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Abstract

The popularity of LLaMA [60, 61] and other recently emerged moderate-sized large
language models (LLMs) highlights the potential of building smaller yet powerful
LLMs. Regardless, the cost of training such models from scratch on trillions of
tokens remains high. In this work, we study structured pruning as an effective
means to develop smaller LLMs from pre-trained, larger models. Our approach
employs two key techniques: (1) targeted structured pruning, which prunes a
larger model to a specified target shape by removing layers, heads, intermediate
and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading,
which dynamically updates the composition of sampled data in each training batch
based on varying losses across different domains. We demonstrate the efficacy of
our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B
model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform
state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE,
and OpenLLaMA models, on a wide range of downstream and instruction tuning
evaluations, while requiring less than 3% of compute compared to training such
models from scratch. This work provides compelling evidence that leveraging
existing LLMs with structured pruning is a far more cost-effective approach for
building smaller LLMs.

1 Introduction

Large language models (LLMs) are extremely performant on a wide range of natural language tasks,
but they require enormous amounts of compute to train [46, 2]. As such, there is growing interest
in building strong moderate-sized models, such as LLaMA [60, 61], MPT [45], and Falcon [1],
that allow for efficient inference and fine-tuning. These LLMs are available in varied sizes suited
for different use cases, but training each individual model from scratch—even the smallest billion-
parameter models—requires substantial computational resources that are cost-prohibitive for most
organizations. In this work, we seek to address the following question:

Can we produce a smaller, general-purpose, and competitive LLM by leveraging existing pre-trained
LLMs, while using much less compute than training one from scratch?

We explore structured pruning as a means to achieve this goal. Pruning is commonly viewed as a
solution for compressing task-specific models [23, 33, 68, 31], removing redundant parameters and
accelerating inference without sacrificing task performance. However, for general-purpose LLMs,
pruning inevitably results in performance degradation compared to original models [16, 55, 42],
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especially when without significant compute invested post-pruning. In this work, we propose pruning
as an effective approach for developing smaller yet competitive LLMs that require only a fraction of
the compute compared to training them from scratch.

We identify two key technical challenges in this problem. First, how can we decide on final pruned
architectures that are strong in performance and efficient for inference? Existing structured pruning
techniques for LLMs [68, 42] do not specify targeted structures and lead to suboptimal pruned
models in terms of performance and inference speed (Table 4 and Figure 8). Second, how can we
continue pre-training the pruned model to reach desired performance? We observe that training
using the original pre-training data leads to imbalanced rates of loss reduction across different
domains, compared to a trained-from-scratch model. This indicates that the pruned model re-
tains varying levels of knowledge for different domains (e.g., GitHub vs. C4) and simply using
the pre-training domain proportion results in an inefficient use of data (Figure 5). To address
these issues, we propose a “shearing” algorithm consisting of the following two components:

OPT

Pythia

INCITE

OpenLLaMA v1

Sheared-LLaMA (ours)
OpenLLaMA v2

32x faster

Figure 1: Our Sheared-LLaMA-2.7B surpasses a
series of open-source models at a similar scale and
only requires 1/32 of training tokens to achieve
on-par performance with OpenLLaMA-3B-v2.

• We propose a novel pruning method,
dubbed targeted structured pruning, which
prunes a source model to a specified target
architecture. The target architecture is de-
termined by leveraging the configurations
of existing pre-trained models. Our pruning
approach searches for substructures within
the source model that maximally preserve
performance while adhering to the given
constraints.

• We devise a dynamic batch loading algo-
rithm that loads training data from each do-
main in proportion to its rate of loss reduc-
tion, thereby making the data use more effi-
cient and accelerating overall performance
improvement.

We demonstrate the efficacy of our proposed method by pruning a LLaMA2-7B model [61] into two
smaller LLMs: Sheared-LLaMA-1.3B and Sheared-LLaMA-3B. Despite using only 50 billion tokens
(i.e., 5% of OpenLLaMA’s pre-training budget) for pruning and continued pre-training, Sheared-
LLaMA-1.3B and Sheared-LLaMA-2.7B outperform other popular LLMs at similar scales, including
Pythia [4], INCITE [58], and OpenLLaMA [19], on 11 representative downstream tasks (Figure 1;
commonsense, reading comprehension, and world knowledge) and instruction tuning for open-ended
generation. Furthermore, the trajectory implies that training the pruned model with more tokens into
it will lead to even better performance. While we only conduct experiments with up to 7B parameter
models, our shearing algorithm is highly generalizable and can be extended to large language models
of any size in future work.

2 LLM Shearing Algorithm

Given an existing large modelMS (the source model), we study how to efficiently produce a smaller,
strong modelMT (the target model). We consider this as a two-stage process: (1) PruningMS into
MT . This reduces the number of parameters but incurs a performance drop inevitably. (2) Continually
pre-trainingMT with a standard language modeling objective to reach a target performance. While
most recent efforts [68, 42] focus on the former stage, we find the latter stage crucial for producing
competitive general-purpose LLMs from structured pruning.

2.1 Targeted Structured Pruning

Structured pruning removes groups of model parameters to compress models and accelerate inference.
However, existing structured pruning approaches often result in unconventional model configurations
that deviate from popular architectures. For example, CoFiPruning [68] produces models with
non-uniform layer configurations (e.g., different numbers of heads across layers), which is shown to
be slower than standard uniform layer configuration (Section 4.2).
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Figure 2: An illustration of targeted structured pruning, where we prune the model to a specified
target structure. Light colors indicate pruned components.

In this work, we extend CoFiPruning to allow pruning the source model into any target configuration
that we provide. We leverage the configurations of existing pre-trained models as the target architec-
ture, based on the intuition that these configurations have already been well-optimized to balance
model expressivity and inference efficiency. For example, we use the INCITE-3B architecture [59] as
the target when producing a 2.7B model.

