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Abstract

Pre-trained language models (LMs) are capable001
of in-context learning (ICL): they can adapt to002
a task with only a few examples given in the003
prompt without any parameter update. How-004
ever, it is unclear where this capability comes005
from as there is a stark distribution shift be-006
tween pre-training text and ICL prompts. In007
this work, we study what patterns of the pre-008
training data contribute to ICL. We find that009
LMs’ ICL ability depends on parallel struc-010
tures in the pre-training data—pairs of phrases011
following similar templates in the same con-012
text window. Specifically, we detect parallel013
structures by checking whether training on one014
phrase improves prediction of the other, and015
conduct ablation experiments to study their ef-016
fect on ICL. We show that removing parallel017
structures in the pre-training data reduces LMs’018
ICL accuracy by 51% (vs 2% from random ab-019
lation). This drop persists even when excluding020
common patterns such as n-gram repetitions021
and long-range dependency, showing the di-022
versity and generality of parallel structures. A023
closer look at the detected parallel structures024
indicates that they cover diverse linguistic tasks025
and span long distances in the data.026

1 Introduction027

A surprising ability that emerged from language028

model pre-training is in-context learning (ICL);029

ICL allows LMs to adapt to a task given merely a030

few input-output pairs in the prompt without any031

parameter update (Brown et al., 2020; Chowdhery032

et al., 2023). It is the basis for chain-of-thought033

reasoning (Wei et al., 2022b) and is widely used to034

steer model behavior (Lin et al., 2022; Sun et al.,035

2023). However, it is still unclear how this abil-036

ity emerges from learning to predict the next word037

in natural text. While previous work has shown038

that transformers can acquire ICL when trained on039

sequences of in-context examples (i.e. concatena-040

tions of input-output pairs from a task) (Chen et al.,041

Parallel Structure

In-Context Prompt
Great movie! Sentiment: Positive. I hate the movie! Sentiment: 
Negative. This movie is awesome. Sentiment: Positive.

For the first time in five decades, mortality rates have 
increased among Palestine refugee newborns in Gaza. The 
possible causes of this trend may include inadequate neonatal 
care. We will estimate infant and neonatal mortality rates 
again in 2015 to see if this trend continues and, if so, to 
assess how it can be reversed. Infant mortality in 2013 was 
22.4 per 1000 live births compared with 20.2 in 2008 (p = 
0.61), and this change reflected a statistically significant

Figure 1: Parallel structures vs. In-context prompts.
We define a parallel structure (PS) as two phrases in the
window that follow the same distribution. Each phrase
consists of a context and a token (bold). While natu-
ral language is unlikely to contain abundant in-context
prompts, it often contains parallel structures that ex-
hibit diverse semantic (underlined) and syntactic (italic)
patterns. We hypothesize that parallel structures are
essential for LMs to acquire ICL (Section 3).

2022; Garg et al., 2022; Chan et al., 2022), real 042

pre-training data is quite different from in-context 043

examples. A better understanding of the source of 044

ICL may help explain other emergent abilities of 045

pre-trained LMs (Wei et al., 2022a; Lu et al., 2023) 046

and predict when they might fail. 047

In this work, we adopt a data-centric perspec- 048

tive and study the question: What structures of 049

the pre-training data yield ICL? This question is 050

underexplored due to the scale of data and com- 051

pute required. As a result, prior work has mainly 052

focused on synthetic data (Xie et al., 2021), in- 053

context examples (Chan et al., 2022), coarse data 054

properties such as size and domain (Shin et al., 055

2022), or task-specific data selection (Han et al., 056

2023). 057

We introduce a simple structure that produces 058

ICL and verify it through ablation on real pre- 059

training data. Our key observation is that while 060

natural language is unlikely to contain abundant in- 061

context examples, it often contains multiple phrases 062

following a similar template within a context win- 063
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dow (Figure 1), e.g., “We will estimate infant and064

