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ABSTRACT

Multi-step prediction models, such as diffusion and rectified flow models, have
emerged as state-of-the-art solutions for generation tasks. However, these models
exhibit higher latency in sampling new frames compared to single-step methods.
This latency issue becomes a significant bottleneck when adapting such methods
for video prediction tasks, given that a typical 60-second video comprises approx-
imately 1.5K frames. In this paper, we propose a novel approach to modeling
the multi-step process, aimed at alleviating latency constraints and facilitating the
adaptation of such processes for video prediction tasks. Our approach not only
reduces the number of sample steps required to predict the next frame but also
minimizes computational demands by reducing the model size to one-third of
the original size. We evaluate our method on standard video prediction datasets,
including KTH, BAIR action robot, Human3.6M and UCF101, demonstrating its
efficacy in achieving state-of-the-art performance on these benchmarks.

1 INTRODUCTION

Videos serve as digital representations of the continuous real world. However, due to inherent camera
limitations, particularly fixed framerate constraints, these continuous signals are discretized in the
temporal domain when captured. This temporal discretization, while often overlooked in generative
video modeling, presents significant challenges. Current approaches, such as diffusion-based models,
generally focus on generating the next frame in a sequence based on a given context frame, neglecting
intermediate moments between frames (e.g., predicting frames at T +0.5 or T +0.25 given a context
frame at T ) as represented by Figure 1. In this work, we aim to address the limitations imposed by
such discretization during the generative modeling of videos.

Diffusion models have emerged as a state-of-the-art technique for video generation, but they face
computational challenges, particularly in inference time. High fidelity inferences from diffusion
models require hundreds or even thousands of sampling steps, which may be feasible for single-
image generation but becomes prohibitive for video generation, where thousands of frames must be
generated for even a short video. The naive adaptation of diffusion models for video tasks results in
significant computational bottlenecks during inference, especially in production settings. To address
this issue, we propose a method that reduces the need for extensive sampling by starting the process
from previous context frames rather than from an analytical distribution. This continuous modeling
approach not only reduces the number of sampling steps but also enhances fidelity and reduces the
model’s parameter count.

Starting with two consecutive frames, we pass them through an encoder network to obtain their latent
embeddings. We then interpolate between these endpoints using a noise schedule that applies zero
noise at the boundaries, thus ensuring the existence of p(xt) at all points. This continuous framework,
builds on existing diffusion models for images while extending their applicability to videos.

In summary, our contributions are as follows:

• We introduce a novel approach for representing videos as multi-dimensional continuous
processes in latent space.

• We empirically demonstrate that our model requires fewer sampling steps, reducing
inference-time computational overhead without compromising result fidelity.
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Figure 1: Fig. (a) represents a naive adaptation of the diffusion model for the video prediction task.
Here, the sampling process always starts from a Gaussian distribution, and sampling steps are taken
in the direction of conditional distribution given by Xj+1|Xj . Here, Xj+1 denotes frame at time j + 1.
In contrast, Fig. (b) introduces our Continuous Video Flow (CVF) approach, which reimagines
the problem by treating video not as a discrete sequence of frames but as a continuously evolving
process. Instead of starting from a static Gaussian distribution for each sampling step, CVF models
the underlying dynamics of the entire video, learning to predict changes smoothly over time. This
continuous framework allows the model to better capture temporal coherence and evolution, leading
to more accurate and fluid video predictions.

• By reducing the memory footprint of frames in latent space, our model can predict future
frames over a longer context sequence.

• Our approach requires fewer parameters compared to state-of-the-art video prediction
models.

• We demonstrate state-of-the-art performance across several video prediction benchmarks,
including KTH action recognition, BAIR robot push, Human3.6M, and UCF101 datasets.

2 RELATED WORKS

Predicting future frames from past observations is a fundamental task in video understanding, critical
for domains requiring accurate modeling of multi-modal future outcomes, such as autonomous
driving. Early approaches, such as those by Yuen et al. (Yuen & Torralba, 2010) and Walker et al.
(Walker et al., 2014), tackled this problem by matching observed frames to predict future states,
primarily relying on symbolic trajectories or directly retrieved future frames from datasets. While
these methods laid important groundwork, their predictions were constrained by the deterministic
nature of their models, limiting their ability to capture the inherent uncertainty of future frames.