Our method learns a set of pruning masks on model parameters at different granularity—from global
ones like layers and hidden dimensions (persist across all layers), to local ones like attention heads
and intermediate dimensions. Assume that the source modelMS has LS layers, with each layer
consisting of one multi-head attention module (MHA) and one feed-forward network (FFN).MS

has a hidden state dimension of dS , HS heads in each MHA, and an intermediate dimension of mS
in each FFN.

Granularity Layer Hidden dimension Head Intermediate dimension

Pruning masks zlayer ∈ RLS zhidden ∈ RdS zhead ∈ RHS (×LS) zint ∈ RmS (×LS)

Each mask variable controls whether the associated structure is pruned or retained. For example, we
remove a layer if its corresponding zlayer = 0. Figure 2 illustrates an example of how the pruning
masks control the pruned structures.

We formulate pruning as a constrained optimization problem where we learn pruning masks to
search for a subnetwork matching a pre-specified target architecture while maximizing performance.
Following the ℓ0 regularization approach [40], we parametrize the pruning masks to model hard
concrete distributions, which have a support of [0, 1]. While prior work usually control for a target
sparsity [64, 68], we use a pair of Lagrange multipliers to impose constraints on the pruned model
shape directly. For example, for a target number of heads HT (and we use LT , dT , and mT to
represent the target number of layers, hidden dimension, and intermediate dimension respectively),
we have the imposed constraint on a single layer as:

L̃head(λ, ϕ, z) = λhead ·
(∑

zhead −HT

)
+ ϕhead ·

(∑
zhead −HT

)2

.

Similar constraints are applied to pruning other substructures. Overall, we jointly optimize the model
weights and pruning masks by a min-max objective minθ,z maxλ,ϕ Lprune(θ, z, λ, ϕ):

Lprune(θ, z, λ, ϕ) = L(θ, z) +
LS∑
j=1

L̃head
j +

LS∑
j=1

L̃int
j + L̃layer + L̃hidden,

where L(θ, z) is the language modeling loss computed with the masked model weights. This objective
will produce a pruned model with the target shape. Ideally, running this prune algorithm on a large
amount of data will directly produce a strong compact model. In practice, the pruning stage is
expensive (roughly 5× slower compared to standard LM training), and we find that the learned masks
often converge fast. Therefore, in our experiments, we allocate only a limited budget for the pruning
process. Following pruning, we finalize the pruned architecture by preserving the highest-scoring
components associated with the mask variables in each substructure, and continue training the pruned
model with the language modeling objective. We refer to this second stage as continued pre-training.
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Algorithm 1: Dynamic Batch Loading

Require: Training data of k domains D1, D2, · · · , Dk, validation data Dval
1 , Dval

2 , · · · , Dval
k ,

initial data loading weights w0 ∈ Rk, reference loss ℓref ∈ Rk, LM loss function L, training
steps T , evaluation interval m, model parameters θ

for t = 1, · · · , T do
if t mod m = 0 then

ℓt[i]← L(θ,Dval
i )

∆t[i]← max {ℓt[i]− ℓref [i], 0}
wt ← UpdateWeight(wt−m, ∆t) ▷ Update data loading proportion

end
Sample a batch of data B from D1, D2, · · · , Dk with proportion wt;
if pruning then

Update θ, z, ϕ, λ with Lprune on B
else

Update θ with L(θ,B)
end

end

Subroutine UpdateWeight(w, ∆)
α← w · exp (∆)
w ← α∑

i α[i]

return w
return θ

2.2 Dynamic Batch Loading

Continued pre-training on a large amount of data is crucial for recovering the pruned model per-
formance. However, we observe a surprising finding in our preliminary experiments: continuing
pre-training our pruned models on the pre-training dataset RedPajama (58; LLaMA’s pre-training
dataset) reduces loss at different rates across domains compared to a model trained from scratch with
the same data, which signifies an inefficient use of data.

For example, to produce a 2.7B model from a LLaMA2-7B model, we first fit a scaling law (26;
details in Appendix A) on the series of LLaMA2 models for each domain. Then we predict the loss
that a hypothetical 2.7B LLaMA2 model, if trained from scratch on the same data, would achieve.
We obtain these estimated reference losses across domains of the pre-training data and compare them
to the losses of our pruned model after continued pre-training. As shown in Figure 5 (left), while our
model’s loss on GitHub is better than the reference loss, it is significantly worse than the reference
loss on C4. This observation indicates that pruning preserves a greater amount of knowledge in
low-entropy and smaller domains (e.g., GitHub) compared to high-entropy and larger domains (e.g.,
C4). As demonstrated later in Section 4.1, simply reusing the original pre-training data distribution2

results in an inefficient use of data and worse downstream performance, even if the overall loss is
seemingly low.

Inspired by [70], a recent work of reweighting data of different domains, we propose dynamic batch
loading, a more efficient algorithm to simply adjust domain proportions on the fly based on the model
performance. The goal is to ensure the model achieves the reference loss at a similar speed across all
domains. We introduce the algorithm below.

Problem setup. The pre-training data comprises of k domains D1, D2, · · · , Dk and we have a
held-out validation dataset for each domain, denoted as Dval

i . At each training step t, a proportion
wt[i] of the data comes from domain Di. We set a reference validation loss ℓref(Di) for each domain
and train the pruned model to reach the reference loss.

Dynamic batch loading. We present the full algorithm in Algorithm 1. In a sketch, for every m
steps, we evaluate the model to get the validation loss ℓt (step t) on Dval, and update wt based on the
difference ∆t(Di) between ℓref [i] and ℓt[i] on each domain. The update rule is exponential ascent

2The LLaMA2 pre-training data is not public. However, we observe a similar phenomenon with LLaMA1
models, indicating this is a universal issue unrelated to specific pre-training data.
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following [70],

αt = log(wt−m) + ∆t; wt =
exp(αt)∑
i exp(αt[i])

.

