Knowledge-QA task, Balanced Acc for the 356

FELM and WikiBio GPT-3 datasets, and Acc for 357

the HaluEval dataset. 358

6 Experimental Results 359

6.1 Main Results on Knowledge-QA Datasets 360

6.1.1 Results on Varying Top-k 361

Experimental results in Table 2 demonstrate the 362

effectiveness and robustness of our method across 363

multiple datasets and LLM backends. 364

On Musique, our approach achieves the highest 365

average F1-scores with both ChatGPT and GPT- 366

4o-mini, consistently outperforming all baselines. 367

Notably, while Long Agent performs well with 368

ChatGPT, its performance drops significantly with 369

GPT-4o-mini, indicating possible overfitting or re- 370

duced adaptability. In contrast, our method main- 371

tains strong performance across both models. 372

On WebQ, our method also achieves the best 373

average performance with ChatGPT and GPT-4o- 374

mini, showing improvements over Vanilla RALM 375

and other compression-based methods. The results 376

highlight the generalizability of our approach to 377

both simple and diverse question types. 378

For 2Wiki, a dataset known for requiring deeper 379

reasoning, our method again achieves the highest 380

average with ChatGPT, and shows competitive per- 381

formance with GPT-4o-mini. However, our ap- 382

proach exhibits more stable behavior across top-k 383

values, unlike some baselines that fluctuate signif- 384

icantly—especially Chunk Compression, whose 385

performance is inconsistent across different k. 386

Overall, these results confirm that our clustering- 387

based compression method is not only effective in 388

preserving essential information and reducing re- 389

dundancy, but also exhibits strong model-agnostic 390
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Dataset Method Noise Rates (%) at Top-k=100

Noise Rates 0 20 40 60 80 100 Avg

gpt-3.5-turbo-1106

MusiQue

Vanilla RALM 77.04 82.48 79.32 76.49 79.45 75.86 78.44
Chunk Compression 67.17 77.83 75.62 79.79 77.20 75.81 75.57
Long Agent 80.54 79.52 79.29 84.08 77.20 80.47 80.18
Ours 84.68 85.06 85.43 81.84 80.32 84.54 83.65

WebQ

Vanilla RALM 91.38 88.88 88.28 88.85 87.54 81.61 87.76
Chunk Compression 90.38 88.07 88.73 89.73 87.10 82.87 87.81
Long Agent 91.03 90.79 90.07 88.39 90.17 88.56 89.84
Ours 92.45 92.04 92.40 90.67 91.08 90.20 91.47

2Wiki

Vanilla RALM 79.17 71.76 71.48 71.26 64.81 58.95 69.57
Chunk Compression 72.66 65.74 66.76 69.96 66.20 59.03 66.73
Long Agent 83.45 81.41 82.52 78.88 71.79 70.92 78.16
Ours 82.06 77.78 74.69 78.14 76.71 75.65 77.51

gpt-4o-mini-2024-07-18

MusiQue

Vanilla RALM 78.20 76.55 72.70 67.36 76.49 64.94 72.71
Chunk Compression 79.42 76.90 75.62 71.98 70.85 69.66 74.07
Long Agent 77.38 75.93 74.76 73.44 76.58 78.84 76.16
Ours 80.07 82.17 77.49 74.43 75.62 78.70 78.08

WebQ

Vanilla RALM 87.42 87.08 89.67 85.13 90.31 84.89 87.42
Chunk Compression 90.94 90.06 89.30 89.64 88.68 84.41 88.84
Long Agent 91.77 90.37 90.70 90.42 87.84 86.67 89.63
Ours 92.02 91.42 89.31 88.97 89.82 86.83 89.73

2Wiki

Vanilla RALM 77.89 77.83 75.79 77.15 72.69 66.67 74.67
Chunk Compression 74.06 75.19 75.58 73.88 70.65 63.54 72.15
Long Agent 83.45 81.13 76.97 73.99 64.06 59.64 73.21
Ours 79.28 76.27 75.35 71.96 70.64 68.67 73.70

Table 1: Comparison of F1 scores under different noise levels at Top-k=100 on MusiQue, WebQ, and 2Wiki datasets
for multiple retrieval methods.