The introduction of deep learning marked a significant advancement in this area. Srivastava et
al. (Srivastava et al., 2015) pioneered the use of multi-layer LSTM networks, which focused on
deterministic representation learning for video sequences. Building upon this, subsequent work
explored more complex and stochastic methods. For instance, studies such as (Oliu et al., 2017;
Cricri et al., 2016; Villegas et al., 2017; Elsayed et al., 2019; Villegas et al., 2019; Wang et al.,
2019; Castrejón et al., 2019; Bodla et al., 2021) shifted towards incorporating stochastic processes to
better model the uncertain nature of future frame predictions. This transition represents a growing
recognition in the field: capturing uncertainty is essential for more accurate and robust future frame
prediction.

Research in video prediction has advanced along two primary directions: implicit and explicit
probabilistic models. Implicit models, particularly those rooted in Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), have been widely explored but frequently encounter difficulties
with training stability and mode collapse—where the model disproportionately focuses on a limited
subset of data modes (Lee et al., 2018; Clark et al., 2019; Luc et al., 2020). These limitations have
motivated increased interest in explicit probabilistic methods, which offer a more controlled approach
to video prediction.
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Figure 2: Overview of the Continuous Video Flow (CVF) framework. (a) Stage 1 depicts the
auto-encoding process where input video frames Xj are passed through an encoder (Enc) and decoder
(Dec) to reconstruct X̂j . (b) Stage 2 illustrates the forward and reverse processes in the latent space.
In the forward process, latent embeddings zT , . . . , z1 are generated through a fixed process given
by Eqn 2. The reverse process involves sampling zj+1 from zj through the learned process pθ for
continuous video frame prediction. (c) The full pipeline of CVF, showing how frame Xj is passed
through the encoder to obtain latent embedding zj and ẑj+1, which is then used for decoding to
obtain X̂j+1 frame.

Explicit methods cover a spectrum of techniques, such as Variational Autoencoders (VAEs) (Kingma
& Welling, 2013), Gaussian processes, and diffusion models. VAE-based approaches to video
prediction (Denton & Fergus, 2018; Castrejon et al., 2019; Lee et al., 2018) often produce results that
average multiple potential outcomes, resulting in lower-quality predictions. Gaussian process-based
models (Shrivastava & Shrivastava, 2021; Bhagat et al., 2020), while effective on small datasets,
struggle with scalability due to the computational expense of matrix inversions required for training
likelihood estimations. Attempts to circumvent this limitation usually result in reduced predictive
accuracy.

Diffusion models (Voleti et al., 2022; Davtyan et al., 2023; Ho et al., 2022; Höppe et al., 2022)
have emerged as a powerful alternative, providing high-quality samples and mitigating issues like
mode collapse. These models leverage multi-step denoising, ensuring more consistent predictions.
However, maintaining temporal coherence across frames requires additional constraints, such as
temporal attention blocks, which can significantly increase computational demands.

An emerging method, the continuous video process (Shrivastava & Shrivastava, 2024), conceptualizes
videos as continuously evolving data streams. This approach efficiently utilizes redundant information
in video frames to reduce the time needed for inference. Despite its promise, this method relies on
pixel-space blending between consecutive frames, leading to suboptimal redundancy exploitation. Our
approach instead performs blending in the latent space, facilitating improved semantic interpolation
between frames, as evidenced by previous work (Shrivastava & Shrivastava, 2024).

Finally, recent advancements such as InDI (Delbracio & Milanfar, 2023), rectified flow methods (Liu
et al., 2022; Esser et al., 2024), and Cold Diffusion (Bansal et al., 2022) propose alternative diffusion-
based strategies, though their focus has predominantly been on image generation and computational
photography. In contrast, our approach extends these ideas to video prediction, achieving a balance
between computational efficiency and temporal consistency.