neonatal morality rates again in 2015 to see if065

this trend [...] reversed. Infant mortality in 2013066

was 22.4 per 1000.” These phrases can thus be067

considered as examples from the same “task”, re-068

sembling in-context examples. This motivates us069

to hypothesize that such co-occurring phrases in070

pre-training data are essential for LMs to acquire071

ICL (Section 3).072

To formalize our hypothesis, we introduce the073

concept of parallel structure (PS), defined as a pair074

of phrases that co-occur in a context window and075

follow the same distribution. To detect PSs in the076

pre-training data, our algorithm is based on the077

intuition that, since the two phrases are sampled078

from the same distribution, learning to predict one079

phrase should improve prediction on the other (Fig-080

ure 2). To verify our hypothesis, we measure the081

effect of PSs on the model’s ICL ability. Specifi-082

cally, we ablate the detected PSs, train an LM on083

the ablated data, and measure the ICL performance084

drop relative to a reference model trained on clean085

data (Section 4).086

Results on GPT-2 model series (Radford et al.,087

2019) and OpenWebText (Gokaslan and Cohen,088

2019) show that ablating PSs in the pre-training089

data significantly reduces the ICL accuracy of LMs090

with a relative decrease of 51%, while ablating091

randomly sampled tokens of the same amount only092

reduces ICL accuracy by 2%. Furthermore, this093

effect holds as we increase model size. This result094

indicates that PSs are a major source of ICL (Sec-095

tion 6). We also compare PSs to two other struc-096

tures suggested by prior work as sources of ICL:097

repetitions (Yan et al., 2023; Olsson et al., 2022)098

and long-range dependency (Shi et al., 2023), and099

find that PSs have a larger effect on ICL.100

By analyzing characteristics of the detected PSs,101

we find that they are suggestive of ICL abilities102

we observe in large LMs. For example, parallel103

structures exhibit diverse pattern matching tasks,104

ranging from n-gram repetitions, text formats, syn-105

tactic constituents, to more complicated ones that106

require reasoning and knowledge. Pre-training on107

such a huge diversity of tasks may explain why108

LMs can generalize to various downstream tasks109

through ICL (Raventós et al., 2023). In addition,110

we find that the two phrases in a PS are often far111

from each other (343 tokens away on average),112

which may explain why LMs don’t forget early113

examples in in-context prompts and why ICL per-114

formance improves with more examples (Li and 115

Qiu, 2023). 116

2 Problem Statement 117

Pre-trained LMs Autoregressive LMs are pre- 118

trained on natural text to predict the next token con- 119

ditioned on the context. The pre-training dataset 120

D consists of a sequence of context windows 121

a = (a1, . . . , aL), where ai denotes the i-th to- 122

ken in it. An LM is a distribution over a token 123

given its prefix. The parameters of this distribution 124

w are typically learned by maximum likelihood 125

estimation: 126

maximize
∑
a∈D

L∑
i=1

log p(ai | a<i;w) . (1) 127

In-Context Learning (ICL) To adapt a pre- 128

trained LM to a task via ICL, it is prompted with 129

in-context examples, which is the concatenation of 130

a sequence of input-output examples of the task: 131

c1 ◦ x1 ◦ · · · ◦ ck ◦ xk, where ci and xi denote the 132

task input and output, and ◦ denotes concatenation 133

of two strings. To make predictions, a test input 134

cquery is appended to the in-context examples to 135

form an in-context prompt, and the model predicts 136

the output as the next word distribution given the 137

prompt: p(· | c1 ◦ x1 ◦ · · · ◦ ck ◦ xk ◦ cquery). 138

Since there is a clear divergence between the pre- 139

training data distribution (natural text) and the in- 140

context prompt distribution (concatenations of task 141

input-output pairs), it is unclear where LMs acquire 142

their ICL ability from pre-training. To bridge this 143

gap, we aim to identify pre-training examples— 144

tokens and their prefixes—that have large impact 145

on the ICL performance of LMs. 146

3 Parallel Structures 147

While the pre-training data does not contain a large 148

number of strict in-context prompts, we observe 149

that it often contains phrases following a similar 150

template in the same context window. These phrase 151

pairs resemble in-context examples of a shared 152

“task”, but they are less structured. As shown in Fig- 153

ure 1, they cover a diverse range of linguistic skills, 154

including n-gram copying (e.g., “mortality rates 155

again in 2015” and “infant mortality in 2013”), 156

syntactic construction (e.g., “We will estimate” and 157

“it can be” share the template of subject–modal 158

verb–main verb), world knowledge (e.g., “among 159

Palestine” and “in Gaza” mention locations in the 160

same geographical region) and so on. 161
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We conjecture that these co-occurring phrases162

