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ABSTRACT

Current Deep Neural Network (DNN) backdooring attacks rely on adding static
triggers (with fixed patterns and locations) on model inputs that are prone to detec-
tion. In this paper, we propose the first class of dynamic backdooring techniques:
Random Backdoor, Backdoor Generating Network (BaN), and conditional Back-
door Generating Network (c-BaN). Triggers generated by our techniques have
random patterns and locations. In particular, BaN and c-BaN based on a novel
generative network are the first two schemes that algorithmically generate triggers.
Moreover, c-BaN is the first conditional backdooring technique that given a target
label, it can generate a target-specific trigger. Both BaN and c-BaN are essen-
tially a general framework which renders the adversary the flexibility for further
customizing backdoor attacks. We extensively evaluate our techniques on three
benchmark datasets and show that our techniques achieve almost perfect attack
performance on backdoored data with a negligible utility loss. More importantly,
our techniques can bypass state-of-the-art defense mechanisms.

1 INTRODUCTION

Recent research has shown that deep neural network (DNN) models are vulnerable to various secu-
rity and privacy attacks (Papernot et al., 2016; 2017; Shokri et al., 2017; Salem et al., 2019; 2020;
Tramer et al., 2016; Oh et al., 2018). One such attack that receives a large amount of attention is
backdoor, where an adversary trains a DNN model which can intentionally misclassify any input
with an added frigger (a secret pattern constructed from a set of neighboring pixels) to a specific
target label. Backdoor attacks can cause severe security consequences. For instance, an adversary
can implant a backdoor in an authentication system to grant herself unauthorized access.

Existing backdoor attacks generate static triggers, in terms of fixed trigger pattern and location
(on the model input). For instance, Figure la shows an example of triggers constructed by Bad-
Nets (Gu et al., 2017), one popular backdoor attack method, on the CelebA dataset (Liu et al., 2015).
As we can see, BadNets in this case uses a white square as
a trigger and always places it in the top-left corner of an
input. This static nature of triggers has been leveraged to
create most of the current defenses against the backdoor
attack (Wang et al., 2019; Liu et al., 2019a; Gao et al.,
2019).

In this paper, we propose the first class of backdooring
techniques against deep neural network models that gen-
erate dynamic triggers, in terms of trigger pattern and lo-
cation. We refer to our techniques as dynamic backdoor
attacks. Figure 1b shows an example. Dynamic backdoor (b) Dynamic backdoor

attacks offer the adversary more flexibility, as they allow

triggers to have different patterns and locations. More- Figure 1: A comparison between static
over, our techniques largely reduce the efficacy of the cur- and dynamic backdoors on CelebA.
rent defense mechanisms demonstrated by our empirical

evaluation. In addition, we extend our techniques to work

for all labels of the backdoored DNN model, while the current backdoor attacks only focus on a
single or a few target labels. This further increases the difficulty of our backdoors being mitigated.
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In total, we propose 3 different dynamic backdoor techniques, i.e., Random Backdoor, Backdoor
Generating Network (BaN), and conditional Backdoor Generating Network (c-BaN). In particular,
the latter two attacks algorithmically generate triggers to mount backdoor attacks which are first of
their kind.

To demonstrate the effectiveness of our proposed techniques, we perform empirical analysis with
three DNN model architectures over three benchmark datasets. All of our techniques achieve almost
a perfect backdoor accuracy, i.e., the accuracy of the backdoored model on the backdoored data
is approximately 100%, with a negligible utility loss. Moreover, we show that our techniques can
bypass three state-of-the-art backdoor defense techniques, namely Neural Cleanse (Wang et al.,
2019), ABS (Liu et al., 2019a), and STRIP (Gao et al., 2019). In general, our contributions can be
summarized as follows: 1) We broaden the class of backdoor attacks by introducing the dynamic
backdoor attacks. 2) We propose both BaN and c-BaN, which are the first algorithmic backdoor
paradigm. 3) Our dynamic backdoor attacks achieve strong performance while bypassing the current
state-of-the-art backdoor defense techniques.

2 RELATED WORK

Backdoor Attacks: Gu et al. (Gu et al., 2017) introduce BadNets, the first backdoor attack on DNN
models. BadNets uses the MNIST dataset and a square-like trigger with a fixed location, to show the
applicability of the backdoor attacks in the DNN settings. Liu et al. (Liu et al., 2019b) later propose
a more advanced backdooring technique, namely the Trojan attack. They simplify the threat model
of BadNets by eliminating the need for access to the training data used to train the target model.
The main difference between these two attacks (BadNets and Trojan attacks) and our work is that
both attacks only consider static backdoors in terms of triggers’ pattern and location. Our work
extends the backdoor attacks to consider dynamic patterns and locations of the triggers. We focus
on backdoor attacks against image classification models, but backdoor attacks can be extended to
other scenarios, such as Federated Learning (Wang et al., 2020), Video Recognition (Zhao et al.,
2020), Transfer Learning (Yao et al., 2019), and Natural language processing (NLP) (Chen et al.,
2020).

