
Self-Attention Amortized Distributional Projection Optimization for Sliced
Wasserstein Point-Cloud Reconstruction

Khai Nguyen * 1 Dang Nguyen * 2 Nhat Ho 1

Abstract
Max sliced Wasserstein (Max-SW) distance has
been widely known as a solution for less discrim-
inative projections of sliced Wasserstein (SW)
distance. In applications that have various in-
dependent pairs of probability measures, amor-
tized projection optimization is utilized to predict
the “max” projecting directions given two input
measures instead of using projected gradient as-
cent multiple times. Despite being efficient, Max-
SW and its amortized version cannot guarantee
metricity property due to the sub-optimality of
the projected gradient ascent and the amortization
gap. Therefore, we propose to replace Max-SW
with distributional sliced Wasserstein distance
with von Mises-Fisher (vMF) projecting distribu-
tion (v-DSW). Since v-DSW is a metric with any
non-degenerate vMF distribution, its amortized
version can guarantee the metricity when perform-
ing amortization. Furthermore, current amortized
models are not permutation invariant and symmet-
ric. To address the issue, we design amortized
models based on self-attention architecture. In
particular, we adopt efficient self-attention archi-
tectures to make the computation linear in the
number of supports. With the two improvements,
we derive self-attention amortized distributional
projection optimization and show its appealing
performance in point-cloud reconstruction and its
downstream applications.

1. Introduction
Wasserstein distance (Villani, 2008; Peyré & Cuturi, 2019)
has been widely recognized in the community of machine
learning as an effective tool. For example, Wasserstein dis-

*Equal contribution 1Department of Statistics and Data Sci-
ences, University of Texas at Austin, USA 2VinAI Research. Cor-
respondence to: Khai Nguyen <khainb@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tance is used to explore clusters inside data (Ho et al., 2017),
to transfer knowledge between different domains (Courty
et al., 2016; Damodaran et al., 2018), to learn generative
models (Arjovsky et al., 2017; Tolstikhin et al., 2018), to
extract features from graphs (Vincent-Cuaz et al., 2022), to
compare datasets (Alvarez-Melis & Fusi, 2020), and many
other applications. Despite being effective, Wasserstein
distance is extremely expensive to compute. In particular,
the computational complexity and memory complexity of
Wasserstein distance in the discrete case is O(m3 logm)
and O(m2) respectively with m is the number of supports.
The computational problem becomes more severe for ap-
plications that require computing the Wasserstein distance
multiple times on different pairs of measures. Some exam-
ples can be named: deep generative modeling (Genevay
et al., 2018), deep domain adaptation (Bhushan Damodaran
et al., 2018), comparing datasets (Alvarez-Melis & Fusi,
2020), topic modeling (Huynh et al., 2020), point-cloud
reconstruction (Achlioptas et al., 2018), and so on.

By adding entropic regularization (Cuturi, 2013), an ε-
approximation of Wasserstein distance can be obtained in
O(m2/ε2). However, this approach cannot reduce the mem-
ory complexity of O(m2) due to the storage of the cost
matrix. A more efficient approach is based on the closed-
form solution of Wasserstein distance in one dimension
which is known as sliced Wasserstein distance (Bonneel
et al., 2015). Sliced Wasserstein (SW) distance is defined
as the expectation of the Wasserstein distance between ran-
dom one-dimensional push-forward measures from the two
original measures. Thanks to the closed-form solution, SW
can be solved in O(m log2m) while having a linear mem-
ory complexity O(m). Moreover, SW is also better than
Wasserstein distance in high-dimensional statistical infer-
ence. Namely, the sample complexity (statistical estimation
rate) of SW is O(n−1/2) compared to O(n−1/d) of Wasser-
stein distance with d is the number dimension and n is the
number of data samples. Due to appealing properties, SW is
utilized successfully in various applications e.g., generative
modeling (Deshpande et al., 2018; Nguyen & Ho, 2022b;
Nguyen et al., 2023), domain adaptation (Lee et al., 2019a),
Bayesian inference (Nadjahi et al., 2020; Yi & Liu, 2021),
point-cloud representation learning (Nguyen et al., 2021c;
Naderializadeh et al., 2021), and so on.

1

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

The downside of SW is that it treats all projections the same
due to the usage of a uniform distribution over projecting di-
rections. This choice is inappropriate in practice since there
exist projecting directions that cannot discriminate two in-
terested measures (Kolouri et al., 2018). As a solution, max
sliced Wasserstein distance (Max-SW) (Deshpande et al.,
2019) is introduced by searching for the best projecting
direction that can maximize the projected Wasserstein dis-
tance. Max-SW needs to use a projected sub-gradient ascent
algorithm to find the “max” slice. Therefore, in applications
that need to evaluate Max-SW multiple times on different
pairs of measures, the repeated optimization procedure is
costly. For example, this paper focuses on point-cloud recon-
struction applications where Max-SW needs to be computed
between various pairs of empirical measures over a point-
cloud and its reconstructed version.

To address the problem, amortized projection optimization
is proposed in (Nguyen & Ho, 2022a). As in other amor-
tized optimization (Shu, 2017; Amos, 2022) (learning to
learn), an amortized model is estimated to predict the best
projecting direction given the two input empirical measures.
The authors in (Nguyen & Ho, 2022a) propose three types
of amortized models including linear model, generalized lin-
ear model, and non-linear model. The linear model assumes
that the “max” projecting direction is a linear combination
of supports of two measures. The generalized linear model
injects the linearity through a link function on the supports
of two measures while the non-linear model uses multilayer
perceptions to have more expressiveness.

Despite performing well in practice, the previous work has
not explored the full potential of amortized optimization
in the sliced Wasserstein setting. There are two issues in
the current amortized optimization framework. Firstly, the
sub-optimality of amortized optimization leads to losing
the metricity of the projected distance from the predicted
projecting direction. In particular, the metricity of Max-SW
is only obtained at the global optimum. Therefore, using an
amortized model with sub-optimal solutions cannot achieve
the metricity for all pairs of measures. Losing metricity
property could hurt the performance of downstream appli-
cations. Secondly, the current amortized models are not
permutation invariant to the supports of two input mea-
sures and are not symmetric. The permutation-invariant and
symmetry properties are vital since the “max” projecting
direction is also not changed when permuting supports of
two input empirical measures and exchanging two input em-
pirical measures. By inducing the permutation-invariance
and symmetry to the amortized model, it could help to learn
a better amortized model and reduce the amortization gap

In this paper, we focus on overcoming the two issues of
the current amortized projection optimization framework.
For metricity preservation, we propose amortized distribu-

tional projection optimization framework which predicts
the best distribution over projecting directions. In particu-
lar, we do amortized optimization for distributional sliced
Wasserstein (DSW) distance (Nguyen et al., 2021a) with
von Mises Fisher (vMF) slicing distribution (Jupp & Mar-
dia, 1979) instead of Max-SW. Thanks to the smoothness
of vMF, the metricity can be preserved even without a zero
amortization gap. For the permutation-invariance and sym-
metry properties, we propose to use the self-attention mech-
anism (Vaswani et al., 2017) to design the amortized model.
Moreover, we utilize efficient self-attention approaches that
have the computational complexity scales linearly in the
number of supports including efficient attention (Shen et al.,
2021) and linear attention (Wang et al., 2020a).

Contribution. In summary, our contribution is two-fold:

1. First, we introduce amortized distributional projection
amortization framework which predicts the best location
parameter for von Mises-Fisher (vMF) distribution in dis-
tributional sliced Wasserstein (DSW) distance. Due to the
smoothness of vMF, the metricity is guaranteed for all pairs
of measures. Moreover, we enhance amortized models by
inducing inductive biases which are permutation invariance
and symmetry. To improve the efficiency, we leverage two
linear-complexity attention mechanisms including efficient
attention (Shen et al., 2021) and linear attention (Wang et al.,
2020a) to parameterize the amortized model. Combining the
above two improvements, we obtain self-attention amortized
distributional projection amortization framework

2. Second, we adapt the new framework to the point-clouds
reconstruction problem. In particular, we want to learn an
autoencoder that can reconstruct (encode and decode) all
point-clouds through their latent representations. The main
idea is to treat a point-cloud as an empirical measure and
use sliced Wasserstein distances as the reconstruction losses.
Here, amortized optimization serves as a fast way to yield
informative projecting directions for sliced Wasserstein dis-
tance to discriminative all pairs of original point-cloud and
reconstructed point-cloud. Empirically, we show that the
self-attention amortized distributional projection amortiza-
tion provides better reconstructed point-clouds on the Mod-
elNet40 dataset (Wu et al., 2015) than the amortized pro-
jection optimization framework and widely used distances.
Moreover, on downstream tasks, the new framework also
leads to higher classification accuracy on ModelNet40 and
generates ShapeNet chairs with better quality.

Organization. The remainder of the paper is organized as
follows. In Section 2, we provide backgrounds for point-
cloud reconstruction and popular distances. In Section 3, we
define the new amortized distributional projection optimiza-
tion framework for the point-cloud reconstruction problem.
Section 4 benchmarks the proposed method by extensive ex-
periments on point-cloud reconstruction, transfer learning,

2

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Encoder D
ec
od
er

Figure 1. The reconstruction of a point-cloud X (a plane).

and point-cloud generation. Finally, proofs of key results
and extra materials are in the supplementary.

Notation. For any d ≥ 2, we denote U(Sd−1) is the uniform
measure over the unit hyper-sphere Sd−1 := {θ ∈ Rd |
||θ||22 = 1}. For p ≥ 1, Pp(Rd) is the set of all probability
measures on Rd that have finite p-moments. For any two
sequences an and bn, the notation an = O(bn) means that
an ≤ Cbn for all n ≥ 1, whereC is some universal constant.
We denote θ♯µ is the push-forward measures of µ through
the function f : Rd → R that is f(x) = θ⊤x.

2. Preliminaries
We first review the point-cloud reconstruction framework
in Section 2.1. After that, we discuss famous choices of
metrics between two point-clouds in Section 2.2. Finally,
we present an adapted definition of the amortized projection
optimization framework in the point-cloud reconstruction
setting in Section 2.3.

2.1. Point-Cloud Reconstruction

We denote a point-cloud of m points x1, . . . , xm ∈ Rd
(d ≥ 1) as X = (x1, . . . , xm) ∈ Rdm which is a vector of
a concatenation of all points in the point-cloud. We denote
the set of all possible point-clouds as X ⊂ Rdm.

Permutation invariant metric space. Given a permutation
one-to-one mapping function σ : [m] → [m], we have
σ(X) ∈ X for all X ∈ X . Moreover, we need a metric
D : X × X → R+ such that D(X,σ(X)) = 0 for all X ∈
X where σ(X) = (xσ(1), . . . , xσ(m)). Here, D is a metric,
namely, it needs to satisfy the non-negativity, symmetry,
triangle inequality, and identity property. The pair (X ,D)
forms a point-cloud metric space.