We apply dynamic batch loading to both the pruning stage and the continued pre-training stage. For
pruning, we use the original pre-trainig data’s domain weights as w0. For continued pre-training, we
use the final weights from the pruning stage as w0. Unlike [70], which requires training reference and
proxy models to decide a fixed domain weight before the final run, dynamic batch loading leverages
reference losses directly and adjusts the weights on the fly with minimal overhead, making it as
efficient as standard pre-training. More broadly, dynamic batch loading has the potential to train an
LLM to match reference losses from any model, even without a full access to the source model’s
training data.

Choices of reference loss. By default, we use the loss predicted by the scaling law as the reference
(denoted as scaling reference). We also experiment with an alternative where we directly use the
source model’s domain validation loss as the reference (denoted as source reference). We show in
Appendix E.3 and E.4 that while both variants perform well, using scaling reference leads to slightly
better downstream results, especially on math and coding tasks. However, source reference is a viable
alternative when only one source model exists (cannot apply the scaling law).

3 Experiments

3.1 Setup

Model configurations. We use the LLaMA2-7B model [61] as the source model throughout all
of our main experiments.3 We then conduct structured pruning experiments to compress this model
down to two smaller target sizes—2.7B and 1.3B parameters. We compare to strong pre-trained
language models of similar sizes, including OPT-1.3B [73], Pythia-1.4B [4], OPT-2.7B, Pythia-2.8B,
INCITE-Base-3B [58], OpenLLaMA-3B-v1, and OpenLLaMA-3B-v2 [19]. We use Pythia-1.4B as
the target architecture for the 1.3B model, and INCITE-Base-3B as the target architecture for the
2.7B model. Table 8 summarizes model architecture details of all these models.

Table 1: A summary of pre-training datasets used
by Sheared-LLaMA and other models.

Model Pre-training Data #Tokens

LLaMA1 LLaMA data 1T
LLaMA2 Unknown 2T

OPT OPT data4 300B
Pythia The Pile 300B
INCITE-Base RedPajama 800B
OpenLLaMA v1 RedPajama 1T
OpenLLaMA v2 OpenLLaMA data5 1T
Sheared-LLaMA RedPajama 50B

Data. As the training data for LLaMA2 is
not publicly accessible, we use RedPajama [58],
which is a replicated pre-training dataset of the
LLaMA 1 models [60], for pruning and continued-
pretraining. This dataset encompasses training
data from seven domains: CommonCrawl, C4,
Github, Wikipedia, Books, ArXiv, and StackEx-
change. We construct a held-out validation set
with 2 million tokens (equivalent to 500 sequences
of 4,096 tokens) for each domain. We allocate 0.4
billion tokens for the pruning phase and 50 billion
tokens for the continued pre-training process. Fol-
lowing the conventions of LLaMA2, we maintain
a sequence length of 4,096 tokens. Table 1 provides a summary of the pre-training data used by our
models and the baseline models.

Training. Our implementation builds on the Composer package [44]. We use a maximum of 16
Nvidia A100 GPUs (80GB) for all experiments (More details are in Appendix B).

Downstream task evaluation. We use the lm-evaluation-harness package [18] to evaluate on
an extensive suite of downstream tasks:

• We follow Pythia and LLaMA2 to report the 0-shot accuracy of ARC easy (ARC-E; 9), LAM-
BADA [48], LogiQA [38], PIQA [5], SciQ [65], and WinoGrande [51].
3Please find results on LLaMA1 models in Appendix E.6.
3OPT data contains BookCorpus [75], Stories [62], CCNews [22], the Pile [17], and PushShift.io Reddit [3].
4OpenLLaMA v2 is pre-trained with a mixture of RefinedWeb [49], StarCoder [35], and part of RedPajama.
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Table 2: Sheared-LLaMA outperforms publicly available models of comparable size on downstream
tasks. The shot number used is noted in parentheses, with 0-shot if not specified. Models with † use a
different training data from RedPajama. Please refer to Table 1 for details.

Commonsense & Reading Comprehension
Model (#tokens for training) SciQ PIQA WinoGrande ARC-E ARC-C (25) HellaSwag (10)

LLaMA2-7B (2T)† 93.7 78.1 69.3 76.4 53.0 78.6

OPT-1.3B (300B)† 84.3 71.7 59.6 57.0 29.7 54.5
Pythia-1.4B (300B)† 86.4 70.9 57.4 60.7 31.2 53.0
Sheared-LLaMA-1.3B (50B) 87.3 73.4 57.9 61.5 33.5 60.7

OPT-2.7B (300B)† 85.8 73.7 60.8 60.8 34.0 61.5
Pythia-2.8B (300B)† 88.3 74.0 59.7 64.4 36.4 60.8
INCITE-Base-3B (800B) 90.7 74.6 63.5 67.7 40.2 64.8
Open-LLaMA-3B-v1 (1T) 91.3 73.7 61.5 67.6 39.6 62.6
Open-LLaMA-3B-v2 (1T)† 91.8 76.2 63.5 66.5 39.0 67.6
Sheared-LLaMA-2.7B (50B) 90.8 75.8 64.2 67.0 41.2 70.8

Continued LM World Knowledge
Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA2-7B (2T)† 30.7 82.1 73.9 28.8 46.6 64.6

OPT-1.3B (300B)† 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B (300B)† 27.3 57.4 61.6 6.2 25.7 48.9
Sheared-LLaMA-1.3B (50B) 26.9 64.0 61.0 9.6 25.7 51.0

OPT-2.7B (300B)† 26.0 63.4 63.6 10.1 25.9 51.4
Pythia-2.8B (300B)† 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Open-LLaMA-3B-v1 (1T) 28.4 70.0 65.4 18.6 27.0 55.1
Open-LLaMA-3B-v2 (1T)† 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLaMA-2.7B (50B) 28.9 73.7 68.4 16.5 26.4 56.7

• We report accuracy of the tasks used by Open LLM Leaderboard6, including 10-shot Hel-
laSwag [71], 25-shot ARC Challenge (ARC-C; 9), and 5-shot MMLU [24].

