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Abstract001

Large language models (LLMs) have achieved002
significant success in reasoning tasks, including003
mathematical reasoning and logical deduction.004
Among these reasoning tasks, graph problems005
stand out due to their complexity and unique006
structural characteristics, attracting consider-007
able attention from researchers. Previous stud-008
ies have explored LLMs’ graph reasoning abili-009
ties through various techniques, such as differ-010
ent encoding methods for graph structures and011
the use of carefully designed prompts. How-012
ever, a critical factor has been mostly over-013
looked: the prompt sequential order in which014
graph descriptions are presented to the models.015
In this study, we present the first comprehensive016
analysis of how the order of graph descriptions017
impacts LLM performance. Specifically, we018
comprehensively evaluate four graph descrip-019
tion orders across six graph problems using020
six mainstream LLMs. The results reveal that:021
(1) ordered graph descriptions significantly im-022
prove LLMs’ comprehension of graph struc-023
tures; (2) the robustness of LLMs to graph de-024
scription order varies across different tasks; and025
(3) the impact of graph order on performance026
is closely related to the inherent characteristics027
of tasks. This study provides a critical advance-028
ment in the application of LLMs for solving029
graph-related problems, paving the way for fu-030
ture research to optimize model performance031
through strategic graph description ordering.032

1 Introduction033

Large language models (LLMs) have made remark-034

able progress, showing unprecedented capabilities035

in NLP (Vaswani et al., 2017; Devlin et al., 2018;036

Brown et al., 2020; Ouyang et al., 2022). Leverag-037

ing advancements in NLP, LLMs excel in reasoning038

tasks, which has drawn considerable interest from039

researchers. As a type of complex reasoning prob-040

lem, graph problems have also attracted substantial041

attention. For instance, Wang et al. (2023a) repre-042

sented graphs in natural language and validated the043
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Figure 1: The order in which graphs are described sig-
nificantly affects LLMs’ ability to understand and solve
graph problems. For instance, in the cycle detection task,
graphs described in BFS order achieved an average ac-
curacy improvement of 12.73% over those described in
random order.

effectiveness of prompts for graph reasoning tasks. 044

Fatemi et al. (2023) map pure graphs in a real- 045

world scenario to understand how LLMs’ learned 046

representations are leveraged in graph tasks. More 047

recently, Skianis et al. (2024) explore the use of 048

pseudo-code instructions to enhance LLMs’ ability 049

to solve graph problems. 050

Despite the significant contributions of previous 051

researchers, one key issue remains overlooked: the 052

order of graph descriptions may affect LLMs’ 053

performance in solving graph problems. They 054

typically employed randomly arranged graph de- 055

scriptions, overlooking the critical role that descrip- 056

tion order may play. While graphs have no fixed 057

textual representation, the order in which their com- 058

ponents are expressed may affect the model’s rea- 059
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In an undirected graph, 
(i, j) means that node i and 
node j are connected with
an edge, and the edges are: 
(4, 5), (0, 3), (2, 5), (0, 2), 
(1, 6), (0, 1), …
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node j are connected with
an edge, and the edges are: 
(0, 1), (0, 2), (0, 3), (0, 4),
(1, 6), (2, 5), …

<Cycle Detect>:
Q: Is there a cycle in this 
graph? 

<Zero-short CoT>:
Let’s think step by step. 

Reordered in BFS order

LLM: 𝓜

Figure 2: Overview of our framework for solving graph problems with LLMs. In node classification task, node
labels no longer represent identifiers; instead, they indicate the categories the nodes belong to.

soning process. Different orders of descriptions060

may emphasize specific paths or parts, provid-061

ing LLMs with different perspectives on the same062

graph structure.063

In this work, we explore the impact of the or-064

der of graph description in solving graph prob-065

lems with LLMs. For comprehensive study, we066

design four graph description orders and catego-067

rized them into graph traversal-based orders, in-068

cluding BFS and DFS, and probability distribution-069

based orders, including PageRank and Personalized070

PageRank. These orders were carefully chosen to071

provide LLMs different perspectives on graph un-072

derstanding: BFS provides a hierarchical traversal,073

DFS offers a deep traversal, PageRank delivers a074

global probability distribution of node importance,075

and Personalized PageRank focuses on a localized076

probability distribution. Given that certain orders077

may influence specific graph reasoning tasks, we078

design six graph tasks spanning varying levels of079

complexity, and we conducted experiments on six080

mainstream LLMs.081

Our main contributions are as follows:082

• We are the first to demonstrate that the order of083

graph descriptions significantly affects the graph084

reasoning performance of LLMs.085

• Through extensive experimentation, we analyzed086

the differential impact of description orders on087

LLMs’ performance across diverse graph reason-088

ing tasks.089

• We introduced the GraphDO (Graph090

Description with Order), a novel dataset091

consisting of a set of graphs, corresponding092

prompts, and predefined description orders,093

which aims to advance the community’s094

understanding of how graph description impacts095

reasoning in LLMs.096

2 Preliminary 097

2.1 Prompt Engineering for Graph 098

Prompt engineering involves strategically de- 099

signing task-specific instructions, referred to as 100

prompts, to guide model output without altering pa- 101

rameters (Sahoo et al., 2024; Collobert and Weston, 102

2008; Mikolov et al., 2013; Sutskever et al., 2014). 103

In this work, we consider a graph G = (V, E), 104

where V denotes the set of nodes and E the set 105

of edges. For encoding graph to text, we define 106

the graph encoding function g(G, o), which maps a 107

graph G and a description order o ∈ O to a descrip- 108

tion in natural language. Additionally, let q(T ) be 109

a function that generates a question Q based on a 110

graph task T , such that q : T 7→ Q, where Q has 111

a standard answer Y . Graph prompting engineer- 112

ing can be formally expressed as an optimization 113

problem focused on determining the optimal order 114

o that maximizes the LLM M’s scoring function 115

S, and is formulated as: 116

max
o∈O

EG,T,Y ∈D S(M(p, g(G, o), q(T )), Y ) (1) 117

where p ∈ P represents the prompt style, D is the 118

dataset consisting of triples (G, T, Y ). 119

To ensure the completeness of our experiments, 120

we set five prompt styles to offer varying levels of 121

heuristic reasoning to LLMs, with more details in 122

Appendix A.1. 123

2.2 Graph Problems 124

We designed six graph reasoning tasks, covering 125

various levels of reasoning complexity and cate- 126

gories. 127

T1 Connectivity In an undirected graph, LLMs 128

need to determine whether a path exists between 129
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two arbitrary nodes u, v ∈ V , which is a binary130

