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ABSTRACT

The high effectiveness of neural models of code, such as OpenAI Codex and Al-
phaCode, suggests coding capabilities of models that are at least comparable to
those of humans. However, previous work has only used these models for their raw
completion, ignoring how the model reasoning, in the form of attention weights,
can be used for other downstream tasks. Disregarding the attention weights means
discarding a considerable portion of what those models compute when queried.
To profit more from the knowledge embedded in these large pre-trained models,
this work compares multiple approaches to post-process these valuable attention
weights for supporting code exploration. Specifically, we compare to which extent
the transformed attention signal of CodeGen, a large and publicly available pre-
trained neural model, agrees with how developers look at and explore code when
each answering the same sense-making questions about code. At the core of our
experimental evaluation, we collect, manually annotate, and open-source a novel
eye-tracking dataset comprising 25 developers answering sense-making questions
on code over 92 sessions. We empirically evaluate five attention-agnostic heuris-
tics and ten attention-based post processing approaches of the attention signal
against our ground truth of developers exploring code, including the novel con-
cept of follow-up attention which exhibits the highest agreement. Beyond the
dataset contribution and the empirical study, we also introduce a novel practical
application of the attention signal of pre-trained models with completely analytical
solutions, going beyond how neural models’ attention mechanisms have tradition-
ally been used.

1 INTRODUCTION

Recent large neural source code models such as Codex (Chen et al., 2021), CodeGen (Nijkamp et al.,
2022) and AlphaCode (Li et al., 2022) are remarkably effective at program synthesis and competitive
programming tasks respectively. Yet our understanding of why they produce a particular solution is
limited. In practice, the models are mostly used for their prediction alone, i.e., as generative models,
and the way they reason about code internally largely remains untapped.

These models are often based on the attention mechanism (Bahdanau et al., 2016), a key component
of the transformer architecture (Vaswani et al., 2017). Besides providing substantial performance
benefit, attention weights have been used to provide interpretability of neural models (Lin et al.,
2017; Vashishth et al., 2019; Paltenghi & Pradel, 2021). In particular, Wan et al. (2022) and Vig
& Belinkov (2019) have shown how the attention weights contain important syntactic information
on both the Abstract Syntax Tree (AST) of source code and Part of Speech (POS) tags in natural
language. Moreover, Wan et al. (2022) showed how using attention weights to infer the distance
between two tokens outperformed techniques using hidden representations. In a similar direction,
Zhang et al. (2022) has shown how a novel graph representation of source code derived solely from
attention weights achieved comparable performance on the VarMisuse dataset (Allamanis et al.,
2018) to that of a hand-crafted graph representation based on control flow and data flow (Hellen-
doorn et al., 2020).
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The work cited above suggests the attention mechanism reflects or encodes objective properties
of the source code processed by the model. We argue, that just as software developers consider
different locations in the code individually and follow precise connections between them, so the
self-attention of transformers connects and creates information flow between similar and linked code
locations. If those relations are indeed comparable, this raises the possibility: can the knowledge
about source code conveyed by the attention weights of neural models be leveraged to support human
code exploration?

There are datasets tracking developers’ visual attention while looking at code, but they do not seem
suitable to this task. The largest ones either put the developers in an unnatural (and thus possibly
biasing) environment where most of the vision is blurred (Paltenghi & Pradel, 2021), or they contain
few and very specific code comprehension tasks (Bednarik et al., 2020) on code snippets too short
to exhibit any interesting code navigation pattern.

This work. To address these limitations and stimulate developers and the neural model to not only
glance at code, but also deeply reason about it, we prepare an ad-hoc code understanding assignment
called sense-making task. This involves questions on code including mental code execution, side
effects detection, algorithmic complexity, and deadlock detection. We collect an eye-tracking dataset
of 92 valid sessions with developers. The sense-making task is additionally designed to be machine
friendly with a specific prompt to trigger a completion from the model which hopefully stimulates
the reasoning of the model. Then we query CodeGen on the same sense-making task and compare its
attention signal1 to the attention of developers. They turn out to be positively correlated (r=+0.23),
motivating the use of raw and processed versions of the attention signal for code exploration. To
that end, we experimentally evaluate how well existing and novel attention post-processing methods
align with the code exploration patterns derived from the chronological sequence of eye-fixation
events of our dataset. To the best of our knowledge, this work is the first to investigate the attention
signal of these pre-trained models to support code exploration, a specific code-related task.

We empirically demonstrate that post-processing methods based on the attention signal can be well
aligned with the way developers explore code. In particular, using the novel concept of follow-up
attention we achieve the highest overlap with the top-3 developers’ ground truth on which line to
explore next.

Main contributions. Our key contributions are:

• A novel dataset of eye tracking data, comprising 92 visual attention sessions of 25 devel-
opers engaged in sense-making tasks while using a common code editor with code written
in three popular programming languages (Python, C++ and C#).

• The first experimental comparison of both effectiveness and visual attention of GPT-like
models and developers when reasoning on sense-making questions.

• Demonstrating a connection between the neural attention signal and the temporal sequence
of location shifts regarding developer focus.

• The analytical formula for follow-up attention, a novel post-processing approach derived
solely from the attention signal, which aligns well with the developer interaction of which
line to look at next when exploring code.

• An empirical evaluation comprising ten post-processing approaches of the attention signal,
five heuristics, and an ablation study of the follow-up attention against the collected ground
truth of developers exploring code.

2 RELATION TO EXISTING WORK

Attention as explanation. Previous work (Jain & Wallace, 2019) on studying attention weights of
recurrent neural models has found that the attention weights do not always agree with other expla-
nation methods and that alternative weights can be adversarially constructed while still preserving
the same model prediction. However, in response, a successive study (Wiegreffe & Pinter, 2019)
showed how the alternative attention weights can be constructed only per a single instance predic-
tion, whereas obtaining a model which is consistently wrong in its explanations is very unlikely

1Attention signal refers to the attention weights produced during a forward pass by the transformer blocks.
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to happen. On the same line, Tutek & Šnajder (2020) has proposed four regularization methods
to mitigate the adversarial exploitation of attention weights for recurrent models, including the use
of residual connections which are natively embedded into transformers (Vaswani et al., 2017), the
building blocks of GPT-like models Radford et al. studied in this work.