adaptability and stability across retrieval depths,391

making it a reliable choice for RAG pipelines.392

6.1.2 Results on Noise Resistence393

Tables 1 and 7 report method performance under394

varying noise levels with Top-k set to 100 and 20,395

respectively. Our method consistently achieves the396

highest average F1 scores across all datasets and397

both model backends (ChatGPT and GPT-4o-mini).398

Notably, the performance margin over baselines399

becomes more pronounced as noise increases, un-400

derscoring the robustness of our approach in chal-401

lenging retrieval settings.402

For instance, on the MusiQue dataset with Chat-403

GPT at Top-k=100, our method outperforms the404

best baseline by more than 3.4 F1 points on average,405

and achieves the highest score at every noise level.406

Particularly at 100% noise—when all retrieved doc-407

uments are distractors—our method still scores408

84.54, far above the next-best method’s 80.47. This409

suggests that our compression strategy can effec-410

tively suppress irrelevant content and extract signal 411

even in fully corrupted retrievals. 412

Performance on 2Wiki, a dataset known for its 413

sensitivity to distractors, reveals another strength 414

of our method. While other methods show steep 415

performance degradation with increasing noise, our 416

method maintains relatively high performance, pre- 417

serving a 5–7 point margin at high noise levels. 418

This highlights the method’s ability to handle multi- 419

hop reasoning even when supporting evidence is 420

deeply buried. 421

GPT-4o-mini results demonstrate overall greater 422

stability compared to ChatGPT, with less fluctua- 423

tion under noise. However, our method continues 424

to lead consistently. For example, on MusiQue with 425

GPT-4o-mini, our method achieves 79.11 average 426

F1 versus 76.55 by Long Agent, again outperform- 427

ing even strong long-context baselines. 428

Under the stricter Top-k=20 setting, where the 429

retrieval budget is tight and the impact of noisy doc- 430
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Dataset Method Top-k

5 10 20 30 50 70 100 Avg

gpt-3.5-turbo-1106

Musique

Vanilla RALM 71.05 71.73 74.75 76.93 75.16 80.25 77.04 75.27
Chunk Compression 74.45 81.01 74.15 76.49 69.57 74.53 67.17 73.91
Long Agent 83.07 85.83 82.04 84.84 81.87 80.65 83.67 83.14
Ours 81.66 83.31 82.55 80.17 86.60 86.10 84.68 83.58

WebQ

Vanilla RALM 88.84 90.14 90.07 90.30 91.13 90.74 91.38 90.89
Chunk Compression 90.52 91.15 90.77 91.18 91.24 90.98 90.38 90.26
Long Agent 89.79 91.03 90.49 90.25 89.01 90.21 91.03 90.26
Ours 92.01 90.98 90.79 91.74 92.97 91.51 92.45 91.78

2Wiki

Vanilla RALM 69.90 74.68 77.51 71.36 78.25 76.88 79.17 75.39
Chunk Compression 67.38 67.14 72.41 68.98 72.08 72.99 72.66 70.52
Long Agent 69.30 75.39 76.06 78.36 77.16 83.22 83.45 77.56
Ours 73.09 74.68 76.20 78.64 80.90 80.45 82.06 78.00

gpt-4o-mini-2024-07-18

Musique

Vanilla RALM 74.43 78.85 77.78 74.95 78.55 76.24 78.20 77.00
Chunk Compression 77.12 73.59 75.67 76.02 75.17 75.35 79.42 76.05
Long Agent 73.29 75.25 80.43 72.52 80.03 80.85 77.38 77.11
Ours 78.33 79.80 81.71 73.13 78.21 77.95 80.07 78.46

WebQ

Vanilla RALM 85.92 89.14 88.05 85.10 89.32 91.92 87.42 88.12
Chunk Compression 85.64 84.99 85.07 83.98 88.66 90.79 90.94 87.15
Long Agent 89.35 89.16 90.77 91.08 91.82 90.91 91.52 90.66
Ours 90.01 90.77 91.89 90.30 91.51 91.25 92.02 91.11

2Wiki

Vanilla RALM 64.81 73.38 73.84 77.08 78.04 78.01 77.89 74.72
Chunk Compression 62.38 65.76 69.24 67.62 72.45 73.26 74.06 69.25
Long Agent 66.00 70.04 71.33 77.68 79.98 77.13 83.45 75.09
Ours 68.67 69.79 72.86 73.73 75.82 77.43 79.28 73.94