classification problem.131

T2 Cycle In an undirected graph, LLMs need132

to determine if a non-empty path exists where the133

starting and ending nodes are the same, which is a134

binary classification problem.135

T3 Hamilton Path A Hamilton path visits each136

node in V exactly once. The LLMs need to deter-137

mine whether such a path exists in an undirected138

graph G and, if such a path exists, answer the path.139

T4 Shortest Path In an undirected graph, LLMs140

need to answer the complete shortest path between141

two nodes u, v ∈ V .142

T5 Topological Sort In a directed graph G,143

LLMs need to generate a linear ordering of the144

nodes such that for every directed edge (u, v) ∈ E ,145

node u precedes node v in the ordering. This task146

requires finding any valid topological sort of the147

graph, and multiple correct solutions may exist.148

T6 Node Classification In an undirected graph149

composed of nodes with labels, LLMs need to pre-150

dict the label of a certain node which is labeled as151

’?’ based on the labels of its neighbouring nodes.152

There is only one node labeled as ’?’ in each graph.153

The T1-T5 tasks focus on pure graph structures154

to evaluate LLMs’ understanding of graphs. Specif-155

ically, T1 and T2 assess local reasoning, while T3156

to T5 examine global graph understanding. T6157

shifts the focus to graph attribute learning, making158

it more relevant for real-world applications.159

3 Graph Description Generation160

3.1 Graph Encoder161

Graphs can be described in text through multiple162

encoding methods. Fatemi et al. (2023) compared163

several approaches for converting graph data into164

text sequences. Given that our research focuses165

on the order of graph descriptions, we adopted the166

adjacency format, which uses edge lists to repre-167

sent graphs and can be applied to both pure and168

attributed graphs, making it ideal for our study.169

To encode an edge list Lo into a graph descrip-170

tion in adjacency format, we use a template func-171

tion T (·). The process is formalized as:172

g(G, o) = T (G,Lo), o ∈ O (2)173

For pure unweighted graphs (i.e., cycle detec-174

tion, connectivity detection, shortest path, Hamil-175

ton path), the definition of T (·) function is as fol- 176

lows: 177

Prompt Template for Unweighted Graphs
In an undirected/directed graph, (i, j) means that node i
and node j are connected with an edge, and the edges are:
[(0, 1), (1, 3), (3, 5), . . . ].

178

For pure weighted graphs (i.e., shortest path), we 179

define the T (·) as: 180

Prompt Template for Weighted Graphs
In an undirected/directed graph, (i, j, w) means that node i
and node j are connected by an edge with weight w, and
the edges are: [(1, 3, 2), (0, 3, 1), (0, 1, 4), . . . ].

181

For graphs composed of nodes with labels 182

(i.e., node classification), inspired by Das et al. 183

(2023), we define the T (·) as: 184

Prompt Template for Node Classification Task
Adjacency list: [(1758, 2217), (2217, 2645), . . . ]
Node to label mapping: node 1758: label 3 | node 2217:
label 2 | node 2645: label ? | . . .

185

3.2 Graph Description Ordering 186

Beyond the random order, we designed four addi- 187

tional graph description orders for our main exper- 188

iment. Furthermore, two more description orders 189

were employed in the deeper exploration, which 190

will be discussed in the corresponding section. 191

Random Order In random order, the edges E 192

of the graph are shuffled randomly. In previous 193

works, researchers have commonly employed ran- 194

dom graph description orders (e.g., (Wang et al., 195

2023a; Fatemi et al., 2023; Das et al., 2023)). 196

Breadth-First Search (BFS) Order Starting 197

from a random root node v0 ∈ V , BFS generates 198

a sequence of edges by exploring the graph level 199

by level. At each level, for each node v, the edges 200

(v, u), where u ∈ N (v), are added to the sequence 201

before moving to the next level. 202

Depth-First Search (DFS) Order Starting from 203

a node v0 ∈ V , DFS follows a recursive strategy, 204

generating a sequence of edges by traversing as 205

deeply as possible before backtracking. 206

PageRank (PR) Order In PR order, nodes 207

v ∈ V are sorted in descending order by 208

their PageRank scores PR(v), where PR(v) = 209

α
∑

u∈N−1(v)
PR(u)
|N (u)| + (1− α), with α = 0.85 as 210

the damping factor and N−1(v) as the nodes link- 211

ing to v. For each node, starting with the highest- 212

ranked, edges to its neighbors u ∈ N (v) are added 213
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to the edge list LPR. If an edge (v, u) or (u, v) is214