Alternatives to attention signal. There are observable signals other than attention that might cap-
ture the concept of relevance, such as gradients-based or layer-wise relevance propagation Montavon
et al. (2019). In particular, Yuan et al. (2021) and Chefer et al. (2021) are promising examples of
approaches based, partially or entirely, on gradient information. However, we focus on approaches
using only the attention signal for two reasons: (1) almost all state-of-the-art models of code are
based on the transformer block, and the attention mechanism is ultimately its fundamental com-
ponent (Vaswani et al., 2017), so we expect the corresponding attention weights to carry directly
meaningful information about the decision process of these transformer-based models; (2) unlike
the gradients, the attention weights can be extracted almost for free during generation with little
runtime overhead, a crucial condition in many practical scenarios.

Attention studies of neural models of code. Paltenghi & Pradel (2021) have compared the at-
tention weights of neural models of code and developers’ visual attention when performing a code
summarization task, and found a strong positive correlation on the copy attention mechanism for an
instance of a pointer network (Vinyals et al., 2015). Wan et al. (2022) and Zhang et al. (2022) have
then shown how the attention weights of pre-trained models on source code capture important prop-
erties of the abstract syntax tree of the program. However, none of them considered the use of the
attention signal for a code related task, such as code exploration. Moreover, they are limited to rela-
tively small self-attention transformer models, whereas we study the attention of CodeGen Nijkamp
et al. (2022), a large generative model using masked self-attention.

We point the interested reader to Appendix B for a additional connections with existing literature.

3 CODE UNDERSTANDING TASK: SENSE-MAKING QUESTIONS

Figure 1: Example of sense-making task
with code and question to be answered in the
bottom comment.

To study developers’ and models’ attention, we pre-
pare a code understanding task called the sense-
making task. One sense-making task is contained
in a single source code file p composed of four sec-
tions: (1) a brief description of the context of the
main code snippet (e.g. The following code rea-
sons about triangles in the geometrical sense.), (2)
the main code snippet, either sourced on the in-
ternet or written from scratch by the authors, (3)
a sense-making question to stimulate the reasoning
(i.e., Question:), and (4) a final prompt to trigger
the model’s answer (i.e., Answer:).

Note that all the sections except the main snippet are
in the form of code comments. The questions in-
clude a variety of topics such as mental code execu-
tion, side effects detection, algorithmic complexity,
and deadlock detection; Figure 1 shows an example
task, whereas the full list of questions can be seen in
the Appendix A. We prepare five main snippets and create three unique questions for each of them,
then we translate the same task in three programming languages: Python, C++ and C#. In total, we
have 45 unique tasks.

Neural Model’s Task. We feed the entire source file corresponding to a single task as input of the
generative model, and query it with temperature t = 0.2 to generate three different answers in the
form of text completion. We fix the maximum number of generated tokens to 100. The model used
is CodeGen (Nijkamp et al., 2022), in its largest language agnostic variant 2.

2We use CodeGen-16-multi from https://github.com/salesforce/codegen.
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Developers’ Task. We recruit 25 software developers via direct contacts at a large software com-
pany, without any constraint on prior programming experience. We track the eye gaze of each
participant during a session of a maximum of 45 minutes while they answer as many questions as
possible, typically three or four. We ensure that they see each main code snippet only once to avoid
bias in answering a question on a snippet they have already explored in a previous task. To ensure
consistent data collection, the eye tracking setup is calibrated at the beginning of each task.

4 PROBLEM FORMULATION: ATTENTION

The large majority of large language models is based on generative pre-trained transformers
(GPT) (Radford et al.). This is true also for models of code with notable examples such as
Codex (Chen et al., 2021), CodeGen (Nijkamp et al., 2022), and AlphaCode (Li et al., 2022). GPT-
like models such as these are comprised only of decoder layers rather than of both encoder and
decoder layers, and use masked self-attention to prevent a token from attending tokens which come
after it. In GPT-like models the self-attention given by token i to the other tokens in the sequence
can be represented by a vector: ai = (ai,1, ai,2, ..., ai,i, 0i,i+1, ..., 0i,n) where n is the maximum
allowed sequence length. Note that token i has one such vector for each combination of transformer
layer and attention head. For each layer and head, the attention weights ai,j form a triangular matrix.

4.1 VIEWS OF ATTENTION

Given a GPT-like neural model f and and a sense-making task p, whenever the model ingests p, its
tokenizer splits it in n prompt tokens p = t1, ..., tn and it outputs both the original input sequence
followed by newly generated tokens and the attention tensor corresponding to the masked self-
attention weights:

f(p) = (t1, ..., tn, tn+1, ..., tn+m,A) (1)

where m is the number of generated tokens and A is the 4-dimensional attention tensor of shape
(l, h, n + m,n + m) where l is the number of layers, h is the number of attention heads, n is the
number of tokens in the prompt. Note that unlike the predicted tokens, which are randomly sampled
with a temperature parameter, the attention weights stay the same across runs provided that the input
prompt remains the same. In particular, when comparing developers’ and the model’s attention, we
focus on studying the attention weights referring to the prompt tokens only, thus the dimension of
Aprompt are (l, h, n, n) even if some post-processing approach may use the entire tensor.

Each post-processing approach of the attention signal can be represented by an extraction function g
which transforms the attention tensor A into one of two views: visual attention or interaction matrix.