3 METHOD

Videos contain significant redundancy at the pixel level, and directly interpolating between frames
in pixel space often results in blurry intermediate frames. To address both the redundancy and
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interpolation issues, we encode the frames into a latent space. This encoding offers two key benefits -
First, Compression: Reduces irrelevant pixel information. Second, Semantic Interpolation: Ensures
that interpolation in the latent space corresponds to more meaningful, semantic transitions between
frames Shrivastava et al. (2023). In addition, encoding frames into the latent space allows for a larger
context window when performing video prediction tasks.

3.1 VIDEO PREDICTION FRAMEWORK

Let V = {xt}Nt=1 be a video sequence where each frame xj ∈ Rc×h×w is a tensor representing the
frame at timestep j. Our video prediction framework consists of two main stages:

Stage 1: Encoding in Latent Space. Each frame in the sequence is encoded into the latent space
using a pre-trained autoencoder (Rombach et al., 2022). The encoder processes the video sequence V
and produces a corresponding sequence of latent representations, frame by frame.

Stage 2: Continuous Process in Latent Space. After encoding the frames {xj ,xj+1} into the
latent space, we model a continuous video process that transitions from the latent embedding of frame
xj to that of frame xj+1, following the framework proposed in Shrivastava & Shrivastava (2024).
For clarity, zj denotes the latent embedding of the frame at the discrete video timestep j, while zt
refers to the latent embedding at a continuous timestep t during the interpolation between xj and
xj+1. In this context, j indexes discrete video timesteps, whereas t parameterizes the continuous
video process. The interpolation between consecutive latent frames zj and zj+1 is given by:

zt = (1− t)zj + tzj+1 − t log(t)√
2

ϵ (1)

where ϵ ∼ N (0, I) denotes white noise. This process ensures smooth transitions between frames in
latent space. At t = 0, we retrieve the latent zj , and at t = 1, we retrieve the latent zj+1. For better
understanding, refer Fig. 7

3.2 FORWARD PROCESS

We utilize a forward process to transition from latent zj to latent zj+1 over time t. The forward
process starts at t = T with latent zj+1 and moves to t = 0 for latent zj , as described by Eqn. 1 and
further can be written as equation below:

zt+∆t = zt + (zj+1 − zj)∆t− t log(t)ϵ (2)

From this, the forward process posterior is:

q(zt+1|zt, zj , zj+1) = N (zt+1; µ̃(zt, z
j , zj+1), g2(t)I) (3)

where g(t) = −t log(t) and µ̃(zt, z
j , zj+1) = zt + (zj+1 − zj).

3.3 LIKELIHOOD AND VARIATIONAL BOUND

We model the continuous video process in latent space through the following likelihood function:

pθ(zT ) :=

∫
pθ(z0:T ) dz0:T−1 (4)

To train the model, we minimize the negative log-likelihood. The training objective involves minimiz-
ing the following variational bound:

E[− log pθ(zT )] ≤ Eq

[
− log

pθ(z0:T )

q(z0:T−1|zT )

]
(5)

which can be simplified following the paper (Shrivastava & Shrivastava, 2024):

L(θ) =
∑
t≥1

KL(q(zt|zt−1, z
j , zj+1)||pθ(zt|zt−1, z

j)) (6)

Here, the KL divergence compares the forward process posterior with the reverse process model.
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Algorithm 1 Sampling Algorithm

1: zj ∼ qdata(z
j)

2: z0 = Enc(x)
3: d = 1

N
, Here N denotes number of steps.