following similar templates, termed parallel struc-163

tures, are critical for LMs to develop ICL abil-164

ity during pre-training. In the rest of this sec-165

tion, we first formally define parallel structures166

(Section 3.1); we then propose an algorithm to de-167

tect them in natural text (Section 3.2); finally, we168

describe how to measure their effect on ICL ability169

of pre-trained LMs through ablation (Section 3.3).170

3.1 Definition171

Intuitively, phrases following the same template172

are from the same distribution. A phrase is a se-173

quence of tokens and we represent each phrase174

as a (context, token) tuple, (c, x), where x is the175

the last token in the sequence and c is its prefix,176

e.g., (“mortality rates again in”, “2015”). Given a177

context window, a parallel structure (PS), denoted178

by s, consists of a pair of phrases in the window179

that follow the same distribution psstruct(c, x). We180

use (cf , xf ) to denote the former phrase, which181

occurs before the latter phrase (cl, xl) in the con-182

text window. For example, given the context183

window “increase among Palestine refugee new-184

borns in Gaza”, (cf=“among”, xf=“Palestine”) and185

(cl=“in”, xl=“Gaza”) form a PS, both following a186

distribution of prepositional phrases for locations187

in a specific area.188

3.2 Finding Parallel Structures in Natural text189

To study the effect of PSs on ICL, a natural solu-190

tion is to compare the ICL ability after ablating PSs191

from the pre-training data, which requires us to192

first detect them. Toward this goal, we first define193

a measure to estimate whether two given phrases194

come from the same distribution (i.e. whether they195

form a PS according to our definition). Next, we196

introduce an efficient algorithm to identify PSs ap-197

proximately from a large dataset of natural text.198

Measuring parallel structure strengths. Given199

two phrases, how do we know if they come from200

the same distribution? Since we only have two data201

points, most statistical tests won’t apply. Following202

the standard supervised learning guarantee with the203

i.i.d. assumption, if they come from the same distri-204

bution, then training on one phrase would improve205

prediction on the other in general. In other words,206

we can think of (cf , xf ) and (cl, xl) as two exam-207

ples for the task of predicting x given c. Motivated208

by this intuition, we measure the parallel structure209

strength of two phrases by how much the loss of210

We will estimate infant and neonatal mortality rates again in 
2015 to see if this trend continues and, if so, to assess how it 
can be reversed. Infant mortality in 2013 …

LM inference: log p (2013 | Infant mortality in) = −8.2
Train LM on mortality rates again in => 2015

LM inference: log p (2013 | Infant mortality in) = −6.4

+1.8 > 0
Parallel 
Structure

Figure 2: To measure the parallel structure strength of
two phrases (cf , xf ) and (cl, xl), we take a pre-trained
LM (gray), fine-tune it on xf conditioned on its context
cf (purple), and measure the change in its predicted
probability on xl conditioned on context cl (blue).