Visual Attention. The visual attention is a static view which tells us what part of the input is
important for the model when solving the sense-making task. We define the visual attention of a
model or a developer as a vector a = (a1, ..., ac) over the single characters of the prompt, where
each ai intuitively tells us the how much “attention” was given to that the i-th character when
solving the task. We represent the corresponding extraction function as gviz(A), which is a function
that takes as input the attention tensor A and returns the visual attention a.

Interaction Matrix. The interaction matrix is a dynamic view which tells us, given a position in
the prompt, which other position of the prompt should likely be attended soon after the current
position by the model. Intuitively, the interaction matrix can be directly used to support the code
navigation of a developer since it could recommend to the developer the likely next interesting piece
of code at any point in time. We define the interaction matrix S as a right stochastic matrix with
size n × p where n is the number of tokens in the prompt and p is the number of admissible target
positions in the prompt. We define two interaction matrices depending on the granularity of the
target position p: (1) token-level, where S has size n × n where n is the number of tokens in the
prompt; (2) line-level, where S has size n × nl where nl is the number of lines in the prompt. We
represent the corresponding extraction function as ginter(A), which is a function that takes as input
the attention tensor A and returns the interaction matrix S. In particular, we distinguish between the
two granularity levels using two functions gtoken and gline leading to Stoken and Sline respectively.
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5 METHODOLOGY: EXTRACTION FUNCTIONS

For the empirical evaluation, we investigate two concrete extraction functions for the the visual
attention and four for the interaction matrix.

5.1 EXTRACTION FUNCTIONS FOR VISUAL ATTENTION

To condense the attention tensor A to a vector a, we introduce two straightforward approaches:
attention mean and attention max.

Attention mean. It simply takes the average attention weight for each position along the two dimen-
sions of different layers l and attention heads h to compensate the extreme values with each other
and extract a smoother signal. This step, outputs a matrix A with shape (n, n) where each element
Ai,j is the average attention weight of the i-th token in the prompt to the j-th token in the prompt.
Note that it is a lower triangular matrix due to the masked nature of the self-attention. Then, since
the positions above the main diagonal are all zeros, we compute the mean of each column excluding
the zeros to avoid penalizing more recent tokens with less followers. Since each column can be
seen as the attention given to j-th token by its “followers” we call the step mean of followers, which
produces a token-level visual attention a vector. Finally, to convert it to a character level vector, we
divide the attention weight on a single token in equal shares among all its characters.

Attention max. This approach differs from the previous one in the way it condenses layers and
heads replacing the mean with the max function to favour the extreme positive signals appearing
only in one or few layers and heads, the rest is unchanged.

5.2 EXTRACTION FUNCTIONS FOR INTERACTION MATRIX

We study four approaches: max, mean, rollout and follow-up attention. Apart from the rollout
attention, which has been introduced by Abnar & Zuidema (2020), the other three are either inspired
by the work of Paltenghi & Pradel (2021) or a novel contribution of this work, such as the follow-up
attention.

Algorithm 1 Follow-up Attention

1: Input: A {Dim: (L,H, n+m,n+m)}
2: Output: S
3: consec pairs← ∅
4: L←

∑H
h=1 Ah {Layer-wise attention}

5: for z ← 1 to L− 1 do
6: S(z) ← ∅
7: for i← 1 to n do
8: for j ← 1 to n do
9: s← n+m−max(i, j)

10: f
(z)
i ← Lz,s:,i

11: f
(z+1)
j ← Lz+1,s:,j

12: S
(z)
i,j ←

f
(z)
i ·f(z+1)

j

||f(z)
i ||·||f(z+1)

j ||
13: end for
14: end for
15: consec pairs← consec pairs ∪ S(z)

16: end for
17: S ←

∑L−1
z=1 S(z)

Attention mean. It computes the mean
among all the L layers and H attention heads:
gmean = 1

l·h
∑L

l=1

∑H
h=1 Al,h.

Attention max. It computes the max among
all the L layers and H attention heads:
gmax = maxLl=1 maxHh=1 Al,h.

Rollout attention. It propagates the informa-
tion contained in the attention weight layer by
layer from input to output, by multiplying the
attention weights along a multiple paths start-
ing and ending to the same input-output pair.
Since it does not model the attention head di-
mension, we simply condense the that dimen-
sion via a simple sum. Moreover, it does not
prescribe which attention layer should be used
in the end, thus we sum the newly computed
rollout values of all the layers.

Follow-up attention. It is a novel approach
that we introduce in this work. Similarly to the
rollout attention, we aggregate the attention
weights over the h attention heads by sum-
ming the weights of A along the attention head
dimension and obtaining the layer-wise attention L =

∑H
h=1 Ah. We leave the exploration of head-

level aggregation strategies to future work, and rather focus on modelling the information flow
between subsequent layers. We refer to this condensed 3-dimensional tensor as layer-wise attention
represented by L. The follow-up attention explicitly models the temporal relationship between the
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attention weights computed at different layers, since the attention weights in the later layers de-
pend on the earlier ones. The intuition is that the layer-after-layer transformation reflects the way
in which the models explores code through time, similarly to multiple successive fixations of a de-
veloper when navigating and exploring source code. Instead of looking at how the a token gives
attention to other tokens in the same layer, the follow-up attention adopts a differential approach
which compares the attention received by token i at layer z with the attention received by token j at
layer z − 1. To represent this received attention we define the follower score f (z)

i of token i at layer
z, as the vector of the attention quota that each other token gives to token i at the same layer. Note
that, similarly to the self-attention vector, the follower score is also a vector of real numbers and it
has the same length corresponding to the input sequence length, thus representing a complementary
viewpoint. To realize agreement between follower scores at two consecutive layers, we use the co-
sine similarity as a soft version of the intersection between the set of followers of the two tokens.
Then we compute the follow-up attention for each ordered pair of tokens (i → j for i prompt or
generated token) and for each pair of consecutive layers, and condense all layer pairs into a single
matrix via sum. We aggregate attention over multiple layers, since Brunner et al. (2020) have empir-
ically shown how token identifiability is retained over layers, thus a generic embedding at position
ei in any layer l is traceable to the input embedding xi in the input sequence. Their finding can
be partially explained by the residual connections of transformers, which were studied by (Abnar &
Zuidema, 2020). Algorithm 1 summarizes the overall algorithm. An optimized vectorized version
is available here 3.