already in LPR, it is skipped.215

Personalized PageRank (PPR) Order PPR216

introduces a personalization vector mechanism217

that prioritizes proximity to specific target218

nodes. The ranking is computed as PRS(v) =219

α
∑

u∈N−1(v)
PRS(u)
|N (u)| +(1−α) · ev, where the pa-220

rameter ev is task-specific and its definition can be221

found in the Appendix A.2. The subsequent com-222

putations follow the same process as in PageRank.223

Note. For DFS and BFS order, when traversing224

the graph G, it is not guaranteed that all edges e ∈ E225

will be included in the edge list L. To avoid this,226

we perform a traversal on the dual graph G∗ of G227

to ensure that the resulting edge list includes all the228

edges in G. For a disconnected graph, the root node229

will be reselected randomly until the graph is fully230

described. This method does not alter the topology231

of G; it merely serves as a means of obtaining L.232

4 Experiments233

4.1 Experimental Settings234

Datasets Our experiments are conducted on the235

GraphDO dataset, introduced in this paper, which236

includes six graph tasks. GraphDO consists of237

8,500 cases, with each case containing a graph de-238

scription, a question, and an answer. Each graph239

description is generated in a specific order. For240

traditional graph tasks (e.g., cycle detection, con-241

nectivity detection, shortest path, Hamilton path,242

topological sort), we employ the Erdős-Rényi (ER)243

graph generation method. We apply a filtering pro-244

cess to the generated graphs to ensure that each245

case has a valid and well-defined solution. For246

the graph learning task (e.g., node classification),247

we conduct experiments on attributed graphs using248

three widely recognized datasets: CORA (McCal-249

lum et al., 2000), Citeseer (Giles et al., 1998), and250

Pubmed (Sen et al., 2008). Since the sizes of these251

real-world citation graphs exceed the input limits252

of LLMs, we employ graph sampling methods, in-253

cluding ego-graph (Ego) and forest fire sampling254

(FF). Since the node classification task requires255

fewer reasoning steps than traditional graph tasks,256

we set the default prompt style to zero-shot. Ad-257

ditional details about the GraphDO dataset can be258

found in Appendix B.259

Models and Settings We use the GPT-3.5-260

TURBO-0613 as the default model (Brown et al.,261

2020). To ensure the generality of our conclusions,262

we also conducte experiments on other models, 263

including LLAMA2-7B-CHAT, LLAMA2-13B- 264

CHAT (Touvron et al., 2023a), QWEN2-7B (Yang 265

et al., 2024), MISTRAL-7B (Jiang et al., 2023), 266

and VICUNA-7B-V1.5 (Zheng et al., 2023). The 267

decoding temperature is set to zero. 268

Metric Performance is measured by accuracy, 269

defined as: 270

Acc =
#correct answers
#total questions

(3) 271

where # represents the number of instances. 272

More judgment details are in Appendix A.3. 273

Baseline We use the random order graph descrip- 274

tion as a baseline to facilitate comparisons with 275

ordered descriptions. 276

4.2 Main Result 277

(Q1) Does the order of graph description impact 278

the LLM’s performance in solving graph prob- 279

lems? As presented in Table 1, ordered graph de- 280

scriptions consistently outperform the random base- 281

line across all traditional graph tasks and prompt 282

configurations. For instance, in the connectivity 283

task, the BFS order achieves an average accuracy 284

of 89.43%, significantly higher than the random 285

order’s 78.36%. Similarly, in the cycle detection 286

task, the BFS order reaches an accuracy of 72.71%, 287

compared to the random order’s 64.50%. Figure 3 288

further illustrates that the random order consistently 289

yields the lowest accuracy across tasks. 290
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Figure 3: The LLM’s average accuracy in solving vari-
ous tasks across different orders.

As presented in Table 2, ordered descrip- 291

tions also consistently outperform the baseline 292

in node classification task. Specifically, in the 293

CORA dataset with ego-graph sampling, PR order 294

achieves 75.33% accuracy, compared to 70.00% 295

for the random order. Similarly, in the Pubmed 296

dataset, PR order reaches 82.67%, which signifi- 297

cantly surpasses the random order’s 72.00%. 298
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Task Order Zero-shot Zero-shot CoT Few-shot CoT CoT-BAG Avg.
C

O
N

N
.

Random 73.93(-) 70.71(-) 81.07(-) 83.93(-) 82.14(-) 78.36(-)
BFS 82.14(↑11.11) 87.50(↑23.74) 89.29(↑10.14) 92.50(↑10.21) 95.71(↑16.52) 89.43(↑14.13)

DFS 79.29(↑7.25) 82.14(↑16.16) 87.14(↑7.49) 88.21(↑5.10) 89.29(↑8.70) 85.21(↑8.75)

PR 77.86(↑5.32) 83.57(↑18.19) 85.71(↑5.72) 84.29(↑0.43) 87.50(↑6.53) 83.79(↑6.93)

PPR 76.79(↑3.87) 81.07(↑14.65) 83.93(↑3.53) 84.64(↑0.85) 86.07(↑4.78) 82.50(↑5.29)

C
Y

C
L

E

Random 51.79(-) 53.57(-) 65.36(-) 75.71(-) 76.07(-) 64.50(-)
BFS 55.71(↑7.57) 56.07(↑4.67) 79.29(↑21.31) 86.07(↑13.68) 86.43(↑13.62) 72.71(↑12.73)

DFS 52.14(↑0.68) 53.93(↑0.67) 73.21(↑12.01) 79.29(↑4.73) 81.07(↑6.57) 67.93(↑5.31)

PR 55.36(↑6.89) 56.43(↑5.33) 70.36(↑7.65) 80.36(↑6.14) 83.21(↑9.39) 69.14(↑7.20)

PPR 54.29(↑4.83) 55.00(↑2.67) 70.00(↑7.10) 79.29(↑4.73) 80.00(↑5.17) 67.72(↑4.99)

H
A

M
PA

T
H

Random 10.71(-) 15.36(-) 40.00(-) 46.07(-) 45.36(-) 31.50(-)
BFS 20.00(↑86.74) 20.71(↑34.83) 57.86(↑44.65) 58.57(↑27.13) 57.14(↑25.97) 42.86(↑36.05)

DFS 33.93(↑216.81) 37.50(↑144.14) 67.50(↑68.75) 63.93(↑38.77) 59.29(↑30.71) 52.43(↑66.44)

PR 15.00(↑40.06) 19.29(↑25.59) 48.93(↑22.32) 55.00(↑19.38) 50.00(↑10.23) 37.64(↑19.50)

PPR 16.43(↑53.41) 18.93(↑23.24) 50.00(↑25.00) 53.93(↑17.06) 50.36(↑11.02) 37.93(↑20.41)

T
O

P
O

S
O

R
T Random 28.93(-) 31.07(-) 58.21(-) 56.07(-) 60.36(-) 46.93(-)

BFS 43.21(↑49.36) 40.36(↑29.90) 67.14(↑15.34) 61.43(↑9.56) 65.00(↑7.69) 55.43(↑18.11)

DFS 42.14(↑45.66) 48.93(↑57.48) 77.86(↑33.76) 74.29(↑32.50) 72.86(↑20.71) 63.21(↑34.71)