To increase the stealthiness of the backdoor, Saha et al. (Saha et al., 2020) propose to transform the
backdoored images into benign-looking ones, which makes them harder to detect. Lie et al. (Liu
et al., 2020) introduce another approach, namely, the reflection backdoor (Refool), which hides the
triggers using mathematical modeling of the physical reflection property. Another line of research
focuses on exploring different methods of implementing backdoors into target models. Rakin et
al. (Rakin et al., 2020) introduce the Targeted Bit Trojan (TBT) technique, which instead of training
the target model, flips some bits in the target models’ weights to make it misclassify all the inputs.
Tang et al. (Tang et al., 2020) present a different approach, where the adversary appends a small
Trojan module (TrojanNet) to the target model instead of fully retraining it.

Defenses Against Backdoor Attacks: Wang et al. (Wang et al., 2019) propose Neural Cleanse
(NC), a backdoor defense method based on reverse engineering. For each output label, NC tries
to generate the smallest trigger, which converts the output of all inputs applied with this trigger to
that label. NC then uses anomaly detection to find if any of the generated triggers are actually a
backdoor or not. Later, Liu et al. (Liu et al., 2019a) propose another model-based defense, namely,
ABS. ABS detects if a target model contains a backdoor or not, by analyzing the behaviour of the
target model’s inner neurons when introducing different levels of stimulation. Also, Gao et al. (Gao
et al., 2019) propose STRIP, a backdoor defense method based on manipulating the input, to find
out if it is backdoored or not. More concretely, STRIP fuses the input with multiple clean data, one
at a time. Then it queries the target model with the generated inputs, and calculate the entropy of the
output labels. Backdoored inputs tend to have lower entropy than the clean ones.

Besides the above, there are multiple other types of attacks against deep neural network models,
such as adversarial examples (Vorobeychik & Li, 2014; Carlini & Wagner, 2017; Li & Vorobeychik,
2015; Tramer et al., 2017; Xu et al., 2018), poisoning attack (Jagielski et al., 2018; Suciu et al.,
2018; Biggio et al., 2012), and property inference (Ganju et al., 2018; Melis et al., 2019).
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3 DYNAMIC BACKDOORS

3.1 THREAT MODEL

The dynamic backdoor attack is a training time attack, i.e., the adversary is the one who trains the
backdoored DNN model. To implement our attack, we assume the adversary controls the training
of the target model and has access to the training data following previous works (Gu et al., 2017;
Yao et al., 2019; Chen et al., 2020). To launch the attack (after publishing the model), the adversary
first adds a trigger to the input and then uses it to query the backdoored model. This can happen
either digitally, where the adversary digitally adds the trigger to the image, or physically, where the
adversary prints the trigger and places it on the image. This added trigger makes the backdoored
model misclassify the input to the target label.

3.2 RANDOM BACKDOOR

We start by presenting our Random Backdoor technique. Abstractly, the Random Backdoor tech-
nique constructs triggers by sampling them from a uniform distribution, and adding them to the
inputs at random locations. We first introduce using Random Backdoor to implement a dynamic
backdoor for a single target label, then we generalize it to multiple target labels.

Single Target Label: In this setting, we construct a set of triggers (7)) and a set of possible locations
(K), such that for any trigger sampled from 7 and added to any input at a random location sampled
from /C, the model will output the specified target label. More formally, for any location x; € K,
any trigger t; € T, and any input z; € X: Mpq(A(z;,t;, k;)) = £, where £ is the target label, T
is the set of triggers, /C is the set of locations, M, is the backdoored model, and A is the backdoor
adding function (it adds the trigger ¢; to the input z; at the location &;).

To implement such a backdoor, an adversary needs to first select her desired trigger locations and
create the set of possible locations /. Then, she uses both clean and backdoored data to update
the model for each epoch similar to the BadNets technique but with two differences. First, instead
of using a fixed trigger for all inputs, each time the adversary wants to add a trigger to an input,
she samples a new trigger from a uniform distribution, i.e., ¢ ~ U(0,1). Here, the set of possible
triggers 7 contains the full range of all possible values for the triggers, since the trigger is randomly
sampled from a uniform distribution. Second, instead of placing the trigger in a fixed location, she
places it at a random location x, sampled from the predefined set of locations, i.e., K € K. Note that
Random Backdoor is not only limited to uniform distribution, other distributions, such as Gaussian
distribution, can be used as well.

Multiple Target Labels: Next, we consider the more complex case of having multiple target labels.
Without loss of generality, we consider implementing a backdoor for each label in the dataset. This
means that for any label ¢; € L, there exists a trigger ¢ which when added to the input x at a location
k, will make the model My, output ¢;. More formally, V¢; € £ 3¢,k : Mpg(A(x,t,x)) = ¢;. To
achieve the dynamic backdoor behaviour, each target label should have a set of possible triggers and
a set of possible locations.