Table 2: Performance comparison of different methods on MusiQue, WebQ, and 2Wiki Datasets Using GPT-3.5-
turbo-1106 and GPT-4o-mini-2024-07-18 across various Top-k values.

uments is magnified, our method remains highly re-431

silient. On WebQ and MusiQue, even with 80–100432

In summary, our method’s consistent advan-433

tage—across noise levels, datasets, and LLM back-434

ends—demonstrates the generalizability and robust-435

ness of the compression strategy. By filtering ir-436

relevant content and distilling salient evidence, it437

enhances downstream performance and provides a438

reliable solution to noisy retrieval in RAG pipelines.439

440

6.1.3 Results on Redundancy Resistence441

Table 3 evaluates performance under different re-442

dundancy rates. Our method achieves best average443

F1-score in WebQ. It outperforms RALM in high-444

redundancy settings, with a peak gain of +6.18445

at 95% redundancy. This demonstrates our ap-446

proach’s ability to effectively handle redundant447

information while maintaining retrieval effective-448

ness.449

6.2 Main Results on Hallucination Detection 450

Table 5 presents a performance comparison of 451

our proposed method against baseline approaches 452

across three Hallucination-Detection datasets: 453

FELM, WikiBio, and HaluEval. Results are re- 454

ported as Maximum and Average accuracy over 455

Top-k predictions (k from 1 to 10), with balanced 456

accuracy used for FELM and WikiBio, and stan- 457

dard accuracy for HaluEval. Improvements over 458

the best baseline are highlighted in green. 459

In the FELM dataset, our method achieves the 460

highest maximum accuracy, surpassing baselines 461

like Vanilla, CoT, Link. Our method performs only 462

slightly below Doc, which benefits from manually 463

annotated golden documents. Its average accuracy 464

reflects a modest improvement over the CEG base- 465

line, demonstrating robustness across varying k 466

values. For WikiBio GPT-3, our method performs 467

competitively, slightly improving average accuracy 468

over CEG and outperforming HalluDetector, Focus, 469
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Dataset Method Redundancy Rates (%) at Top-k=20

0 20 40 60 80 95 Avg

WebQ

Vanilla RALM 90.07 87.67 89.76 89.00 88.17 83.04 87.95
Chunk Compression 90.77 89.74 90.21 90.96 90.90 87.01 89.93
Long Agent 90.25 92.31 88.75 88.98 90.95 89.89 90.19
Ours 92.01 91.33 90.96 91.07 90.93 89.22 90.92

Table 3: Performance on WebQ under different redundancy rates (Top-k=20). Values in parentheses indicate
differences from Vanilla RALM. Green indicates improvement, red indicates decline.

Dataset Method Noise Rates (%) at Top-k=20

0 20 40 60 80 100 Avg

WebQ
Dynamic 90.79 91.87 90.75 91.00 89.23 87.87 90.25
Avg 88.94 89.07 89.92 86.80 86.53 86.96 88.04
Random 90.40 86.84 85.81 86.81 87.78 88.19 87.64

Table 4: Ablation study on clustering strategies under varying noise rates on WebQ.

Dataset Methods Accuracy
(Top-k, k=1∼10)

FELM

Vanilla 58.18
CoT 61.32
Link 56.78
Doc 65.18
CEG 63.35 / 61.89
Ours 64.03 / 62.26+0.37

WikiBio

HalluDetector 74.82
Focus 74.08
SelfCheckGPT 70.55
CEG 76.58 / 74.14
Ours 75.89 / 74.29+0.15

HaluEval CEG 78.10 / 76.93
Ours 78.85 / 77.87+0.94

Table 5: Performance comparison on Hallucination-
Detection datasets. Each entry shows Max / Avg ac-
curacy over Top-k (k=1∼10). Metric: Accuracy for
HaluEval; Balanced Accuracy for WikiBio GPT-3 and
FELM. Improvements in Avg. Acc. over the best base-
line are highlighted in green.

