
Published as a Tiny Paper at ICLR 2023

A RATE–DISTORTION VIEW ON MODEL UPDATES

Nicole Mitchell, Johannes Ballé, Zachary Charles & Jakub Konečný
Google Research
{nicolemitchell, jballe, zachcharles}@google.com

ABSTRACT

Compressing model updates is critical for reducing communication costs in fed-
erated learning. We examine the problem using rate–distortion theory to present
a compression method that is near-optimal in many use cases. We empirically
show that common transforms applied to model updates in standard compression
algorithms, normalization in QSGD and random rotation in DRIVE, yield sub-
optimal compressed representations in practice.

1 INTRODUCTION

Federated learning (FL) is a machine learning framework in which clients collaboratively train a
model under the coordination of a central server, without sharing their local data. Prototypical FL
algorithms such as FedAvg (McMahan et al., 2017) involve multiple communication rounds inter-
leaving local training and model update aggregation. Network constraints often make communica-
tion a bottleneck in FL training (Kairouz et al., 2021).

This work focuses on compressing model updates to improve communication efficiency, which is
closely related to gradient compression for distributed training (DT). The analysis and effectiveness
of existing FL and DT compression methods is often based on worst-case guarantees (Alistarh et al.,
2017; Vargaftik et al., 2021). By exploiting the consistent structure of model updates in FL and
leveraging rate–distortion optimization to guide the design and usage of our method, we generate a
more efficient representation for the average case on the pareto frontier of compressed size (bitrate
R) and fidelity (distortion D).

2 METHOD

An FL compression method consists of a pair of operators (E , D) to encode each client’s model
update and decode each compressed packet on the server (Appendix A.1). Our design of E , given in
Algorithm 1, is informed by the observation that the coordinates of weighted model updates follow
a consistent symmetric, unimodal, sparse, and heavy-tailed distribution centered around zero (A.3).

Algorithm 1 Client-side encoder E
Let: � denote the empty binary string and ⊕ de-

note concatenation of binary strings
Require: model update u ∈ Rd, quantization

step size ∆ ∈ R>0

Ensure: encoded model update c ∈ {0, 1}∗
q ← STOCHASTICROUND(u,∆)
c← �; i← 0
while i < d do
r ← LEADINGZEROS(qi:)
c← c⊕ GAMMA(r + 1); i← i+ r
c← c⊕ sign(qi)⊕GAMMA(|qi|); i← i+ 1

end while
return c

0.01 0.1 1 10

R/(mTd) [bits]

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

A
cc

u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

Figure 1: Final model accuracy versus per-
coordinate bitrate for a variety of methods.

1

Published as a Tiny Paper at ICLR 2023

We use uniform quantization with variable-length bit representations to represent likelier val-
ues with shorter bit sequences, optimizing average representation length. STOCHASTICROUND
(Forsythe, 1950) randomly quantizes model updates coordinate-wise to integers with a quantiza-
tion step size ∆ ∈ R>0. Entropy coding yields binary strings losslessly: we use the GAMMA
universal code (Elias, 1975) to encode each nonzero coordinate, as well as the run length of zeros
(LEADINGZEROS) preceding each nonzero coordinate. D simply parses the GAMMA code from the
binary string, inserts zeros, recovers signs, and dequantizes to multiples of ∆.

Rate–Distortion Formulation We wish to optimize the performance of the model (e.g., final ac-
curacy), such that the total rate R is below an acceptable bitrate budget B: min f(θ) s.t. R(Q) =∑
t,k |E(ukt ,∆

k
t)| ≤ B, where | · | denotes bit sequence length and ∆k

t is the quantization step size
used by client k in round t, chosen by a policyQ. We consider total distortion as a proxy to model ac-
curacy: D(Q) =

∑
t,k ‖ukt −D(E(ukt ,∆

k
t),∆k

t)‖22 (A.3). The global rate–distortion optimum may
be found by minimizing the Lagrangian L(Q, λ) = R(Q) + λD(Q), where λ is the Lagrange mul-
tiplier controlling the trade-off between R and D. Since the Lagrangian is separable across updates,
the optimal policy yielding quantization step sizes ∆k

t = Q(λ, ukt) can be found in a distributed
way: each client solves a local problem ∆k

t = arg minδ |E(ukt , δ)|+ λ‖ukt −D(E(ukt , δ), δ)‖22. We
find that, empirically, ∆k

t is largely independent of ukt , and there is a monotonic relationship be-
tween ∆k

t and λ (A.3). Thus, we can set Q(λ, ukt) ≡ ∆, and let the server control a global ∆ rather
than λ, justifying a simple algorithm that does not require clients to solve for the optimal step size.