• We also report exact match of 32-shot Natural Questions (NQ; 32) to measure the factual knowledge
in the model.

Instruction tuning evaluation. As training models to follow instructions has become a crucial ap-
plication of LLMs [47, 57], we evaluate our models on instruction tuning and fine-tune both Sheared-
LLaMA and baseline models on 10,000 instruction-response pairs sampled from the ShareGPT
dataset7. For evaluation, we sample another 1,000 instructions from ShareGPT, generate responses
from our fine-tuned models and other baseline models, and use GPT-4 as an evaluator to compare
the two responses [14]. We report the win rate of our model compared to the baseline model (more
details in Appendix D).

3.2 Sheared-LLaMA Outperforms LMs of Equivalent Sizes

We demonstrate, on both standard LM benchmarks and instruction tuning, Sheared-LLaMA signifi-
cantly outperforms existing LLMs of similar sizes, while using only a fraction of the compute budget
to train those models from scratch.

Downstream tasks. In Table 2, we present the zero-shot and few-shot downstream task performance
of both Sheared-LLaMA and existing pre-trained models of a similar size. Our experiments show that,
even with a budget as limited as approximately 50B tokens for pruning and continued pre-training,
Sheared-LLaMA models outperform existing models that have been pre-trained on significantly
larger compute. To elaborate further, Sheared-LLaMA-1.3B outperforms both the OPT-1.3B and

6https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
7https://sharegpt.com. We only use the first round in the multi-turn chat history.
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Figure 3: Sheared-LLaMAs outperform Pythia-1.4B, INCITE-Base-3B, OpenLLaMA-3B-v1 and
OpenLLaMA-3B-v2 in instruction tuning.

Pythia-1.4B models, which were originally pre-trained with 300B tokens. Similarly, Sheared-LLaMA-
2.7B outperforms INCITE-3B and OpenLLaMA-3B-v1, where were pre-trained on 800B and 1T
RedPajama tokens respectively; Sheared-LLaMA-2.7B also surpasses OpenLLaMA-3B-v2, which
was pre-trained on 1T tokens from a mixture of RedPajama, RefinedWeb, and StarCoder.

Instruction tuning. As shown Figure 3, instruction-tuned Sheared-LLaMA achieves higher win
rates compared to all the other pre-trained models at a comparable scale. This demonstrates that our
2.7B model can serve as a strong foundation for instruction tuning and has the capacity to generate
long, coherent and informative responses (See examples in Appendix D).
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Figure 4: Average downstream per-
formance of continuing pre-training
Sheared-LLaMA vs INCITE-Base-3B.

Comparison to further pre-training an existing LM.
We examine which initialization leads to better perfor-
mance for continued pre-training—our pruned models or
an existing LLM of equivalent size. We continue pre-
training an INCITE-Base-3B model on the same data and
compare it to Sheared-LLaMA-2.7B. Figure 4 shows that
the INCITE-Base-3B model starts off with much higher
accuracy, but its performance plateaus throughout con-
tinued pre-training. In contract, Sheared-LLaMA starts
at a lower accuracy but rapidly improves, eventually sur-
passing the INCITE-Base-3B model. This suggests that
pruned models from a strong base model serve as a better
initialization point for continued pre-training. Please find
more training details in Appendix F.

4 Analysis

4.1 Effectiveness of Dynamic Batch Loading

We analyze the effectiveness of dynamic batch loading by examining its impact on three aspects: the
final LM loss across domains, the data usage of each domain throughout training, and the downstream
task performance. All results in this section are based on Sheared-LLaMA-1.3B.

Loss differences across domains. Dynamic batch loading is designed to balance the rate of loss
reduction across domains, so that the losses reach the reference value at approximately the same time.
In Figure 5, we plot the difference between the loss of our model (with both original and dynamic
batch loading) and the reference loss, estimated by fitting a scaling function to a hypothetical 2.7B
parameter LLaMA2 model. With the original batch loading, the loss differences vary dramatically
across domains. For instance, the GitHub loss decreases below the reference value, while the C4 loss
lags behind. In contrast, dynamic batch loading reduces losses evenly and shows very similar loss
differences across domains, indicating a more efficient data use.

Data usage. Table 3 compares the original data proportion of RedPajama and the domain data usage
of our dynamic loading (Figure 7 shows the evolution of domain weights throughout the training).
We see that dynamic batch loading increases the weights for the Book and C4 domains versus other
domains—suggesting that they are more difficult to recover for a pruned model.

Downstream performance. As shown in Figure 6, pruned models trained with dynamic batch
loading achieve better downstream performance than when trained on the original RedPajama
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Figure 5: Loss difference between the pruned
model (1.3B) and estimated reference loss, with
original vs. dynamic batch loading.
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Figure 6: Downstream task performance of
Sheared-LLaMA-1.3B with original data propor-
tion and dynamic batch loading.

Table 3: Domain data usage with dynamic batch loading compared to the original proportions.

CC GitHub Book StackExchange Wiki ArXiv C4
RedPajama 67.0% 4.5% 4.5% 2.0% 4.5% 2.5% 15.0%
Dynamic Batch Loading 36.1% 0.8% 9.1% 1.0% 3.1% 0.7% 49.2%

distribution. This suggests that the more balanced loss reduction from dynamic loading transfers to
improved downstream capabilities.

4.2 Comparison to Other Pruning Approaches

We compare our LLM shearing method to other pruning approaches and report validation perplexity,
which serves as a strong indicator of overall model capabilities [67].

Targeted pruned models have a higher inference throughput. Previous works like Block Prun-
ing [33] or CoFiPruning [68] are experimented on BERT-scale LMs, and the final model architectures,
though structured, usually have non-uniform layer configurations, e.g., different layers have different
number of heads or intermediate size. While bringing performance gains, non-uniformity also in-
troduces training and inference overhead due to irregularities in model architectures. As shown in
Table 4, our targeted pruned models have a higher inference throughput compard to the non-uniformly
pruned CoFiPruning model at the same sparsity, despite having slightly higher perplexity.