We generalize the Random Backdoor technique by dividing the set of
possible locations K into disjoint subsets for each target label, while

keeping the trigger construction method the same as in the single tar-
get label case, i.e., the triggers are still sampled from a uniform distri-
bution. For instance, for the target label ¢;, we sample a set of possible
locations /C;, where C; is subset of IC (KC; C K). The adversary can =~ d = — = — = — — — — L

construct the disjoint sets in two steps. First, the adversary selects
all possible triggers locations and constructs the set K. Second, for # # ¢

each target label ¢;, she constructs the set of possible locations for
this label C; by sampling the set K. Then, she removes the sampled
locations from the set K. We propose a simple algorithm to assign
the locations for the different target labels. Concretely, we uniformly Figure 2: An illustration
split the image into non-intersecting regions, and assign a region for of our location setting tech-
each target label, in which the triggers’ locations can move vertically. nique for 6 target labels.
Figure 2 shows an example of our location setting technique for a use

case with 6 target labels. We stress that this is one way of dividing the location set C to the different
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target labels. However, an adversary can choose a different way of splitting the locations inside X
to the different target labels. The only requirement the adversary has to fulfill is to avoid assigning
a location for different target labels. Later, we will show how to overcome this limitation with our
more advanced c-BaN technique.

3.3 BACKDOOR GENERATING NETWORK (BAN)

Our Random Backdoor technique successfully implements dynamic triggers, however, it offers the
adversary limited flexibility as triggers are sampled from a fixed distribution. Moreover, the triggers
are sampled independently of the target model. In other words, the Random Backdoor technique
does not search for the best triggers to implement the backdoor attack. To address these limita-
tions, we introduce our second technique to implement dynamic backdoors, namely, BaN, the first
approach to algorithmically generate backdoor triggers.

BaN is inspired by the state-of-the-art generative model, i.e., GANs (Goodfellow et al., 2014). It
trains a generator with the target model as the discriminator to learn the best patterns for a backdoor
trigger. After training, BaN can generate a trigger (¢) for each noise vector (z ~ 4(0,1)). This
trigger is then added to an input using the backdoor adding function A4, to create the backdoored
input as shown in Figure 3a. Similar to the previous approach (Random Backdoor), the generated
triggers are placed at random locations.

Single Target Label: We start with presenting how to implement a dynamic backdoor for a single
target label using BaN. First, the adversary creates the set /C of the possible locations. She then
jointly trains a BaN with the backdoored M4 model as follows:

1. The adversary starts each training epoch by querying the clean data to the backdoored
model My,. Then, she calculates the clean loss . between the ground truth and the
output labels. We use the cross-entropy loss for our clean loss.

2. She then generates n noise vectors, where n is the batch size.
3. On the input of the n noise vectors, the BaN generates n triggers.

4. The adversary then creates the backdoored data by adding the generated triggers to the
clean data using the backdoor adding function .A.

5. She then queries the backdoored data to the backdoored model My, and calculates the
backdoor loss ¢34 on the model’s output and the target label. Similar to the clean loss, we
use the cross-entropy loss as our loss function for .

6. Finally, the adversary updates the backdoor model My, using both the clean and backdoor
losses (. + ¢pq) and updates the BaN with the backdoor loss (©pq).

Multiple Target Labels: We now consider a more complex case of building a dynamic backdoor
for multiple target labels using BaN. To recap, BaN generates general triggers and not label specific
triggers. In other words, the same trigger pattern can be used to trigger multiple target labels. Thus
similar to Random Backdoor, we depend on the location of the triggers to determine the output label.

We follow the same approach of the Random Backdoor technique to assign different locations for
different target labels (Section 3.2), to generalize the BaN technique. More concretely, the adversary
starts by creating disjoint sets of locations for all target labels. Next, she follows the same steps as
in training the backdoor for a single target label, while repeating from step 2 to 5 (see above) for
each target label and adding all their backdoor losses together. More formally, for the multiple target

label case the backdoor loss is defined as: Z,‘im ©bd;» Where L' is the set of target labels, and @pq,
is the backdoor loss for target label ;.

3.4 CONDITIONAL BACKDOOR GENERATING NETWORK (C-BAN)

Both Random Backdoor and BaN have the limitation of not having label specific triggers and only
depending on the trigger location to determine the target label. We now introduce our third and most
advanced technique, the c-BaN, which overcomes this limitation. With c-BaN, any location & inside
K can be used to trigger any target label. To achieve this location independency, the triggers need to
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Figure 3: An overview of the BaN and c-BaN techniques.

be label specific. Therefore, we add the target label as an additional input to BaN for conditioning it
to generate target specific triggers.

We construct c-BaN by adding an additional input layer to BaN to include the target label as an
input. Figure 3b represents an illustration of c-BaN. As the figure shows, the noise vector and the
target label are encoded to latent vectors with the same size (to give equal weights for both inputs).
These two latent vectors are then concatenated and used as an input to the next layer. Here, we use
one-hot encoding to encode the target label. c-BaN is trained similarly to BaN with one exception,
that is the adversary does not have to create disjoint sets of locations for all target labels, she can use
the complete location set K for all target labels.