PR 35.36(↑22.23) 35.71(↑14.93) 71.07(↑22.09) 58.21(↑3.82) 65.36(↑8.28) 53.14(↑13.24)

PPR 37.14(↑28.38) 39.64(↑27.58) 72.50(↑24.55) 58.93(↑5.10) 66.43(↑10.06) 54.93(↑17.05)

S
PA

T
H

Random 20.00(-) 25.00(-) 26.07(-) 38.93(-) 40.71(-) 30.14(-)
BFS 35.36(↑76.80) 42.50(↑70.00) 45.36(↑73.99) 67.50(↑73.39) 65.71(↑61.41) 51.29(↑70.15)

DFS 32.14(↑60.70) 34.29(↑37.16) 45.00(↑72.61) 58.57(↑50.45) 57.14(↑40.36) 45.43(↑50.71)

PR 30.36(↑51.80) 43.93(↑75.72) 38.93(↑49.33) 43.93(↑12.84) 48.93(↑20.19) 41.21(↑36.74)

PPR 32.50(↑62.50) 44.64(↑78.56) 42.14(↑61.64) 45.36(↑16.52) 49.64(↑21.94) 42.86(↑42.18)

Table 1: Results of the performance of various orders on different graph tasks. (↑) indicates the improvement
compared to the baseline under the same setting.

However, the improvements in node classifica-299

tion task is generally less pronounced than those300

observed in traditional graph tasks. For example, in301

the Pubmed dataset with ego-graph sampling, the302

PR order improves accuracy by 14.82%, which is303

the largest improvment in node classification tasks.304

This suggests that, while ordered descriptions are305

indeed advantageous, their relatively smaller im-306

pact on node classification tasks may be attributed307

to inherent differences in the complexity and rea-308

soning patterns between these tasks.309

We hypothesize that LLMs’ improved perfor-310

mance with ordered descriptions stems from limi-311

tations in positional encoding and attention mech-312

anisms—what we call attention bias. Positional313

encodings, which are meant to provide sequence314

information in transformer models, may not effec-315

tively capture the structural complexity of graph316

data when the input sequence is unordered. Guided317

by positional encodings, attention mechanisms can 318

give undue priority to certain sections of the input 319

based on their order in the sequence, leading to 320

over-dependence on the graph description. 321

(Q2) Is the robustness of LLM to graph descrip- 322

tion order consistent across different tasks? As 323

presented in Figure 4, the variance in LLM perfor- 324

mance across different graph description orders 325

reveals a clear pattern: simpler tasks, such as con- 326

nectivity and cycle detection, consistently exhibit 327

low variance, indicating greater robustness in LLM 328

reasoning. In contrast, more complex tasks like 329

Hamilton path, topological sort, and shortest path 330

show significantly higher variance, reflecting their 331

increased sensitivity to graph description order. No- 332

tably, the shortest path task has the highest variance, 333

as it is the only task that requires reasoning on 334

weighted graphs, where changes in graph descrip- 335
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Sampling Order CORA Citeseer Pubmed
Acc. ∆ Acc. ∆ Acc. ∆

Ego

Random 70.00 - 67.33 - 72.00 -
BFS 72.00 ↑ 2.86 68.67 ↑ 1.99 74.00 ↑ 2.78

DFS 71.33 ↑ 1.90 68.66 ↑ 1.98 77.33 ↑ 7.40

PR 75.33 ↑ 7.61 71.33 ↑ 5.94 82.67 ↑ 14.82

PPR 73.33 ↑ 4.76 69.33 ↑ 2.97 77.33 ↑ 7.40

Forest Fire

Random 79.33 - 68.67 - 69.99 -
BFS 82.67 ↑ 4.21 71.33 ↑ 3.87 74.00 ↑ 5.73

DFS 81.33 ↑ 2.52 70.00 ↑ 1.94 76.00 ↑ 8.59

PR 83.33 ↑ 5.04 71.33 ↑ 3.87 76.00 ↑ 8.59

PPR 82.00 ↑ 3.36 70.67 ↑ 2.91 74.67 ↑ 6.69

Table 2: The accuracy of the LLM in solving node classification task across various orders, datasets, and sampling
methods. ↑ indicates the improvement compared to the baseline under the same setting.
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Figure 4: Variance of LLM accuracy across dif-
ferent graph tasks with varying description orders.
The variance for each task is computed as σ2 =
1

|O|
∑

o∈O (So − µ)
2, where So is the accuracy for or-

der o, µ is the mean accuracy across all orders.