3 EMPIRICAL RESULTS & DISCUSSION

In experiments (results shown for Stack Overflow NWP, see A.2 for details and A.4 for results across
tasks) our method largely outperforms existing approaches in the accuracy–rate trade-off (Figure 1).
DRIVE (Vargaftik et al., 2021) and QSGD (Alistarh et al., 2017) are most competitive with our
method. The key distinguishing feature of DRIVE is its use of random rotations. For QSGD the
key differentiating factor is normalization, which leads to a different effective ∆ per update.

Ablation: Random Rotations. Applying a random rotation to the input distribution before quanti-
zation will “Gaussianize” the distribution. This can hide the existing structure of the model updates;
it increases the per-coordinate entropy, and hence the expected bitrate (recall that a Gaussian is the
max-entropy distribution for a given variance). Figure 2 shows that applying a random Hadamard or
discrete Fourier transform (DFT) before quantization results in a worse entropy–distortion frontier.

Ablation: Normalization. Scaling each model update to the same vector magnitude ‖ukt ‖ before
quantization is equivalent to choosing a magnitude-dependent per-client ∆k

t . This leads to an inferior
global rate–distortion trade-off. In FL the update magnitudes can vary dramatically (Li et al., 2020).
Comparing the R–D curves for our method and QSGD, we find that our method provides a better
rate–distortion performance, particularly on tasks with significant client heterogeneity (Figure 3).

0.001 0.01 0.1

D/(mTd) [MSE]

0.1

1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

Figure 2: Average per-coordinate entropy
versus distortion of model updates after a
random rotation (or no rotation) is applied.

0.0001 0.001 0.01 0.1

D/(mTd) [MSE]

0.01

0.1

1

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

Figure 3: Average per-coordinate rate versus
distortion of model updates for QSGD and
our method.

2

Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2023 Tiny Papers Track.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
440–445, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Advances in Neural In-
formation Processing Systems, 30:1709–1720, 2017.

The TensorFlow Federated Authors. TensorFlow Federated Stack Overflow dataset,
2019. URL https://www.tensorflow.org/federated/api_docs/python/
tff/simulation/datasets/stackoverflow/load_data.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending
MNIST to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2921–2926. IEEE, 2017.

Peter Elias. Universal codeword sets and representations of the integers. IEEE Trans. on Information
Theory, 21(2), 1975. doi: 10.1109/TIT.1975.1055349.

George E. Forsythe. Round-off errors in numerical integration on automatic machinery – preliminary
report. In Bulletin of the American Mathematical Society, volume 56, pp. 61–62, 1950. doi:
10.1090/S0002-9904-1950-09343-4.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Feder-
ated learning with compression: Unified analysis and sharp guarantees. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2021.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire of
decentralized machine learning. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary
Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song,
Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Pra-
neeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and
Sen Zhao. Advances and open problems in federated learning. Foundations and Trends R© in
Machine Learning, 14(1–2):1–210, 2021. ISSN 1935-8237. doi: 10.1561/2200000083. URL
http://dx.doi.org/10.1561/2200000083.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papail-
iopoulos, and Vivienne Sze (eds.), Proceedings of Machine Learning and Systems 2020, MLSys
2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020. URL https://proceedings.
mlsys.org/book/316.pdf.

3

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
http://dx.doi.org/10.1561/2200000083
https://proceedings.mlsys.org/book/316.pdf
https://proceedings.mlsys.org/book/316.pdf

Published as a Tiny Paper at ICLR 2023

Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3LC: Lightweight and ef-
fective traffic compression for distributed machine learning. In A. Talwalkar, V. Smith,
and M. Zaharia (eds.), Proceedings of Machine Learning and Systems, volume 1,
pp. 53–64, 2019. URL https://proceedings.mlsys.org/paper/2019/file/
6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pp.
1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Drive: One-bit distributed mean estimation. arXiv preprint arXiv:2105.08339,
2021.