To use c-BaN, the adversary first samples a noise vector and one-hot encodes the label. Then, she
inputs both of them to c-BaN to generate a trigger. The adversary uses the backdoor adding function
A to add the trigger to the target input. Finally, she queries the backdoored input to the backdoored
model, which will output the target label.

One major advantage of BaN and c-BaN is their flexibility, i.e., they allow the adversary to customize
her backdoor by adapting the loss functions. For instance, the adversary can adapt to different
defenses against the backdoor attack that can be modeled as deep neural network models. This can
be achieved by adding any defense as a discriminator into the training of BaN or c-BaN. Adding this
discriminator will penalize/guide the backdoored model to bypass the modeled defense.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

We utilize three image datasets to evaluate our techniques, including MNIST, CelebA, and CIFAR-
10. For the CelebA dataset, we first scale the images to 64 x 64, and select the top three most
balanced attributes, i.e., Heavy Makeup, Mouth Slightly Open, and Smiling. Then, we concatenate
them into 8 classes to create a multiple label classification task. We use these three datasets since
they are widely used as benchmark datasets for various security/privacy and computer vision tasks.

The architectures for our target models, BaN, and c-BaN are presented in Section A.1. For evaluating
the dynamic backdoor attack’s performance, we define the following two metrics: Backdoor success
rate which calculates the backdoored model’s accuracy on the backdoored data; Model utility which
measures the original functionality of the backdoored model. We quantify the model utility by
comparing the accuracy of the backdoored model with the accuracy of a clean model on clean data.
Closer accuracies imply a better model utility. Note that for all of our techniques, the backdoor
success rate is almost always 100%, thus we mainly focus on model utility. All of our experiments
are implemented using Pytorch and our code will be published for reproducibility.

4.2 RANDOM BACKDOOR

Single Target Label: We split each dataset into training and testing datasets. The training datasets
are used to train the MNIST and CelebA models from scratch, and fine-tune a pre-trained VGG-
19 model for CIFAR-10. We use the testing dataset as our clean testing dataset and construct a
backdoored testing dataset, by adding triggers to all samples of the testing dataset. The former is
used to measure model utility while the latter is used to measure the attack success rate.
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Figure 4: The result of our dynamic backdoor techniques for single and multiple target label on the
clean testing dataset.
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Figure 6: Visualization result of our techniques for the first four labels of the CIFAR-10 dataset.

As (Figure 4a) shows, Our backdoored models achieve the same performance as clean mod-
els for the MNIST and CelebA datasets. For CIFAR-10, there is a slight drop in perfor-
mance (about 2%). This shows that our Random Backdoor can implement a perfectly function-
ing backdoor, i.e., the backdoor success rate of Mg is 100%, with a negligible utility loss.
Figure 5a shows some qualitative examples of backdoored data
generated by Random Backdoor. As expected, the triggers
look distinctly different and are located at different locations.

Multiple Target Labels: We use a similar evaluation setting
to the single target label case with one exception. To evaluate
the attack success rate with multiple target labels, we construct
a backdoored testing dataset for each target label by generating
and adding triggers to the clean testing dataset. In other words,
we use all images in the testing dataset to evaluate all possible
labels. Even in this case, we still achieve nearly perfect attack
success rate.

(c) BaN with higher randomness

Figure 5: Visualisation of the
dynamic behaviour for our tech-
niques for a single target.

Figure 4b show the model utility in this case. Using our Ran-
dom Backdoor technique, we are able to train backdoored
models that achieve similar performance as the clean models
for all datasets. For instance, for the CIFAR-10 dataset, our
Random Backdoor technique achieves 92% accuracy, which is
very similar to the accuracy of the clean model (92.4%). For the CelebA dataset, the Random Back-
door technique achieves a slightly (about 2%) better performance than the clean model. We believe
this is due to the regularization effect of the Random Backdoor technique. Finally, for the MNIST
dataset, both models achieve similar performance with just 1% difference between the clean model
(99%) and the backdoored one (98%). Figure 6a further shows some examples of backdoored images
by Random Backdoor in the multi target label setting. Moreover, we further visualize in Figure 7a
the dynamic behavior of the triggers generated by our Random Backdoor technique. Without loss
of generality, we generate triggers for the target label 5 (plane) and add them to randomly sampled
CIFAR-10 images. As Figure 7a shows, the generated triggers have different patterns and locations
for the same target label, which achieves our desired dynamic behavior.

4.3 BACKDOOR GENERATING NETWORK (BAN)

Next, we evaluate our BaN technique. We follow the same settings for the Random Backdoor
technique, except with respect to how the triggers are generated. We train our BaN model and
generate the triggers as mentioned in Section 3.3.