tion greatly affect task complexity.336

The robustness in simpler tasks likely stems from337

their reliance on local substructures, minimizing338

the need for global reasoning and allowing LLMs339

to focus on individual graph components without340

considering the overall structure. As a result, even341

when the graph description order varies, the model342

can extract the necessary information with minimal343

disruption. In contrast, the higher variance in more344

complex tasks can be attributed to the need for345

global reasoning, which is heavily influenced by346

the order of the input sequence. Counterintuitively,347

even when using CoT to encourage LLMs to en-348

gage in rational thinking and provide reasoning349

steps, the variance did not significantly decrease.350

A reason for this phenomenon could be that CoT351

encourages the LLMs for "slow thinking" about352

the question, but does not necessarily mitigate the353

attention bias to graph structure during CoT rea-354

soning steps (Wang et al., 2023b). 355

(Q3) Does a specific graph description order 356

favor certain graph tasks? As presented in Ta- 357

ble 1, BFS generally outperforms DFS in tasks like 358

cycle detection, connectivity detection, and shortest 359

path. For example, BFS achieves 72.71% accuracy 360

in cycle detection, 7.04% higher than DFS achieves 361

67.93%. Conversely, for tasks requiring deeper ex- 362

ploration, such as topological sort and Hamilton 363

path, DFS performs better. 364

Figure 5 provides further insights. In connectiv- 365

ity, BFS exceeds the random baseline by 14.1%, 366

while DFS improves upon it by 8.8%. In the short- 367

est path task, BFS improves accuracy by 70.1%, 368

outperforming DFS by 12.9%. Conversely, in the 369

Hamilton path task, DFS surpasses the random or- 370

der by 66.4% and outperforms BFS by 22.3%. 371

Tasks like cycle and connectivity detection, 372

which focus on local connectivity, benefit from 373

BFS’s level-wise traversal, allowing the LLM to 374

efficiently extract adjacent connections and form 375

accurate local representations. For shortest path 376

problems, BFS ensures the shortest path is found 377

once the target node is reached. In contrast, tasks 378

like Hamilton path and topological sort require a 379

deeper understanding of global structures, where 380

DFS excels by thoroughly exploring paths and cap- 381

turing global dependencies. 382

For node classification task, as demonstrated in 383

Table 2, the PR order consistently outperforms the 384

PPR across all datasets, while PPR generally per- 385

forms better than traversal-based orders. 386

We hypothesize that when LLMs reason based 387

on PR-ordered graph descriptions, their focus on 388

local features may lead to overfitting to the local 389
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Figure 5: The improvement of average accuracy (calculated as the mean across all prompt types) of the LLM
between a graph description in one order (horizontal axis) and its average accuracy on graph descriptions in other
orders (vertical axis).
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Figure 6: Results of the accuracy of various orders on
shortest path task.

neighborhood, thereby limiting their ability to cap-390

ture broader patterns. Additionally, node classifi-391

cation task often require a more comprehensive392

understanding of the global graph structure, as393

nodes within the same category may be distributed394

across multiple regions, making local information395

inadequate for accurate classification. As for why396

probability distribution-based orders outperform397

traversal-based orders, we believe it is because the398

classification of the query node is influenced by its399

neighboring nodes, making it less suitable to infer400

from traversal-based graph descriptions.401

5 Deeper Exploration402

Better graph understanding or just more over-403

lap with the answer? Inspired by the finding404

of Q3, we considered whether the improved LLM405

performance on graph problems is due to the or-406

dered graph descriptions containing all or part of407

the ground truth. For example, in the shortest path408

problem, the BFS and DFS edge lists may partially409

overlap with the correct shortest path.410

To validate this hypothesis, We designed two411

extreme orders for shortest path task:412

• Shortest Path Order: Edges are ordered based413

on the shortest path from the root node v0 to the 414

target node vt. 415

• Longest Path Order: Edges are ordered accord- 416

ing to the longest path from v0 to vt. 417

We test the two orders on a subset of GraphDO, 418

and the results are shown in Figure 6. The short- 419

est path order, which has the highest overlap with 420

the answer, achieves 78.57% accuracy with the 421

CoT prompt, a 16.4% improvement over BFS. In 422

contrast, the accuracy of the longest path order is 423

nearly identical to the random order. Although the 424

shortest path order shows significant improvement, 425

it still falls significantly short of 100%, indicat- 426

ing that while overlap with the answer has some 427

influence, it is not the sole factor. This confirms 428

that ordered graph descriptions can indeed enhance 429

LLMs’ understanding of graphs. 430

Model Comparison Study We repeat a subset 431

of the experiments from Table 1 on five open- 432

source LLMs to test the generalizability of our 433

findings. As demonstrated in Figure 7, similar 434

patterns emerged, consistent with previous results, 435

though the effects were less pronounced than with 436

GPT-3.5-TURBO-0613. We attribute this to the 437

relatively weaker reasoning abilities of these open- 438

source models and their limited capacity to map 439

textual graph descriptions to conceptual spaces (Pa- 440

tel et al., 2021). Consequently, graph order has 441

a smaller impact on these models compared to 442

GPT-3.5-TURBO-0613. Additionally, some mod- 443

els demonstrate superior performance in specific 444

tasks. For example, although QWEN2-7B does not 445

excel in other tasks, it shows outstanding perfor- 446

mance in the connectivity task, even surpassing 447

LLAMA2-13B-CHAT with larger capacity. 448
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Figure 7: The impact of model differences on solving graph reasoning problems.

6 Related Work449

LLMs Reasoning LLMs’ reasoning and450

common-sense skills are applied to decision-451

making and action tasks in various domains. Yao452

et al. (2022) proposed ReAct, a prompting method453

that synergizes thinking and action, making it454

particularly effective for more complex problems455

involving autonomous planning and exploration.456

Madaan et al. (2023) introduced Self-Refine, a457

feedback-driven iterative refinement approach458

to rectify the mistakes and hallucinations during459

the inference time of LLM reasoning. Shinn460

et al. (2023) proposed Reflexion, which uses461

linguistic feedback stored in episodic memory to462

enhance decision-making in language agents. Sun463

et al. (2023) presented AdaPlanner, a closed-loop464

approach that enables LLM agents to refine their465

plans adaptively in response to environmental466

feedback, integrating in-plan and out-of-plan467

strategies to improve sequential decision-making.468

More recently, Zhou et al. (2023) introduced469

Language Agent Tree Search (LATS), a framework470

that combines Monte Carlo Tree Search with471

LM-powered value functions and self-reflections,472

enabling more deliberate and adaptive decision by473

integrating reasoning, acting, and planning.474

Graph Reasoning with LLMs Wang et al.475

(2023a) introduced NLGraph, a benchmark of476

graph problems in natural language, and proposed477

Build-a-Graph and Algorithmic prompting to im-478

prove LLM performance. Fatemi et al. (2023) con-479

ducted the first comprehensive study on encoding480

graph-structured data as text for LLMs, revealing 481

that task performance depends on encoding meth- 482

ods, graph tasks, and graph structure. Zhao et al. 483

(2023) presented graphtext, a framework that con- 484

verts graphs into natural language using a graph- 485

syntax tree, enabling facilitating interactive com- 486

munication between humans and LLMs. Wei et al. 487

(2024) proposed GITA, an end-to-end framework 488

that integrates visual graphs into general graph rea- 489

soning. Das et al. (2023) encode a graph with 490

diverse modalities to enhance LLM efficiency in 491

processing complex graph structures. 492

7 Conclusion 493

In this work, we conduct the first comprehen- 494

sive analysis of how graph description order af- 495

fects LLM performance in solving graph problems. 496

Our findings demonstrate that ordered graph de- 497

scriptions significantly enhance LLMs’ ability to 498

comprehend and reason about graph structures, 499

a crucial discovery that could reshape the way 500

we approach graph reasoning tasks. Additionally, 501

through detailed analysis of various graph descrip- 502

tion orders, we observe that the impact of order 503

on performance is closely tied to the intrinsic char- 504

acteristics of each task. We believe that the over- 505

reliance on graph descriptions stems from limita- 506

tions in positional encoding—what we refer to as 507

attention bias. Lastly, we int roduce the GraphDO 508

dataset, which aims to advance the community’s 509

understanding of how graph descriptions influence 510

reasoning in LLMs, providing a valuable bench- 511

mark for future research in this area. 512
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Limitations513