the latter phrase is reduced from training on the 211

former phrase. A larger reduction suggests better 212

generalization from the former phrase to the latter 213

phrase, which indicates that they are likely to come 214

from similar distributions. 215

As shown in Figure 2, we measure the PS 216

strength of two phrases (cf , xf ) and (cl, xl) by 217

training an LM on the former phrase and test it 218

on the latter. Formally, given an auto-regressive 219

LM p(·;w) parametrized by w, we update w using 220

the negative log-likelihood loss for one gradient 221

descent step with learning rate η: 222

wf = w + η∇w log p(xf | cf ;w) . (2) 223

Then, the PS strength of the phrase pair is measured 224

by the difference between the log likelihood of the 225

latter token conditioned on its context given by the 226

LM before and after the update: 227

α((cf , xf ), (cl, xl)) (3) 228

= log p(xl | cl;wf )− log p(xl | cl;w) , (4) 229

where α ∈ R and larger α means stronger PS 230

strength. 231

Detection algorithm. Given a context window 232

(i.e. a sequence of tokens) from the pre-training 233

data, a = (a1, . . . , aL), our goal is to score the PS 234

strength of all pairs of phrases in it and take the 235

top ones as the identified PSs. However, the naive 236

scoring strategy that enumerates all spans in the 237

window has quadratic complexity in the window 238

size L, and is prohibitively expensive when scaled 239

to the pre-training dataset. Therefore, we apply 240

two approximations for efficiency. First, we only 241

score a subset of phrase pairs. Second, we train 242

the LM on a group of former phrases instead of 243

training on each one separately as in Equation (2). 244

We describe the process in detail below. 245

3



At a high level, to compute the PS strength, we246

need to come up with a set of former phrases, up-247

date the LM on each phrase, and test the LM on248

the corresponding latter phrases. To come up with249

the former and latter phrases, we first decide the250

last token in a phrase; then, instead of enumerating251

prefixes of varying lengths, we set the prefix of252

former phrases to be all tokens before the last to-253

ken, and the prefix of latter phrases to be all tokens254

before the last token limited in a segment of the255

context window. We set the prefix of latter phrases256

to be short to pinpoint the exact latter phrase that257

forms a PS with preceding tokens in the context258

window, which we will then ablate. Specifically,259

given a context window a, we create a set of former260

phrases Df (a) = {(a<i, ai)}Li=2. To create the set261

of latter phrases, we partition the context window a262

into overlapping segments of length m with stride263

m/2. Let B be the set of all such segments in a.264

We then extract latter phrases from each segment:265

Dl(a) =
⋃

b∈B{(b<i, bi)}mi=m/2.266

a xf b xl
cf cl

mL267

Note that the prefix length of former phrases range268

from 1 to L− 1, whereas the prefix length of latter269

phrases range from m/2 to m, limited by the seg-270

ment b. Instead of enumerating all phrase pairs, we271

only consider phrases in Df (a) and Dl(a).272

Now, for each former phrase in Df (a), we can273

update an LM p(·;w) on it, and test the updated274

LM on latter phrases in Dl(a) that occur after the275

former phrase (i.e. their last tokens occur after the276

last token of the former phrase). However, this277

requires us to perform Θ(L) independent updates278

of p(·;w) and the gradient computation cannot be279

batched (as we need the wf after each update). To280

save compute, we sort the former phrases in Df (a)281

by the position of the last token of each phrase and282

split them into batches of size l. For each former283

phrase (cf , xf ) in a batch Bf , we approximate the284

update in Equation (2) by a minibatch update on285

all l phrases in the batch:286

wf = w +
η

l

∑
(c,x)∈Bf

∇w log p(x | c;w) . (5)287

This way, we reduce Θ(L) gradient updates to288

Θ(L/l) (number of batches) updates. We then use289

wf to compute the PS strengths for all latter phrases290

that occur after all former phrases in Bf , which291

only requires batched forward passes. As a result,292

all former phrases in Bf have the same PS strength 293

with a latter phrase. Intuitively, this process does 294

not identify a specific former phrase that has high 295

PS strength with a specific latter phrase; instead, 296

it identifies a segment where some phrases could 297

form a PS with the latter phrase. We will check in 298

Section 4.2 if the computed PS strengths are close 299

to the ground-truth PS strengths when we train the 300

LM on each former phrase separately. 301

3.3 Ablating the Pre-training Data 302

Now that we have scored a set of potential parallel 303

structures, we conduct ablation studies to measure 304

their effect on models’ ICL ability. Specifically, 305

we ablate PSs in pre-training data through noising, 306

train LMs on ablated data, and compare their ICL 307

accuracy to reference LMs trained on clean data. 308

Ideally, we would pre-train randomly initialized 309

LMs from scratch on the ablated data, just as how 310

LMs are usually pre-trained, but this is expensive. 311

Due to compute constraints, we follow prior work 312

and continue pre-training off-the-shelf pre-trained 313

LMs (Gururangan et al., 2020; Yang et al., 2022; 314

Ke et al., 2023; Gupta et al., 2023) on clean and 315

ablated data to study the effect of PSs on ICL. 316

Recall that our detection algorithm returns pairs 317

of a former phrase and a latter phrase, as well as 318

their PS strength. We set a threshold on the PS 319

strength and identify the top-p% highest-scoring 320

pairs as PSs. To ablate the identified PSs in the 321

pre-training data, we replace the last token of each 322

latter phrase with a token sampled uniformly at 323

random from the vocabulary. The introduced noise 324

allows the LM to unlearn parallel structures (and 325

the induced ICL ability) learned earlier during pre- 326

training from scratch. Thus, it is more aggressive 327

than excluding updates on tokens in parallel struc- 328

tures during continue pre-training, which would 329

retain any existing ICL ability of the LM. 330

4 Experiment Setup 331

We present the setup for continual pre-training in 332

Section 4.1 and the setup for parallel structure de- 333

tection in Section 4.2. 334

4.1 Continual Pre-training 335

Models We continue pre-training GPT-2 mod- 336

els of different sizes (Radford et al., 2019): Small 337

(117M parameters), Medium (345M parameters), 338

Large (744M parameters), XLarge (1.6B parame- 339

ters). We choose GPT-2 models because autoregres- 340
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Task Description Example
N

at
ur

al
L

an
g. Verb Inflection Convert a verb between present tense/past tense/past participle “fly” ⇔ “flew” ⇔ “flown”

Adjective ⇔ Noun Convert an adjective to a noun or a noun to an adjective “exciting” ⇔ “excitement”

Case Change Switch a word’s case between lower and upper “hello” ⇔ “Hello”

Synonym/Antonym Clf Classify whether two words are synonyms or antonyms “happy cheerful” ⇒ [syn]

Sy
m

bo
lic

Copy Copy the input “hi apple” ⇒ “hi apple”

Last Token Copy the last token of the input “hi bad orange” ⇒ “orange”

Search Clf Given a token sequence x and token y, classify if y appears in x “hi good [del] hi” ⇒ [yes]

Palindrome Clf Classify if the input is a palindrome “apple hi apple” ⇒ [yes]

Pattern Completion Complete the last token of a pattern (aa, aba, abab or aaba) aba: “hi good” ⇒ “hi”

Table 1: ICL tasks. We evaluate the ICL ability of LMs on four natural language tasks and five symbolic tasks.