Under review as a conference paper at ICLR 2021

Single Target Label: Similar to the Random Backdoor, the BaN technique achieves perfect back-
door success rate with a negligible utility loss. As shown in Figure 4a, our BaN backdoored models
achieve 99%, 92.4% and 70% accuracy on the MNIST, CIFAR-10, and CelebA, respectively, which
is the same performance of the clean models.

We visualize the BaN generated triggers using the MNIST dataset in Figure 5b. The generated
triggers look very similar as shown in Figure 5b. This behaviour is expected as the MNIST dataset
is simple, and the BaN technique does not have any explicit loss to enforce the network to generate
different triggers. However, to show the flexibility of our approach, we increase the randomness of
the BaN network by simply adding one more dropout layer after the last layer, to avoid the overfitting
of the BaN model to a unique pattern. We show the results of the BaN model with higher randomness
in Figure 5c. The resulting model still achieves the same performance, i.e., 99% model utility and
100% backdoor success rate, but as the figure shows the triggers look significantly different. This
again shows that our framework can easily adapt to the requirements of an adversary.

Multiple Target Labels: Our BaN backdoored models are able to achieve almost the same accuracy
as the clean model for all datasets, as shown in Figure 4b. For instance, for the CIFAR-10 dataset,
our BaN achieves 92.1% accuracy, which is only 0.3% less than the performance of the clean model
(92.4%). Similar to the Random Backdoor backdoored models, our BaN backdoored models achieve
a marginally better performance for the CelebA dataset. More concretely, our BaN backdoored
models trained for the CelebA dataset achieve about 2% better performance than the clean model.
We also believe this improvement is due to the regularization effect of the BaN technique. Finally,
for the MNIST dataset, our BaN backdoored models achieve strong performance on the clean testing
dataset (98%), which is just 1% lower than the performance of the clean models (99%).

Similar to the Random Backdoor, we visualize the results of the BaN backdoored models with two
figures. The first (Figure 6b) shows the different triggers for the different target labels on the same
CIFAR-10 image, and the second (Figure 7b) shows the different triggers for the same target label
(plane) on randomly sampled CIFAR-10 images. As both figures show, the BaN generated triggers
achieve dynamic behaviour in both the location and patterns.

4.4 CONDITIONAL BACKDOOR GENERATING NETWORK (C-BAN)

Next, we evaluate our c-BaN technique. For the single target label case, the c-BaN technique is the
same as the BaN technique. Thus, we only consider the multiple target labels case here. We follow
a similar setup as introduced in Section 4.3, with the exception of following Section 3.4 to train and
evaluate M,y. For the set of possible locations /C, we set it to 4.

Our evaluation shows that c-BaN is able to build models with good model utility (see Figure 4b).
For instance, for the CIFAR-10 and MNIST datasets, our c-BaN achieves 92%, and 99% accuracy
which is very similar to the accuracy of the clean models, i.e., 92.4% and 99%, respectively.

We compare the dynamic behaviour of our three different
techniques using two different figures. First, Figure 6 shows
the visualization of backdooring a single image to the first
four labels of the CIFAR-10 dataset. As the figure shows, the
Random Backdoor Figure 6a has the most random patterns,
which is expected as they are sampled from a uniform distri-
bution. The figure also shows the different triggers’ patterns
and locations used for the different techniques.

Second, Figure 7 visualizes the different triggers’ patterns and
locations for the same target label. As the figure shows, the
Random Backdoor (Figure 7a) and BaN (Figure 7b) gener-
ated triggers can move vertically, however, they have a fixed
position horizontally as mentioned in Section 3.2. The c-BaN (c) c-BaN

(Figure 7c) triggers also show different locations. However,

the locations of these triggers are more distant and can be Figure 7: Visualisation of triggers
shared for different target labels, unlike the other two tech- generated for the same target.
niques. Furthermore, the figure shows that most of our trig-

gers have different patterns for our techniques for the same
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(a) Clean images (b) Random Backdoor (c) BaN (d) c-BaN

Figure 8: Visualization of attention maps for all our techniques using the Grad-CAM technique.

target label, which achieves our targeted dynamic behavior concerning the patterns and locations of
the triggers.

Finally, we compare the attention of the backdoored models on both clean and backdoored inputs.
We use the Gradient-weighted Class Activation Mapping (Grad-CAM) technique (Selvaraju et al.,
2017) to compute the attention maps for our backdoored models. These maps show the most influ-
ential parts of the input that resulted in the model’s output. Figure 8 depicts the results of our three
different techniques. As expected all backdoored models mainly focus on the triggers in backdoored
inputs and the main objects in the clean ones.

4.5 STATE-OF-THE-ART DEFENSES

We now evaluate our attacks against the current state-of-the-art backdoor defenses. Backdoor de-
fenses can be classified into two categories: Data-based defenses which detects if the input is back-
doored, and Model-based defenses which detects if a model is backdoored.