While our work demonstrates the critical role that514

the order of graph descriptions plays in LLMs’ un-515

derstanding of graphs, we have not explored the516

impact of this order on different graph structures517

and types in greater depth. Additionally, although518

we conducted some in-depth analyses, we did not519

provide a rigorous mathematical and theoretical ex-520

planation for the phenomena observed in this paper,521

which warrants further experimental investigation.522

Ethics Statement523

In conducting our research, we place paramount524

importance on ethical standards to ensure integrity525

and contribute positively to the scientific commu-526

nity. We exclusively utilize open-source datasets,527

ensuring that our work is built upon accessible528

and transparent resources. Our methods employ529

models that are either open-source or have gained530

wide recognition for their reliability and ethical use531

within the academic community. Furthermore, we532

have meticulously designed our methodology to533

prevent the generation of harmful or misleading534

information, thereby safeguarding the integrity of535

our findings.536
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A Additional experimental details842

A.1 Prompt Design843

We employe various prompting methods in our844

experiments. We briefly introduce these methods845

here:846

• Zero-shot: Zero-shot prompting only provides847

the task description and uses zero exemplars, re-848

quiring the model to generate the desired output.849

• Zero-shot CoT (Wei et al., 2022): Zero-shot850

CoT prompting involves appending a thought851

inducing phrase "Let’s think step by step."852

• Few-shot(Brown et al., 2020) : Few-shot853

prompting provides the LLM with a few exem-854

plars, including task descriptions and expected855

outputs, to guide its learning.856

• Chain-of-Thought (CoT) (Wei et al., 2022):857

CoT prompting provides the model with a series858

of exemplars, each demonstrating a step-by-step859

approach to solving the task. It encourages the860

LLM to articulate its reasoning process before861

presenting the final answer.862

• CoT-BAG(Wang et al., 2023a): Similar to CoT,863

but CoT-BAG prompting appends the phrase864

"Let’s construct a graph with the nodes and865

edges first" at the end of the text to guide the866

model’s reasoning process.867

A more detailed explanation can be found in868

Table 3.869

A.2 Personalization Vector870

For the Personalized PageRank (PPR) order, the871

personalization vector ev is defined in a task-872

specific manner. The definitions for various tasks873

are as follows:874

T1 Connectivity For the two queried nodes u875

and v, the personalization vector is defined as:876

eu = ev = 0.5 and ew = 0 ∀w ∈ V \{u, v}.877

T2 Cycle If a cycle C exists, the personalization878

vector ev is uniformly distributed across the nodes879

forming the cycle, with the sum equal to 1:880

ev =
1

|C|
∀v ∈ C, ew = 0 ∀w ∈ V \ C.881

If no cycle exists, ev is uniformly distributed across882

all nodes:883

ev =
1

|V|
∀v ∈ V.884

T3 Hamiltonian Path For the nodes along the 885

Hamiltonian path H, the personalization vector is 886

uniformly distributed, with the sum equal to 1: 887

ev =
1

|H|
∀v ∈ H, ew = 0 ∀w ∈ V \ H. 888

Here, H represents the set of nodes on the Hamil- 889

tonian path. 890

T4 Shortest Path For the nodes along the short- 891

est path Puv between two nodes u and v, the per- 892

sonalization vector is uniformly distributed, with 893

the sum equal to 1: 894

ev =
1

|Puv|
∀v ∈ Puv, ew = 0 ∀w ∈ V\Puv. 895

Here, Puv represents the set of nodes on the short- 896

est path between nodes u and v. 897

T5 Topological Sort For the nodes with in- 898

degree 0 in a directed acyclic graph, the person- 899

alization vector is uniformly distributed, with the 900

sum equal to 1: 901

ev =
1

|V0|
∀v ∈ V0, ew = 0 ∀w ∈ V \ V0, 902

where V0 represents the set of nodes with in-degree 903

0. 904

T6 Node Classification The personalization vec- 905

tor is defined based on the shortest path distance 906

δ(v) from the target node v0 to each node v, with 907

the formula: 908

ev =
∆− δ(v) + 1∑

u∈V(∆− δ(u) + 1)
, 909

where δ(v) is the shortest path distance from node 910

v0 to node v, and ∆ represents the maximum short- 911

est path distance from v0 to any node in the graph. 912

A.3 Response Parser 913

For GPT series models, we utilize string matching 914

to parse responses. In binary classification tasks, 915

such as cycle detection and connectivity detection, 916

we extract answers by matching specific keywords 917

like "there is a cycle" or "there is no cycle" to assess 918

correctness. Path-related tasks are more complex: 919

we first locate the approximate position of the path 920

by matching keywords such as "the shortest path 921

from x to x," then use numerical matching to extract 922

the node indices and evaluate whether the path 923

satisfies the task requirements. 924
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Prompt Style Prompt Template
Zero-shot Graph: <Graph Description> \n Question: <Question> \n Answer:

Zero-shot CoT Graph: <Graph Description> \n Question: <Question> Let’s think step by step. \n Answer:

Few-shot Graph: <Example Graph Description> \n Question: <Example question> Answer: <Example Answer> \n
... (more few-shot examples) \n Graph: <Graph Description> \n Question: <Question> \n Answer:

CoT Graph: textcolorblack<Example Graph Description> \n Question: <Example Question> Answer: <Example
Answer with CoT> \n ... (more examples with CoT) \n Graph: <Graph Description> \n Question:
<Question> \n Answer:

CoT-BAG Graph: <Example Graph Description> \n Question: <Example Question> Answer: <Answer with CoT> \n
... (more examples with CoT) \n Graph: <Graph Description> \n Question: <Question> \n Let’s construct a
graph with the nodes and edges first \n Answer:

Table 3: Prompt styles and their corresponding templates for graph reasoning tasks.