and SelfCheckGPT, indicating consistent detection470

in biographical data. In HaluEval, our method471

records the highest performance, with a notable472

improvement over CEG, showcasing its effective-473

ness in open-domain settings.474

Overall, our method consistently outperforms or475

matches the best baselines across all datasets, with476

improvements in average accuracy. These results477

highlight its stability and generalizability, making478

it a promising approach for reducing hallucinations479

in applications like automated fact-checking.480

6.3 Ablation on Clustering Strategies 481

To validate the effectiveness of our clustering 482

method, we compare it with two alternative strate- 483

gies—Average Clustering and Random Cluster- 484

ing—that match our dynamic clustering in both 485

the number of clusters and the overall document 486

compression ratio for a controlled comparison. Av- 487

erage Clustering groups documents by their simi- 488

larity rank to the query and distributes them evenly 489

across clusters, while Random Clustering assigns 490

documents randomly from the top-k pool, main- 491

taining the same number and size of clusters as 492

dynamic clustering. 493

Table 4 compares these strategies on WebQ un- 494

der different noise rates. Our method achieves high- 495

est average F1, outperforming baselines. Average 496

Clustering and Random Clustering obtain lower av- 497

erages, and degrade more under high noise. These 498

results highlight the effectiveness of our entropy- 499

guided dynamic clustering in document compres- 500

sion. 501

7 Conclusion 502

In this study, we design an efficient dynamic clus- 503

tering algorithms, and apply compression tech- 504

niques to leverage the fine-grained relationships 505

between documents. Our method achieves consis- 506

tent performance improvements in experiments on 507

three Hallucination-Detection datasets and three 508

KQA datasets, demonstrating strong robustness 509

and applicability of our method. 510

8



Limitations511

Our study has several limitations: 1) Due to time512

constraints, we did not validate the generalization513

ability of our method on more datasets and base514

models. 2) Using compression technique incurs515

some API consumption, but these costs are within516

an acceptable range.517
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Appendix778

A Implementation Details779

A.1 Knowledge-QA Datasets and Retrieval780

Setup781

Knowledge Question Answering (KQA) datasets782

are essential resources for evaluating a model’s abil-783

ity to perform knowledge reasoning and question-784

answering tasks. These datasets typically rely on785

external knowledge bases (e.g., knowledge graphs 786

or text corpora) and design questions to test the 787

model’s ability to retrieve information from the 788

knowledge base and perform reasoning. In this 789

work, we used three widely adopted datasets (Yu 790

et al., 2024; Lv et al., 2024): WebQ (Berant et al., 791

2013) (single-hop), and 2WikiMultiHopQA (Ho 792

et al., 2020) (hereafter referred to as 2Wiki) plus 793

Musique (Trivedi et al., 2022) (both multi-hop). 794

WebQ is constructed by collecting questions 795

posed by users in Google Suggest, with answers 796

primarily based on the Freebase knowledge graph. 797

The dataset is designed to test the model’s ability to 798

retrieve answers from structured knowledge bases 799

while understanding natural language questions. 800

2WikiMultiHopQA is a multi-hop question an- 801

swering dataset automatically constructed from 802

Wikipedia. Each question requires reasoning over 803

two or more Wikipedia articles to arrive at the cor- 804

rect answer. It is designed to test a model’s abil- 805

ity to perform compositional reasoning and han- 806

dle longer context chains compared to single-hop 807

datasets. 808

Musique is a multi-hop QA dataset with com- 809

plex, natural questions decomposed into multiple 810

factoid subquestions. It is built from real queries 811

and aligned with Wikipedia paragraphs, making it 812

suitable for evaluating models on realistic multi- 813

hop reasoning tasks that require integrating infor- 814

mation across multiple documents. 815

In this setting, we follow prior work on retrieval- 816

augmented generation (RAG) (Lv et al., 2024; Yu 817

et al., 2024; Gao et al., 2023a), using the DPR 818

retriever (Karpukhin et al., 2020) with the 2018 819

Wikipedia snapshot as the retrieval corpus, where 820

each document contains approximately 100 words. 821

For the three KQA datasets—WebQ, 2Wiki, and 822

MuSiQue—we retrieve the top 1000 relevant doc- 823

uments for each test question. We apply string 824

matching to identify whether each document con- 825

tains the gold answer. A question is included in 826

our final test set only if it has at least 100 docu- 827

ments with the answer (has answer) and 100 with- 828

out. This filtering yields test sets of approximately 829

400, 400, and 100 queries for WebQ, 2Wiki, and 830

MuSiQue, respectively. 831

To build noisy retrieval scenarios, we inject the 832

retrieved irrelevant documents into the retrieved 833

set at controlled noise ratios. Document order is 834

determined by similarity to the query. We vary 835

the number of retrieved documents (top-k) from 5 836

to 100 and evaluate performance across different 837
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noise levels (0% to 100%) using the F1 score as838