Model-based Defense: We first evaluate all of our techniques in the multiple target label case
against two of the current state-of-the-art model-based defenses, namely, Neural Cleanse (Wang
et al., 2019) and ABS (Liu et al., 2019a). We start by evaluating the ABS defense. Here, we focus
on the CIFAR-10 dataset since it is the only supported dataset by the published defense model. As
expected, running the ABS model against our dynamic backdoored ones does not result in detecting
any backdoor for all of our models. For Neural Cleanse, we use all three datasets to evaluate our
techniques against it. Similar to ABS, all of our models are predicted to be clean models. Moreover,
in multiple cases, our models had a lower anomaly index (the lower the better) than the clean model.

We believe that both defenses fail to detect our backdoors for two reasons. First, we break one of
their main assumptions, i.e., that the triggers are static in terms of location and pattern. Second, we
implement a backdoor for all possible labels, which makes the detection a more challenging task.

Data-based Defense: Next, we evaluate our three at-
tacks against the state-of-the-art data-based defense, s

mmm Clean 2.0 === Clean 2.0 mmm Clean

namely STRIP (Gao et al., 2019). We use all three j: EDNN| , o \m=milED 1.5 =il
datasets to evaluate the c-BaN models against this de- |, I 10 10 --ll

. . . 05 05 | 0.5 |
fense. First, we scale the trigger patterns by half while s =|‘..|||||||HIII o .-llll|||| 1R .“"|| i
training the backdoored models, to make them more sus- "R S808 “%0 2 8 42 2 RANSHRRLS

ceptible to changes. Second, for the MNIST dataset,
we move the possible locations to the middle of the im-
age to overlap with the image content, since the value of Figure 9: The histogram of the entropy
MNIST images at the corners are always 0. All trained  f the backdoored vs clean input.

scaled backdoored models achieve similar performance

to the non-scaled backdoored models. Our backdoored

models successfully flatten the distribution of entropy for the backdoored data, for a subset of target
labels. This subset of target labels makes picking a threshold to identify backdoored from clean data
impossible without increasing the false positive rate, i.e., various clean images will be detected as
backdoored ones. We visualize the entropy of our best performing labels against STRIP in Figure 9.

(a) CIFAR-10 (b) MNIST  (c) CelebA

These results against both data and model based defenses show the effectiveness of our dynamic
backdoor attacks, and opens the door for designing backdoor detection systems that work against
both static and dynamic backdoors. We propose a data-based defense against the dynamic backdoor
attack, however, due to space restrictions, we present it in Section A.3.
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4.6 EVALUATING DIFFERENT HYPERPARAMETERS

We now evaluate the effect of different hyperparameters for our dynamic backdooring techniques.
Due to space restrictions, we present here a summary of our findings and leave all the details in
Section A.2. We start by evaluating the percentage of the backdoored data needed to implement a
dynamic backdoor into the model. Our results show that using 30% is enough to get a perfectly
working dynamic backdoor. Second, we evaluate the effect of increasing the size of the location set
K. Using more than four times the amount of possible locations, i.e., 16, still achieves the same
performance. However, when we completely remove the location set IC and consider all possible
locations with a sliding window, the performance on both clean and backdoored datasets drops
significantly. Finally, we evaluate the size of the trigger and the possibility of making it more
transparent. For the trigger size, we find that a trigger with the size 5 is the smallest trigger than can
achieve the best results. Similarly for the transparency, we find that setting the transparency scale to
0.5 or higher has no effect on the performance of the backdoor attack. However, when the scale is
set below 0.5, the attack success rate starts degrading. To circumvent this limitation and make the
triggers more transparent, we increase the trigger size. Our experiments show that when increasing
the trigger size to the input images’ size, our attacks can be performed with a scale of 0.1 with a
negligible effect of the performance.

4.7 RELAXING THE THREAT MODEL (TRANSFERABILITY OF THE TRIGGERS)

For our dynamic backdoor attacks, we assume the adversary to control the training of the target
model. We now relax this assumption by only allowing her to poison the dataset.

First, it is important to mention that our Random Backdoor technique does not need to change the
training of the target model, i.e., the adversary only needs to poison the training dataset with back-
doored images and the corresponding target labels. Second, for both the BaN and c-BaN techniques,
the adversary can rely on pre-trained BaN and c-BaN models instead of training them jointly with
the target model. In detail, the adversary uses the pre-trained BaN and c-BaN model to generate mul-
tiple triggers and randomly place them to a set of — randomly picked — images. Then, she poisons
the training set with this set of backdoored images and their corresponding target labels.

We use the MNIST dataset for evaluation and follow the same target models’ structure as previously
introduced in Section 4.3 and Section 4.4. However, to show the flexibility of our techniques, we use
data from different distribution to pre-train the BaN and c-BaN models. We first use the CIFAR-10
dataset to train backdoored models with the BaN (Section 3.3) and c-BaN (Section 3.4) techniques.
Next, we use the pre-trained BaN and c-BaN models to generate the backdoored dataset and poison
the target dataset as previously mentioned. It is important to mention that the CIFAR-10 based
BaN and c-BaN models generate 3-channel triggers, to use them to poison the MNIST dataset, we
convert them to 1-channel triggers by taking the mean over the different channels. Finally, we use
the poisoned dataset to train the target model.