Table 4: Validation perplexity and inference throughout (tokens/second) of targeted structured pruning
(without continued pre-training) with a uniform layer configuration, and CoFiPruning, with a non-
uniform layer configuration. Inference throughput is measured on a Nvidia A100 (80G) GPU, with a
batch size of 1 and a sequence length of 512.

Layer Config PPL ↓ Throughput ↑ Layer Config PPL ↓ Throughput ↑

1.3B CoFiPruning 9.1 51 2.7B CoFiPruning 7.0 37
Targeted pruning 10.3 58 Targeted pruning 7.7 43

Comparison to LLM-Pruner [42]. We compare our pruning method to LLM-Pruner, a recent
work in uniform layer configuration structured pruning, in Appendix E.2. We show that with the
same budget and the compression rate, ours achieves better perplexity.

4.3 Additional Analysis

Performance on math and coding tasks. We also evaluate Sheared-LLaMA and baseline models
on math and coding benchmarks in Appendix E.3. Sheared-LLaMA outperform baselines trained
on the same RedPajama data, but lags behind models trained on more ArXiv and GitHub data. This
highlights a limitation of our work, as our models are trained to match a reference loss based on the
original data distribution. To improve over math and coding, a better initial data proportion is needed
(e.g., more GitHub), and we leave it for future work.
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Table 5: Data budget allocation to prun-
ing and continued pre-training (CT) and
corresponding perplexity.

# Tokens PPL

Pruning CT Pruning CT

0.2B 4.6B 12.99 7.46
0.4B 4.4B 10.29 7.32
0.8B 4.0B 9.01 7.23
1.6B 3.2B 8.04 7.08

Pruning vs. continued pre-training budget. Intu-
itively, allocating more compute to the pruning stage helps
identify better subnetwork structures. We explore distribut-
ing data across pruning and continued pre-training stages
differently, within a fixed budget of 5B tokens. Table 5
shows that when controlling the total amount of tokens,
increasing the pruning budget consistently improves per-
plexity. However, since pruning is more expensive than
continued pre-training (Appendix B for details on train-
ing throughputs), we decide to allocate 0.4B tokens to
pruning.

5 Related Work

Pruning. Structured pruning has been extensively studied as a model compression technique in
computer vision and natural language processing, where task-specific models like classification ones
are often overparameterized and can be pruned significantly with minimal impact on performance [23,
66, 39, 41, 6, 11, 27, 64, 33, 68, 31]. Unstructured pruning [15, 7, 53] prunes individual neurons
instead of structured blocks. Though unstructured pruning usually achieve higher compression rates,
they are not practical for model speedup.

In the era of LLMs, the prevalent NLP pipeline has shifted from task-specific models to general-
purpose LMs, which leaves little room for redundancy. Both unstructured pruning, semi-structured
pruning [16, 55], and structured pruning [42] lead to significant performance drops on LLM even at a
modest sparsity. Noticeably, all the aforementioned works fix the original model parameters or tune
them minimally. In our work, we see pruning as an initialization and consider it necessary to expend
substantial compute to continually pre-training the model to recover performance.

Efficient pre-training approaches. As orthogonal to our pruning approach, There is an extensive
body of work on improving efficiency of training LLMs. For example, quantization reduces the
numeric precision of model weights and activations and speeds up training and inference [12, 13, 69].
Knowledge distillation [25, 52, 29, 56], which trains a smaller model on a larger model’s prediction,
is shown to be effective for task-specific models [68]; nonetheless, there is little evidence showing
that it is a more efficient way to train general-purpose LLMs given its exceeding compute cost [50].
More methods have been introduced to enhance the efficiency of training LMs, such as dynamic
architectures [20, 72] and efficient optimizers [8, 37]. However, as indicated by [30], the promised
gains in training efficiency may not be consistently realized.

There are also data-based approaches to enhance training efficiency. Eliminating duplicated data is
found to be effective [34]. Various batch selection techniques propose to prioritize data based on
criteria such as higher losses [28] or a greater reducible loss [43]. [70] propose to optimize data
mixtures by training a proxy model to estimate the optimal data weight of each domain.

6 Conclusion

In this work, we propose using structured pruning as an efficient way to produce competitive small
LLMs. Our approach consists of two stages, targeted structured pruning and continued pre-training,
and we propose dynamic batch loading to improve efficiency of using pre-training data . We produce a
series of competitive Sheared-LLaMA models with a small amount of compute compared to standard
pre-training. Our results highlight a promising avenue to produce small LLMs with low cost when
strong large-scale models already exist. As more powerful LLMs and larger pre-training datasets
become available, our approach can readily be applied to produce stronger small models.
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A Reference Loss Predicted by Scaling Laws

The scaling law of language modeling is a function of model size N and dataset size D:

L(N,D) = E +
A

Nα
+

B

Dβ

where E captures the loss for the true language distribution in an ideal generation process, and
A,α,B, β are scaling factors related to model scale or data size. Models in the same model family
are usually trained with the same amount of tokens on the same data distribution. In this case, we
need a minimum of three models to estimate the constant E + B

Dβ , A and α. If the models are trained
with different amount of tokens, we can estimate E,A, α,B, β with a minimal of 5 models. Note
that we will estimate the scaling factors for each domain seperately.

It is known that LLAMA2 models have been trained on the same 2T tokens [61]. Therefore, we take
the LLAMA2-7B, LLAMA2-13B and LLAMA2-70B checkpoints, evaluate them on the validation
set of each domain, and fit the scaling factors with the corresponding loss. Given the limited data
points for estimating the scaling law constant, we recognize the projected loss of a hypothetical
LLaMA-2.7B model may be biased compared to the true value. We present the predicted loss in
Table 6. The evaluation process takes less than 4 A100 GPU hours to finish.

Table 6: Estimated reference loss of hypothetical LLaMA2-1.3B and LLaMA2-2.7B.