Learning representation via reconstruction. The raw
representation of point-clouds is hard to work with in appli-
cations due to the complicated metric space. Therefore, a
famous approach is to map point-clouds to points in a differ-
ent space e.g., Euclidean, which is easier to apply machine
learning algorithms. In more detail, we want to estimate a
function fϕ : X → Z (ϕ ∈ Φ) where Z is a set that belongs
to another metric space. Then, we can apply machine learn-

ing algorithms on Z instead of X . The most well-known
and effective way to estimate the function fϕ is through
reconstruction loss. Namely, we estimate fϕ jointly with a
function gγ : Z → X (γ ∈ Γ) given a point-cloud dataset
p(X) (distribution over X) by minimizing the objective:

min
ϕ∈Φ,γ∈Γ

EX∼p(X)D(X, gγ(fϕ(X))). (1)

The loss EX∼p(X)D(X, gγ(fϕ(X))) is known as the re-
construction loss. If the reconstruction loss is 0, we have
gγ = f−1

ϕ p-almost surely. Therefore, we can move from X
to Z and move back from Z to X without losing informa-
tion through the functions fϕ (referred as the encoder) and
gγ (referred as the decoder). We show an illustration of the
framework (Achlioptas et al., 2018) in Figure 1. After learn-
ing how to do the reconstruction well, other point-cloud
tasks can be done using the autoencoder (the pair (fϕ, gγ))
e.g., shape interpolation, shape editing, shape analogy, shape
completion, point-cloud classification, and point-cloud gen-
eration (Achlioptas et al., 2018).

2.2. Metric Spaces for Point-Clouds

We now review some famous choices of the metric D
which are Chamfer distance (Barrow et al., 1977), Wasser-
stein distance (Villani, 2008), sliced Wasserstein (SW) dis-
tance (Bonneel et al., 2015), and max sliced Wasserstein
(Max-SW) (Deshpande et al., 2019) distance.

Chamfer distance. For any two point-clouds X and Y ,
the Chamfer distance is defined as follows: CD(X,Y) =

1

|X|
∑
x∈X

min
y∈Y
∥x− y∥22 +

1

|Y |
∑
y∈Y

min
x∈X
∥x− y∥22, (2)

where |X| denotes the number of points in X .

Wasserstein distance. Given two probability measures
µ ∈ Pp(Rd) and ν ∈ Pp(Rd), the Wasserstein distance
between µ and ν is defined as follows:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥ppdπ(x, y)
) 1
p

(3)

where Π(µ, ν) is set of all couplings whose marginals
are µ and ν respectively. Since the Wasserstein distance
is originally defined on probability measures space, we
need to convert a point-cloud X = (x1, . . . , xm) ∈ X
to the corresponding empirical probability measure PX =
1
m

∑m
i=1 δxi ∈ P(Rd). Therefore, we can use D(X,Y) =

Wp(PX , PY) for X,Y ∈ X .

Sliced Wasserstein distance. As discussed, the Wasserstein
distance is expensive to compute with the time complexity
O(m3 logm) and the memory complexity O(m2). There-
fore, an alternative choice is sliced Wasserstein (SW) dis-
tance between two probability measures µ ∈ Pp(Rd) and

3

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

ν ∈ Pp(Rd) is:

SWp(µ, ν) =
(
Eθ∼U(Sd−1)W

p
p(θ♯µ, θ♯ν)

) 1
p , (4)

The benefit of SW is that Wp(θ♯µ, θ♯ν) has a closed-form
solution which is

Wp(θ♯µ, θ♯ν) =

(∫ 1

0

|F−1
θ♯µ(z)− F

−1
θ♯ν(z)|

pdz

) 1
p

,

with F−1 denotes the inverse CDF function. The expec-
tation is often approximated by Monte Carlo sampling,
namely, it is replaced by the average from θ1, . . . , θL that
are drawn i.i.d from U(Sd−1). The computational complex-
ity and memory complexity of SW becomesO(Lm log2m)
and O(Lm).

Max sliced Wasserstein distance. It is well-known that
SW has a lot of less discriminative projections due to the uni-
form sampling. Therefore, max sliced Wasserstein distance
is proposed to use the most discriminative projecting direc-
tion. Max sliced Wasserstein (Max-SW) distance (Desh-
pande et al., 2019) between µ ∈ Pp(Rd) and ν ∈ Pp(Rd)
is introduced as follows:

Max-SWp(µ, ν) = max
θ∈Sd−1

Wp(θ♯µ, θ♯ν), (5)

Max-SW is often computed by a projected sub-gradient
ascent algorithm. When the projected sub-gradient ascent
algorithm has T ≥ 1 iterations, the computation complexity
of Max-SW is O(Tm log2m) and the memory complexity
is O(m). Both SW and Max-SW are applied successfully
in point-cloud reconstruction (Nguyen et al., 2021c).

2.3. Amortized Projection Optimization

Amortized Optimization. We start with the definition of
amortized optimization.

Definition 1. For each context variable x in the context
space X , θ⋆(x) is the solution of the optimization problem
θ⋆(x) = argminθ∈Θ L(θ, x), where Θ is the solution space.
A parametric function fψ : X → Θ, where ψ ∈ Ψ, is called
an amortized model if

fψ(x) ≈ θ⋆(x), ∀x ∈ X . (6)

The amortized model is trained by the amortized optimiza-
tion objective which is defined as:

min
ψ∈Ψ

Ex∼p(x)L(fψ(x), x), (7)

where p(x) is a probability measure on X which measures
the “importance” of optimization problems.

Amortized Projection Optimization. We now revisit
the point-cloud reconstruction objective with D(X,Y) =

Max-SWp(PX , PY):

min
ϕ∈Φ,γ∈Γ

E
[
max
θ∈Sd−1

Wp(θ♯PX , θ♯Pgγ(fϕ(X)))

]
, (8)

where the expectation is with respect to X ∼ p(X). For
each point-cloud X ∈ X , we need to compute a Max-SW
distance with an iterative optimization procedure. Therefore,
it is computationally expensive.

Authors in (Nguyen & Ho, 2022a) propose to use amor-
tized optimization (Shu, 2017; Amos, 2022) to speed up
the problem. Instead of solving all optimization problems
independently, an amortized model is trained to predict op-
timal solutions to all problems. In greater detail, given a
parametric function aψ : X × X → Sd−1 (ψ ∈ Ψ), the
amortized objective is:

min
ϕ∈Φ,γ∈Γ

max
ψ∈Ψ

EWp(θψ,γ,ϕ♯PX , θψ,γ,ϕ♯Pgγ(fϕ(X))), (9)

where the expectation is with respect to X ∼ p(X), and
θψ,γ,ϕ = aψ(X, gγ(fϕ(X))). The above optimization
is solved by an alternative stochastic (projected)-gradient
descent-ascent algorithm. Therefore, it is faster to compute
in each update iteration of ϕ and γ. It is worth noting that
the previous work (Nguyen & Ho, 2022a) considers the
generative model application which is unstable and hard
to understand. Here, we adapt the framework to the point-
cloud reconstruction application which is easier to explore
the behavior of amortized optimization. We refer the reader
to Algorithms 2-3 in Appendix A.3 for algorithms on train-
ing an autoencoder with Max-SW and amortized projection
optimization.

Amortized models. Authors in (Nguyen & Ho, 2022a)
propose three types of amortized models that are based
on the literature on linear models (Christensen, 2002). In
particular, the linear amortized model is defined as:
Definition 2. Given X,Y ∈ Rdm, the linear amortized
model is defined as:

aψ(X,Y) :=
w0 +X ′w1 + Y ′w2

||w0 +X ′w1 + Y ′w2||2
,

whereX ′ and Y ′ are matrices of size d×m that are reshaped
from the concatenated vectors X and Y of size dm, ψ =
(w0, w1, w2) with w1, w2 ∈ Rm, and w0 ∈ Rd .

Similarly, the generalized linear amortized model and the
non-linear amortized model are defined by injecting non-
linearity into the linear model. We review the definitions
of the generalized linear amortized model and non-linear
amortized model in Definitions 4-5 in Appendix A.1.

Sub-optimality. Despite being faster, amortized optimiza-
tion often cannot recover the global optimum of optimiza-
tion problems. Namely, we denote

θ⋆(X) = argmaxθ∈Sd−1Wp(θ♯PX , θ♯Pgγ(fϕ(X)))

4

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Amortized projection

Amortized distributional projection

Figure 2. The difference between amortized projection optimiza-
tion and amortized distributional projection optimization.

and ψ⋆ =

argmax
ψ∈Ψ

EX∈p(X)

[
Wp(θψ,γ,ϕ♯PX , θψ,γ,ϕ♯Pgγ(fϕ(X)))

]
.

Then, it is well-known that the amortization gap
EX∼p(X)[c(θ

⋆(X), aψ⋆(X, gγ(fϕ(X))))] > 0 for a met-
ric c : Sd−1 × Sd−1 → R+. A great amortized model is
one that can minimize the amortization gap. However, in
the amortized projection optimization setting, we cannot
obtain θ⋆(X) since the projected gradient ascent algorithm
can only yield the local optimum. Therefore, a careful in-
vestigation of the amortization gap is challenging.

3. Self-Attention Amortized Distributional
Projection Optimization

In this section, we propose the self-attention amortized dis-
tributional projection optimization framework. First, we
present amortized distributional projection optimization to
maintain the metricity property in Section 3.1. We then
introduce self-attention amortized models which are sym-
metric and permutation invariant in Section 3.2.

3.1. Amortized Distributional Projection Optimization

The current amortized projection optimization framework
is for predicting the “max” projecting direction in Max-
SW. However, the projected one-dimensional Wasserstein is
only a metric on space of probability measure at the global
optimum of Max-SW. Therefore, the local optimum from
the projected sub-gradient ascent algorithm (Nietert et al.,
2022) and the prediction from the amortized model only
yield pseudo-metricity for the projected Wasserstein.

Proposition 1. Let the projected one-dimensional Wasser-
stein be PWp(µ, ν; θ̂) = Wp(θ̂♯µ, θ̂♯ν)) for any µ, ν ∈
Pp(Rd) (p ≥ 1, d ≥ 1) and θ̂ ∈ Sd−1 such that θ̂ ̸=
argmaxθ∈Sd−1 Wp(θ♯µ, θ♯ν) , PWp(µ, ν; θ̂) is a pseudo

metric on Pp(Rd) since it satisfies symmetry, non-negativity,
triangle inequality, µ = ν implies PWp(µ, ν; θ̂) = 0, how-
ever, PWp(µ, ν; θ̂) = 0 does not imply µ = ν.

The proof for Proposition 1 is given in Appendix B.1.
This result implies that the if reconstruction loss
EX∼p(X)[PWp(PX , Pgγ(fϕ(X)); θ̂(X)) = 0, it does not im-
plyX = gγ(fϕ(X)) for p-almost surelyX ∈ X . Therefore,
a local maximum for maxθ∈Sd−1 in Max-SW reconstruc-
tion (Equation 8) and the global maximum for maxψ∈Ψ

in amortized Max-SW reconstruction (Equation 9 with a
misspecified amortized model) cannot guarantee perfect
reconstruction even when their objectives obtain 0 values.

Amortized Distributional Projection Optimization. To
overcome the issue, we propose to replace Max-SW in Equa-
tion 8 with the von Mises Fisher distributional sliced Wasser-
stein (v-DSW) distance (Nguyen et al., 2021b):

min
ϕ∈Φ,γ∈Γ

EX∼p(X)

[
max
ϵ∈Sd−1

(
Eθ∼vMF(ϵ,κ)

Wp
p(θ♯PX , θ♯Pgγ(fϕ(X)))

) 1
p
]
, (10)

where vMF(ϵ, κ) is the von Mises Fisher distribution with
the mean location parameter ϵ ∈ Sd−1 and the con-
centration parameter κ > 0, and v-DSWp(µ, ν;κ) =

maxϵ∈Sd−1

(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ, θ♯ν)
) 1
p

is von Mises
Fisher distributional sliced Wasserstein distance. The op-
timization can be solved by a stochastic projected gra-
dient ascent algorithm with the vMF reparameterization
trick. In particular, θ1, . . . , θL (L ≥ 1) is sampled
i.i.d from vMF(ϵ, κ) via the reparameterized acceptance-
rejection sampling (Davidson et al., 2018a) to approximate
∇ϵEvMF(ϵ,κ)[Wp

p(θ♯µ, θ♯ν)] via Monte Carlo integration.
We refer the reader to Section A.2 for more detail about the
vMF distribution, its sampling algorithm, its reparameteriza-
tion trick, and the stochastic gradient estimators. We present
a visualization of the difference between the new amortized
distributional projection optimization framework and the
conventional amortized projection optimization framework
in Figure 2. The corresponding amortized objective is:

min
ϕ∈Φ,γ∈Γ

max
ψ∈Ψ

EX∼p(X)

(
Eθ∼vMF(ϵψ,γ,ϕ,κ)

Wp
p(θ♯PX , θ♯Pgγ(fϕ(X)))

) 1
p

, (11)

where ϵψ,γ,ϕ = aψ(X, gγ(fϕ(X))). The optimization
is solved by an alternative stochastic (projected)-gradient
descent-ascent algorithm with the vMF reparameterization.