As expected, the backdoored models achieve a perfect attack success rate (100%), while keeping
the same utility as the backdoored models jointly trained with the BaN and c-BaN. This shows the
flexibility of our attacks, i.e., the training procedure can be adapted by the adversary depending on
her specific application. However, it is important to mention that jointly training the models has the
advantage of giving the adversary more power, e.g., she can add a customized loss function to the
target model while implanting the backdoor.

5 CONCLUSION

Current backdoor attacks only consider static triggers in terms of patterns and locations. In this work,
we propose the first set of dynamic backdoor attack, where the trigger can have multiple patterns
and locations. To this end, we propose three different techniques. Our first technique Random
Backdoor samples triggers from a uniform distribution and places them at random locations of an
input. For the second technique (BaN), we propose a novel generative network to construct triggers.
Finally, we introduce c-BaN to generate label specific triggers. We evaluate our techniques using
three benchmark datasets. The result shows that all our techniques can achieve almost a perfect
backdoor success rate while preserving the model’s utility. Moreover, we show that our techniques
successfully bypass state-of-the-art defense mechanisms against backdoor attacks.
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A APPENDIX

A.1 MODELS ARCHITECTURE

For the target models’ architecture, we use the VGG-19 (Simonyan & Zisserman, 2015) for the
CIFAR-10 dataset, and build our own convolution neural networks (CNN) for the CelebA and
MNIST datasets. More concretely, we use 3 convolution layers and 5 fully connected layers for
the CelebA CNN. And 2 convolution layers and 2 fully connected layers for the MNIST CNN.
Moreover, we use dropout for both the CelebA and MNIST models to avoid overfitting.

For BaN, we use the following architecture:

( Backdoor Generating Network (BaN)’s architecture:

z = FullyConnected (64
FullyConnected (128
FullyConnected (128
FullyConnected (|t |

Sigmoid — ¢

)
)
)
)

Here, FullyConnected (z) denotes a fully connected layer with 2 hidden units, |t| denotes the
size of the required trigger, and Sigmoid is the Sigmoid function. We adopt ReLU as the activation
function for all layers, and apply dropout after all layers except the first and last ones.

For c-BaN, we use the following architecture:

(conditional Backdoor Generating Network (c-BaN)’s architecture:

2z, — 2 x FullyConnected (64
FullyConnected (128
FullyConnected (128
FullyConnected (128
FullyConnected (|t ])

Sigmoid — ¢

)
)
)
)

The first layer consists of two separate fully connected layers, where each one of them takes an
independent input, i.e., the first takes the noise vector z and the second takes the target label /.
The outputs of these two layers are then concatenated and used as an input to the next layer (see
Section 3.4). Similar to BaN, we adopt ReLU as the activation function for all layers and apply
dropout after all layers except the first and last one.

A.2 EVALUATING DIFFERENT HYPERPARAMETERS

Here we present the complete details on evaluating the different hyperparameters for our backdoor
attacks.

Proportion of the Backdoored Data: We start by evaluating the percentage of backdoored data
needed to implement a dynamic backdoor in the model. We use the MNIST dataset and the c-BaN
technique to perform the evaluation. First, we construct different training datasets with different
percentages of backdoored data. More concretely, we try all proportions from 10% to 50%, with a
step of 10. In this settings, 10% means that 10% of the data is backdoored, and 90% is clean. Our
results show that using 30% is already enough to get a perfectly working dynamic backdoor, i.e., the
model has a similar performance like a clean model on the clean dataset (99% accuracy), and 100%
backdoor success rate on the backdoored dataset. For any percentage below 30%, the accuracy of
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Figure 10: The result of trying different trigger sizes for the c-BaN technique on the MNIST dataset.
The figure shows for each trigger size the accuracy on the clean and backdoored testing datasets.

Figure 11: An illustration of the effect of using different transparency scales (from 0 to 1 with step
of 0.25) when adding the trigger. Scale 0O (the most left image) shows the original input, and scale 1
(the most right image) the original backdoored input without any transparency.

the model on clean data is still the same, however, the performance on the backdoored dataset starts
degrading. This demonstrates the ability of the adversary to implement a dynamic backdoor attack
with 30% overhead for each target label, compared to training a clean model.

Number of Locations: Second, we explore the effect of increasing the size of the set of possible
locations (K) for the c-BaN technique. We use the CIFAR-10 dataset to train a backdoored model
using the c-BaN technique, but with more than double the size of K, i.e., 8 locations. The trained
model achieves similar performance on the clean (92%) and backdoored (100%) datasets. We then
doubled the size again to have 16 possible locations in /C, and the model again achieves the same
results on both clean and backdoored datasets. We repeat the experiment with the CelebA datasets
and achieve similar results, i.e., the performance of the model with a larger set of possible locations
is similar to the previously reported one. However, when we try to completely remove the location
set KC and consider all possible locations with a sliding window, the performance on both clean and
backdoored datasets drops significantly.