4: for t = 1, . . . , N do
5: ϵ ∼ N (0, Id) if t > 1, else ϵ = 0
6: zt+1 = zt + (ŷ(zt, t)− zj)d− t log(t)ϵ
7: end for
8: return Dec(zT )

Algorithm 2 Training of CVF model
1: repeat
2: x,y ∼ qdata(x,y)
3: zj , zj+1 ∼ Enc(x),Enc(y)
4: t ∼ Uniform({1, . . . , T})
5: ϵ ∼ N (0, I)
6: Take gradient descent step on

∇θ
1

2g2(t)

∥∥zj+1 − zθ
(
(1− t)zj + tzj+1 − (t log(t)/

√
2)ϵ, t

)∥∥2

7: until converged

3.4 REVERSE PROCESS

We assume a Markov chain structure for the reverse process, meaning that the current state depends
only on the previous timestep:

pθ(z0:T ) = p(z0)
T∏

t=1

pθ(zt|zt−1) (7)

The reverse process is modeled as a Gaussian distribution:

pθ(zt|zt−1) = N (zt;µθ(zt−1, t− 1), g2(t)I) (8)

3.5 TRAINING OBJECTIVE

The training objective simplifies to:

Lsimple(θ) := Et,zt

[
1

2g2(t)

∥∥zj+1 − zθ(zt, t)
∥∥2] (9)

where g(t) = −t log(t) controls the noise added at each timestep. We use the interpolation function
in Eqn. 1 to model the intermediate frames during training.

Final Loss Function. The final training objective to optimize the video prediction model is given
by:

argmin
θ

Et,zj ,zj+1

[
1

2g2(t)

∥∥∥∥zj+1 − zθ((1− t)zj + tzj+1 +
g(t)√
2
ϵ, t)

∥∥∥∥2
]

(10)

The entire training and sampling pipeline is described in Algorithm 2 and Algorithm 1, and visualized
in Figure 2.

4 EXPERIMENTS

The video prediction task is defined as predicting future frames from a given sequence of context
frames. In this section, we empirically validate the performance of our proposed method, demonstrat-
ing its superior results in modeling video prediction tasks across diverse datasets.

4.1 DATASETS

We employ four standard benchmarks to evaluate the efficacy of our approach: KTH Action Recog-
nition, BAIR Robot Pushing, Human3.6M, and UCF101. Each of these datasets presents unique
challenges for video prediction, allowing for a comprehensive assessment of our method’s robustness.
Training protocols and architecture specifics are provided in the appendix.

KTH Action Recognition Dataset: This dataset (Schuldt et al., 2004) contains video sequences
of 25 individuals performing six actions—walking, jogging, running, boxing, hand-waving, and

5
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Figure 3: Figure represents qualitative results of our CVF model on the KTH dataset. The number of
context frames used in the above setting is 4 for all three sequences. Every 4th predicted future frame
is shown in the figure.

Table 1: Video prediction results on KTH (64 × 64), predicting 30 and 40 frames using models
trained to predict k frames at a time. All models condition on 10 past frames on 256 test videos.

KTH [10 →#pred; trained on k] k #pred FVD↓ PSNR↑ SSIM↑
SVG-LP (Denton & Fergus, 2018) 10 30 377 28.1 0.844
SAVP (Lee et al., 2018) 10 30 374 26.5 0.756
MCVD (Voleti et al., 2022) 5 30 323 27.5 0.835
SLAMP (Akan et al., 2021) 10 30 228 29.4 0.865
SRVP (Franceschi et al., 2020) 10 30 222 29.7 0.870
RIVER (Davtyan et al., 2023) 10 30 180 30.4 0.86
CVP (Shrivastava & Shrivastava, 2024) 1 30 140.6 29.8 0.872
CVF (Ours) 1 30 108.6 30.6 0.891

Struct-vRNN (Minderer et al., 2019) 10 40 395.0 24.29 0.766
SVG-LP (Denton & Fergus, 2018) 10 40 157.9 23.91 0.800
MCVD (Voleti et al., 2022) 5 40 276.7 26.40 0.812
SAVP-VAE (Lee et al., 2018) 10 40 145.7 26.00 0.806
Grid-keypoints (Gao et al., 2021) 10 40 144.2 27.11 0.837
RIVER (Davtyan et al., 2023) 10 40 170.5 29.0 0.82
CVP (Shrivastava & Shrivastava, 2024) 1 40 120.1 29.2 0.841
CVF (Ours) 1 40 100.8 29.7 0.852

hand-clapping. The videos feature a uniform background with a single person performing the action
in the foreground, offering relatively regular motion patterns. Each video frame is downsampled to a
spatial resolution of 64× 64 and is represented as a single-channel image.