4

https://proceedings.mlsys.org/paper/2019/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/6364d3f0f495b6ab9dcf8d3b5c6e0b01-Paper.pdf
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html

Published as a Tiny Paper at ICLR 2023

A APPENDIX

A.1 FEDERATED LEARNING WITH COMPRESSION: A PRIMER

In FL, we often wish to find a model θ ∈ Rd that minimizes a weighted average of client losses

min
θ
f(θ), with f(θ) =

K∑
k=1

wkfk(θ) (1)

where K is the total number of clients and fk, wk are the loss function and weight of client k. For
practical reasons, wk is often the number of examples held by client k (example weighting), which
can incur optimization benefits (Li et al., 2020). We wish to solve equation 1 without sharing data
and with minimal client-to-server communication. To do so we combine FedOpt (Reddi et al., 2021)
(generalizing FedAvg (McMahan et al., 2017)) with compression.

In each round t of FedOpt, the server broadcasts its model θt to a set of clients St. Each client
k ∈ St uses LOCALTRAIN to train its model locally. LOCALTRAIN(θ, f) is often multiple steps of
SGD on f starting at θ. After computing θkt = LOCALTRAIN(θt, fk), the client sends its weighted
update ukt := wk(θkt − θt) to the server.

To reduce communication, clients can instead send a compressed update ckt := E(ukt) to the server,
where E is some encoder. The server decodes the model updates using a decoder D, and computes a
weighted average gt of the D(ckt) (using the weight wk). Finally, the server updates its model using
a procedure SERVERUPDATE. As proposed by Reddi et al. (2021), SERVERUPDATE is typically
a first-order optimization step, treating gt as a gradient estimate, with server learning rate ηs. For
example, if SERVERUPDATE is gradient descent, then SERVERUPDATE(θ, g) = θ − ηsg.

Algorithm 2 summarizes our framework. Similar algorithms appear elsewhere (e.g., Haddadpour
et al., 2021). The concern of this paper is to develop appropriate encoding and decoding operators
E , D and control them in a way that is aligned with the global rate–distortion trade-off.

Algorithm 2 FedOpt with compression

Input: Number of rounds T , initial model θ0 ∈ Rd, LOCALTRAIN, SERVERUPDATE, encoder E ,
decoder D
for t = 0, . . . , T do
St ←(random set of m clients)
Broadcast θt to all clients k ∈ St
for each client k ∈ St in parallel do
θkt ← LOCALTRAIN(θt, fk)
Compute ukt = wk(θkt − θt)
Send ckt = E(ukt) to the server

end for

gt ←
∑
k∈St D(ckt)∑
k∈St wk

θt+1 ← SERVERUPDATE(θt, gt)
end for

A.2 EXPERIMENTAL SETUP

In order to inform the design of our method, we perform empirical evaluations of Algorithm 2 on a
variety of federated tasks drawn from benchmarks in (Reddi et al., 2021). For the body of this paper
we show performance on the Stack Overflow next-word prediction task. We observe similar trends
on other tasks, and include results in A.4.

Datasets, Models, and Tasks. We use three datasets: CIFAR-100 (Krizhevsky, 2009), EM-
NIST (Cohen et al., 2017), and Stack Overflow (Authors, 2019). For CIFAR-100, we use the client
partition proposed by Reddi et al. (2021). The other two datasets have natural client partitions where
each client is an author (of handwritten digits and forum posts). For CIFAR-100, we train a ResNet-
18, replacing batch normalization with group normalization (see (Hsieh et al., 2020)). For EMNIST,

5

Published as a Tiny Paper at ICLR 2023

we train a network with two convolutional layers, max-pooling, dropout, and two dense layers. For
Stack Overflow, we perform next-word prediction (NWP) using an RNN with a single LSTM layer,
and tag prediction (TP) using a multi-class logistic regression model. For a summary of the dataset
statistics, tasks, and models used, see Table 1.