CC GitHub Book StackExchange Wiki ArXiv C4
1.3B 1.964 0.746 2.139 1.612 1.759 1.445 2.125
2.7B 1.871 0.688 2.033 1.535 1.630 1.356 2.033

B Training Details

We present the hyperparameters used in our experiments in Appendix B. We use fully sharded data
parallel [74] to train our models in parallel. We use FlashAttention V1 [10] to speed up training. We
use a cosine learning rate scheduler and decay the learning rate to a minimum of 10% of the peak value.
We conduct some preliminary experiment to determine the peak learning rate for learning the masking
variables and Lagrange multiplers, and we find that a learning rate of 1.0 works well for pruning. We
do not tune any other hyper-parameters. The throughput is dependent on the implementations and we
believe that our throughput can be further improved by adopting more advanced recent optimizations
such as FlashAttention V2 [10] and a more recent version of Composer.

Table 7: Training hyper-parameters and throughput.

Pruning Contined Pre-training

Training budget 0.4B 50B
Learning rate of z, ϕ, λ 1.0 -
Learning Rate of θ 0.0001 0.0001
LR warmup ratio 10% 3%
Batch size (tokens) 131K 1M
Evaluation interval m (steps) 50 400
Steps 3, 200 51, 200
# GPUs 8 16
Throughput (tokens/s) 15K 145K (1.3B) / 77K (2.7B)

C Model Configurations

In this section, we provide the model configurations for both our Sheared-LLaMA model and the
baseline models, as illustrated in Table 8. Our design closely adheres to the architecture of Pythia-
1.4B and INCITE-Base-3B, albeit with some nuanced distinctions. A noteworthy difference is found
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in the intermediate size of Sheared-LLaMA, which is a consequence of its lineage from LLaMA2-7B.
Notably, LLaMA2-7B employs a GLU variant [54] within its feed-forward layer, comprising a gate
matrix, an upward-projection matrix, and a downward-projection matrix. In contrast, other models
employ the conventional double-matrix feed-forward layer structure. Furthermore, we acknowledge
that the shearing algorithm will have to inherit the head dimension of the source model. Instead
of explicitly specifying the number of heads based on existing language models, we set the target
number of heads to be the target hidden dimension divided by the head dimension of the source
model.

Table 8: Model configurations of our Sheared-LLaMA and baseline models.

Model #Param #Layers Hidden Intermediate #Heads Head Dim

OPT-1.3B 1.3B 24 2048 8192 32 64
Pythia-1.4B 1.4B 24 2048 8192 16 128
Sheared-LLaMA-1.3B 1.3B 24 2048 5504 16 128

OPT-2.7B 2.7B 32 2560 10240 32 80
Pythia-2.8B 2.8B 32 2560 10240 32 80
INCITE-Base-3B 2.8B 32 2560 10240 32 80
OpenLLaMA-3B 2.7B 26 3200 8640 32 100
Sheared-LLaMA-2.7B 2.7B 32 2560 6912 20 128

LLaMA2-7B 6.7B 32 4096 11008 32 128

D Instruction Tuning

We evaluate our models on instruction tuning and fine-tune both Sheared-LLaMA and baseline
models on 10,000 instruction-response pairs sampled from the ShareGPT dataset8. For evaluation,
we sample another 1,000 instructions from ShareGPT, generate responses from our fine-tuned models
and other baseline models, and use GPT-4 as an evaluator to compare the two responses [14]. We
report the win rate of our model compared to the baseline model.

During instruction tuning training, the instruction is prepended with “You are a helpful assistant.
Write a response that appropriately completes the request.”. For evaluating the instruction tuning
generations, [63] observes using GPT models as a judge could change its preference when swapping
the presentation order of the two outputs. Therefore, we compare each output pair twice by swapping
the presentation order of the two outputs and finally report the average win-rate of the two rounds to
eliminate the position bias.

We randomly select an output generated by Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B in
response to a given instruction, and present the generations in Table 10. Our findings demonstrate that,
after instruction tuning, Sheared-LLaMA-2.7B consistently produces long, coherent, and informative
outputs in response to the instruction.

Table 9: Training hyper-parameters for instruction tuning.

Instruction Tuning

Learning Rate of θ 5e− 5
LR warmup ratio 3%
Batch size (tokens) 128
# GPUs 8

8https://sharegpt.com. We only use the first round in the multi-turn chat history.

16

https://sharegpt.com


Table 10: An example output from Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B. It shows that
Sheared-LLaMA can generate long, coherent, and informative responses after instruction tuning.

Prompt: Act as semiconductor industry analyst

Sheared-LLaMA-1.3B: As a semiconductor industry analyst, I would be responsible
for conducting market research and analysis to help companies in the industry
understand and respond to market trends, customer preferences, and competitive
dynamics. This would include analyzing market data such as sales, market share,
and industry trends, as well as conducting interviews with industry leaders,
executives, and customers to gain insights into customer needs and preferences. I
would also be responsible for developing and implementing marketing strategies to
promote products and services, and for identifying and pursuing new business
opportunities.

Sheared-LLaMA-2.7B: As a semiconductor industry analyst, my primary responsibility
is to provide insightful and accurate analysis on the global semiconductor market.
This includes evaluating the performance of individual companies, industries, and
trends within the market.

Here are some key areas where I would focus my analysis:

1. Market size and growth: I would track the size of the global semiconductor
market and analyze the growth prospects for each segment, such as memory, logic,
and sensors.
2. Competitive landscape: I would assess the competitive landscape, including
the top players, their market share, and strategic moves.
3. Technology trends: I would monitor the development of new technologies, such
as 5G, AI, and IoT, and their impact on the semiconductor industry.
4. Industry trends: I would track industry trends, such as the shift towards
sustainable technologies, and evaluate their impact on the market.
5. Market forecasts: I would provide forecasts for the semiconductor market,
including revenue and unit shipment growth, based on a range of scenarios and
assumptions.

In addition to these areas, I would also keep track of industry news and
developments, and provide insights on their impact on the market.