Theorem 1. For any ϵ ∈ Sd−1 and 0 ≤ κ < ∞,

if EX∼p(X)

(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯PX , θ♯Pgγ(fϕ(X)))
) 1
p = 0,

X = gγ(fϕ(X)) for p-almost surely X ∈ X .

5

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

NOT SYMMETRIC

NOT PERMUTATION INVARIANT

Figure 3. Visualization of an amortized model that is not symmet-
ric and permutation invariant in two dimensions.

The proof of Theorem 1 is given in Appendix B.2. The
proof is based on proving the metricity of the non-optimal
von Mises Fisher distributional sliced Wasserstein distance
(v-DSW) with the smoothness condition of the vMF dis-
tribution. It is worth noting that the proof of metricity of
von Mises Fisher distributional sliced Wasserstein distance
is new since the original work (Nguyen et al., 2021b) only
shows the pseudo-metricity with the global optimality con-
dition. Theorem 1 indicates that a perfect reconstruction
can be obtained with a local optimum for maxϵ∈Sd−1 in v-
DSW reconstruction (Equation 10) and a local optimum for
maxψ∈Ψ in amortized v-DSW reconstruction (Equation 11).

Comparison with SW and Max-SW: When κ → 0, the
vMF distribution converges weakly to the uniform distri-
bution over the unit hypersphere. Hence, we can get back
the conventional sliced Wasserstein reconstruction in both
Equation 10 and Equation 11. When κ → ∞, vMF distri-
bution converges weakly to the Dirac delta at the location
parameter. Therefore, we obtain Max-SW reconstruction
and amortized Max-SW reconstruction in Equation 10 and
Equation 11, respectively. However, when 0 < κ < ∞,
v-DSW reconstruction and amortized v-DSW reconstruc-
tion can find a region of discriminative projecting directions
while preserving the metricity for perfect reconstruction.

3.2. Self-Attention Amortized Models

We now discuss the parameterization of the amortized model
for amortized optimization.

Permutation Invariance and Symmetry. Let X and
Y be two point-clouds, the optimal slicing distribution
vMF(ϵ⋆, κ) of v-DSW between PX and PY can be ob-
tained by running Algorithm 4 in Appendix A.3. Clearly,
vMF(ϵ⋆, κ) is invariant to the permutation of the supports
since Pσ(X) = PX and Pσ(Y) = PY for a permuta-
tion function σ. Moreover, the optimal slicing distribu-
tion vMF(ϵ⋆, κ) is also unchanged when we exchange PX
and PY since v-DSW is symmetric. However, the cur-

rent amortized models (see Definition 2, Definitions 4-5
in Appendix A.1) are not permutation invariant and symmet-
ric, namely, aψ(X,Y) ̸= aψ(X,σ(Y)) and aψ(X,Y) ̸=
aψ(Y,X) . Therefore, the current amortized models could
be strongly misspecified. We show a visualization of an
amortized model that is not symmetric and permutation in-
variant in Figure 3. To address the issue, we propose amor-
tized models that are symmetric and permutation invariant
based on the self-attention mechanism.

Self-Attention Mechanism. Attention is well-known for
its effectiveness in learning long-range dependencies when
data are sequences such as text (Devlin et al., 2019; Liu
et al., 2019; Brown et al., 2020) or speech (Li et al., 2019;
Wang et al., 2020b). This mechanism was then successfully
generalized to other data types including image (Carion
et al., 2020; Dosovitskiy et al., 2020), video (Sun et al.,
2019), graph (Dwivedi & Bresson, 2021), point-cloud (Zhao
et al., 2021; Guo et al., 2021), to name a few. We now re-
visit the attention mechanism (Vaswani et al., 2017). Given
Q,K ∈ Rm×dk , V ∈ Rm×dv , the scaled dot-product atten-
tion operator is defined as:

Att(Q,K, V) = softmaxrow

[
QKT

√
dk

]
V (12)

where softmaxrow denotes the row-wise softmax function.
In the self-attention mechanism, the query matrix Q, the
key matrix K, and the value matrix V are usually com-
puted by projecting the input sequence X into different
subspaces. Thus, the self-attention mechanism is given as
follows. Given X ∈ Rm×d, the self-attention operator is:

Aζ(X) = Att(XWq, XWk, XWv) (13)

where Wq,Wk ∈ Rd×dk ,Wv ∈ Rd×dv and ζ =
(Wq,Wk,Wv). The self-attention operator is infamous for
its quadratic memory and computational costs. In partic-
ular, given an input sequence of length m, both the time
and space complexity are O(m2). Since we focus on the
sliced Wasserstein setting where the computational com-
plexity should be at most O(m logm), the conventional
self-attention is not appropriate. Several works (Li et al.,
2020; Katharopoulos et al., 2020; Wang et al., 2020a; Shen
et al., 2021) have been proposed to reduce the overall com-
plexity from O(m2) to O(m). In this paper, we utilize two
linear complexity variants of attention which are efficient at-
tention (Shen et al., 2021) and linear attention (Wang et al.,
2020a). Given X ∈ Rm×d, the efficient self-attention is
defined as:

EAζ(X) =

softmaxrow(XWq)
[
softmaxcol(XWk)

T (XWv)
]

(14)

where Wq,Wk ∈ Rd×dk ,Wv ∈ Rd×dv , ζ =
(Wq,Wk,Wv), and softmaxcol denotes applying the soft-

6

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

max function column-wise. The linear self-attention is:

LAζ(X) = Att(XWq,Wk1XWk2,Wv1XWv2) (15)

where Wq,Wk2 ∈ Rd×dk ,Wv2 ∈ Rd×dv , Wk1,Wv1 ∈
Rk×n, and ζ = (Wq,Wk1,Wk2,Wv1,Wv2). The projected
dimension k is chosen such that m ≫ k to reduce the
memory and space consumption significantly.

Self-Attention Amortized Models: Based on the self-
attention mechanism, we introduce the self-attention amor-
tized model which is permutation invariant and symmetric.
Formally, the self-attention amortized model is defined as:

Definition 3. Given X,Y ∈ Rdm, the self-attention amor-
tized model is defined as:

aψ(X,Y) =
Aζ(X ′⊤)⊤1m +Aζ(Y ′⊤)⊤1m
||Aζ(X ′⊤)⊤1m +Aζ(Y ′⊤)⊤1m||2

, (16)

whereX ′ and Y ′ are matrices of size d×m that are reshaped
from the concatenated vectors X and Y of size dm, 1m
is the m-dimensional vector whose all entries are 1 and
ψ = (ζ).

By replacing the conventional self-attention with the linear
self-attention and the efficient self-attention, we obtain the
linear self-attention amortized model and the efficient self-
attention amortized model.

Proposition 2. Self-attention amortized models are symmet-
ric and permutation invariant.

The proof of Proposition 2 is given in Appendix B.3. The
symmetry follows directly from the definition of the self-
attention amortized models. The permutation invariance is
proved by showing that the self-attention operators com-
bined with average pooling are permutation invariant.

Comparison with Set Transformer. The authors in (Lee
et al., 2019b) also proposed a method to guarantee the per-
mutation invariant of sets. There are two main differences
between our works and theirs. Firstly, Set Transformer in-
troduced a new attention mechanism and a new Transformer
architecture while we only present an approach to apply any
attention mechanism to preserve the permutation invariance
property of amortized models. Secondly, Set Transformer
maintains the permutation invariance property by using a
learnable multi-head attention as the aggregation scheme.
We instead still rely on average pooling, a conventional
permutation invariant aggregation scheme, to accumulate
features learned by self-attention operations. Nevertheless,
our works are orthogonal to Set Transformer, in other words,
it is possible to apply techniques in Set Transformer to our
attention-based amortized models. We leave this investiga-
tion for future work.

Table 1. Reconstruction and transfer learning performance on the
ModelNet40 dataset. CD and SW are multiplied by 100.

Method CD(10−2, ↓) SW(10−2, ↓) EMD(↓) Acc(↑) Time (↓)
CD 1.25 ± 0.03 681.20 ± 16.73 653.52 ± 10.43 86.28 ± 0.34 95
EMD 0.40 ± 0.00 94.54 ± 2.90 168.60 ± 1.57 88.45 ± 0.20 208

SW 0.68 ± 0.01 89.61 ± 3.88 191.12 ± 2.88 87.90 ± 0.27 106
Max-SW 0.68 ± 0.01 88.22 ± 1.45 190.23 ± 0.1 87.97 ± 0.14 116
ASW 0.69 ± 0.01 89.42 ± 5.07 192.03 ± 3.09 87.78 ± 0.20 103
v-DSW 0.67 ± 0.00 85.03 ± 3.31 187.75 ± 2.00 87.83 ± 0.40 633
L-Max-SW 1.06 ± 0.03 121.85 ± 5.77 236.87 ± 3.42 87.70 ± 0.23 94
G-Max-SW 12.11 ± 0.29 851.07 ± 2.11 829.28 ± 5.53 87.49 ± 0.36 97
N -Max-SW 7.38 ± 3.29 618.74 ± 153.87 648.32 ± 117.03 87.43 ± 0.15 96

Lv-DSW 0.68 ± 0.00 85.32 ± 0.54 188.32 ± 0.23 87.70 ± 0.34 114
Gv-DSW 0.68 ± 0.01 82.77 ± 0.48 187.04 ± 1.11 87.75 ± 0.19 117
Nv-DSW 0.67 ± 0.00 83.47 ± 0.49 186.66 ± 0.81 87.84 ± 0.07 115
Av-DSW 0.67 ± 0.01 83.08 ± 1.22 186.27 ± 0.56 88.05 ± 0.17 230
EAv-DSW 0.68 ± 0.01 82.05 ± 0.40 186.46 ± 0.25 88.07 ± 0.21 125
LAv-DSW 0.68 ± 0.00 81.03 ± 0.18 185.26 ± 0.31 88.28 ± 0.13 123

Table 2. Comparison between amortized models when approximat-
ing von Mises Fisher distributional sliced Wasserstein (v-DSW). T
denotes the number of projected sub-gradient ascent iterations.

Method T Distance (↑) Time (↓)
Lv-DSW 1 52.73 0.06
Gv-DSW 1 50.73 0.07
Nv-DSW 1 51.89 0.07
Av-DSW 1 53.07 1.00
EAv-DSW 1 53.17 0.17
LAv-DSW 1 53.83 0.14

v-DSW 1 51.87 0.1
v-DSW 5 51.90 0.33
v-DSW 10 52.65 0.5
v-DSW 50 53.16 2.00
v-DSW 100 54.39 4.00

4. Experiments
To verify the effectiveness of our proposal, we evaluate
our methods on the point-cloud reconstruction task and its
two downstream tasks including transfer learning and point-
cloud generation. Three important questions we want to
answer are:

1. Does the sub-optimality issue of amortized Max-SW
occur when working with point-clouds and does replac-
ing Max-SW with v-DSW alleviate the problem?