Table 1: Datasets, Tasks & Models

DATASET NUM CLIENTS NUM EXAMPLES TASK MODEL

TRAIN TEST TRAIN TEST

EMNIST 3,400 3,400 671,585 77,483 CHARACTER
RECOGNITION

CNN

STACK
OVERFLOW

342,477 204,088 135.8M 16.6M NEXT-WORD
PREDICTION

LSTM

STACK
OVERFLOW

342,477 204,088 135.8M 16.6M TAG
PREDICTION

LOGISTIC
REGRESSION

CIFAR-100 500 100 50,000 10,000 IMAGE
RECOGNITION

RESNET-18
WITH GROUPNORM

Algorithms. We focus on two special cases of Algorithm 2: FedAvg (McMahan et al., 2017)
and FedAdam (Reddi et al., 2021). In both, LOCALTRAIN is E epochs of mini-batch SGD with
client learning rate ηc. For FedAvg and FedAdam, SERVERUPDATE is SGD or Adam (respectively)
with server learning rate ηs. We use FedAvg and FedAdam on the vision tasks (CIFAR-100 and
EMNIST), but only FedAdam on the language tasks (Stack Overflow), as FedAvg performs poorly
there (Reddi et al., 2021). We set E = 1 and use a batch size of 32 throughout. We perform
T = 1500 rounds of training for each task. At each round, we sample m = 50 clients uniformly
at random. We tune ηc, ηs over {10−3, 10−2, . . . , 10} by selecting the values that minimize the
average validation loss over 5 random trials.

Other Benchmarks. We evaluate our compression method against existing approaches on the tasks
described above (results shown on Stack Overflow NWP in Figure 1). As a baseline, we include
runs with NOCOMPRESSION, where (E ,D) are no-ops and clients communicate their weighted
updates at full-precision. This method has fixed rate at 32-bits per coordinate and no distortion. The
accuracy achieved with NOCOMPRESSION can be understood as the target accuracy we aim to reach
with compression. We also compare to TOP-K (Aji & Heafield, 2017), DRIVE (Vargaftik et al.,
2021), 3LC (Lim et al., 2019), and QSGD (Alistarh et al., 2017).

Computational Tractability. Given that we designed this method to be practical for use in real
FL scenarios, we took care to ensure it is computationally tractable. Analyzing compression speed
in a simulated environment across tasks and ∆, we find on average less than 3% of training time is
spent on encode, stochastic round and decode ops. The compression percentage of training time is
dependent on model architecture, as encoding time scales with model parameters while training time
scales with model depth. Compression time can be reduced with system and hardware optimizations.

A.3 EMPIRICAL JUSTIFICATION

Statistical Structure of Model Updates. We observe a relatively consistent statistical structure
across all tasks: client updates tend to resemble a symmetric power law distribution with a spike at
zero (Figure 4).

Distortion as a Proxy for Model Accuracy. We verify empirically that for varying ∆, total distor-
tion is a good proxy for model performance (Figure 5). This relationship holds across tasks.

6

Published as a Tiny Paper at ICLR 2023

−1 −0.5 0 0.5 1

Coordinate Values ukti

L
og

F
re

q
u
en

cy

Figure 4: Histogram of coordinate values
of weighted client updates, averaged over
the course of training across all participating
clients in Stack Overflow NWP.

0 0.02 0.04 0.06 0.08 0.1 0.12

D/(mTd) [MSE]

0.2

0.21

0.22

0.23

0.24

0.25

A
cc

u
ra

cy

∆
0.05

0.1

0.25

0.5

1.0

2.0

2.5

3.75

5.0

7.5

10.0

Figure 5: Accuracy of a model versus av-
erage per-coordinate distortion for various
quantization step sizes ∆ on Stack Overflow
NWP. Error bars indicate the variance over 5
random trials.

Agreement in Optimal ∆ Across Clients. For varying λ, we let clients solve ∆k
t =

arg minδ |E(ukt , δ)| + λ
∥∥ukt − D(E(ukt , δ), δ)

∥∥2
2

by grid search, selecting from a pre-determined
set of δ’s. We observe significant agreement on ∆k

t across clients and rounds for any given λ
(Figure 6). Meaning that to minimize their local rate–distortion objective specified by the given
λ, clients select a consistent quantization step size ∆. We find that this relationship holds across
different architectures, tasks, and optimizers.

0.25 0.5 1 2.5 5

∆

0

5

10

15

20

N
u
m

b
er

of
V

ot
es

λ
8.09e− 03

3.43e− 02

1.24e− 01

8.18e− 01

2.61e+ 00

Figure 6: Histogram of client-selected quantization step sizes ∆k
t for a given λ, averaged across

training rounds, on Stack Overflow NWP.

7

Published as a Tiny Paper at ICLR 2023

A.4 FULL RESULTS ACROSS TASKS

Overall Performance. Our method significantly outperforms Top-K, DRIVE, and 3LC. Perfor-
mance is similar to QSGD on tasks with relatively similar data on clients (CIFAR-100 and EM-
NIST), with a visible gap in Stack Overflow tasks.