sive LMs from the GPT family have been shown341

to be highly successful in ICL (Brown et al., 2020;342

OpenAI, 2023), and to balance compute cost and343

ICL capability following prior work (Wang et al.,344

2023; Olsson et al., 2022; Shin et al., 2022; Chan345

et al., 2022).346

Data To minimize the distribution shift between347

the data used for pre-training from scratch and the348

data used for continual pre-training, we fine-tune349

GPT-2 on OpenWebText (Gokaslan and Cohen,350

2019), a publicly available version of WebText351

used by GPT-2. We segment the data into context352

windows of length 1024.353

Training We use batch size 128 and AdamW354

optimizers (Loshchilov and Hutter, 2017) with355

learning rate 3e-4 for Small/Medium and 1e-4 for356

Large/XLarge. We early stop when the perplexity357

on the development set converges.358

4.2 Parallel Structure Detection359

We construct latter phrases by partitioning each360

context window into segments of length m=12. We361

group former phrases into batches of l=128 (Sec-362

tion 3.2). To measure parallel structure strengths,363

we fine-tune the pre-trained GPT2-Small model364

(Radford et al., 2019) on former phrases with a365

learning rate of η=1e-4. As a sanity check, we366

evaluate the similarity between the PS strengths367

calculated with and without the approximation of368

minibatch update on multiple former phrases, and369

find them to strongly correlate (Pearson correlation370

+0.71) on 10K randomly sampled context windows.371

This indicates that PS strengths are relatively robust372

under the proposed approximations.373

To evaluate LMs pre-trained on different noise374

rates, we ablate pre-training data with p%=5%,375

10%, 15%, 20%, continue pre-training a LM on 376

each, and measure their average ICL accuracy over 377

all tasks. 378

5 ICL Evaluation 379

Tasks We evaluate the ICL capability of LMs 380

on four natural language tasks and five symbolic 381

reasoning tasks (Table 1). Natural language tasks 382

test linguistic knowledge, while symbolic tasks test 383

abstract reasoning that doesn’t depend on the se- 384

mantic meanings of tokens. 385

Data Generation For natural language tasks, we 386

prompt GPT-4 to generate the evaluation data. We 387

manually check a random subset of 100 examples 388

for each task and find no error. For symbolic tasks, 389

we generate the data following the procedures in 390

Li et al. (2021). We generate 1200 examples for 391

each natural language task on average, and 4000 392

examples for each symbolic reasoning task. We 393

construct the in-context prompts by concatenating 394

input-output pairs, with delimiters between the in- 395

put and the output and and between examples. 396

Metric We evaluate models given various num- 397

bers of in-context examples (64, 96, 128), and re- 398

port the average ICL accuracy as how much the 399

LM outperforms the random baseline (absolute). 400

6 Results 401

We first measure the effect of parallel structures 402

on ICL (Section 6.1), then compare their effect 403

to other structures identified by prior work (Sec- 404

tion 6.2), and finally analyze characteristics of 405

parallel structures in the pre-training data (Sec- 406

tion 6.3). 407
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M Data VrbI A-N Case Syn Cpy LstT Paln Srch Pttn Avg
G

P
T

2-
S

CLEAN 28.0 10.4 56.6 12.6 18.5 22.9 6.9 16.0 29.6 22.4
-RAND 18.2 8.4 37.5 11.6 9.3 16.6 7.1 19.3 27.2 17.3
-PS 3.4 2.6 17.6 5.2 0.4 1.1 -0.1 10.4 4.9 5.1
-Dp+PS 8.6 5.6 29.3 8.4 2.7 6.3 7.9 20.8 20.8 12.3
-PS+Rp 6.7 4.0 20.0 6.5 0.4 1.1 1.9 13.2 11.5 7.3

G
P

T
2-

M

CLEAN 55.7 27.2 77.5 17.2 29.6 31.9 14.8 22.1 37.4 34.8
-RAND 55.4 25.7 68.0 16.1 24.8 27.5 22.9 28.8 45.0 34.9
-PS 28.2 12.0 52.8 9.3 0.9 4.7 11.3 17.6 14.0 16.7
-Dp+PS 47.1 22.0 62.0 13.5 3.9 15.8 25.4 30.0 32.9 28.1
-PS+Rp 38.4 16.9 54.8 10.9 0.6 6.5 16.7 23.0 19.3 20.8

G
P

T
2-

L

CLEAN 51.1 33.3 84.5 21.2 41.0 38.0 14.5 17.5 46.3 38.6
-RAND 60.4 31.7 75.9 20.6 46.6 40.7 23.3 27.8 56.5 42.6
-PS 29.5 19.6 59.3 12.6 13.1 15.9 12.9 22.8 33.3 24.3
-Dp+PS 53.3 27.8 68.6 17.3 31.0 31.3 25.1 31.5 52.8 37.6
-PS+Rp 42.2 24.3 63.0 15.2 13.1 17.3 16.8 26.2 39.6 28.6