6 EXPERIMENTAL EVALUATION

In this section, we compare the visual attention and interaction matrix extracted from the
attention tensor of neural models against the ground truth computed from the develop-
ers. All our code is publicly available at https://anonymous.4open.science/r/
attentionStudyArtifacts-C752/ and the dataset is available here 4

Eye Tracking Dataset. We derive the ground truth from our eye tracking dataset comprising 25
participants over 92 valid sessions (see Appendix E for details). Each session consists of a sequence
of eye fixation events evteye, each represented as a tuple (t, x, y, d) where t is the timestamp in
milliseconds, x and y are the coordinates of the fixation point in pixels and d is the duration of the
fixation in milliseconds. Each session is recorded in Visual Studio Code5 to have a natural coding
environment. Based on the size of the parafoveal region (Schotter et al., 2012), each eye fixation
event is converted to column and line coordinates: evt(char)eye = (t, c, l, d) where c is the column and
l is the line of the original source file (more detail in Appendix D).

Ground truth visual attention. Here we borrow from the concept of human attention proposed
by Paltenghi & Pradel (2021) and define the analogous developer attention as the total time that a
specific char was visible to the participant: d = (d1, ..., dc) where c is the number of characters in
the prompt and di is the total time that the i-th character was visible to the participant according to
the eye tracking data. In difference to Paltenghi & Pradel (2021), we consider the char-level instead
of the token level, which is the granularity in many contexts, and in particular for eye tracking data.

Ground truth interaction matrix. From each developer session we derive a ground truth interac-
tion matrix S. For a fair comparisons of neural models with developers, we take into account the
tokenization used by the neural model, namely we use the CodeGen tokenizer 6 which is based on
byte-level byte-pair-encoding (Sennrich et al., 2016).

To convert char-level events into token level ones, for each timestamp, if at least one character of a
given token is visible, then the token is considered visible as well and we count the corresponding
event evt(token)eye = (t, i, d) where t is the timestamp, i is the token index and d is the event duration.
Based on the pairs of events involving token i and token j, we quantify how likely it is that the
developer looks at token j after having looked at token i.

3https://anonymous.4open.science/r/attentionStudyArtifacts-C752/
4Raw eye tracking sessions https://figshare.com/s/d56af6f915bc29e6f620 and clean ver-

sion https://figshare.com/s/c20e04362097125fd27e
5https://code.visualstudio.com/
6https://huggingface.co/docs/transformers/model_doc/codegen
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Figure 3: The strength of the connection Si,j depends significantly on the difference i − j. As
detailed in Appendix F, both cases i > j and j > i can be well modelled using a Weibull distribution.
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Figure 2: Example of two events where
the yellow area corresponds to their contri-
bution to the connection strength between
from token i to token j.

Intuitively, we want to have stronger connection when
a fixation on token i is shortly followed by a fixation
on token j, and if this second fixation has a significant
duration. Thus, we define the strength of the temporal
connection between token i and token j as:

Si,j =
∑

evti,evtj∈Pi→j

∫ tj+dj

tj

e−α(t−(ti+di))dt (2)

where Pi→j is the set with all the pairs of events where token i is seen before token j, and α is a
parameter that controls the decay of the connection the more the two events are far apart in time. For
our experiments we empirically set α = 0.1, accounting for observed behaviour where developers
often spend several seconds scrolling and presumably shallow searching the code. In Figure 2 we
show an example of the integral connecting two consecutive events.

We noticed a strong neighboring effect across the whole dataset, where the connection between
closer tokens tends to be relatively stronger irrespective of context and content (see Figure 3 and
Appendix F). To extract relevance beyond mere closeness, we normalize each row of the interaction
matrix S by dividing by the average empirical ground truth distribution where the probability to go
to a token constantly decreases the further away the target token is.

Agreement Metrics. To measure the agreement between the visual attention of developers and the
neural model, we regard them as vectors with meaningful ordinal content, and compute their Spear-
man rank correlation coefficient (Spearman, 1987). In contrast, we need to compute the agreement
between the interaction matrices row by row, using either the Spearman rank correlation coefficient
or the top-3 overlap, defined as the number of top-3 target positions shared between the ground
truth and the model-derived interaction matrix. We focus on the line-level interaction matrix Sline,
since we argue that the line-level is perhaps the most useful granularity from an hypothetical user
perspective. To obtain Sline we simply sum the probabilities to go to tokens belonging to the same
line. Moreover, to balance the fact that some potential starting tokens might be rarely (or only very
transiently) looked at by the developers, we weight each comparison based on the total number of
seconds spent by the developer on the corresponding starting token. We also fix a maximum for this
weight to 10 sec to prevent long-observed tokens dominating the comparison. We only ever directly
compare tasks related to the same code snippet, and when we have more than one developer ground
truth on the same task, we consider all the possible developer-model combinations independently.

6.1 DEVELOPERS VS NEURAL MODELS

Our initial investigation considers three neural models: CodeGen 7, GPT-J 8 and InCoder Fried et al.
(2022). For the in-depth study of the interaction matrix we focus on the more recent and more
performant CodeGen model.

7https://huggingface.co/Salesforce/codegen-16B-multi
8https://huggingface.co/EleutherAI/gpt-j-6B
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Answers correctness. We manually grade developers and neural model answers as either correct,
partially correct or wrong, with high inter-rater reliability indicating a reproducible annotation pro-
cess (see Appendix C). The developer’s answers are correct or partially correct almost 70% of cases,
while the neural models show a promising and non-trivial performance (Figure 4, Appendix G).
We note the possibility that were the neural models given a more sophisticated prompt than ours,
i.e., #Answer:, their performance might have been even stronger, considering a multitude of re-
sults in prompt engineering research (Prenner & Robbes, 2021; Shrivastava et al., 2022; Reynolds
& McDonell, 2021; Bareiß et al., 2022).