2. Does the proposed amortized distribution projection
optimization framework improve the performance over
the conventional amortized projection optimization
framework and commonly used distances e.g., Chamfer
distance, Earth Mover Distance (Wasserstein distance),
SW, Max-SW, adaptive SW (ASW) (Nguyen et al.,
2021c), and v-DSW?

3. Are self-attention amortized models better than the
previous misspecified amortized models in (Nguyen &
Ho, 2022a)?

7

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Figure 4. Qualitative results of reconstructing point-clouds in the ShapeNet Core-55 dataset. From top to bottom, the point-clouds are
input, SW, Max-SW (T = 50), v-DSW (T = 50), and LAv-DSW respectively.

Table 3. Performance comparison of point-cloud generation on the chair category of ShapeNet. The values of JSD, MMD-CD, and
MMD-EMD are multiplied by 100.

Method JSD (×10−2, ↓) MMD (×10−2, ↓) COV (%, ↑) 1-NNA (%, ↓)
CD EMD CD EMD CD EMD

CD 17.88 ± 1.14 1.12 ± 0.02 17.19 ± 0.36 23.73 ± 1.69 10.83 ± 0.89 98.45 ± 0.10 100.00 ± 0.00
EMD 5.15 ± 1.52 0.61 ± 0.09 10.37 ± 0.61 41.65 ± 2.19 42.54 ± 2.42 87.76 ± 1.46 87.30 ± 1.22

SW 1.56 ± 0.06 0.72 ± 0.02 10.80 ± 0.11 38.55 ± 0.43 45.35 ± 0.48 89.91 ± 1.17 88.28 ± 0.70
Max-SW 1.63 ± 0.32 0.74 ± 0.01 10.84 ± 0.08 40.47 ± 1.04 47.81 ± 0.78 91.46 ± 0.72 89.93 ± 0.86
ASW 1.75 ± 0.38 0.78 ± 0.05 11.27 ± 0.38 38.16 ± 2.15 45.45 ± 1.40 91.21 ± 0.40 89.36 ± 0.40
v-DSW 1.79 ± 0.17 0.72 ± 0.02 10.73 ± 0.20 37.76 ± 0.71 45.49 ± 1.37 90.23 ± 0.13 88.33 ± 0.95

Lv-DSW 1.67 ± 0.07 0.77 ± 0.04 11.10 ± 0.33 37.91 ± 1.84 45.64 ± 2.30 90.42 ± 0.53 88.82 ± 0.38
Gv-DSW 1.56 ± 0.22 0.75 ± 0.02 10.99 ± 0.11 37.81 ± 1.70 45.69 ± 0.46 90.32 ± 0.38 88.26 ± 0.28
Nv-DSW 1.44 ± 0.06 0.75 ± 0.02 10.95 ± 0.09 38.40 ± 1.34 46.28 ± 2.06 90.15 ± 0.80 88.65 ± 0.82
EAv-DSW 1.73 ± 0.21 0.71 ± 0.04 10.70 ± 0.26 40.03 ± 1.28 48.01 ± 1.07 89.98 ± 0.57 88.55 ± 0.38
LAv-DSW 1.54 ± 0.09 0.72 ± 0.03 10.74 ± 0.35 40.62 ± 1.39 45.84 ± 1.23 89.44 ± 0.28 87.79 ± 0.37

Experiment settings: Our settings1, which can be found
in Appendix C.1, are identical to the setting in the paper of
ASW. We compare our methods, amortized v-DSW, with the
following loss functions: Chamfer discrepancy (CD), Earth-
mover distance (EMD), SW, Max-SW, adaptive SW (ASW),

1Code for the paper is published at https://github.
com/hsgser/Self-Amortized-DSW.

v-DSW, and amortized Max-SW variants. For amortized
models, we consider 6 different ones. The prefix L,G, and
N denote the linear, generalized linear, and non-linear amor-
tized models in (Nguyen & Ho, 2022a), respectively. A, EA,
and LA represent self-attention, efficient self-attention, and
linear self-attention, respectively. Implementation details
for baseline distances and amortized models are given in
Appendices C.2 and C.3, respectively. Each experiment was

8

https://github.com/hsgser/Self-Amortized-DSW
https://github.com/hsgser/Self-Amortized-DSW

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

run over three different random seeds. We report the aver-
age performance along with the standard deviation for each
entity. All experiments are run on NVIDIA V100 GPUs.

Comparison with CD and EMD: The main focus of the
paper is to compare the new amortized framework with the
conventional amortized framework and sliced Wasserstein
variants. The results with CD and EMD are provided only
for completeness. In addition, we found that there is an
unfair comparison between EMD and sliced Wasserstein
variants in the ASW’s paper. In particular, the EMD loss is
normalized by the number of points in a point cloud while
SW variants are not. To fix the aforementioned issue, we
modified the implementation of the EMD loss by scaling it
by the number of points (2048 in this case). As a “perfect”
objective, EMD performs better than all SW variants. How-
ever, EMD suffers from huge computational costs compared
to SW variants

Point-cloud reconstruction: Following ASW (Nguyen
et al., 2021c), we measure the reconstruction performance
of different autoencoders on the ModelNet40 dataset (Wu
et al., 2015) using three discrepancies: Chamfer discrep-
ancy (CD), sliced Wasserstein distance (SW), and EMD.
The quantitative results are summarized in Table 1. For each
method, we only report the best performing (based on EMD)
model among all choices of hyper-parameters. Full quanti-
tative results (including std) can be found in Table 4. Our
methods achieve the best performance in all three discrep-
ancies. In contrast, autoencoders with amortized Max-SW
losses fail in this scenario due to the sub-optimality and
losing metricity issues that we discussed in Section 2.3. In
addition, amortized v-DSW losses have smaller standard
deviations over 3 runs than v-DSW. Moreover, using amor-
tized optimization reduces the training time compared to the
conventional computation using the projected sub-gradient
ascent algorithm (e.g. Max-SW and v-DSW). For example,
training one iteration of autoencoder using LAv-DSW only
takes 123 seconds while using v-DSW costs 633 seconds.
In terms of amortized models, attention-based amortized
models lead to lower EMD between reconstruction and in-
put. Qualitative results are given in Figure 4, showing the
success of our methods in reconstructing 3D point-clouds.
Full qualitative results are reported in Figure 6.

Amortization Gaps: To validate the advantage of self-
attention amortized models over the previous misspecified
amortized models, we compare their effectiveness in ap-
proximating v-DSW. We create a dataset by sampling 1000
pairs of point-clouds from the ShapeNet Core-55 dataset.
Due to the memory constraint when solving amortized opti-
mization, the dataset is divided into 10 batches of size 100.
We compute v-DSW and its amortized versions between all
pairs of point-clouds and report their average loss values in
Table 2. Compared to previous misspecified amortized mod-

els, attention-based amortized models produce higher losses
which are closer to the conventional computation of v-DSW
(T = 100). To achieve the same level as efficient/linear self-
attention amortized models, one needs to run more than 50
sub-gradient iterations, which is more than 10 times slower.

Transfer learning: We further feed the latent vectors
learned by the above autoencoders into a classifier. Fol-
lowing the settings in ASW’s paper, we train our classifier
for 500 epochs with a batch size of 256. The optimizer is
the same as that in the reconstruction experiment. Table 1
illustrates the classification result. Again, we see a boost in
accuracy when using self-attention amortized v-DSW.

Point-cloud generation: We also evaluate our methods on
the 3D point-cloud generation task. Following (Achlioptas
et al., 2018), the chair category of ShapeNet is divided
into train/valid/test sets in an 85/5/10 ratio. We train each
autoencoder on the train set for 100 epochs and evaluate on
the valid set. The generator is then trained to generate latent
codes learned by the autoencoder, same as (Achlioptas et al.,
2018). For evaluation, the same set of metrics in (Yang et al.,
2019a) is used. The quantitative results of the test set are
given in Table 3. Our methods yield the best performance in
all metrics. In addition, attention-based amortized models
lead to higher performance than previous amortized models
in all metrics except for JSD. Full quantitative results are
reported in Table 9.

5. Conclusion
We have proposed a self-attention amortized distribu-
tional projection optimization framework which uses a self-
attention amortized model to predict the best discriminative
distribution over projecting direction for each pair of prob-
ability measures. The efficient self-attention mechanism
helps to inject the geometric inductive biases which are
permutation invariance and symmetry into the amortized
model while remaining fast computation. Furthermore, the
amortized distribution projection optimization framework
guarantees the metricity for all pairs of probability measures
while the amortization gap still exists. On the experimental
side, we compare the new proposed framework to the con-
ventional amortized projection optimization framework and
other widely-used distances in the point-cloud reconstruc-
tion application and its two downstream tasks including
transfer learning and point-cloud generation to show the
superior performance of the proposed framework.

Acknowledgements
Nhat Ho acknowledges support from the NSF IFML
2019844 and the NSF AI Institute for Foundations of Ma-
chine Learning.

9

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

References
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.

Learning representations and generative models for 3d
point clouds. In International conference on machine
learning, pp. 40–49. PMLR, 2018.

Alvarez-Melis, D. and Fusi, N. Geometric dataset distances
via optimal transport. Advances in Neural Information
Processing Systems, 33:21428–21439, 2020.

Amos, B. Tutorial on amortized optimization for learning
to optimize over continuous domains. arXiv preprint
arXiv:2202.00665, 2022.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International Conference
on Machine Learning, pp. 214–223, 2017.

Barrow, H. G., Tenenbaum, J. M., Bolles, R. C., and Wolf,
H. C. Parametric correspondence and chamfer match-
ing: Two new techniques for image matching. Technical
report, SRI INTERNATIONAL MENLO PARK CA AR-
TIFICIAL INTELLIGENCE CENTER, 1977.

Bhushan Damodaran, B., Kellenberger, B., Flamary, R.,
Tuia, D., and Courty, N. Deepjdot: Deep joint distribution
optimal transport for unsupervised domain adaptation. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 447–463, 2018.

Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. Sliced and
Radon Wasserstein barycenters of measures. Journal of
Mathematical Imaging and Vision, 1(51):22–45, 2015.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European conference on computer vision,
pp. 213–229. Springer, 2020.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., Xiao, J., Yi, L., and Yu, F. ShapeNet: An
Information-Rich 3D Model Repository. Technical Re-
port arXiv:1512.03012 [cs.GR], Stanford University —
Princeton University — Toyota Technological Institute at
Chicago, 2015.

Christensen, R. Plane answers to complex questions, vol-
ume 35. Springer, 2002.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.
Optimal transport for domain adaptation. IEEE transac-
tions on pattern analysis and machine intelligence, 39(9):
1853–1865, 2016.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. In Advances in Neural Information
Processing Systems, pp. 2292–2300, 2013.

Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia,
D., and Courty, N. Deepjdot: Deep joint distribution
optimal transport for unsupervised domain adaptation. In
Proceedings of the European Conference on Computer
Vision (ECCV), pp. 447–463, 2018.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tom-
czak, J. M. Hyperspherical variational auto-encoders.
In 34th Conference on Uncertainty in Artificial Intelli-
gence 2018, UAI 2018, pp. 856–865. Association For
Uncertainty in Artificial Intelligence (AUAI), 2018a.

Davidson, T. R., Falorsi, L., De Cao, N., and Tomczak,
T. K. J. M. Hyperspherical variational auto-encoders.
In Conference on Uncertainty in Artificial Intelligence
(UAI), 2018b.