However, for open-source LLMs, the weaker925

in-context learning abilities of smaller models com-926

pared to GPT make it difficult for them to repli-927

cate the provided example responses, complicating928

answer extraction through string matching. Ad-929

ditionally, differences in training data and meth-930

ods often result in distinct response styles across931

LLMs, further hindering the use of parsers. De-932

signing a custom parser for each LLM would sig-933

nificantly increase the workload. Therefore, we934

employe GPT to verify whether the responses of935

open-source LLMs align with the correct answers.936

B GraphDO937

B.1 Graph Generation938

For traditional graph tasks, we employe the Erdős-939

Rényi (ER) graph generation method. Specifically,940

we set the number of nodes n and a connection941

probability p, where any two nodes are connected942

with probability p. Edges can be directed or undi-943

rected based on the task. In our experiments, we944

chose n between 5 and 15, as previous studies have945

shown that LLMs demonstrate more consistent rea-946

soning abilities on graphs of this size, making them947

suitable for detecting patterns in LLM performance948

(Wang et al., 2023a; Cao et al., 2024). The connec-949

tion probability p was fixed at 0.3 to ensure that950

the graphs had a moderate level of sparsity, which951

is crucial for evaluating the reasoning capabilities952

of LLMs without generating overly dense or trivial953

graph structures. Additionally, given the diversity954

of the tasks, we filtered the generated graphs to955

guarantee that each instance had a valid and well-956

defined solution. For example, in the shortest path957

problem, we ensure that a valid path always exists958

between the start and end nodes.959

B.2 Sampling 960

For node classification task, given that the data is 961

sourced from real-world datasets, graph sampling 962

is necessary. Below, we outline the two sampling 963

methods used. 964

Ego Starting from a selected central node, we ex- 965

pand the subgraph by including neighboring nodes 966

within a fixed hop distance of 3, ensuring that the 967

resulting subgraph contains 50 nodes. 968

Forest Fire Propagating from a selected seed 969

node to neighboring nodes with a probability of 970

0.3 continues until 50 nodes are included or no 971

further propagation is possible. 972

For the sampled subgraphs, the graphs are con- 973

verted into text-based descriptions using various 974

orders. 975

B.3 Statistics 976

Using the above methodology, we collecte a total 977

of 1,700 graphs (280 × 5 + 50 × 3 × 2). We en- 978

code the graphs in adjacency format and then sorted 979

the edges according to different orders, converting 980

them into text sequences in natural language. This 981

resulted in 8,500 graph cases, with each case con- 982

sisting of a graph description, a question, and an 983

answer. 984

C Implementation Details 985

We deploy the open-source LLMs for our experi- 986

ments on a 4 × A800 server. The decoding tem- 987

perature was set to zero. We use the NetworkX 988

library (Hagberg et al., 2008) to generate the ran- 989

dom graphs and to find the answers to the graph 990

problems. The node classification experiments pre- 991

sented in Table 2 were repeated three times due 992

to the limited sample size and the prompt is set as 993

zero-shot. When calculating PageRank score, the 994
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default weight of edges in an unweighted graph is995

set to 1.996

D Case Analysis997

As shown in Table 4 and Table 5, although GPT an-998

swered most of the questions correctly, its imitation999

of the CoT provided in the prompt was incomplete,1000

demonstrating limited in-context learning ability.1001

In the erroneous examples presented in Table 5,1002

GPT exhibited reasoning that appeared logically1003

sound, but factual errors were made, which can be1004

attributed to the phenomenon of hallucination in1005

LLMs.1006
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Question Answer of gpt-3.5-0613

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0,1) (0,2) (1,5) (1,2) (1,3) (2,5).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 2 and node 3?
Answer: Node 2 is connected to node 1, node 1 is connected to node 3. We can
follow the path: 2->1->3, so the answer is yes.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0,2) (0,5) (0,6) (1,3) (1,4) (2,5) (2,6) (3,4) (5,6).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 5 and node 4?
Answer: Node 5 is in the connected block consisted of node 0, node 2, node 5,
and node 6. Node 4 is in the connected block consisting of node 1, node 3, and
node 4. Node 5 and node 4 are not in the same connected block, so the answer is
no.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (4,0) (4,1) (4,2).
Question: Determine if there is a path between two nodes in the graph. Is there a
path between node 0 and node 2?
Answer:

Node 0 is connected to node 4, and node
4 is connected to node 2. We can follow
the path: 0->4->2, so the answer is yes.
✓

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (3,4) (3,5) (1,0) (2,5) (2,0).
Question: Is there a cycle in this graph?
Answer: No, there is no cycle in this graph.

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (3,5) (1,0) (3,0) (3,4) (4,1) (2,3).
Question: Is there a cycle in this graph?
Answer: The edges (3,0), (1,0), (4,1), (3,4) form a cycle, so yes, there is a cycle in
this graph.

Graph: In an undirected graph, (i,j) means that node i and node j are connected
with an edge, and the edges are: (1,3) (1,0) (4,0) (4,2).
Question: Is there a cycle in this graph?
Answer:

No, there is no cycle in this graph. The
graph forms a tree-like structure without
any closed loops. ✓

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 1, 2) (1, 4, 1) (0, 2, 1) (2, 3, 1) (3, 4,
2).
Question: Give the shortest path from node 0 to node 4.
Answer: All the paths from node 0 to node 4 are: 0,1,4 with a total weight of 2 +
1 = 3,
0,2,3,4 with a total weight of 1 + 1 + 2 = 4.
The weight of path 0,1,4 is the smallest, so the shortest path from node 0 to node
4 is 0,1,4 with a total weight of 3.