0.1 1 10

R/(mTd) [bits]

0.2

0.25

0.3

0.35

0.4

0.45

A
cc

u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(a) CIFAR-100, FedAdam

0.1 1 10

R/(mTd) [bits]

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

A
cc

u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(b) CIFAR-100, FedAvg

0.1 1 10

R/(mTd) [bits]

0.83

0.84

0.85

0.86

0.87

A
cc

u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(c) EMNIST, FedAdam

0.1 1 10

R/(mTd) [bits]

0.8

0.81

0.82

0.83

0.84

0.85

0.86
A

cc
u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(d) EMNIST, FedAvg

0.01 0.1 1 10

R/(mTd) [bits]

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

A
cc

u
ra

cy

Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(e) Stack Overflow NWP, FedAdam

0.001 0.01 0.1 1 10

R/(mTd) [bits]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
ec

al
l@

5 Method
No Compression

Top−K

DRIVE

3LC

QSGD

Our Method

(f) Stack Overflow TP, FedAdam

Figure 7: Our method performs competitively against all others in terms of the accuracy–
communication cost trade-off. We use a range of ∆ ∈ {0.05..17.5}. Error bars indicate variance in
average per-coordinate rate and final model accuracy over five random trials.

8

Published as a Tiny Paper at ICLR 2023

Rotation Ablation. The rate–distortion tradeoff is significantly better without rotation for EMNIST
and Stack Overflow datasets. It is only slightly better for CIFAR-100, due to the fact that the client
updates are not as sparse as for the other tasks.

0.01 0.1

D/(mTd) [MSE]

0.1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(a) CIFAR-100, FedAdam

0.01 0.1

D/(mTd) [MSE]

0.1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(b) CIFAR-100, FedAvg

0.001 0.01 0.1 1

D/(mTd) [MSE]

0.1

1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(c) EMNIST, FedAdam

0.01 0.1 1

D/(mTd) [MSE]

0.1

1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(d) EMNIST, FedAvg

0.001 0.01 0.1

D/(mTd) [MSE]

0.1

1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(e) Stack Overflow NWP, FedAdam

0.0001 0.001 0.01

D/(mTd) [MSE]

0.01

0.1

1

A
v
g.

en
tr

op
y

p
er

co
or

d
in

at
e

[b
it
s]

Rotation
No Rotation

Hadamard

DFT

(f) Stack Overflow TP, FedAdam

Figure 8: Transforming the client updates via a random rotation increases both entropy and distor-
tion, producing a distribution with a worse entropy–distortion frontier. The effect is most dramatic
on highly structured client updates. Error bars indicate variance in average per-coordinate distortion
and average per-coordinate entropy over five random trials.

9

Published as a Tiny Paper at ICLR 2023

Normalization Ablation. QSGD yields similar performance on the CIFAR-100 dataset, where the
clients have the same amount of training data. The gain in performance by our method is more
pronounced on the more heterogeneous Stack Overflow tasks.

0.001 0.01 0.1

D/(mTd) [MSE]

0.1

1

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(a) CIFAR-100, FedAdam

0.001 0.01 0.1

D/(mTd) [MSE]

0.1

1

R
/
(m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(b) CIFAR-100, FedAvg

0.0001 0.001 0.01 0.1 1

D/(mTd) [MSE]

0.1

1

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(c) EMNIST, FedAdam

0.0001 0.001 0.01 0.1 1

D/(mTd) [MSE]

0.1

1

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(d) EMNIST, FedAvg

0.0001 0.001 0.01 0.1

D/(mTd) [MSE]

0.01

0.1

1

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(e) Stack Overflow NWP, FedAdam

1e− 05 0.0001 0.001 0.01 0.1

D/(mTd) [MSE]

0.001

0.01

R
/(
m
T
d
)

[b
it
s]

Method
QSGD

Our Method

(f) Stack Overflow TP, FedAdam

Figure 9: Transforming heterogeneous client updates via normalization results in a slightly worse
rate–distortion performance. The effect is negligible on tasks with client updates of the same mag-
nitude. Error bars indicate variance in average per-coordinate distortion and average per-coordinate
rate over five random trials.

10

	Introduction
	Method
	Empirical Results & Discussion
	Appendix
	Federated Learning with Compression: A Primer
	Experimental Setup
	Empirical Justification
	Full Results Across Tasks