0 % 20 % 40 % 60 % 80 % 100 %
Percentage of answers

Incoder
Gpt-j

CodeGen
Developers

17.0% 20.7% 62.2%
23.7% 12.6% 63.7%
23.7% 15.6% 60.7%

45.7% 23.9% 30.4%
Correct Partial Wrong

Figure 4: Percentage of correct, wrong and partially correct answer for developers and model.
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Figure 5: Agreement between develop-
ers and models’ visual attention (extraction
function: max).

Agreement on visual attention. In Figure 5, we re-
port the Spearman rank correlation Spearman (1987)
between the developer attention vector and the model
attention vector, for completeness we also report the
comparisons among developers. We assess the differ-
ence among programming languages with the Mann
Whitney U Test (Mann & Whitney, 1947) applied
to the distributions of Spearman coefficients, and we
could only spot a significant difference between devel-
opers and models agreement on Python and C# code
(p-value < 0.05), with a higher agreement obtained on
C# (more in the Appendix H). This exceeds the agree-
ment observed in previous work Paltenghi & Pradel
(2021), which we hypothesize to be due to a combina-
tion of us using a more advanced model Ahmad et al.
(2020) and a more natural data collection setup (eye
tracking vs a deblurring interface).

Considering CodeGen’s slightly better performance
and significantly higher developer agreement, we re-
strict our subsequent investigation to this model.

Agreement on interaction matrix. We run the different extraction functions on the model attention
signal to obtain interaction matrices Sline, which we compare to developer derived ground truth.

We distinguish between: (1) attention-based code traversal predictions, which are those introduced
in Section 5.2, and (2) attention-agnostic code traversal predictions. The attention-based meth-
ods comprise raw attention in first and last layer, max, and mean, with their respective symmetric
versions where the triangular matrix is mirrored and added to replace the zero values, the rollout
and follow-up attention. The attention-agnostic methods comprise: copy-cat recommending all the
positions containing the same starting token, uniform recommending all the position preceding the
current token, and position recommending the neighboring positions of the current token with a
Gaussian distribution centered on the current token.

We find that attention-based methods do carry predictive power, and in particular that follow-up
attention performs best among all methods for both Spearman rank and top-3 overlap (Figure 6). We
note that a purely position-based approach performs better than the copy-cat method despite being
completely content-agnostic. We attribute this to developers’ tendency to often read source code in
(piecewise) linear order as described by (Blascheck & Sharif, 2019). Regarding raw attention, Zhang
et al. (2022) demonstrated deeper semantic information being concentrated in later layers. Yet for
both the triangular and symmetric versions respectively, higher levels appear inferior at predicting
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eye-movement to earlier levels, possibly because such deeper semantic information is not directly
apparent to developers at a glance.
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Figure 6: Agreement between developers and CodeGen interaction matrix ordered from weak (top
lines) to strong (bottom lines). Attention-based methods are marked with *.

Ablation study of follow-up attention. We investigate two key design choices for follow-up atten-
tion: (1) the selection of layers to use, (2) the number of generated tokens, i.e., observers (Figure 7)
There is significant agreement with the ground truth even for smaller numbers of layers, particu-
larly the very first one. This suggests little processing, and maybe even only the token embedding,
might be needed to extract valuable information. Additionally, a higher number of observers of the
follow-up has a positive impact on the agreement of the follow-up attention with the ground truth.
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Figure 7: Ablation study of Follow-up Attention. Left: Restriction to few layers still retains signifi-
cant predictive power. Right: Generating more tokens improves the prediction.

7 CONCLUSION

We presented and shared a novel dataset of eye tracking data, comprising 92 visual attention sessions
of 25 developers when answering sense-making questions in three popular programming languages
(Python, C++ and C#). We confirmed that neural models provide promising, but less accurate an-
swers than developers to these questions, while paying attention to similar parts of the code. We
formalized a new code exploration task of predicting developer code traversal and confirmed the
attention signal’s relevance for this task by evaluating multiple processing approaches. Besides
existing post-processing, we contributed the concept of follow-up attention, which shows the best
agreement with the developer attention data.
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8 ETHICS STATEMENT

The study involved human subjects who decided to participate voluntarily. Each of them gave ex-
plicit consent to use their data for scientific publication. Each eye-tracking session was limited to 45
minutes and included breaks to limit the cognitive stress on the subject. All the shared data have been
anonymized for privacy by removing any reference to personal details of the participants, such as
names. The eye-tracking data collection was carried out in an ergonomic setup with a non-invasive
method, but with an eye-tracking camera pointing to the face of the participant. Each participant
received a 10 USD company cafeteria food coupon for participating in the study. The authors have
no conflict of interest to report.

9 REPRODUCIBILITY STATEMENT

All our code is publicly available at the following repository: https://anonymous.4open.
science/r/attentionStudyArtifacts-C752/.

The eye tracking dataset is available both in its raw version with all the eye tracking sessions
https://figshare.com/s/d56af6f915bc29e6f620 and also in its processed version
with interaction matrices computed as described in the main text https://figshare.com/s/
c20e04362097125fd27e. The results of the empirical comparisons are also present in the last
mentioned dataset. The repository contains a Readme and Python notebook to reproduce the main
figures of the paper starting from the shared data.

In addition, since all the code used is publicly available, including the snippets used in the study
and the code to process the eye tracking data, the entire study can be entirely replicated with new
participants and new neural models as well. Indeed, the code supports the huggingface API of
generative models.
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A SENSE-MAKING QUESTIONS

In Table 1 we report the sense-making questions used in the study. Note that each
pair of code snippet and question has a variable length depending on the program-
ming languages it is written with. The source code snippet can be found here:
https://anonymous.4open.science/r/attentionStudyArtifacts-C752/
eye_tracking/source_file_human_dataset_sessions/.