G
P

T
2-

X
L CLEAN 59.2 35.9 85.3 30.5 29.4 37.1 11.9 17.4 41.6 38.7

-RAND 61.3 35.9 77.9 30.2 30.4 40.8 17.0 22.3 54.5 41.2
-PS 44.2 27.8 63.1 19.1 5.5 10.0 5.6 12.9 27.9 24.0
-Dp+PS 62.4 35.6 73.5 25.2 23.5 27.9 14.6 21.6 54.2 37.6
-PS+Rp 59.8 33.2 67.4 22.6 10.6 17.7 11.3 18.2 45.7 31.8

Table 2: We measure the effect of different data ab-
lations on the ICL ability of pre-trained LMs. Results
show that parallel structures are crucial for LMs to ac-
quire ICL. Pre-training on data with parallel structures
ablated consistently incurs a larger drop in ICL accuracy
compared to pre-training on data with random tokens
ablated (51.1% vs 1.5% relative drop in accuracy av-
eraged across model sizes). We also compare parallel
structures to n-gram repetitions (Rp) and long-range de-
pendency (Dp) and find parallel structures to have larger
effect on ICL. The pre-training setting that incurs the
largest drop in ICL performance is bold for each task
and model size.

6.1 Measuring the Effect of Parallel408

Structures on ICL409

To measure the effect of parallel structures on ICL,410

we continue pre-training the LM on ablated data411

(−PS), and compare its ICL accuracy with LMs412

continually pre-trained on the clean data (CLEAN)413

and the randomly noised data (−RAND), where414

tokens sampled uniformly at random from the clean415

data are ablated. We ablate the same amount of416

tokens in −PS and −RAND.417

Ablating parallel structures hurts ICL. In418

Table 2, both −RAND and −PS hurt ICL perfor-419

mance compared to CLEAN, which is expected as420

data noise can hurt model performance in general.421

However, ablating PSs is particularly detrimental422

to ICL performance compared to ablating random423

tokens of the same amount (51.1% vs 1.5% relative424

drop in accuracy averaged across model sizes).425

-RANDOM -PS
GPT2-S 50.4 49.9
GPT2-M 54.0 53.9
GPT2-L 60.0 59.6
GPT2-XL 62.1 62.4

Table 3: Fine-tuning accuracy of LMs. Contrary to
the ICL results, LMs further pre-trained on data with
parallel structures ablated have comparable fine-tuning
accuracy as LMs trained on randomly ablated data.

Ablating PSs does not hurt task ability. One 426

caveat in the above numbers is that ICL accuracy 427

confounds ICL ability with task ability. Low ICL 428

accuracy can be caused by a failure to identify the 429

task based on ICL examples (ICL ability) or by a 430

failure to perform the identified task (task ability). 431

To disentangle the two sources of failure, we evalu- 432

ate a LM’s task ability by measuring its fine-tuning 433

accuracy. Specifically, for each task we fine-tune 434

the LM on 128 examples and report the average 435

task accuracy. Contrary to the ICL results where ab- 436

lating parallel structures (−PS) consistently leads 437

to larger accuracy reduction than ablating random 438

tokens (−RAND), the two ablations have compara- 439

ble fine-tuning accuracy as shown in Table 3. Thus, 440

the drop in ICL accuracy from ablating parallel 441

structures is mainly due to a drop in ICL ability, 442

not task ability. 443

6.2 Comparing Parallel Structures with Other 444

Structures 445

We compare parallel structures with two other 446

structures of pre-training data hypothesized to pro- 447

duce ICL: n-gram repetitions and long-range de- 448

pendency (Table 2). 449

Parallel structures that are not n-gram repeti- 450

tions are also important for ICL. Prior work 451

has shown that ICL is closely related to n-gram rep- 452

etitions in the pre-training data (Yan et al., 2023; 453

Olsson et al., 2022). N-gram repetitions are a sub- 454

category of parallel structures where the former and 455

latter phrases are identical. Are parallel structures 456

crucial for ICL only because they include n-gram 457

repetitions? To answer this question, we measure 458

the effect of parallel structures that are not n-gram 459

repetitions on ICL, denoted as −PS + RP. Specif- 460

ically, during PS scoring we exclude phrase pairs 461

that end with the same bigram, e.g., “mortality rates 462

in 2013” and “mortality rates again in 2013”. We 463

then take the top-p% PSs and perform ablation as 464

described in Section 3.3. 465
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Pre-training on −PS +RP consistently incurs a466