Deshpande, I., Zhang, Z., and Schwing, A. G. Generative
modeling using the sliced Wasserstein distance. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3483–3491, 2018.

Deshpande, I., Hu, Y.-T., Sun, R., Pyrros, A., Siddiqui, N.,
Koyejo, S., Zhao, Z., Forsyth, D., and Schwing, A. G.
Max-sliced Wasserstein distance and its use for GANs. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 10648–10656, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. AAAI Workshop on Deep
Learning on Graphs: Methods and Applications, 2021.

10

https://aclanthology.org/N19-1423

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Genevay, A., Peyré, G., and Cuturi, M. Learning genera-
tive models with Sinkhorn divergences. In International
Conference on Artificial Intelligence and Statistics, pp.
1608–1617. PMLR, 2018.

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R. R.,
and Hu, S.-M. Pct: Point cloud transformer. Computa-
tional Visual Media, 7(2):187–199, Apr 2021. ISSN 2096-
0662. doi: 10.1007/s41095-021-0229-5. URL http://
dx.doi.org/10.1007/s41095-021-0229-5.

Ho, N., Nguyen, X., Yurochkin, M., Bui, H. H., Huynh,
V., and Phung, D. Multilevel clustering via Wasserstein
means. In International Conference on Machine Learn-
ing, pp. 1501–1509, 2017.

Huynh, V., Zhao, H., and Phung, D. Otlda: A geometry-
aware optimal transport approach for topic modeling. Ad-
vances in Neural Information Processing Systems, 33:
18573–18582, 2020.

Jupp, P. E. and Mardia, K. V. Maximum likelihood es-
timators for the matrix von Mises-Fisher and bingham
distributions. The Annals of Statistics, 7(3):599–606,
1979.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kolouri, S., Pope, P. E., Martin, C. E., and Rohde, G. K.
Sliced Wasserstein auto-encoders. In International Con-
ference on Learning Representations, 2018.

Lee, C.-Y., Batra, T., Baig, M. H., and Ulbricht, D. Sliced
Wasserstein discrepancy for unsupervised domain adap-
tation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10285–
10295, 2019a.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR,
2019b.

Lee, Y., Kim, S., Choi, J., and Park, F. A statistical manifold
framework for point cloud data. In International Con-
ference on Machine Learning, pp. 12378–12402. PMLR,
2022.

Li, R., Su, J., Duan, C., and Zheng, S. Linear attention mech-
anism: An efficient attention for semantic segmentation.
arXiv preprint arXiv:2007.14902, 2020.

Li, S., Raj, D., Lu, X., Shen, P., Kawahara, T., and
Kawai, H. Improving Transformer-Based Speech
Recognition Systems with Compressed Structure and
Speech Attributes Augmentation. In Proc. Inter-
speech 2019, pp. 4400–4404, 2019. doi: 10.21437/
Interspeech.2019-2112. URL http://dx.doi.org/
10.21437/Interspeech.2019-2112.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Naderializadeh, N., Comer, J., Andrews, R., Hoffmann, H.,
and Kolouri, S. Pooling by sliced-Wasserstein embedding.
Advances in Neural Information Processing Systems, 34,
2021.

Nadjahi, K., De Bortoli, V., Durmus, A., Badeau, R., and
Şimşekli, U. Approximate Bayesian computation with
the sliced-Wasserstein distance. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5470–5474. IEEE, 2020.

Nguyen, K. and Ho, N. Amortized projection optimization
for sliced Wasserstein generative models. Advances in
Neural Information Processing Systems, 2022a.

Nguyen, K. and Ho, N. Revisiting sliced Wasserstein on
images: From vectorization to convolution. Advances in
Neural Information Processing Systems, 2022b.

Nguyen, K., Ho, N., Pham, T., and Bui, H. Distributional
sliced-Wasserstein and applications to generative model-
ing. In International Conference on Learning Represen-
tations, 2021a.

Nguyen, K., Nguyen, S., Ho, N., Pham, T., and Bui, H.
Improving relational regularized autoencoders with spher-
ical sliced fused Gromov Wasserstein. In International
Conference on Learning Representations, 2021b.

Nguyen, K., Ren, T., Nguyen, H., Rout, L., Nguyen, T. M.,
and Ho, N. Hierarchical sliced wasserstein distance. In
The Eleventh International Conference on Learning Rep-
resentations, 2023.

Nguyen, T., Pham, Q.-H., Le, T., Pham, T., Ho, N., and Hua,
B.-S. Point-set distances for learning representations
of 3d point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
2021c.

Nietert, S., Sadhu, R., Goldfeld, Z., and Kato, K. Statisti-
cal, robustness, and computational guarantees for sliced
wasserstein distances. Advances in Neural Information
Processing Systems, 2022.

11

http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.21437/Interspeech.2019-2112
http://dx.doi.org/10.21437/Interspeech.2019-2112

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Peyré, G. and Cuturi, M. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Pham, Q.-H., Uy, M. A., Hua, B.-S., Nguyen, D. T., Roig,
G., and Yeung, S.-K. LCD: Learned cross-domain de-
scriptors for 2D-3D matching. In AAAI Conference on
Artificial Intelligence, 2020.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Shen, Z., Zhang, M., Zhao, H., Yi, S., and Li, H. Efficient
attention: Attention with linear complexities. In Proceed-
ings of the IEEE/CVF winter conference on applications
of computer vision, pp. 3531–3539, 2021.

Shu, R. Amortized optimization http://ruishu.io/
2017/11/07/amortized-optimization/. Per-
sonal Blog, 2017.

Sra, S. Directional statistics in machine learning: a brief
review. arXiv preprint arXiv:1605.00316, 2016.

Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid,
C. Videobert: A joint model for video and language
representation learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7464–
7473, 2019.

Temme, N. M. Special functions: An introduction to the
classical functions of mathematical physics. John Wiley
& Sons, 2011.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B.
Wasserstein auto-encoders. In International Conference
on Learning Representations, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and
Courty, N. Template based graph neural network with
optimal transport distances. Advances in Neural Informa-
tion Processing Systems, 2022.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020a.

Wang, Y., Mohamed, A., Le, D., Liu, C., Xiao, A., Ma-
hadeokar, J., Huang, H., Tjandra, A., Zhang, X., Zhang,
F., et al. Transformer-based acoustic modeling for hybrid
speech recognition. In ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6874–6878. IEEE, 2020b.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1912–
1920, 2015.

Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S.,
and Hariharan, B. Pointflow: 3d point cloud generation
with continuous normalizing flows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4541–4550, 2019a.

Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., and
Tian, Q. Modeling point clouds with self-attention and
gumbel subset sampling. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 3323–3332, 2019b.

Yi, M. and Liu, S. Sliced Wasserstein variational infer-
ence. In Fourth Symposium on Advances in Approximate
Bayesian Inference, 2021.

Zhao, H., Jiang, L., Jia, J., Torr, P. H., and Koltun, V. Point
transformer. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 16259–16268,
2021.

12

http://ruishu.io/2017/11/07/amortized-optimization/
http://ruishu.io/2017/11/07/amortized-optimization/

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Supplement to “Self-Attention Amortized Distributional Projection Optimization
for Sliced Wasserstein Point-Clouds Reconstruction”

In this supplementary, we first provide some additional materials in Appendix A including definitions of generalized linear
amortized models and non-linear amortized models in Appendix A.1, the detail of computing von Mises-Fisher distributional
sliced Wasserstein in Appendix A.2, and training algorithms for autoencoders in Appendix A.3. Next, we collect skipped
proofs in the main text in Appendix B. After that, we discuss the experimental settings of our experiments in Appendix C.
Finally, we present additional experimental results in Appendix D.

A. Additional Materials
A.1. Amortized models

We now review the generalized linear amortized model and the non-linear amortized model (Nguyen & Ho, 2022a).

Definition 4. Given X,Y ∈ Rdm, the generalized linear amortized model is defined as:

fψ(X,Y) :=
gψ1

(X)′w1 + gψ1
(Y)′w2

||gψ1
(X)′w1 + gψ1

(Y)′w2||22
, (17)

where X ′ and Y ′ are matrices of size d × m that are reshaped from the concatenated vectors X and Y of size dm,
w1, w2 ∈ Rm, w0 ∈ Rd, ψ1 ∈ Ψ1, gψ1 : Rdm → Rdm, ψ = (w0, w1, w2, ψ1), and gψ1(X) = (x′1, . . . , x

′
m) and

gψ1
(Y) = (y′1, . . . , y

′
m). To specify, we let gψ1

(X) = (W2σ(W1x1) + b0, . . . ,W2σ(W1xm) + b0), where σ(·) is the
Sigmoid function, W1 ∈ Rd×d, W2 ∈ Rd×d, and b0 ∈ Rd.

Definition 5. Given X,Y ∈ Rdm, the non-linear amortized model is defined as:

fψ(X,Y) :=
hψ2

(X ′w1 + Y ′w2)

||hψ2
(X ′w1 + Y ′w2)||22

, (18)

where X ′ and Y ′ are matrices of size d × m that are reshaped from the concatenated vectors X and Y of size dm,
w1, w2 ∈ Rm, ψ2 ∈ Ψ2, hψ2

: Rd → Rd, ψ = (w1, w2, ψ2), and hψ2
(x) = W4σ(W3x)) + b0 where σ(·) is the Sigmoid

function.

A.2. Von Mises-Fisher distributional sliced Wasserstein distance

We first start with the definition of von Mises Fisher (vMF) distribution. The von Mises–Fisher distribution (vMF)(Jupp &
Mardia, 1979) is a probability distribution on the unit hypersphere Sd−1 with the density function is :

f(x|ϵ, κ) := Cd(κ) exp(κϵ
⊤x), (19)

where ϵ ∈ Sd−1 is the location vector, κ ≥ 0 is the concentration parameter, and Cd(κ) := κd/2−1

(2π)d/2Id/2−1(κ)
is the

normalization constant. Here, Iv is the modified Bessel function of the first kind at order v (Temme, 2011).

The vMF distribution is a continuous distribution, its mass concentrates around the mean ϵ, and its density decrease when
x goes away from ϵ. When κ → 0, vMF converges in distribution to U(Sd−1), and when κ → ∞, vMF converges in
distribution to the Dirac distribution centered at ϵ (Sra, 2016).

Reparameterized Rejection Sampling: The sampling process of vMF distribution is based on the rejection sampling
procedure. We review the sampling process in Algorithm 1 (Davidson et al., 2018a; Nguyen et al., 2021b). The algorithm
performs the reparameterization for the proposal distribution. We now derive the gradient estimator for∇ϵEvMF(θ|ϵ,κ)

[
f(θ)

]
for a general function f(θ) to find the maxima ϵ∗ in the optimization problem maxϵ∈Sd−1 EvMF(θ|ϵ,κ)

[
f(θ)

]
.

In d > 0 dimension, let (ϵ, κ) be the parameters of vMF distribution. We denotes b =
−2κ+

√
4κ2+(d−1)2

d−1 , two con-

ditional distributions: g(ω | κ) =
2(πd/2)
Γ(d/2) Cd(κ)

exp(ωκ)(1−ω2)
1
2
(d−3)

Beta(1
2 ,

1
2 (d−1))

, r(ω|κ) = 2b1/2(d−1)

Beta(1
2 (d−1), 12 (d−1))

(1−ω2)
1/2(d−3)

[(1+b)−(1−b)ω]d−1 ,

distribution s(ψ) := Beta
(
1
2 (d− 1), 12 (d− 1)

)
, function h(ψ, κ) = 1−(1+b)ψ

1−(1−b)ψ , distributions π1(ψ|κ) = s(ψ) g(h(ψ,κ)|κ)r(h(ψ,κ)|κ) ,

π2(v) := U(Sd−2), and function T (ω, v, ϵ) =
(
I − 2 e1−ϵ

||e1−ϵ||2
e1−ϵ

||e1−ϵ||2
⊤
)(
ω,
√
1− ω2v⊤

)⊤
:= θ.