E Additional Results

E.1 Data Usage in Continued Pre-training

Figure 7 shows how the domain weights change throughout the training process and the final
cumulative data usage of each domain. The trajectory shows that the domain weights stablize after
around 30% training. Unlike other domains, Wikipedia exhibits an anomalous spike in data loading
early in training. The remaining domains demonstrate a steady, monotonic change in data loading
over time as expected.
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Figure 7: Data weight of each batch during the continued pre-training stage.
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E.2 Comparison to LLM-Pruner

To fairly compare to the LLM-Pruner approach, we make sure that the parameters (excluding
embeddings) is roughly the same as the our final model (1.23B), as embedding sizes do not affect
inference speed. We continue pre-training the pruned model derived from LLM-Pruner, and the model
derived from our proposed targeted structured pruning. We control the total number of tokens for
pruning and continue-pretraining to be the same and use data from RedPajama dataset directly without
applying dynamic batch loading. We demonstrate from three aspects that our proposed targeted
structured pruning is a better approach compared to LLM-Pruner, including the loss trajectory, the
model architecture and the inference speed.

In terms of loss trajectory, Figure 8 shows that our proposed targeted structured pruning achieves a
lower loss than LLM-Pruner when consuming the same amount of data.

In terms of model architecture, Table 11 displays the model configurations for an LLM-Pruner
pruned model versus our pruned model. The model pruned from LLM-Pruner has an unconventional
archiecture where the intermediate size is smaller than hidden size, largely due to the fact that the
algorithm does not support pruning the hidden dimension. And it domonstrate the limitation of
LLM-Pruner.

In terms of training/inference throughput, we performed an inference speed analysis comparing
LLM-pruner and Sheared-LLaMA’s model architectures using a single A100 GPU to generate up
to 2048 tokens. As shown in Table 12, our pruned model architecture is significantly more efficient
than LLM-Pruner at inference time. Additionally, LLM-Pruner’s model architecture introduces
substantial overhead during continued pretraining (Measured with 16 A100 80GB GPUs.), with a
training throughput of around 60% of Sheared-LLaMA’s. Overall, our Sheared-LLaMA architecture
enables higher throughput for both inference and continued training compared to LLM-Pruner.

In summary, we have demonstrated that at the same parameter scale, our pruning method produces
a model that has a lower perplexity (loss), a more reasonable final model architecture, and a faster
inference speed. We have effectively shown our targeted structured pruning algorithm to be more
effective for large-scale LLM pruning compared to LLM-Pruner.
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Figure 8: The loss of LLM-Pruner and Sheared-LLaMA during continued pre-training. Note that we
exclude dynamic batch loading and use the same data distribution for training both models for a fair
comparison.

Table 11: Model structure of Pythia-1.4B, LLM-pruner (1.6B), and Ours (1.3B).

Layers Heads Head size Intermediate size Hidden size Params

Pythia-1.4B 24 16 128 8192 2048 1.4B

LLM-pruner (1.6B) 32 7 128 2201 4096 1.6B
Ours (1.3B) 24 16 128 5504 2048 1.3B
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Table 12: Training and inference throughput of LLM-pruner (1.6B) and Ours (1.3B). With a similar
parameter count, our pruned model structure has a lower perplexity when fine-tuned with the same
amount of tokens (around 6B tokens). Yet our pruned model architectures are way more efficient for
both training and inference.

Inference Throughput Training Throughput PPL
LLM Pruner 43 tokens/s 83K tokens/s 7.09
Ours 58 tokens/s 139K tokens/s 6.85

Table 13: Evaluation results on GSM8K and HumanEval and training percentage and tokens in ArXiv
and GitHub.

GSM8K (8) HumanEval ArXiv Github ArXiv GitHub
Models EM Pass@1 Pass@5 Percentage Percentage Tokens Tokens
LLaMA2-7B 13.7 12.8 23.8 - - - -

OPT-2.7B 0.1 0.0 0.0 - - - -
Pythia-2.8B 1.7 5.1 14.6 9.0% 7.6% 26.9 22.8
INCITE-Base-3B 1.8 4.3 4.9 2% 4.5% 16.0 36.0
Open-LLaMA-3B-v1 2.5 0.0 1.2 2% 4.5% 20.0 45.0
Open-LLaMA-3B-v2 2.7 10.4 20.1 - - - -
Sheared-LLaMA-2.7B (Source) 2.7 3.7 5.5 0.7% 0.4% 0.3 0.2
Sheared-LLaMA-2.7B (Scaling) 2.4 4.9 9.2 1.0% 0.8% 0.5 0.4

E.3 Coding and Math Reasoning

We examine the math and coding abilities of our pruned models compared to other language models.
We find that the math ability of existing 3B parameter models, including Sheared-LLaMA, is still
far below that of larger models. We also find that Sheared-LLaMA’s coding ability lags behind
models known to be trained on more code data, like Pythia-1.4B and Open-LLaMA-3B-v2. Sheared-
LLaMA’s coding ability likely comes from the original LLaMA2 model, speculated to have used
more code data, and the minimal code data used in our pruning experiments.

E.4 Scaling Reference vs. Source Reference

Figure 9 compares the performance of Sheared-LLaMA when trained with the scaling reference and
the source reference in dynamic batch loaing. While both methods are effective in efficiently training
the model, the scaling reference performs consistently (slightly) better in terms of downstream
performance.
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Figure 9: Average downstream peformance of
Sheared-LLaMA-1.3B with the scaling reference
and the source reference.
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E.5 Pruning Pythia Models

When initially developing the approach, we experimented with a smaller-scale model on Pythia [4].
Pythia is a series of open-source models with open-source training data across scales from 70M to 13B.
Specifically, we take the Pythia-440M model, and prune it down to 160M parameter, and continue
pre-training it. We use Pythia models’ training data [17] for pruning and continued pre-training.
Specifically, we use 0.4B tokens to prune and 33B (32,000 steps) tokens to continue pre-training
the pruned model. We show the performance of the models below in Table 14. We find that the
pruned model achieves a lower perplexity than the original model, and the continued pre-training
further improves the performance. It is clear that with minimal compute consumption (10B tokens),
pruning a Pythia-410M model reaches roughly the same performance as pretraining Pythia-160M
from scratch. Adding more tokens further enhances the performance.