BAIR Robot Pushing Dataset: The BAIR dataset (Ebert et al., 2017) captures a Sawyer robotic
arm pushing various objects on a table. It includes different robotic actions, providing a dynamic and
controlled environment. The resolution of the video frames is also 64× 64.

Human3.6M Dataset: Human3.6M (Catalin Ionescu, 2011) features 10 subjects performing 15
different actions. Unlike other works, we exclude pose information from the prediction task, fo-
cusing solely on video frame data. The dataset offers regular foreground motion against a uniform
background, with video frames in RGB format and downsampled to 64× 64.

6
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Figure 4: Figure represents qualitative results of our CVF model on the BAIR dataset. The number of
context frames used in the above setting is two for both sequences. Every 6th predicted future frame
is shown in the figure.

UCF101 Dataset: UCF101 (Soomro et al., 2012) consists of 13,320 videos spanning 101 action
classes. This dataset introduces a diverse range of backgrounds and actions. Each frame is resized
from the original resolution of 320× 240 to 128× 128 using bicubic downsampling, retaining all
three RGB channels.

Table 2: BAIR dataset evaluation. Video prediction results on BAIR (64 × 64) conditioning on p
past frames and predicting pred frames in the future, using models trained to predict k frames at at
time.The common way to compute the FVD is to compare 100×256 generated sequences to 256
randomly sampled test videos. Best results are marked in bold.

BAIR (64× 64) p k #pred FVD↓
LVT (Rakhimov et al., 2020) 1 15 15 125.8
DVD-GAN-FP (Clark et al., 2019) 1 15 15 109.8
TrIVD-GAN-FP (Luc et al., 2020) 1 15 15 103.3
VideoGPT (Yan et al., 2021) 1 15 15 103.3
CCVS (Le Moing et al., 2021) 1 15 15 99.0
FitVid (Babaeizadeh et al., 2021) 1 15 15 93.6
MCVD (Voleti et al., 2022) 1 5 15 89.5
NÜWA (Liang et al., 2022) 1 15 15 86.9
RaMViD (Höppe et al., 2022) 1 15 15 84.2
VDM (Ho et al., 2022) 1 15 15 66.9
RIVER (Davtyan et al., 2023) 1 15 15 73.5
CVP (Shrivastava & Shrivastava, 2024) 1 1 15 70.1
CVF (Ours) 1 1 15 65.8

DVG (Shrivastava & Shrivastava, 2021) 2 14 14 120.0
SAVP (Lee et al., 2018) 2 14 14 116.4
MCVD (Voleti et al., 2022) 2 5 14 87.9
CVP (Shrivastava & Shrivastava, 2024) 2 1 14 65.1
CVF(Ours) 2 1 14 61.2

SAVP (Lee et al., 2018) 2 10 28 143.4
Hier-vRNN (Castrejon et al., 2019) 2 10 28 143.4
MCVD (Voleti et al., 2022) 2 5 28 118.4
CVP (Shrivastava & Shrivastava, 2024) 2 1 28 85.1
CVF (Ours) 2 1 28 78.5
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Table 3: Comparison with baselines on number of parameters, sampling steps and sampling time
required for BAIR robot push dataset.

BAIR # Params # Sampling(Steps/Frame) Time Taken(in hrs)
MCVD (Voleti et al., 2022) 251M 100 2
RaMViD (Höppe et al., 2022) 235M 500 7.2
CVP (Shrivastava & Shrivastava, 2024) 118M 25 0.45
CVF (Ours) 40M 5 0.112

4.2 METRICS

For performance evaluation, we use the Fréchet Video Distance (FVD) (Unterthiner et al., 2018)
metric, which assesses both reconstruction quality and diversity in generated samples. The FVD
computes the Fréchet distance between I3D embeddings of generated and real video samples. The
I3D network is pretrained on the Kinetics-400 dataset to provide reliable embeddings for this metric.