Snippet Name Content LoC Question

hannoi Q1 Tower
of Hanoi
problem

28-49 How does the algorithm moves disks from the
starting rod to the ending rod?

hannoi Q2 26-47 Which is the base case of the algorithm?
hannoi Q3 28-50 Which is the name of the auxiliary rod in the call

TowerOfHanoi(n, ’Mark’, ’Mat’, ’Luke’)?

multithread Q1 Consumer-
producer
threads

106-
116

Is it possible that consumer and producers threads
end up in a deadlock state, namely they both wait
for each other to finish, but none of them is doing
anything?

multithread Q2 104-
112

Is there any line of code in the consumer or pro-
ducer code which will never be executed? If yes,
report it below.

multithread Q3 104-
113

Will the queue object ever raise an exception in
this program? If yes, which condition(s) should
be met for the exception to be raised?

nqueens Q1 N queens
problem

78-100 What does ‘solveNQ(-13)‘ return?

nqueens Q2 78-101 What are valid dimensions and values for the array
‘board‘?

nqueens Q3 78-100 How would you expect the run time of ‘sol-
veNQ(n)‘ to scale with ‘n‘?

tree Q1 Recursive
tree con-
struction

87-99 How many calls to ‘constructTreeUtil‘ will ‘con-
structTree([1, 2, 3], [ 1, 2, 3], 2)‘ make?

tree Q2 87-99 Under which conditions could the check ‘if i ¡= h‘
in ‘constructTreeUtil‘ be false?

tree Q3 89-101 A part of the code you don’t have direct access to
has called ‘constructTree‘ with unknown parame-
ters. What can you find out about those parame-
ters?

triangle Q1 Triangle
classifi-
cation

66-112 Which of the functions have side effects (namely
it modifies some state variable value outside its
local environment?

triangle Q2 66-113 Questions: Which output will you get for the three
points [1, 2], [1, 3], and [1, 4]?

triangle Q3 66-112 What could happen if the call to ‘order()‘ were
omitted from ‘classifyTriangle‘?

Table 1: Code snippets and related question for each sense-making task.

B DETAILS: EXTENDED RELATED WORK

Here we give a more comprehensive description of the related work.
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B.1 ATTENTION ON NATURAL LANGUAGE MODELS

Previous work (Jain & Wallace, 2019) on studying attention weights of recurrent neural network
models has found that the attention weights do not agree with other gradient based explanation
methods and that alternative weights can be adversarially constructed while still preserving the same
model prediction. Following work from Wiegreffe & Pinter (2019) showed how the alternative
attention weights can be constructed only per a single instance prediction, whereas obtaining a
model which is consistently wrong in its explanations is very unlikely to happen.

On the same line, Tutek & Šnajder (2020) has proposed four regularization methods to mitigate the
adversarial exploitation of attention weights for recurrent models, resulting in attention weights that
when changed are more likely to produce change in model prediction behavior. Among the proposed
techniques, the authors mention the use of residual connections, between token embeddings and
output hidden state, and a masked language model objective. Notably, both techniques are naturally
used by BERT (Devlin et al., 2019), a model based solely on transformers.

This observation agrees with the techniques proposed by Abnar & Zuidema (2020) as post-
processing for attention weights. The authors explicitly account for residual connections when in-
terpreting attention of transformer-based models.

Vig & Belinkov (2019) have studied the attention of a GPT-2 model and observed that some attention
heads are specialized in paying attention to specific part-of-speech tags. However, they focus on the
smallest version of the model and they only consider a natural language setting of Wikipedia articles.

Multiple previous works Sood et al. (2020); Bensemann et al. (2022); Eberle et al. (2022) have
compared model and human attention on several natural language understanding tasks showing how
the two are aligned. In particular, on reading comprehension tasks, Sood et al. (2020) show that a
more accurate model does not necessarily have a stronger correlation with the humans.

B.2 ATTENTION STUDY ON MODELS OF CODE

Wan et al. (2022) have studied the self-attention of pre-trained models of code to see how the the
attention of those model can be used to induce the abstract syntax tree of the source code. How-
ever they limit to relatively small transformer models for code understanding which use only self-
attention, whereas we study the first to study the largest version of CodeGen Nijkamp et al. (2022),
a generative model which pays attention only to preceding tokens. In the same vein, Zhang et al.
(2022) have shown how the attention weights of pre-trained model on source code capture impor-
tant properties of the abstract syntax tree of the program pointing towards the idea that the attention
weights of pre-trained model on source code, which we now disregard, might contain valuable in-
formation.

B.3 EYE-TRACKING STUDIES

An eye-tracking study involving 38 students fixing or describing five simple Python and C++
programs (5-13 LoC) has shown that the fixation duration is comparable between the two lan-
guages (Turner et al., 2014). Beelders (2022) qualitatively observe the eye movement of 36 stu-
dents and four lecturers when reading and mentally executing a short C# program (12 LoC). An eye
tracking dataset with 216 participants was collected by Bednarik et al. (2020), however they only
consider two short snippets (11-22 LoC) of code, since they do not support scrolling. Blascheck
& Sharif (2019) and Busjahn et al. (2015) instead studied the reading order in C++ and Java code
comprehension task focusing on six small programs that could fit into a single screen, whereas we
consider longer snippets and a much larger dataset of 45 unique tasks. Sharafi et al. (2022) have
recently studied code navigation strategies on Java code with eye tracking involving 36 participants
focussing on the bug fixing process, whose specific goal and might elicit a different kind of reasoning
compared to our sense-making tasks.