Training Tokens Performance

Pythia-160M 300B 43.56
Sheared-Pythia (300B) + 10B 43.51
Sheared-Pythia (300B) + 33B 45.78

Table 14: Zero-shot performance of Pythia-160M and Sheared-Pythia.

Additionally, we compared Sheared-Pythia-160M against keeping pre-training the Pythia-160M
model with the same amount of tokens. From Figure 11, we can see that continuing pre-training
Pythia-160M starts off performing better, however, the Sheared-Pythia-160M learns faster and
eventually exceeds the performance of continuing pretraining on Pythia-160M. These are some very
preliminary results we see in this particular setting.

We think that the benefit of pruning a larger model will be even more significant, based on the
conclusions from a previous work [36] showing that pruning larger than compress leads to better
performance as the larger models are easier to optimize. However, we’d like to defer more detailed
analysis to future work.

E.6 Pruning from LLaMA1 vs LLaMA2

In this section, we compare the performance of pruning from LLaMA1 and LLaMA2. Both models
demonstrate strong downstream task performance, though not surprisingly, pruning from LLaMA2
yields a consistent advantage.

F Training details to continual pre-training INCITE-Base-3B

Before continuing pre-training the INCITE-Base-3B model, we conduct an initial grid search to
evaluate various learning rates, including values of 1× 10−4, 5× 10−5, and 1× 10−5. Our initial
results reveal that employing the first two learning rates resulted in a noticeable decline in model
performance compared to the original model. Consequently, we opt to continue pre-training with
a learning rate of 1× 10−5. The remaining hyperparameters remain consistent with those outlined
in Appendix B. We present the loss trajectory of continued pre-training our pruned model and the
INCITE model in ??. The INCITE model’s loss does not change much, while the loss of the pruned
model is able to decrease and eventually leads to a lower loss than the INCITE model, which aligns
with the downstream task performance.

It is worth noting that our choice of continued pre-training setup may not be optimal according to
recent research [21]; however, it represents the best approach within our compute constraints.

G Using CC, C4, Wikipedia and Books for Pruning

Regarding point 1, we explored a similar idea during the development of this project by excluding
GitHub, StackExchange and ArXiv data during pruning. Specifically, we pruned LLaMA1-13B down
to 7B using a composite dataset of C4, CC, Wiki, and Books, with a heuristically constructed pro-
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Figure 11: The downstream performance of con-
tinued pre-training Pythia-160M and our pruned
Pythia model.
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Figure 12: The loss of continued pre-training
INCITE-3B and our pruned LLaMA model. Both
models have around 2.7B parameters.

portion of 40%, 40%, 10%, 10%. We then continue pre-training the pruned model on the RedPajama
dataset which includes the excluded domains during pruning.

As shown below, the perplexity difference was more even across domains when pruning without
using data from these three domains. However, after continued pre-training with all data from the
seven domains in the RedPajama dataset, the loss disparity grew, with the GitHub difference being
much smaller than domains like C4. As the results below show, simply excluding the domains that are
easy to recover during the pruning stage does not inherently resolve the imbalance of loss difference
across domains.

This set of experiments motivated us to develop dynamic batch loading as a more effective and
principled approach to address the domain-specific loss disparities that arise during pruning and
continued pre-training.

CC GitHub Book StackExchange Wikipedia ArXiv C4
LLaMA-13B 1.7585 0.6673 1.9499 1.4207 1.4331 1.3855 1.8619

LLaMA-7B 1.8366 0.7108 2.0322 1.5112 1.5291 1.4340 1.9331

Pruned model (w/o Github) 2.1849 1.0971 2.3726 1.9080 2.1151 1.7542 2.3187
diff from LLaMA-7B 0.3483 0.3863 0.3404 0.3968 0.5860 0.3202 0.3857

Continue Pretrain (w RP) 1.8344 0.6325 2.0984 1.4542 1.4549 1.4460 2.0395
diff from LLaMA-7B -0.0022 -0.0783 0.0661 -0.0570 -0.0743 0.0120 0.1064

Table 15: Pruning LLaMA1-13B with a composite of 40% of CC, 40% of C4, 10% of Books and
10% of Wikipedia. We present the domain loss of the source model, the loss of the pruned model
and the loss after continued pre-training of the pruned model. The loss differentce is more even after
pruning, but more disparate after continued pre-training with all the domains.

H Inference Speed Analysis

In this section, we analyze the the inference speed of different pruning approaches, including the
following models:

• The source model, i.e., LLaMA2-7B.
• Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B.
• Wanda pruning [55] to prune LLMs into a semi-structured 2:4 and 4:8 sparsity pattern in

one-shot.
• LLM-Pruner [42] to have the same amount of non-embedding parameters as Sheared-

LLaMA.

We use an A100 GPU to test the inference throughput (tokens/second) of all these pruned models
on an A100 80G GPU, and present the results in Table 16. The speed of Sheared-LLaMA is better
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than that of LLM-Pruner, largely due to the more reasonable resulting architecture. As shown in
Table 11d, LLM-pruner produces a model structure that has a smaller intermediate size than the
hidden size, which goes against the transformer designs where the intermediate size is at least 3− 4×
of the hidden size.

Wanda type of semi-structured pruning also achieves inference speedup compared to the source
model. But it is not as fast as small dense models, and is restricted to 50% sparsity.

Model Throughput
7B

LLaMA-7B 37

1.3B 2.7B
LLM Pruner 41 40
Sheared-LLaMA 62 47

50% sparsity
Wanda (2:4) - 42
Wanda (4:8) - 42

Table 16: Inference throughput (tokens/s) of different pruning approaches.
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