13

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Algorithm 1 Sampling from vMF distribution
Input: location ϵ, concentration κ, dimension d, unit vector e1 = (1, 0, .., 0)
Draw v ∼ U(Sd−2)

b← −2κ+
√

4κ2+(d−1)2

d−1 , a← (d−1)+2κ+
√

4κ2+(d−1)2

4 , m← 4ab
(1+b) − (d− 1) log(d− 1)

repeat
Draw ψ ∼ Beta

(
1
2 (d− 1), 12 (d− 1)

)
ω ← h(ψ, κ) = 1−(1+b)ψ

1−(1−b)ψ
t← 2ab

1−(1−b)ψ
Draw u ∼ U([0, 1])

until (d− 1) log(t)− t+m ≥ log(u)
h1 ← (ω,

√
1− ω2v⊤)⊤

ϵ′ ← e1 − ϵ
u = ϵ′

||ϵ′||2
U = I − 2uu⊤

Output: Uh1

We can obtain the gradient estimator by the following Lemma 2 in (Davidson et al., 2018b):

∇ϵEvMF(θ|ϵ,κ)
[
f(θ)

]
= ∇ϵE(ψ,v)∼π1(ψ|κ)π2(v)

[
f
(
T (h(ψ, κ), v, ϵ)

)]
= E(ψ,v)∼π1(ψ|κ)π2(v)

[
∇ϵf

(
T (h(ψ, κ), v, ϵ)

)]
.

In v-DSW case, we have f(θ) = Wp
p(θ♯µ, θ♯ν). Therefore, we have:

∇ϵEvMF(θ|ϵ,κ)
[
Wp
p(θ♯µ, θ♯ν)

]
= E(ψ,v)∼π1(ψ|κ)π2(v)

[
∇ϵWp

p(f
(
T (h(ψ, κ), v, ϵ)♯µ, f

(
T (h(ψ, κ), v, ϵ)♯ν)

)]
.

Then we can get a gradient estimator by using Monte-Carlo estimation scheme:

∇ϵEvMF(θ|ϵ,κ)
[
Wp
p(θ♯µ, θ♯ν)

]
≈ 1

L

L∑
i=1

[
∇ϵWp

p(f
(
T (h(ψi, κ), vi, ϵ)♯µ, f

(
T (h(ψi, κ), vi, ϵ)♯ν)

)]
,

where {ψi}Li=1 ∼ π1(ψ|κ) i.i.d, {vi}Li=1 ∼ π2(v) i.i.d, and L is the number of projections. Sampling from π1(ψ|κ) is
equivalent to the acceptance-rejection scheme in vMF sampling procedure, sampling π2(v) is directly from U(Sd−2). It is
worth noting that the gradient estimator for ∇κEvMF(θ|ϵ,κ)

[
f(θ)

]
can be derived by using the log-derivative trick, however,

we do not need it here since we do not optimize for κ in v-DSW.

A.3. Training algorithms

Training point-cloud autoencoder with Max-SW: We present the algorithm of training autoencoder with Max-SW in
Algorithm 2. The algorithm contains a nested loop: one is for training the autoencoder, one is for finding the max projecting
direction for Max-SW.

Training point-cloud autoencoder with amortized projection optimization: We present the training algorithm for
point-cloud autoencoder with amortized projection optimization in Algorithm 3. With amortized optimization, the inner
loop for finding the max projecting direction is removed.

Training point-cloud autoencoder with v-DSW: We present the algorithm of training autoencoder with v-DSW in
Algorithm 4. The algorithm contains a nested loop: one is for training the autoencoder, one is for finding the best distribution
over projecting directions for v-DSW.

Training point-cloud autoencoder with amortized distributonal projection optimization: We present the training
algorithm for point-cloud autoencoder with amortized distributional projection optimization in Algorithm 5. With amortized
distributional optimization, the inner loop for finding the best distribution over projecting directions is removed.

14

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Algorithm 2 Training point-cloud autoencoder with max sliced Wasserstein distance
Input: Point-cloud distribution p(X), learning rate η, slice learning rate ηs, model maximum number of iterations T ,
slice maximum number of iterations T , mini-batch size k.
Initialization: Initialize the encoder fϕ and the decoder gγ
while ϕ, γ not converge or reach T do

Sample a mini-batch X1, . . . , Xk i.i.d from p(X)
∇ϕ = 0,∇γ = 0
for i = 1 to k do

Initialize θ
while θ not converge or reach T do
θ = θ + ηs · ∇θWp(θ♯PXi , θ♯Pgγ(fϕ(Xi))) # Other update rules can be used
θ = θ

||θ||2 #Project back to the unit-hypersphere Sd−1

end while
∇ϕ = ∇ϕ + 1

k∇ϕWp(θ♯PXi , θ♯Pgγ(fϕ(Xi)))

∇γ = ∇γ + 1
k∇γWp(θ♯PXi , θ♯Pgγ(fϕ(Xi)))

end for
ϕ = ϕ− η · ∇ϕ # Other update rules can be used
γ = γ − η · ∇γ # Other update rules can be used

end while
Return: ϕ, γ

Algorithm 3 Training point-cloud autoencoder with amortized projection optimization
Input: Point-cloud distribution p(X), learning rate η, slice learning rate ηs, model maximum number of iterations T ,
mini-batch size k.
Initialization: Initialize the encoder fϕ, the decoder gγ , and the amortized model aψ
while ϕ, γ, ψ not converge or reach T do

Sample a mini-batch X1, . . . , Xk i.i.d from p(X)
∇ϕ = 0,∇γ = 0,∇ψ = 0
for i = 1 to k do
θψ,γ,ϕ = aψ(Xi, gγ(fϕ(Xi)))
∇ψ = ∇ψ + 1

k∇ψWp(θψ,γ,ϕ♯PXi , θψ,γ,ϕ♯Pgγ(fϕ(Xi)))

∇ϕ = ∇ϕ + 1
k∇ϕWp(θψ,γ,ϕ♯PXi , θψ,γ,ϕ♯Pgγ(fϕ(Xi)))

∇γ = ∇γ + 1
k∇γWp(θψ,γ,ϕ♯PXi , θψ,γ,ϕ♯Pgγ(fϕ(Xi)))

end for
ψ = ψ + ηs · ∇ψ # Other update rules can be used
ϕ = ϕ− η · ∇ϕ # Other update rules can be used
γ = γ − η · ∇γ # Other update rules can be used

end while
Return: ϕ, γ

B. Proofs
B.1. Proof for Proposition 1

We first recall the definition of the projected one-dimensional Wasserstein between two probability measures µ and ν:
PWp(µ, ν; θ̂) = Wp(θ̂♯µ, θ̂♯ν) for θ̂ ̸= argmaxθ∈Sd−1Wp(θ♯µ, θ♯ν).

Non-negativity and Symmetry: Due to the non-negativity and symmetry of the Wasserstein distance, the non-negativity
and symmetry of the projected Wasserstein follow directly from its definition.

15

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Algorithm 4 Training point-cloud autoencoder with von-Mises Fisher distributional sliced Wasserstein distance
Input: Point-cloud distribution p(X), learning rate η, slice learning rate ηs, model maximum number of iterations T , slice
maximum number of iterations T , mini-batch size k, the number of projections L, and the concentration hyperparameter
κ.
Initialization: Initialize the encoder fϕ and the decoder gγ
while ϕ, γ not converge or reach T do

Sample a mini-batch X1, . . . , Xk i.i.d from p(X)
∇ϕ = 0,∇γ = 0
for i = 1 to k do

Initialize ϵ
while ϵ not converge or reach T do

Sample θϵ1, . . . , θ
ϵ
L i.i.d from vMF(ϵ, κ) via the reparameterized acceptance-rejection sampling in Algorithm 1

ϵ = ϵ+ ηs · 1
L

∑L
l=1∇ϵWp(θ

ϵ
l ♯PXi , θ

ϵ
l ♯Pgγ(fϕ(Xi))) # Other update rules can be used

ϵ = ϵ
||ϵ||2 #Project back to the unit-hypersphere Sd−1

end while
Sample θϵ1, . . . , θ

ϵ
L i.i.d from vMF(ϵ, κ) via the reparameterized acceptance-rejection sampling in Algorithm 1.

∇ϕ = ∇ϕ + 1
k

1
L

∑L
i=l∇ϕWp(θ

ϵ
l ♯PXi , θ

ϵ
l ♯Pgγ(fϕ(Xi)))

∇γ = ∇γ + 1
k

1
L

∑L
i=l∇γWp(θ

ϵ
l ♯PXi , θ

ϵ
l ♯Pgγ(fϕ(Xi)))

end for
ϕ = ϕ− η · ∇ϕ # Other update rules can be used
γ = γ − η · ∇γ # Other update rules can be used

end while
Return: ϕ, γ

Algorithm 5 Training point-cloud autoencoder with amortized projection optimization
Input: Point-cloud distribution p(X), learning rate η, slice learning rate ηs, model maximum number of iterations T ,
mini-batch size k.
Initialization: Initialize the encoder fϕ, the decoder gγ , and the amortized model aψ
while ϕ, γ, ψ not converge or reach T do

Sample a mini-batch X1, . . . , Xk i.i.d from p(X)
∇ϕ = 0,∇γ = 0,∇ψ = 0
for i = 1 to k do
ϵψ,γ,ϕ = aψ(Xi, gγ(fϕ(Xi)))

Sample θψ,γ,ϕ1 , . . . , θψ,γ,ϕL i.i.d from vMF(ϵψ,γ,ϕ, κ) via the reparameterized acceptance-rejection sampling in
Algorithm 1
∇ψ = ∇ψ + 1

k
1
L

∑L
i=l∇ψWp(θ

ψ,γ,ϕ
l ♯PXi , θ

ψ,γ,ϕ
l ♯Pgγ(fϕ(Xi)))

∇ϕ = ∇ϕ + 1
k

1
L

∑L
i=l∇ϕWp(θ

ψ,γ,ϕ
l ♯PXi , θ

ψ,γ,ϕ
l ♯Pgγ(fϕ(Xi)))

∇γ = ∇γ + 1
k

1
L

∑L
i=l∇γWp(θ

ψ,γ,ϕ
l ♯PXi , θ

ψ,γ,ϕ
l ♯Pgγ(fϕ(Xi)))

end for
ψ = ψ + ηs · ∇ψ # Other update rules can be used
ϕ = ϕ− η · ∇ϕ # Other update rules can be used
γ = γ − η · ∇γ # Other update rules can be used

end while
Return: ϕ, γ

Triangle inequality: For any three probability measures µ1, µ2, µ3 ∈ Pp(Rd), we have:

PWp(µ1, µ3; θ̂) = Wp(θ̂♯µ1, θ̂♯µ3)

≤Wp(θ̂♯µ1, θ̂♯µ2) + Wp(θ̂♯µ2, θ̂♯µ3)

= PWp(µ1, µ2; θ̂) + PWp(µ2, µ3; θ̂),

16

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

where the first inequality is due to the triangle inequality of the Wasserstein distance.