larger drop in ICL performance compared to ablat-467

ing random tokens of the same amount (37.9% vs.468

1.5% relative reduction in accuracy averaged across469

model sizes), which indicates that parallel struc-470

tures that are not n-gram repetitions are also impor-471

tant for LMs to acquire ICL. We conjecture that472

pre-training on diverse parallel structures helps LM473

generalize to various downstream tasks where copy-474

ing alone is insufficient (e.g., synonym/antonym475

classification and palindrome classification).476

In particular, we observe that ablating parallel477

structures that are not repetitions incurs a large drop478

in ICL accuracy on the copy task as well (81.8% rel-479

ative reduction in accuracy averaged across model480

sizes), even though all parallel structures that are481

repetitions are preserved. This indicates that LMs482

learn to generalize between parallel structures/in-483

context examples of different tasks.484

Parallel structures have a larger effect on ICL485

than long-range dependency. Prior work iden-486

tified long-range dependency in pre-training data487

as crucial for LMs to acquire ICL (Shi et al., 2023).488

Parallel structures are a subcategory of long-range489

dependency, where the dependency is the similarity490

between two phrases from the same distribution.491

Are PSs crucial for ICL only because they capture492

long-range dependency? In other words, is long-493

range dependency that are not PSs equally crucial494

for ICL? To answer this question, we measure the495

effect of long-range dependency that is not parallel496

structures on ICL, denoted as −DP + PS. Moti-497

vated by Sun et al. (2021); Olsson et al. (2022),498

for each latter phrase (cl, xl) in a segment b whose499

context length is at most m, it has long range de-500

pendency if including additional context improves501

the log probability of xl under the language model.502

Specifically, the long context includes all503

previous tokens in the context window a as504

illustrated below:505506

a b xl

p(xl | long context)

p(xl | short context)
507

Formally, given a context window a, for each508

(cl, xl) where xl = ai, we measure the long-range509

dependency strength of the phrase by510

β(cl, xl = ai) (6)511

= log p(ai | a<i;w)− log p(ai | cl;w) (7)512

Same as detecting parallel structures, we use pre- 513

trained GPT2-Small as the language model for scor- 514

ing and ablate the top-p% (cl, xl) with long range 515

dependency by replacing xl with a random token. 516

Pre-training on −DP +PS consistently incurs 517

a smaller drop in ICL performance compared to 518

pre-training on −PS on all four model sizes (17.5% 519

vs 51.1% relative reduction in accuracy averaged 520

across model sizes). This indicates that parallel 521

structures are crucial for ICL not because they cap- 522

ture long-range dependency, and that parallel struc- 523

tures have a larger effect on ICL than long-range 524

dependency. 525

6.3 Analyzing Characteristics of Parallel 526

Structures 527

In addition to the ablation results, we analyze char- 528

acteristics of the detected parallel structures in pre- 529

training data, and find that they are suggestive of 530

ICL abilities we observe on large LMs. These links 531

between parallel structures and ICL present addi- 532

tional evidence that PSs produce ICL, and more im- 533

portantly, open up new directions/methods to study 534

ICL by tracing back to PSs in the pre-training data. 535

Parallel structures exhibit diverse patterns. 536

We find that the detected parallel structures in pre- 537

training data exhibit diverse patterns, including 538

n-gram repetitions, synonyms, text formats (e.g., 539

“\n\n” followed by a ⟨year number⟩), syntactic con- 540

stituents (e.g., a ⟨pronoun⟩ followed by a ⟨verb⟩), 541

punctuation and line break patterns, and more com- 542

plicated ones that require reasoning and knowl- 543

edge (e.g., a ⟨basketball player⟩ followed by ⟨their 544

position⟩). Each type of parallel structures cor- 545

responds to the text distribution of some “task” 546

that the model needs to learn in-context, so the 547

types of parallel structures in the pre-training data 548

corresponds to the number of pre-training “tasks”. 549

Prior work also hypothesized the importance of 550

task diversity for learning new linear regression 551

tasks (Raventós et al., 2023) and the importance 552

of domain diversity for ICL (Shin et al., 2022). 553

Our work detects the in-context “tasks” in real pre- 554

training data, and finds that their diversity is crucial 555

for LMs to acquire ICL. 556

Parallel structures span long distances. We 557

measure the distance (i.e. number of tokens) be- 558

tween the former and latter phrases in the identified 559

PSs, and find that parallel structures often span 560

long distances (skewed to the right with an aver- 561

age of 343 tokens, a median of 292 tokens, and 562
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a standard deviation of 275 tokens). Pre-training563