the metric. The clustering threshold τ is set to 3839

to balance document compression quality and API840

cost.841

To evaluate the capability of our method in han-842

dling redundancy, we selected the k documents843

when each question was associated with top-20844

documents. The remaining 20 − k documents845

were rewritten using ChatGPT. We define the re-846

dundancy rate as847

r =
20− k

20
848

and construct datasets with redundancy rates of849

r = 0.2, 0.4, 0.6, 0.8, and 0.95 , corresponding850

to k = 16, 12, 8, 4, and 1 respectively.851

A.2 Hallucination Detection Datasets and852

Retrieval Setup853

Fact-checking (Hallucination Detection) is a nat-854

ural language processing task aimed at verify-855

ing the truthfulness and accuracy of generated or856

stated content. Specifically, it involves determin-857

ing whether a given piece of generated text (often858

machine-generated, such as summaries, answers,859

translations, etc.) or statement is truthful, partially860

truthful, or false based on available information861

sources (i.e., containing ”hallucinations” or erro-862

neous content). We conducted experiments on three863

widely used fact-checking tasks: the FELM World864

Knowledge Subset (Chen et al., 2023), the Wik-865

iBio GPT-3 Dataset (Manakul et al., 2023), and the866

HaluEval Dataset (Li et al., 2023).867

These datasets were constructed leveraging the868

generative capabilities of large language models.869

Researchers design a series of tasks or scenarios,870

collected model-generated content, and annotate871

it using domain-specific background knowledge.872

Specifically, the datasets include various examples873

of model outputs, which are manually labeled to874

classify their truthfulness. Labels indicate whether875

the content is truthful, partially truthful, or entirely876

false (in this work, partially truthful and false are877

treated as false). This method not only captures po-878

tential issues in model-generated content but also879

provides high-quality benchmark datasets for eval-880

uating models’ fact-checking capabilities. Below881

is a sample question.882

For the FELM World Knowledge Subset and883

WikiBio GPT-3 Dataset, the queries are statements.884

The retrieval corpus consisted of an October 2023885

snapshot of Wikipedia from CEG (Li et al., 2024c),886

#Knowledge#: The nine-mile byway starts south of
Morehead, Kentucky and can be accessed by U.S. High-
way 60. Morehead is a home rule-class city located
along US 60 (the historic Midland Trail) and Interstate
64 in Rowan County, Kentucky, in the United States.
#Question#: What U.S Highway gives access to Zilpo
Road, and is also known as Midland Trail?
#Right Answer#: U.S. Highway 60
#Hallucinated Answer#: U.S. Highway 70

Table 6: A sample question from the HaluEval Dataset.

and the retriever used is SimCSE Bert (Gao et al., 887

2021). The evaluation metric is Balanced Accuracy 888

(Balanced-Acc). 889

For the HaluEval Dataset, the retrieval cor- 890

pus and setup were similar to those in other 891

works (Karpukhin et al., 2020; Gao et al., 2023a), 892

employing a 2018 snapshot of Wikipedia and a 893

state-of-the-art BERT-based retriever, All-mpnet- 894

base-v21. The evaluation metric is Accuracy (Acc). 895

In this scenario, due to the lack of a unified 896

retrieval paradigm or specifically constructed re- 897

trieval corpus for such datasets, the contribution of 898

documents to answering questions was inherently 899

limited. We cap the number of retrieved documents 900

at 10. Since the number of documents is small, τ 901

is set to 1 here to help the LLM summarize the 902

documents more effectively. 903

A.3 Detailed Introduction of Baselines 904

The baselines for FELM include: 1) prompts 905

enhanced with Chain-of-Thought (CoT) reason- 906

ing (Kojima et al., 2022), 2) prompts augmented 907

with hyperlinks to reference documents, and 3) 908

prompts supplemented by human-annotated refer- 909

ence documents (Chen et al., 2023). 910

The baselines for WikiBio GPT-3 comprise: 1) 911

HalluDetector(Wang et al., 2023), which lever- 912

ages external knowledge sources along with a dedi- 913

cated classification model and a Naive Bayes classi- 914

fier to identify hallucinations, and 2) Focus(Zhang 915

et al., 2023), which employs a multi-stage decision- 916

making framework combining both pre-retrieval 917

and task-specific classifiers. 918

1https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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B Prompts Used in Our Experiments919