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 3, 2) (0, 4, 1) (0, 2, 1) (4, 1, 2) (2, 1,
1) (3, 2, 4) (2, 4, 1) (3, 4, 2).
Question: Give the shortest path from node 3 to node 1.
Answer: All the paths from node 3 to node 1 are: 3,2,1 with a total weight of 4 +
1 = 5,
3,2,4,1 with a total weight of 4 + 1 + 2 = 7,
3,4,1 with a total weight of 2 + 2 = 4,
3,4,2,1 with a total weight of 2 + 1 + 1 = 4, 3,0,4,1 with a total weight of 2 + 1 +
2 = 5,
3,0,2,1 with a total weight of 2 + 1 + 1 = 4, 3,4,2,4,1 with a total weight of 2 + 1 +
1 + 2 = 6.
The weight of path 3,4,1 is the smallest, so the shortest path from node 3 to node
1 is 3,4,1 with a total weight of 4.

Graph: In an undirected graph, (i, j, w) means that nodes i and j are connected by
an edge with weight w, and the edges are: (0, 4, 4) (0, 3, 3) (0, 1, 3) (1, 4, 4) (2, 4,
2) (2, 3, 1) (3, 4, 1).
Question: Give the shortest path from node 0 to node 2.

To find the shortest path from node 0 to
node 2 in the given graph, we can use
Dijkstra’s algorithm. Let’s calculate the
shortest path step by step:

* Start at node 0.
* From node 0, we can go to node 1 with
weight 3 and to node 3 with weight 3.
* From node 1, we can go to node 4 with
weight 4.
* From node 3, we can go to node 2 with
weight 1.

Therefore, the shortest path from node
0 to node 2 is 0 → 3 → 2 with a total
weight of 3 + 1 = 4. ✓

Table 4: Cases of the questions and the responses of GPT-3.5-TURBO-0613.
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Question Answer of gpt-3.5-0613

Graph: In a directed graph, (i, j) means that node i and node j are connected with
an edge, and the edges are: (0, 4), (0, 1), (2, 1), (3, 2).
Question: Give any topological sorting of the graph.
Answer: First, I need to find the nodes with an in-degree of 0: 0,3. Then, I will
traverse these nodes in sequence: starting from node 0, I traverse nodes 4, 1.
Since node 4 and node 1 depend on node 0, after node 0 is visited, nodes 4 and 1
can be visited. Starting from node 3, I traverse node 2. Since node 2 depends on
node 3, after node 3 is visited, node 2 can be visited. So the topological sequence
of the graph is 0, 3, 4, 2, 1.

Graph: In a directed graph, (i, j) means that node i and node j are con-
nected with an edge, and the edges are: (0, 1), (1, 2), (3, 1), (3, 2), (4, 3), (4, 0),
(4, 1).
Question: Give any topological sorting of the graph.
Answer: First, I need to find the nodes with an in-degree of 0: 4. Then, I will
traverse these nodes in sequence: starting from node 4, I traverse nodes 0, 1, 3.
Since node 0 and node 3 both depend on node 4, after node 4 is visited, nodes
0 and 3 can be visited. Since visiting node 1 requires visiting nodes 0 and 3
first, after node 0 and node 3 are visited, node 1 can be visited. Since visiting
node 2 requires visiting nodes 1 and 3 first, after node 1 and node 3 are vis-
ited, node 2 can be visited. So the topological sequence of the graph is 4, 0, 3, 1, 2.

Graph: In a directed graph, (i, j) means that node i and node j are connected with
an edge, and the edges are: (0, 3), (1, 2), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2).
Question: Give any topological sorting of the graph.
Answer:

To find a topological sorting of the given
directed graph, we can follow the steps
of Kahn’s algorithm. Here’s how we can
do this for the provided graph:

* Find nodes with in-degree 0.
* Start with these nodes and remove their
outgoing edges.
* Repeat until all nodes are visited.
* For the given graph with edges: (0, 3),
(1, 2), (3, 2), (4, 1), (4, 2), (5, 1), (5,
2), the topological sorting could be as
follows: 0, 4, 5, 1, 3, 2

This sequence satisfies the topological
order where each node appears after its
dependencies. ✓

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (4, 2), (0, 4), (4, 3), (0, 1), (0, 2), (4, 1), (2, 3).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer: Yes. We can start at node 0. As node 0 is connected with node 1, and
node 1 is not visited, we can then visit node 1. As node 1 is connected with node
4, and node 4 is not visited, we can then visit node 4. As node 4 is connected with
node 2, and node 2 is not visited, we can then visit node 2. As node 2 is connected
with node 3, and node 3 is not visited, we can then visit node 3. Therefore, the
path can be: 0, 1, 4, 2, 3.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0, 4), (1, 5), (3, 1), (4, 2), (3, 5), (2, 1), (1, 4), (2,
5).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer: Yes. We can start at node 1. As node 1 is connected with node 3, and
node 3 is not visited, we can then visit node 3. As node 3 is connected with node
5, and node 5 is not visited, we can then visit node 5. As node 5 is connected
with node 2, and node 2 is not visited, we can then visit node 2. As node 2 is
connected with node 4, and node 4 is not visited, we can then visit node 4. As
node 4 is connected with node 0, and node 0 is not visited, we can then visit node
0. The path can be: 1, 3, 5, 2, 4, 0.

Graph: In an undirected graph, (i, j) means that node i and node j are connected
with an edge, and the edges are: (0, 2), (0, 4), (0, 1), (1, 3), (1, 2), (3, 4).
Question: Is there a path in this graph that visits every node exactly once? If yes,
give the path. Note that in a path, adjacent nodes must be connected with edges.
Answer:

Yes, there is a path that visits every node
exactly once in this graph.

We can start at node 0. Then we can
visit node 1, as it is connected to node
0. Next, we move to node 3 since it is
connected to node 1. After that, we visit
node 4 which is connected to node 3.
Finally, we can move to node 2 from
node 4, completing the path.

Therefore, the path that visits every node
exactly once is: 0, 1, 3, 4, 2. ✗

Table 5: Cases of the questions and the responses of GPT-3.5-TURBO-0613.
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