B.4 NEURAL MODELS VS HUMANS

Paltenghi & Pradel (2021) have compared the attention weights of particular neural models of code
and developers’ visual attention when performing a code summarization task, spotting a positive
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correlation between the two. They found a stronger correlation on the copy attention mechanism,
which an instance of a pointer network (Vinyals et al., 2015) used by the model to copy verbatim
the code from the input to the output. However, they use a deblurring interface which might bias
the cognitive process of the developer, wehreas we use eye tracking data which are collected in the
more natural IDE setting.

B.5 ALTERNATIVES TO ATTENTION

There are other observable signals than attention that might capture the concept of relevance. In par-
ticular, there have been some approaches based, partially or entirely, on gradient information, such as
GradCam Yuan et al. (2021); Chefer et al. (2021). These are promising avenues, however, we focus
on attention for two reasons: (1) almost all state-of-the-art models of code are based on the trans-
former block, and the attention mechanism is ultimately its fundamental component (Vaswani et al.,
2017), for which reason we expect the corresponding attention weights to carry directly meaningful
information about the decision process of these transformer-based models; (2) unlike the gradients,
the attention weights can be extracted almost for free during generation with little runtime overhead,
a crucial condition in many practical scenarios.

B.6 IMPORTANCE OF CODE NAVIGATION

A recent study by Peitek et al. (2022) has found that a higher program comprehension efficacy is
correlated to a lower coverage of code elements, namely developers with a better code comprehen-
sion also navigate the code with a more focused approach. Their results shows how an accurate code
navigation is crucial for the efficacy of code comprehension and further motivates our work. Minelli
et al. (2014) studies and visualizes how developers interact with a real IDE, however they only use
the events of the IDE without any eye tracking date, thus the granularity of our dataset is higher.

C DETAILS: ANNOTATION PROCEDURE

We annotate each answer generated by either the developer or the model involving four annotators in
the process. We use a scale of three values of correctness: (1) correct, when the answer touches all
the expected correct points, (2) partial, if at least part of the correct answer is present or if the answer
is wrong but in the same style of the correct solution (e.g. the Big-O notation), (3) wrong, when the
answer does not contain any correct part of the answer. Note that, especially for the model, if the
model generates extra text beyond the correct or partial answer we ignore the rest if it is incorrect.
Moreover, whenever the question is under-specified we accept multiple correct answers as long as
they are compatible with the question.

To ensure a reproducible annotation process, all the authors collectively come up with a shared
set of gold standard answers for each question. Then, two of the authors independently annotates
more than 20% of the answers generated by the model and the developer, and within two rounds of
annotation followed by discussion, the final set of gold standard answers is agreed upon. The final
agreement on the 20% of data led to a Cohen’s Kappa of 0.898 and 0.711, which is considered a
very high agreement McHugh (2012). Finally, the remaining 80% of the data is split in half and
annotated only by one of the two authors individually.

D DETAILS: EYE TRACKING DATA POST-PROCESSING

We use an eye tracker from GazePoint, which is placed below the monitor thus not requiring the
user to wear any additional device. The participants can see between 21 to 26 lines of code. The
screen size is 52.7 mm x 29.6 mm with a resolution of 1920x1080 pixels. The participant seats at
a fixed distance of ca 30cm from the screen.. We do not enforce this via a resting support for the
chin, since the eye tracker specification claims to be robust to this kind of movements. We collect
eye fixation events evteye as a tuple (t, x, y, d) where t is the timestamp in milliseconds, x and y are
the coordinates of the fixation point in pixels and d is the duration of the fixation in milliseconds.

Beside the eye data, we also continuously log the visible text in VSCode by using a custom plugin,
so that we can know what was visible at a given x, y coordinate at each point in time. A visible text
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event evttxt corresponds to a tuple (t, txt, f, l) where t is the timestamp in milliseconds, txt is the
visible text, f is the file name shown in the code area, l is the line number of the first visible line
with respect to the given file. Note that this data source is crucial since we study long code snippets
and allow also screen scrolling. To ensure that we have a consistent grid mapping between pixel
positions and char positions in the text, we use monospace font and prevent partial scrolling (i.e.
where only half a line is scrolled). Thus via our plugin we allow only scrolling of a discrete number
of lines.

For additional sanity check we also collect a screen recording along with the eye tracking recording.
At any point in time the video shows where is the fixation of the participant.

Note that our setup is as close as possible to a normal coding session, without any invasive method.

To derive the developer attention maps from the eye tracking data, we first synchronize the two data
sources, i.e. from the VSCode plugin and the eye tracker, via their timestamps.

Then we derive the x and y coordinate of the code area displayed on the screen for a given video
frame by using two visual markers, which delimit the top-left and bottom-right corners respectively.
Note that, since the plugin prevents any resizing of the code area during the experiment, any frame
would be suitable, for our case we use the frame in the middle of the video screen recording. Then,
knowing the fixed number of lines and columns displayed in the code area, we divide the code area
in small rectangular areas, each of which corresponds to a specific character position identified by a
line and column.

Then, we convert the fixation point of gaze x and y coordinates of each evteye to the correspond-
ing character position in the code area, in the form of line and column coordinates in the relative
coordinate system of the code area. And knowing the line number l we can attribute the fixation to
a specific character position in the original file. In this way, we convert each evteye its equivalent
event in character coordinates evt(char)eye = (t, c, l, d) where t is the timestamp, c and l are the col-
umn and line coordinates with respect to the original file of the fixation point and d is the duration
of the fixation.

Since it is hard to tell whether a participant is looking at a specific character or a group of neigh-
boring characters during a single fixation points, we attribute the attention of the developer also
to neighboring characters, namely, if the developer looks at position (c, l) in the original file, we
augment our data by introducing new events which point to all the neighboring characters within
a vertical offset voff and an horizontal offset hoff from our coordinate (c, l). As a result, we
replace each basic evt

(char)
eye = (t, c, l, d) with the set of derived events (t, cnew, lnew, d) where

c− hoff ≤ cnew ≤ c+ hoff and l − voff ≤ lnew ≤ l + voff .