on parallel structures spanning long distances may564

encourage LMs to use patterns of early tokens in565

the context to predict the next token. This ability566

may explain why LMs do not forget early exam-567

ples in in-context prompts (Li and Qiu, 2023) and568

achieve monotonically higher accuracy with more569

ICL examples on most tasks (Brown et al., 2020).570

7 Related Work571

Effect of Pre-training Data on ICL. Prior work572

has studied what structures of pre-training data573

are crucial for LMs to acquire ICL. We introduce574

them below and discuss their relations to parallel575

structures.576

Long-range dependency. One line of work577

showed that pre-training LMs on data with long-578

range coherence produces ICL. Xie et al. (2021)579

generated a synthetic dataset where each context580

window consists of multiple segments sampled581

from the same Hidden Markov Model, and showed582

that pre-training on this synthetic dataset produces583

ICL. Shi et al. (2023) verified the importance of584

long-range coherence on natural language text by585

empirically showing that concatenating relevant586

text during pre-training improves ICL. Parallel587

structures are a special kind of long-range depen-588

dency that is more important for ICL.589

N-gram repetitions. Olsson et al. (2022) found590

that n-gram repetitions are closely related to ICL591

through induction heads: LMs learn induction592

heads from n-gram repetitions, and this process593

happens concurrently with the emergence of ICL594

during pre-training. Yan et al. (2023) claimed that595

LMs learn token co-occurrence reinforcement from596

n-gram repetitions, which is essential for ICL. Par-597

allel structures include n-gram repetitions as a sub-598

category, but also include less structured patterns599

that are also crucial for ICL.600

Diversity. Shin et al. (2022) found that increas-601

ing corpus diversity by merging datasets of differ-602

ent domains improves ICL. Our results show that603

diverse parallel structures are crucial for ICL.604

Long-tail tokens. Han et al. (2023) identified605

supportive pre-training data with similar gradients606

as in-context examples, and found that the sup-607

portive data has higher density of long-tail tokens608

compared to natural text. Instead of studying the ef-609

fect of pre-training data on ICL, Chan et al. (2022)610

studied the effect of in-context tuning (i.e. training611

on in-context prompts (Chen et al., 2022)) data on612

ICL, and also found that increasing the number of 613

long-tail classes improves ICL. It is unclear how 614

long-tail tokens are related to parallel structures. 615

Mechanistic Interpretability of ICL. Prior 616

work has proposed different theories to explain 617

how ICL works. We introduce them below and 618

discuss the connection between those mechanisms 619

and parallel structures. 620

Induction heads. Olsson et al. (2022) claimed 621

that LMs perform ICL via induction heads: atten- 622

tion heads that attend to a previous occurrence of 623

a similar phrase and copy from it. Their work sup- 624

ported their claim by showing that ICL and induc- 625

tion heads appear concurrently during pre-training. 626

As a follow-up work, Wang et al. (2023) studied 627

how LMs use attention heads to perform ICL, and 628

found that label words of ICL examples aggregate 629

information processed in shallow layers and pro- 630

vide anchors for induction heads. We conjecture 631

that LMs may also use induction heads to predict 632

parallel structures, and leave it to future work. 633

Implicit gradient descent. Multiple concurrent 634

work (Akyürek et al., 2022; Von Oswald et al., 635

2023; Mahankali et al., 2023) claimed that LMs 636

perform ICL via implicit gradient descent, where 637

one layer of model inference on in-context exam- 638

ples corresponds to one step of gradient descent 639

on those examples. This group of work supported 640

its claim on linear regression tasks, which is then 641

generalized to natural language tasks by Dai et al. 642

(2023). We detect parallel structures using gradient 643

descent, and an interesting future direction is to 644

explore if the LM’s behavior on parallel structures 645

in text also resembles gradient descent. 646

8 Conclusion 647

We study what structures of the pre-training data 648

yield in-context learning, and hypothesize that par- 649

allel structures are crucial for LMs to acquire ICL 650

ability. We verify our hypothesis with ablation ex- 651

periments on real pre-training data, where we find 652

that ablating parallel structures incurs a significant 653

drop in ICL performance. Detailed analysis further 654

reveals that parallel structures are more important 655

than n-gram repetitions and long-range dependency 656

for ICL, and exhibit diverse linguistic patterns. We 657

hope our findings can inspire future methods to 658

construct better pre-training data to improve ICL 659

performance, and to better understand the source 660

of emergent ICL ability. 661
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9 Limitations662

Our work has several limitations that we leave to663

future work. First, due to limited computational re-664

sources we only experiment with models up to 1.5665

billion parameters. Future work should scale up our666

experiments to larger LMs and explore pre-training667

randomly initialized LMs from scratch. Second,668

despite our efforts in creating a set of diverse and669

representative tasks to evaluate ICL ability, most670

tasks are relatively straightforward due to limita-671

tions imposed by the LM size we experiment with672

(i.e. our experimented LMs fail on most complex673

tasks). Future work should study evaluate ICL abil-674

ity on more complicated tasks with larger LMs.675

Third, our study focuses on parallel structures and676

ICL in the text modality. Future work should study677

the role of parallel structures in multi-modal ICL.678
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