5 SETUP AND RESULTS

In this section, we detail the experimental setup, comparing our method to existing baselines. We
then present the performance of our approach across all datasets, analyzing both quantitative metrics
and qualitative results.

KTH Action Recognition Dataset: For this dataset, we followed the baseline setup from (Shrivastava
& Shrivastava, 2024), which uses the first 10 frames as context to predict the subsequent 30 or 40
future frames. A key distinction in our experiment is that, instead of utilizing all 10 context frames, we
only use the last 4 frames as context in our CVF model, deliberately discarding the first 6 frames. This
choice aligns with prior methodologies and allows a fair comparison. The results of our evaluation
are summarized in Table 1.

From Table 1, it is evident that our model achieves superior performance while requiring fewer
training frames. Unlike other approaches that rely on a larger number of frames for both context and
future predictions (e.g., 10 context frames plus k future frames), our model operates effectively with
just 4 context frames and 1 future frame. Specifically, we predict the immediate next frame using 4
context frames and then autoregressively generate 30 or 40 future frames, depending on the evaluation
setting. This efficiency stems from our model’s continuous sequence processing capabilities, which
avoid the need for explicit temporal attention mechanisms or artificial constraints.

The results, as presented in Table 1, confirm that our method delivers state-of-the-art performance
relative to baseline models. Qualitative results of our CVF model on the KTH dataset are shown in
Fig. 3.

BAIR Robot Push Dataset: The BAIR Robot Push dataset is known for its highly stochastic video
sequences. In line with previous studies (Shrivastava & Shrivastava, 2024), we experimented with
three different setups: 1) using one context frame to predict the next 15 frames, 2) using two context
frames to predict 14 future frames, and 3) using two context frames to predict 28 future frames. The
results for these settings are detailed in Table 2.

As shown in Table 2, there is a clear trend where increasing the number of predicted frames leads to a
gradual decline in prediction quality. This performance drop is likely due to an increasing mismatch
between the context frames and the predicted future frames. For instance, when using two context
frames, denoted as x0:2, to predict a single future frame, the prediction block is represented as z1:3,
aligning with the setup in Eqn.1. In the second scenario, where two frames are predicted, the future
block extends to x2:4. This setup means that in the first condition, interpolation occurs between
adjacent frames (i.e., from z0 → z1 and z1 → z2), while in the second condition, interpolation spans
a larger gap (e.g., z0 → z2 and z1 → z3). This extended gap likely contributes to the observed
decrease in predictive performance, particularly when k = 2 and p = 2.

As indicated in Table 2, our method consistently outperforms baseline models. Qualitative results of
our CVF model on the BAIR dataset can be seen in Fig. 4.
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Figure 5: Figure represents qualitative results of our CVF model on the Human3.6M dataset. The
number of context frames used in the above setting is 4 for all three sequences. Every 4th predicted
future frame is shown in the figure.

Table 4: Quantitative comparisons on the Human3.6M dataset. The best results under each metric are
marked in bold.

Human3.6M p k #pred FVD↓
SVG-LP (Denton & Fergus, 2018) 5 10 30 718
Struct-VRNN (Minderer et al., 2019) 5 10 30 523.4
DVG (Shrivastava & Shrivastava, 2021) 5 10 30 479.5
SRVP (Franceschi et al., 2020) 5 10 30 416.5
Grid keypoint (Gao et al., 2021) 8 8 30 166.1
CVP (Shrivastava & Shrivastava, 2024) 5 1 30 144.5
CVF(Ours) 5 1 30 120.2

Table 3 highlights the superior efficiency of the proposed CVF model compared to diffusion based
baselines across key metrics. CVF has the fewest parameters and requires only 5 sampling steps per
frame. This makes CVF highly efficient and practical for video prediction tasks, where speed and
resource efficiency are critical.