Identity: If µ = ν, we have PWp(µ, ν; θ̂) = 0 due to the identity of the Wasserstein distance. However, if PWp(µ, ν; θ̂) = 0,
there exists θ′ ∈ Sd−1 such that 0 = PWp(µ, ν; θ̂) < PWp(µ, ν; θ

′). Let F [γ](w) =
∫
Rd′ e

−i⟨w,x⟩dγ(x) be the Fourier
transform of γ ∈ P(Rd′), for any t ∈ R, we have

F [µ](tθ′) =
∫
Rd
e−it⟨θ

′,x⟩dµ(x) =

∫
R
e−itzdθ′♯µ(z) = F [θ′♯µ](t)

̸= F [θ′♯ν](t) =
∫
R
e−itzdθ′♯ν(z) =

∫
Rd
e−it⟨θ

′,x⟩dν(x) = F [ν](tθ′).

Therefore, we have µ ̸= ν. We complete the proof.

B.2. Proof for Theorem 1

We first start with proving the metricity of the non-optimal von Mises Fisher distributional sliced Wasserstein distance (v-
DSW). For any two probability measures µ, ν ∈ Pp(Rd), the non-optimal von Mises Fisher distributional sliced Wasserstein
distance (v-DSW) is defined as follow:

v-DSWp(µ, ν; ϵ, κ) =
(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ, θ♯ν)
) 1
p ,

where ϵ ∈ Sd−1 and 0 < κ <∞.

Lemma 1. For any ϵ ∈ Sd−1 and κ <∞, v-DSWp(·, ·; ϵ, κ) is a valid metric on the space of probability measures.

Proof. We now prove that v-DSW satisfies non-negativity, symmetry, triangle inequality, and identity.

Non-negativity and Symmetry: The non-negativity and symmetry of v-DSW follow directly the non-negativity and
symmetry of the Wasserstein distance.

Triangle inequality: For any three probability measures µ1, µ2, µ3 ∈ Pp(Rd), we have

v-DSWp(µ1, µ3; ϵ, κ) =
(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ1, θ♯µ3)
) 1
p

≤
(
Eθ∼vMF(ϵ,κ) [Wp(θ♯µ1, θ♯µ2) + Wp(θ♯µ2, θ♯µ3)]

p) 1
p

≤
(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ1, θ♯µ2)
) 1
p +

(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ2, θ♯µ3)
) 1
p

= v-DSWp(µ1, µ2; ϵ, κ) + v-DSWp(µ2, µ3; ϵ, κ)

Identity: From the definition, if µ = ν, we obtain v-DSWp(µ, ν; ϵ, κ) = 0. Now, we need to show that if
v-DSWp(µ, ν; ϵ, κ) = 0, then µ = ν.

If v-DSWp(µ, ν; ϵ, κ) = 0, we have
(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ, θ♯ν)
) 1
p = 0 which implies Eθ∼vMF(ϵ,κ)Wp

p(θ♯µ, θ♯ν) = 0.
Therefore, Wp(θ♯µ, θ♯ν) = 0 for vMF(ϵ, κ) almost surely θ ∈ Sd−1. Using the identity property of the Wasserstein
distance, we obtain θ♯µ = θ♯ν for vMF(ϵ, κ) almost surely θ ∈ Sd−1. Since vMF(ϵ, κ) with 0 < κ <∞ has the supports
on all Sd−1, for any t ∈ R and θ ∈ Sd−1, we have:

F [µ](tθ) =
∫
Rd
e−it⟨θ,x⟩dµ(x) =

∫
R
e−itzdθ♯µ(z) = F [θ♯µ](t)

= F [θ♯ν](t) =
∫
R
e−itzdθ♯ν(z) =

∫
Rd
e−it⟨θ,x⟩dν(x) = F [ν](tθ),

where F [γ](w) =
∫
Rd′ e

−i⟨w,x⟩dγ(x) denotes the Fourier transform of γ ∈ P(Rd′). We then obtain µ = ν by the injectivity
of the Fourier transform. We complete the proof.

By abuse of notation, we denote v-DSW(X,Y ; ϵ, κ) = v-DSW(PX , PY ; ϵ, κ) for X,Y ∈ X are two point-clouds,
PX = 1

m

∑m
i=1 δxi , and PY = 1

m

∑m
i=1 δyi . We cast the v-DSW from a metric on the space of probability measures to the

space of point-clouds X .

17

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Corollary 1. For any ϵ ∈ Sd−1 and κ <∞, v-DSWp(·, ; ϵ, κ) is a valid metric on the space of point-clouds X .

Proof. Since PX , PY ∈ Pp(Rd), the non-negativity, symmetry, triangle inequality, and identity properties follow directly
from Lemma 1. We now only need to show that v-DSW is invariant to permutation. This property is straightforward
from the definition of empirical probability measures. For any permutation function σ, we have PX = 1

m

∑m
i=1 δxi =

1
m

∑m
i=1 δxσ(i) = Pσ(X) which completes the proof.

We now continue the proof of Theorem 1. If EX∼p(X)

(
Eθ∼vMF(ϵ,κ)Wp

p(θ♯PX , θ♯Pgγ(fϕ(X)))
) 1
p = 0, we obtain(

Eθ∼vMF(ϵ,κ)Wp
p(θ♯PX , θ♯Pgγ(fϕ(X)))

) 1
p = v-DSW(X, gγ(fϕ(X)); ϵ, κ) = 0 for p-almost surely X ∈ X . By Collo-

rary 1, we obtain X = gγ(fϕ(X)) for p-almost surely X ∈ X . We complete the proof.

B.3. Proof for Proposition 2

We first recall the definition of the self-attention amortized model in Definition 3:

aψ(X,Y) =
Aζ(X ′⊤)⊤1m +Aζ(Y ′⊤)⊤1m
||Aζ(X ′⊤)⊤1m +Aζ(Y ′⊤)⊤1m||2

,

Symmetry: Since the self-attention amortized model use the same attention weight ζ for both X and Y , exchanging X and
Y yields the same results aψ(X,Y) = aψ(Y,X).

Permutation invariance: Based on the results in Yang et al. (2019b, Appendix A), we show that self-attention amortized
model is permutation invariant. In particular, we have:

Aζ(X ′⊤)⊤1m = Att(X ′⊤Wq, X
′⊤Wk, X

′⊤Wv)
⊤1m

=

(
softmaxrow

[
X ′⊤WqW

⊤
k X

′
√
dk

]
X ′⊤Wv

)⊤

1m

=

(
softmaxrow

[
σ(X)′⊤WqW

⊤
k σ(X)′√

dk

]
σ(X)′⊤Wv

)⊤

1m

= Aζ(σ(X)′⊤)⊤1m.

Similarly, the proof holds for both linear self-attention and efficient self-attention.

C. Experiment settings
In this section, we first provide the details of the training process and the architecture for point-cloud reconstruction, transfer
learning, and point-cloud generation. Then, we present the implementation detail and hyper-parameters settings for different
distances used in our experiments.

C.1. Details of point-cloud reconstruction and downstream applications

Point-cloud reconstruction: We use the same settings in ASW (Nguyen et al., 2021c) to train autoencoders. We utilize a
variant of Point-Net (Qi et al., 2017) with an embedding size of 256 proposed in (Pham et al., 2020). The architecture of the
autoencoder and classifier are shown in Figure 5. Our autoencoder is trained on the ShapeNet Core-55 dataset (Chang et al.,
2015) with a batch size of 128 and a point-cloud size of 2048. We train it for 300 epochs using an SGD optimizer with an
initial learning rate of 1e-3, a momentum of 0.9, and a weight decay of 5e-4.

Next, we detail the process of conducting two downstream applications of point-cloud reconstruction.

Transfer learning: A classifier is trained on the latent space of the autoencoder. Particularly, we extract a 256-dimension
(which is smaller than the setting in (Lee et al., 2022)) latent vector of an input 3D point-cloud via the pre-trained encoder.
Then, this vector is fed into a multi-layer perceptron with hidden layers of size 512 and 256. The last layer outputs a
40-dimension vector representing the prediction of 40 classes of the ModelNet40 dataset.

18

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

conv1d(64, 1)

conv1d(64, 1)

conv1d(64, 1)

conv1d(128, 1)

conv1d(1024, 1)

maxpool

fc 256

z

fc 1024

fc 1024

fc Nx3

tanh

fc 512

fc 256

fc 40

fc 256

fc 1024

fc 1024

encoder

decoder
classifier

Figure 5. The architecture of the Point-Net variant in our experiments. For transfer learning, we use a simple classifier with 3 fully-
connected layers. All layers are followed by ReLU activation and batch normalization by default, except for the final layers.

Point-cloud generation: Our generative model is trained on the latent space of the autoencoder as follows. First, we extract
a 256-dimension latent vector of an input 3D point-cloud via the pre-trained encoder. Then a 64-dimensional vector is drawn
from a normal distribution N (0, I64), where I64 is the 64x64 identity matrix, and fed into a generator which also outputs a
256-dimension vector. Finally, the generator learns by minimizing the optimal transport distance between the generated and
ground truth latent codes.

C.2. Details of baseline distances

We want to emphasize that we use the same set of hyper-parameters reported in (Nguyen et al., 2021c) for Chamfer, EMD,
SW, and Max-SW.

Chamfer and EMD: We use the CUDA implementation from (Yang et al., 2019a).

SW: We use the Monte Carlo estimation with 100 slices.

Max-SW: We use the projected sub-gradient ascent algorithm to optimize the projection. It is trained with an Adam
optimizer with an initial learning rate of 1e-4. The number of iterations T is chosen from {1, 10, 50}.

Adaptive SW: We use Algorithm 1 in (Nguyen et al., 2021c) with the same set of parameters as follows: N0 = 2, s =
1, ϵ = 0.5, and M = 500.

v-DSW: We use stochastic projected gradient ascent algorithm to optimize the location vector ϵ in Equation 19 while we fix
the concentration parameter κ to 1 for both v-DSW and all of its amortized versions. Similar to Max-SW, it is trained with
an Adam optimizer with an initial learning rate of 1e-4. The number of iterations T is selected from {1, 10, 50} based on the
task performance. Intuitively, increasing the number of iterations leads to a better approximation that is closer to the optimal
value but comes with an expensive computational cost. We also use the Monte Carlo estimation with 100 slices as in SW.

C.3. Details of amortized sliced Wasserstein distances

Linear, generalized linear, and non-linear models: We adopt the official implementations in (Nguyen & Ho, 2022a).

Self-attention-based models: We adapt the official implementations from their corresponding papers in our experiments.
For all variants, dv is set to 3, which equals the dimension of point-clouds while dk is chosen from {16, 32, 64, 128}. In
Equation 15, the projected dimension k is selected from {64, 128}.

Training amortized models: The learning rate is set to 1e-3 and the optimizer is set to Adam (Kingma & Ba, 2014) with

19

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Table 4. Reconstruction and transfer learning performance of different autoencoders on the ModelNet40 dataset. For v-DSW and Max-SW,
T denotes the number of projected sub-gradient ascent iterations. In Table 1, both v-DSW and Max-SW have T = 50 iterations. All
reconstructed losses except EMD are multiplied by 100.