B.1 Hallucination Detection Datasets920

B.1.1 FELM & HaluEval921

922

Prompt of Compression

##Instruction##:
You are an AI assistant specializing in infor-
mation extraction. Your task is to analyze
a given statement and a set of related docu-
ments, and extract only the directly relevant
information.

##Extraction Guidelines##:
- Identify key points, evidence, or details
that **directly support, refute, or elabo-
rate** on the statement.
- Ensure that the extracted content is **con-
cise, objective, verifiable, and directly trace-
able** to the original documents.
- **Do not make inferences or draw conclu-
sions** beyond what is explicitly stated.
- If the documents contain **no relevant
information**, respond with **No content
to extract.**

##Example Output Format##:
{few-shots}

##Statement##:
{query}

##Documents##:
{docs}

##Extracted Information##:
923

Eval Prompt of HaluEval

##Instruction##:
I want you to act as an answer judge. Given
a question, two answers, and related knowl-
edge, your objective is to select the best and
correct answer without hallucination and
non-factual information.
You should try your best to select the best
and correct answer. If the two answers are
the same, you can choose one randomly. If
both answers are incorrect, choose the better
one. You MUST select an answer from the
two provided answers.
Think step by step. Give your reasoning
first and then output your choice. Output in
the following format:

924

”#Reasoning#: Your Reasoning
#Choice#: ”X””.
”X” should only be either ”Answer 1” or
”Answer 2”, rather than specific answer con-
tent.

##Knowledge##:
{knowledge}

##Question##:
{question}

##Answer 1##:
{answer 1}

##Answer 2##:
{answer 2}

925

B.1.2 WikiBio GPT-3 926

Prompt of Compression

##Instruction##:
You have been provided with a statement
about {a person} and a collection of re-
lated documents. Your task is to extract
relevant information from these documents
that directly supports, refutes, or elaborates
on the given statement.
Focus on identifying key points, evidence,
or details that are clearly connected to the
statement. Ensure the extracted content is
concise, directly relevant, and maintains the
context of the original documents.
The extracted content must be objective, ver-
ifiable, and directly traceable to the original
documents. Avoid making inferences or
drawing conclusions based on the extracted
content.
If you find that the documents contain no
relevant information, please output ”No con-
tent to extract”. Below is an example.

{One shot}

##Person##:
{person}

##Statement##:
{query}

##Documents##:
{docs}

##Extracted Information##:
927
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Prompt of Evaluation

##Instruction##:
Assess whether the given statement about
{a person} contains factual errors or not
with the help of the reference docs.
If you believe given statement contains fac-
tual errors, your answer should be ”Non-
factual”; if there is no factual error in this
statement, your answer should be ”Factual”.
This means that the answer is ”Nonfactual”
only if there are some factual errors in the
given statement. When there is no factual
judgment in the given statement or the given
statement has no clear meaning, your an-
swer should be ”Factual”. At the same time,
please consider all aspects of the given state-
ment thoroughly during the evaluation and
avoid focusing excessively on any single
factual aspect. Any factual errors should be
considered.
Reference docs can be classified into three
types: documents that support the response
segment as ”Nonfactual”, documents that
support the response segment as ”Factual”,
and documents that provide supplementary
or explanatory information for the response
segment. Please consider these documents
comprehensively when answering.
Think it step by step. Give your ”Reason-
ing” first and then output the ”Answer”.

##Statement##:
{statement}

##Reference docs##:
{passage}

##Output##:
928

B.2 Knowledge-QA Datasets929

The prompts used for compression and generation930

in KQA tasks are shown below. These prompts931

differ from those used in previous datasets because932

we aim to elicit more informative chunks by hav-933

ing the model respond to the question first. This934

approach encourages the model to provide support-935

ing evidence, which we then use to extract and936

compress relevant information. In contrast, directly937

prompting the model to summarize often leads it to938

provide answers directly without grounding them939

in the source content. If there is no strong for-940

matting requirement, the quality of the LLM’s re-941

sponses remains stable; however, if strict format- 942

ting requirements are imposed, the response quality 943

drops sharply, causing a significant decline in per- 944

formance. Accordingly, during the final generation 945

stage, we also have the model consider these out- 946

putted answers and their corresponding evidence. 947

The model integrates all the evidence to select the 948

most appropriate answer. 949

Prompt of Summarization

##Instruction##:
Please refer to the following text and answer
the following question, providing support-
ing evidence.