Human3.6M Dataset: Like the KTH dataset, the Human3.6M dataset features actors performing
distinct actions against a static background. However, Human3.6M provides a broader range of
actions and includes three-channel RGB video frames, whereas KTH offers single-channel frames.
For our evaluation, we adopted a setup similar to that used for KTH, providing 5 context frames and
predicting the subsequent 30 future frames. The results of this evaluation are summarized in Table 4.

From Table 4, it is clear that our model requires significantly fewer training frames to achieve superior
results. Specifically, it only uses 6 frames per block (5 context frames and 1 future frame), yet delivers
performance that surpasses the baseline methods.

The results, as shown in Table 4, demonstrate that our approach outperforms existing models,
establishing a new state-of-the-art on the Human3.6M dataset. Additionally, the qualitative results in
Fig. 5 highlight our CVF model’s ability to accurately capture and predict the diverse actions within
the dataset, further showcasing its effectiveness.

UCF101 Dataset: The UCF101 dataset introduces a significantly higher level of complexity com-
pared to the KTH and Human3.6M datasets, primarily due to its large variety of action categories,
diverse backgrounds, and pronounced camera movements. For our frame-conditional generation task,

9
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Figure 6: Figure represents qualitative results of our CVF model on the UCF dataset. The number of
context frames used in the above setting is 5 for all three sequences. Every 4th predicted future frame
is shown in the figure.

Table 5: Video prediction results on UCF (128 × 128), predicting 16 frames. All models are
conditioned on 5 past frames.

UCF101 [5 → 16] p k #pred FVD↓
SVG-LP (Denton & Fergus, 2018) 5 10 16 1248
CCVS (Le Moing et al., 2021) 5 16 16 409
MCVD (Voleti et al., 2022) 5 5 16 387
RaMViD (Höppe et al., 2022) 5 4 16 356
CVP (Shrivastava & Shrivastava, 2024) 5 1 16 245.2
CVF(Ours) 5 1 16 221.7

we strictly utilize information from the context frames, without leveraging any additional data, such
as class labels, for the prediction task. Our evaluation setup mirrors that used for the Human3.6M
dataset, where 5 context frames are provided, and the model is tasked with predicting the subsequent
16 frames. The results of this evaluation are presented in Table 5.

Upon analyzing Table 5, it is evident that our CVF model outperforms all baseline models, setting a
new state-of-the-art benchmark for the UCF101 dataset. Furthermore, the qualitative results shown in
Fig. 6 demonstrate the model’s ability to effectively capture and predict the diverse actions present in
this challenging dataset, even without the use of external information like class labels.

6 CONCLUSION

In this work, we introduced a novel model architecture designed to more effectively leverage video
representations, marking a significant contribution to video prediction tasks. Through extensive
experimental evaluation on diverse datasets, including KTH, BAIR, Human3.6M, and UCF101, our
approach consistently demonstrated superior performance, setting new benchmarks in state-of-the-art
video prediction.

A key strength of our model is its efficient utilization of parameters and significantly lower number
of sampling steps during inference compared to existing methods. Notably, our model’s ability to
treat video as a continuous process eliminates the need for additional constraints, such as temporal
attention mechanisms, which are often used to enforce temporal consistency. This highlights the

10
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(b) Training Pipeline (c) Sampling Pipeline

U-NET U-NET

(a) Finding  in Single step

Context block of 
Latent Frames

Future block of 
Latent Frames Noise ScheduleContext block of 

Frames

DecEnc

Figure 7: (a) Illustration of the single-step estimation process for zt, where a pre-trained Encoder
encodes a block of k frames, highlighting the computational methodology employed. (b) The training
pipeline of the Continuous Video Process (CVP) model, where zt and t serve as inputs to the U-Net
architecture (details in Appendix), producing the predicted output ẑ1:k+1. (c) Overview of the
sampling pipeline used in our approach, demonstrating the sequential prediction of the next frame in
the video sequence. Given context frames in latent spaceẑ0:k, the predicted latent ẑk+1 is decoded to
generate the subsequent frame x̂k+1.

model’s inherent capacity to maintain temporal coherence naturally, streamlining the video prediction
process while improving both efficiency and predictive accuracy.
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