Indeed, as reported by Schotter et al. (2012) our fovea region, which is responsible for a sharp central
vision, accounts for 2° of the visual field, whereas the parafoveal region, which is used for visual
search and scene perception, accounts for 5° of the visual field. Thus considering 5° visual region
and our screen size (527mm x 296mm) the developer can see 7.16 characters horizontally and 2.92
characters vertically. Rounding those quantities we set voff = 1 and hoff = 4. This approach also
contributes to mitigate eventual small x and y errors in the eye tracking data collection.

Note that that our offset allows to give attention also to blank spaces which are not present in the
original line (e.g. after the end of line), thus we do not assign any weight to those characters for a
better comparison with the neural models which cannot see them.

E EYE TRACKING DATASET

The collected eye tracking dataset contains data from 25 participants over 92 valid sessions. We
discarded the data of the sessions where two participants who added comments in the code since
it was unclear how to treat the fixations on this newly created text; especially when computing the
connection strength between two interaction events with an interleaving fixation event on this newly
inserted comment. Figure 8 shows the number of participants per task and programming language.
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Figure 8: Total number of participants per task divided by programming languages.

F OBSERVED DEVELOPER CODE TRAVERSAL

Developers do not jump randomly between likely locations within the code: they have a significant
bias for staying close to their current position. We therefore attempt to predict the observed strength
of the temporal connection between tokens solely on the basis of their relative position.

We suggest a two-tiered approach: first consider whether the developer is traversing forwards or
backwards, then use a relative model for how far they will move in that direction.

We expect the ratio of forwards or backwards traversal to be dependent on the exact task, and in
fact in our data set its average by task ranged from 5:6 (0.846) to 7:2 (3.58). For each task
individually, however, as well as to some extent in general, the best simple predicting feature appears
to be the current token position divided by the total number of tokens, i.e. the ratio of the document
still in front of the developer. Fitting individual linear regressions for going forward and backward
(which do not sum up to 1 because of the chance of returning to the token itself) gives the predictions
of

∑
j>i

Si,j ≈ 0.940639− 0.745988 ∗ i/max(i) (R2 = 0.56) (3)

∑
j<i

Si,j ≈ 0.052612 + 0.745747 ∗ i/max(i) (R2 = 0.56) (4)

We expect, and find, the distribution for the distance to depend less on the task. Of a num-
ber of standard distributions we tested against (normal, poisson, lognormal, exponential, Pareto,
Weibull), it is by far best modelled using a fitted Weibull distribution, with best fit of shape
= 0.8932339, scale = 98.1442010 tokens going forward and shape = 0.8831494,
scale = 105.6159039 tokens going backward (see Figure 3).

G TASK CORRECTNESS

Figure 9 shows the correctness of the answers for each task, for the three models and for the devel-
opers.
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Figure 9: Percentage of correct, wrong and partially correct answer for each tas.
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Figure 10: Agreement between developers and CodeGen’s visual attention (extraction function:
max) while performing code understanding tasks in different programming languages.

H PROGRAMMING LANGUAGE ANALYSIS

Is there any difference between programming languages? To assess the difference between lan-
guages, we group the datapoints in three groups, one for each language and we report mean and
median for each group in Figure 10 and we compare the distribution of the Spearman rank correla-
tion coefficients via the Mann Whitney U Test (Mann & Whitney, 1947). The test reveals that the
agreement between developer and models is significantly different between C# and Python snippets
(see test results in Table 2). Although, a visual inspection shows how the two models do not have
the same tendency, with CodeGen agreeing more on C# and Gpt-J agreeing more on Python.

In Table 2, we report the results of the Mann Whitney U statistical tests when comparing the distri-
butions of developer-model agreement (Spearman rank coefficients) on tasks written in two different
languages.

I AGREEMENT ON INTERACTION MATRIX: GPT-J AND INCODER

In Figure 11 and 12, we report the results for the agreement on the interaction matrix between human
and GPT-J and InCoder-6B.
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Neural Model Lang. A Lang. B Statistic p-value Result

Gpt-j py cpp 2613.0 9.37e-01 Probably same distrib.
Codegen py cpp 2499.0 7.22e-01 Probably same distrib.
Gpt-j py cs 7637.0 2.00e-02 Probably diff. distrib.
Codegen py cs 2626.0 9.29e-15 Probably diff. distrib.
Gpt-j cpp cs 3404.0 6.61e-02 Probably same distrib.
Codegen cpp cs 1486.0 9.95e-07 Probably diff. distrib.

Table 2: Results of the Mann Whitney U statistical tests when comparing the distributions of
developer-model agreement (Spearman rank coefficients) on tasks in two different languages.
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Figure 11: Agreement between developers and GPT-J interaction matrix ordered from weak (top
lines) to strong (bottom lines). Attention-based methods are marked with *.

J AGREEMENT AT TOKEN-LEVEL

In Figure 13, we report the agreement computed at the token-level for the three models. Since they
have different tokenizers, especially regarding how they treat spaces, we compute the correlation
on the tokens that contain some meaning, namely we approximate this concept by considering only
tokens with at least one alphabetic character. Indeed, eye tracking data cannot pinpoint with absolute
precision when a user was looking at a single space char rather than its surrounding tokens, thus
excluding them avoids the result being biased by this irrelevant tokens, from a human perspective.

K AGREEMENT VS ACCURACY

In Figure 14, we report the human-vs-model agreement for different pairs of accuracy buckets mea-
sured with wrong, partial or wrong. For example, the cell wrong-wrong is contains the correla-
tion when both models and human produce a wrong answer to the same question, whereas the cell
correct-correct contains the correlation when the produce two correct answers.
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Figure 12: Agreement between developers and InCoder interaction matrix ordered from weak (top
lines) to strong (bottom lines). Attention-based methods are marked with *.
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Figure 13: Agreement between developers and models’ visual attention (extraction function: max).
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Figure 14: Human-vs-Model agreement for different accuracy pairs.
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