##Question##:
{question}

##Reference text##:
{docs}

##Answer##:
950

Prompt of Response

##Task##:
Analyze the following set of candidate an-
swers to a question and select the single
most consistent/plausible answer based on
majority consensus and logical coherence.

##Instructions##:
1. Carefully compare all candidate answers.
2. Identify the core factual claims or entities
in each answer.
3. Group semantically equivalent answers
(e.g., ”1990”, ”the year 1990”, ”nineteen
ninety”).
4. Select the answer that: - Appears most
frequently in the candidate set - Has strong
internal consistency (no self-contradictions)
5. If multiple answers have equal validity,
prefer the most specific and concise one.

##Format Requirements##:
Reasoning: Concise justification for selec-
tion.
Selected Answer:...

Below is an example.
Candidate Answers: [”Paris”, ”The capital
is Paris”, ”France”, ”paris”, ”It’s Paris in
France”]

951
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Question: What is the capital of France?
Expected Response:
Reasoning: 4/5 answers directly state
’Paris’. While ’France’ is incorrect alone,
the most frequent and unambiguous consen-
sus is ’Paris’ Selected Answer: Paris

##Candidate Answers##:
{answers}

##Question##:
{question}

952

C Additional Experimental Results953
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Dataset Method Noise Rates (%) at Top-k=20

Noise Rates 0 20 40 60 80 100 Avg

gpt-3.5-turbo-1106

MusiQue

Vanilla RALM 74.75 77.82 78.07 74.92 74.42 74.30 75.71
Chunk Compression 74.15 75.38 77.70 78.01 71.89 76.08 75.54
Long Agent 84.21 83.41 79.02 76.12 78.91 75.78 79.58
Ours 82.55 85.50 78.28 83.58 82.53 79.88 82.05

WebQ

Vanilla RALM 90.07 89.62 90.12 90.14 90.06 86.36 89.40
Chunk Compression 90.77 89.68 90.03 90.79 89.68 87.64 89.77
Long Agent 90.49 91.91 90.54 89.46 88.81 87.91 89.85
Ours 90.79 91.87 90.75 91.00 89.23 87.87 90.25

2Wiki

Vanilla RALM 77.51 71.48 71.84 68.40 67.57 66.01 70.47
Chunk Compression 72.41 71.52 71.06 68.13 69.75 67.28 70.03
Long Agent 76.06 77.05 74.20 71.07 69.35 66.99 72.45
Ours 76.20 76.66 76.75 72.43 72.92 68.99 73.99

gpt-4o-mini-2024-07-18

MusiQue

Vanilla RALM 77.78 73.39 76.25 68.08 65.42 70.32 71.87
Chunk Compression 75.67 75.33 76.82 75.29 67.41 68.26 73.13
Long Agent 80.43 76.67 72.50 77.69 73.93 78.05 76.55
Ours 81.71 80.44 81.10 78.98 77.50 74.91 79.11

WebQ

Vanilla RALM 85.07 89.89 90.82 88.70 88.27 85.20 87.99
Chunk Compression 90.77 90.49 90.08 90.53 89.40 86.98 89.71
Long Agent 91.94 91.49 90.86 90.13 88.60 86.79 89.80
Ours 91.89 90.36 90.76 89.43 88.40 86.90 89.62

2Wiki

Vanilla RALM 73.84 73.03 71.43 69.03 67.53 60.88 69.29
Chunk Compression 69.24 68.63 67.84 68.45 66.12 59.14 66.51
Long Agent 71.33 73.32 70.52 64.27 62.69 57.29 66.57
Ours 72.86 71.92 72.58 69.60 66.44 60.88 69.05

Table 7: Comparison of F1 scores under different noise levels at Top-k=20 on MusiQue, WebQ, and 2Wiki datasets
for multiple retrieval methods.
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