Method CD (10−2, ↓) SW (10−2, ↓) EMD (↓) Acc (↑) Time (↓)
CD 1.25 ± 0.03 681.20 ± 16.73 653.52 ± 10.43 86.28 ± 0.34 95
EMD 0.40 ± 0.00 94.54 ± 2.90 168.60 ± 1.57 88.45 ± 0.20 208

SW 0.68 ± 0.01 89.61 ± 3.88 191.12 ± 2.88 87.90 ± 0.27 106
Max-SW (T = 1) 0.69 ± 0.01 87.60 ± 0.95 190.88 ± 0.40 88.05 ± 0.23 97
Max-SW (T = 10) 0.69 ± 0.01 90.72 ± 0.58 192.82 ± 0.73 87.82 ± 0.37 102
Max-SW (T = 50) 0.68 ± 0.01 88.22 ± 1.45 190.23 ± 0.1 87.97 ± 0.14 116
ASW 0.69 ± 0.01 89.42 ± 5.07 192.03 ± 3.09 87.78 ± 0.20 103
v-DSW (T = 1) 0.67 ± 0.01 87.29 ± 1.49 188.52 ± 1.47 87.87 ± 0.28 115
v-DSW (T = 10) 0.68 ± 0.00 87.44 ± 1.07 189.97 ± 1.04 87.98 ± 0.23 205
v-DSW (T = 50) 0.67 ± 0.00 85.03 ± 3.31 187.75 ± 2.00 87.83 ± 0.40 633
L-Max-SW 1.06 ± 0.03 121.85 ± 5.77 236.87 ± 3.42 87.70 ± 0.23 94
G-Max-SW 12.11 ± 0.29 851.07 ± 2.11 829.28 ± 5.53 87.49 ± 0.36 97
N -Max-SW 7.38 ± 3.29 618.74 ± 153.87 648.32 ± 117.03 87.43 ± 0.15 96

Lv-DSW (ours) 0.68 ± 0.00 85.32 ± 0.54 188.32 ± 0.23 87.70 ± 0.34 114
Gv-DSW (ours) 0.68 ± 0.01 82.77 ± 0.48 187.04 ± 1.11 87.75 ± 0.19 117
Nv-DSW (ours) 0.67 ± 0.00 83.47 ± 0.49 186.66 ± 0.81 87.84 ± 0.07 115
Av-DSW (ours) 0.67 ± 0.01 83.08 ± 1.22 186.27 ± 0.56 88.05 ± 0.17 230
EAv-DSW (ours) 0.68 ± 0.01 82.05 ± 0.40 186.46 ± 0.25 88.07 ± 0.21 125
LAv-DSW (ours) 0.68 ± 0.00 81.03 ± 0.18 185.26 ± 0.31 88.28 ± 0.13 123

Table 5. Quantitative results (measured in EMD) of reconstructing point-clouds in the ShapeNet Core-55 dataset.

Method PC1 PC2 PC3 PC4 PC5 PC6 Avg

SW 141.07 139.50 118.83 99.11 150.28 128.46 129.54
Max-SW (T = 50) 145.15 131.76 112.13 116.73 139.91 115.79 126.91

ASW 139.17 126.55 115.49 91.07 153.87 114.84 123.50
v-DSW (T = 50) 133.06 146.99 105.65 105.66 137.32 110.50 123.20
Nv-DSW 132.60 127.57 100.81 94.31 131.04 116.34 117.11
EAv-DSW 139.64 124.28 100.34 98.33 123.59 115.05 116.87
LAv-DSW 130.21 127.00 96.75 98.09 132.33 114.11 116.41

Table 6. Reconstruction results of SW and LAv-DSW when changing L. CD and SWD are multiplied by 100.

Method L CD (10−2, ↓) SW (10−2, ↓) EMD (↓) Time

SW

50 0.67 ± 0.00 90.17 ± 2.97 190.97 ± 1.87 100
100 0.68 ± 0.01 89.61 ± 3.88 191.12 ± 2.88 107
200 0.67 ± 0.00 89.54 ± 4.57 191.21 ± 3.87 111
500 0.67 ± 0.01 88.20 ± 4.22 190.14 ± 2.35 142

LAv-DSW 50 0.68 ± 0.01 85.88 ± 4.03 188.80 ± 2.55 133
100 0.68 ± 0.00 81.03 ± 0.18 185.26 ± 0.31 123

(β1, β2) = (0, 0.9).

D. Additional experimental results
Point-cloud reconstruction: Table 4 illustrates the full quantitative results of the point-cloud reconstruction experiment.
For Max-SW and v-DSW, we vary the number of gradient iterations T in {1, 10, 50}. Because CD is not a proper distance
so we choose the best number of iterations based on SW and EMD losses (we prioritize EMD loss first then SW). As can be

20

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Figure 6. Qualitative results of reconstructing point-clouds in the ShapeNet Core-55 dataset. From top to bottom: input, SW, Max-SW (T
= 50), ASW, v-DSW (T = 50), Nv-DSW, EAv-DSW, and LAv-DSW.

Table 7. Reconstruction results of v-DSW when changing the number of projected sub-gradient ascent iteration (T). CD and SWD are
multiplied by 100.

Method CD (10−2, ↓) SW (10−2, ↓) EMD (↓)
v-DSW (T = 0) 0.67 ± 0.01 88.63 ± 2.30 189.81 ± 1.19
v-DSW (T = 1) 0.67 ± 0.01 87.29 ± 1.49 188.52 ± 1.47
v-DSW (T = 10) 0.68 ± 0.00 87.44 ± 1.07 189.97 ± 1.04
v-DSW (T = 50) 0.67 ± 0.00 85.03 ± 3.31 187.75 ± 2.00

LAv-DSW 0.68 ± 0.00 81.03 ± 0.18 185.26 ± 0.31

21

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Table 8. Reconstruction results of LAv-DSW when changing κ. CD and SWD are multiplied by 100.

κ CD (10−2, ↓) SW (10−2, ↓) EMD (↓)
0.1 0.67 ± 0.00 81.88 ± 1.09 185.30 ± 0.94
1 0.68 ± 0.00 81.03 ± 0.18 185.26 ± 0.31

10 0.85 ± 0.01 96.01 ± 4.24 208.46 ± 4.03

Table 9. Performance comparison of point-cloud generation on the chair category of ShapeNet. For v-DSW and Max-SW, T denotes the
number of projected sub-gradient ascent iterations. In Table 3, v-DSW and Max-SW have T = 50 and 10 iterations, respectively. JSD,
MMD-CD, and MMD-EMD are multiplied by 100.

Method JSD (10−2, ↓) MMD (10−2, ↓) COV (%, ↑) 1-NNA (%, ↓)
CD EMD CD EMD CD EMD

CD 17.88 ± 1.14 1.12 ± 0.02 17.19 ± 0.36 23.73 ± 1.69 10.83 ± 0.89 98.45 ± 0.10 100.00 ± 0.00
EMD 5.15 ± 1.52 0.61 ± 0.09 10.37 ± 0.61 41.65 ± 2.19 42.54 ± 2.42 87.76 ± 1.46 87.30 ± 1.22

SW 1.56 ± 0.06 0.72 ± 0.02 10.80 ± 0.11 38.55 ± 0.43 45.35 ± 0.48 89.91 ± 1.17 88.28 ± 0.70
Max-SW (T = 1) 1.74 ± 0.22 0.78 ± 0.05 11.05 ± 0.31 39.39 ± 2.28 46.82 ± 0.79 92.15 ± 0.95 90.20 ± 0.87
Max-SW (T = 10) 1.63 ± 0.32 0.74 ± 0.01 10.84 ± 0.08 40.47 ± 1.04 47.81 ± 0.78 91.46 ± 0.72 89.93 ± 0.86
Max-SW (T = 50) 1.57 ± 0.26 0.80 ± 0.05 11.25 ± 0.34 37.81 ± 1.69 46.23 ± 0.64 92.15 ± 0.72 90.35 ± 0.28
ASW 1.75 ± 0.38 0.78 ± 0.05 11.27 ± 0.38 38.16 ± 2.15 45.45 ± 1.40 91.21 ± 0.40 89.36 ± 0.40
v-DSW (T = 1) 1.84 ± 0.17 0.75 ± 0.03 11.02 ± 0.21 38.26 ± 1.46 45.35 ± 1.70 90.08 ± 0.48 87.81 ± 0.16
v-DSW (T = 10) 1.48 ± 0.17 0.77 ± 0.02 11.09 ± 0.09 37.22 ± 0.96 43.77 ± 0.39 90.40 ± 1.05 88.87 ± 1.04
v-DSW (T = 50) 1.79 ± 0.17 0.72 ± 0.02 10.73 ± 0.20 37.76 ± 0.71 45.49 ± 1.37 90.23 ± 0.13 88.33 ± 0.95

Lv-DSW (ours) 1.67 ± 0.07 0.77 ± 0.04 11.10 ± 0.33 37.91 ± 1.84 45.64 ± 2.30 90.42 ± 0.53 88.82 ± 0.38
Gv-DSW (ours) 1.56 ± 0.22 0.75 ± 0.02 10.99 ± 0.11 37.81 ± 1.70 45.69 ± 0.46 90.32 ± 0.38 88.26 ± 0.28
Nv-DSW (ours) 1.44 ± 0.06 0.75 ± 0.02 10.95 ± 0.09 38.40 ± 1.34 46.28 ± 2.06 90.15 ± 0.80 88.65 ± 0.82
EAv-DSW (ours) 1.73 ± 0.21 0.71 ± 0.04 10.70 ± 0.26 40.03 ± 1.28 48.01 ± 1.07 89.98 ± 0.57 88.55 ± 0.38
LAv-DSW (ours) 1.54 ± 0.09 0.72 ± 0.03 10.74 ± 0.35 40.62 ± 1.39 45.84 ± 1.23 89.44 ± 0.28 87.79 ± 0.37

seen from the table, increasing the number of gradient ascent iterations (T) increases the reconstruction performance of
Max-SW and v-DSW but comes with the cost of additional computation, especially for v-DSW. However, with all choices
of T, the reconstruction performance (measured in SW and EMD) of both Max-SW and v-DSW are generally worse than
our amortized methods. In addition, our amortized methods have smaller standard deviations over 3 runs, thus they are more
stable than the conventional optimization method using gradient ascent method. The qualitative results are given in Figure 6.
The corresponding quantitative results in EMD are given in Table 5. It can be seen that our amortized v-DSW methods have
more favorable performance.

On the number of projections (L). In our experiments, L is fixed to 100 as in the ASW’s paper. Here, we conduct an
ablation study on the number of projections L and report the result in Table 6. As can be seen from the table, increasing
the number of projections improves the performance in terms of EMD but comes with an extra running time. We see that
LAv-DSW with L = 50 and L = 100 are faster than SW with L = 500 while being better in terms of SW and EMD
evaluation metrics. Compared to SW with L = 200, LAv-DSW with L = 50 has approximately the same computational
time while having lower SW and EMD evaluation metrics.

On the choice of location vector ϵ. We would like to recall that the optimal location vector ϵ⋆ of v-DSW are computed
using Algorithm 4 in Appendix A.3. To show its effectiveness, we compare it with a random location ϵ, i.e. T = 0. Table 7
illustrates that optimizing for the location parameter of the vMF distribution helps to improve the reconstruction. Moreover,
our amortized optimization still gives better reconstruction scores than the randomly initialized location ϵ and the optimized
location using the conventional method. Therefore, using amortized optimization could actually have benefits.

On the choice of parameter κ. We would like first to recall that κ is set to 1 for all v-DSW and amortized v-DSW methods
in our experiments. In practice, the parameter κ can be chosen by doing a grid search. Here, we conduct an ablation study
by varying κ ∈ {0.1, 1, 10} for LAv-DSW and report the results in Table 8. As can be seen from the table, κ = 1 results in
the best-performing EMD.

22

Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction

Point-cloud generation. We summarize the full quantitative results for point-cloud generation in Table 9. For Max-SW
and v-DSW, we again change the number of gradient iterations T in {1, 10, 50}. Note that Av-DSW cannot be used in this
experiment due to being out of memory while the performance of amortized Max-SW is too bad. Therefore, their results are
not reported in this experiment. As can be seen from the table, amortized v-DSW methods achieve the best performance in 7
out of 7 metrics. Using more than one gradient ascent iteration (T ∈ {10, 50}) does improve the generation performance of
Max-SW and v-DSW but comes with the cost of additional computation.

23