Trigger Size: Next, we evaluate the effect of the trigger size on our c-BaN technique using the
MNIST dataset. We train different models with the c-BaN technique, while setting the trigger size
from 1 to 6. We define the trigger size to be the width and height of the trigger. For instance, a
trigger size of 3 means that the trigger is 3 x 3 pixels.

We calculate the accuracy on the clean and backdoored testing datasets for each trigger size, and
show our results in Figure 10. Our results show that the smaller the trigger, the harder it is for the
model to implement the backdoor behaviour. Moreover, small triggers confuse the model, which
results in reducing the model’s utility. As Figure 10 shows, a trigger with the size 5 achieves a
perfect accuracy (100%) on the backdoored testing dataset, while preserving the accuracy on the
clean testing dataset (99%).

Transparency of the Triggers: Finally, we evaluate the effect of making the trigger more transpar-
ent. More specifically, we change the backdoor adding function A to apply a weighted sum, instead
of replacing the original input’s values. Abstractly, we define the weighted sum of the trigger and
the image as: xpq = -t + (1 — s) - , where s is the scale controlling the transparency rate, z is the
input and ¢ is the trigger. We implement this weighted sum only at the location of the trigger, while
maintaining the remaining of the input unchanged.

We use the MNIST dataset and c-BaN technique to evaluate the scale from O to 1, with a step of
0.25. Figure 11 visualizes the effect of varying the scale when adding a trigger to an input.

Our results show that our technique can achieve the same performance on both the clean (99%)
and backdoored (100%) testing datasets, when setting the scale to 0.5 or higher. However, when
the scale is set below 0.5, the performance starts degrading on the backdoored dataset but stays the
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Figure 12: Visualization of the c-BaN backdoored images when setting the transparency scale to
0.1.

same on the clean dataset. We repeat the same experiments for the CelebA dataset and find similar
results.

We believe that the transparency of our triggers can be further increased when using triggers with
larger sizes. To this end, we use the CIFAR-10 dataset to repeat the experiments previously men-
tioned in this section. However, we set the trigger size to be the size of the image. Our experiments
show that in this setting, our dynamic backdoor attack can still achieve a perfect attack success rate
(100%) with a negligible drop in utility (0.3%). More concretely, the model’s accuracy on clean data
is 91.7% compared to the 92% accuracy of the backdoored model trained without any transparency.
We visualize a set of randomly backdoored samples in Figure 12. As the figure shows, setting the
scale to 0.1 makes the triggers hardly visible.

A.3 POSSIBLE DEFENSES

Next, we propose a data-based defense against the dynamic backdoor attack. Intuitively, we use
a denoising mechanism to filter triggers (as they can be considered as anomalies/distortions) out
of the backdoored inputs. To this end, we use one of the most common denoising mechanisms,
namely autoencoder. It works as follows: First, we train an autoencoder on clean data. Then, we
use this autoencoder to reconstruct/denoise the inputs (by encoding then decoding them). The noise
or triggers in our case are expected to be filtered out of the inputs due to two main reasons: The
overfitting of the autoencoders to clean data and the lossy reconstruction process.

To implement our defense, we use the autoencoder to denoise all inputs before forwarding them to
the target model. The autoencoder is expected to remove the trigger from backdoored data, while
not significantly changing the clean ones.

To evaluate the efficacy of our proposed defense, we test it against the c-BaN technique, using
both the MNIST and CIFAR-10 datasets. As expected, the backdoored images are not perfectly
reconstructed by the autoencoder, i.e., the autoencoder does not fully reconstruct triggers. Our
experiments show that in simple datasets like MNIST, our approach can successfully defend against
the backdoor attack, with negligible utility loss (less than 1%). However, for more complicated
datasets like CIFAR-10, the performance of our defense degrades. This is due to the high amount of
details which hardens the reconstruction process of complex datasets (for both clean and backdoored
inputs). For instance, the accuracy of the target model drops by 4.8% and 25% for the clean and
backdoored dataset, respectively.

Another possible defense approach is first calculating the distance between the reconstructed input
and the original input, then taking the decision to forward the input or not to the model, based on
a predetermined threshold. We plan to explore this approach and other potential methods in future
work.

14



	Introduction
	Related Work
	Dynamic Backdoors
	Threat Model
	Random Backdoor
	Backdoor Generating Network (BaN)
	conditional Backdoor Generating Network (c-BaN)

	Evaluation
	Experimental Setup
	Random Backdoor
	Backdoor Generating Network (BaN)
	conditional Backdoor Generating Network (c-BaN)
	State-Of-The-Art Defenses
	Evaluating Different Hyperparameters
	Relaxing the Threat Model (Transferability of the Triggers)

	Conclusion
	Appendix
	Models Architecture
	Evaluating Different Hyperparameters
	Possible Defenses


