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ABSTRACT

Machine learning methods must be trusted to make appropriate decisions in real-
world environments, even when faced with out-of-distribution (OOD) samples.
Many current approaches simply aim to detect OOD examples and alert the user
when an unrecognized input is given. However, when the OOD sample significantly
overlaps with the training data, a binary anomaly detection is not interpretable or
explainable, and provides little information to the user. We propose a new model
for OOD detection that makes predictions at varying levels of granularity—as
the inputs become more ambiguous, the model predictions become coarser and
more conservative. Consider an animal classifier that encounters an unknown bird
species and a car. Both cases are OOD, but the user gains more information if
the classifier recognizes that its uncertainty over the particular species is too large
and predicts “bird” instead of detecting it as OOD. Furthermore, we diagnose the
classifier’s performance at each level of the hierarchy improving the explainability
and interpretability of the model’s predictions. We demonstrate the effectiveness
of hierarchical classifiers for both fine- and coarse-grained OOD tasks.

1 INTRODUCTION

Real-world computer vision systems will encounter out-of-distribution (OOD) samples while making
or informing consequential decisions. Therefore, it is crucial to design machine learning methods
that make reasonable predictions for anomalous inputs that are outside the scope of the training
distribution. Recently, research has focused on detecting inputs during inference that are OOD for the
training distribution (Ahmed & Courville, 2020; Hendrycks & Gimpel, 2017; Hendrycks et al., 2019;
Hsu et al., 2020; Huang & Li, 2021; Lakshminarayanan et al., 2017; Lee et al., 2018; Liang et al.,
2018; Liu et al., 2020; Neal et al., 2018; Roady et al., 2020; Inkawhich et al., 2022). These methods
typically use a threshold on the model’s “confidence” to produce a binary decision indicating if the
sample is in-distribution (ID) or OOD. However, binary decisions based on model heuristics offer
little interpretability or explainability.

The fundamental problem is that there are many ways for a sample to be out-of-distribution. Ideally,
a model should provide more nuanced information about how a sample differs from the training data.
For example, if a bird classifier is presented with a novel bird species, we would like it to recognize
that the sample is a bird rather than simply reporting OOD. On the contrary, if the bird classifier is
shown an MNIST digit then it should indicate that the digit is outside its domain of expertise.

Recent studies have shown that fine-grained OOD samples are significantly more difficult to detect,
especially when there is a large number of training classes (Ahmed & Courville, 2020; Huang
& Li, 2021; Roady et al., 2020; Zhang et al., 2021; Inkawhich et al., 2021). We argue that the
difficulty stems from trying to address two opposing objectives: learning semantically meaningful
features to discriminate between ID classes while also maintaining tight decision boundaries to avoid
misclassification on fine-grain OOD samples (Ahmed & Courville, 2020; Huang & Li, 2021). We
hypothesize that additional information about the relationships between classes could help determine
those decision boundaries and simultaneously offer more interpretable predictions.

To address these challenges, we propose a new method based on hierarchical classification. The
approach is illustrated in fig. 1. Rather than directly outputting a distribution over all possible classes,
as in a flat network, hierarchical classification methods leverage the relationships between classes
to produce conditional probabilities for each node in the tree. This can simplify the classification

1



Figure 1: Method overview. Top: A ResNet50 extracts features from images and fully-connected
layers output softmax probabilities pn(xi)for each set in the hierarchy H. Path-wise probabilities
are used for final classification. Path-wise probability and entropy thresholds generated from the
training set Dtrain form stopping criterion for the inference process. Bottom: Common error cases
encountered by the hierarchical predictor. From left to right: Standard error results from and incorrect
intermediate or leaf decision, ID under-prediction where the network predicts at a coarse granularity
due to high uncertainty, OOD over-prediction where the OOD sample is mistaken for a sibling node.

problem since each node only needs to distinguish between its children, which are far fewer in
number (Redmon & Farhadi, 2017; Ridnik et al., 2021). It can also improve the interpretability of the
neural network (Wan et al., 2021). For example, we leverage these conditional probabilities to define
novel OOD metrics for hierarchical classifiers and make coarser predictions when the model is more
uncertain.

By employing an inference mechanism that predicts at different levels of granularity, we can estimate
how similar the OOD samples are from the ID set and at what node of the tree the sample becomes
OOD. When outliers are encountered, predicting at lower granularity allows the system to convey
imprecise, but accurate information.

We also propose a novel loss function for the hierarchical softmax classification technique to address
the fine-grained OOD scenario. We propose hierarchical OOD metrics for detection and create a
hierarchical inference procedure to perform inference on ID and OOD samples, which improves
the utility of the model. We evaluate the method’s sensitivity to granularity under coarse- and fine-
grain outlier datasets using ImageNet-1K ID-OOD holdout class splits (Russakovsky et al., 2015).
Our in-depth analysis of the ID and OOD classification error cases illuminates the behavior of the
hierarchical classifier and showcases how explainable models are instrumental for solving fine-grain
OOD tasks. Ultimately, we show that hierarchical classifiers effectively perform inference on ID
and OOD samples at varying granularity levels and improve interpretability in fine-grained OOD
scenarios.

2 RELATED WORK

There are four main types of related works: those which focus on fine-grain out-of-distribution
detection; those which emphasize scalability to large numbers of classes; those which leverage
hierarchical classifiers; and those which utilize improved feature extactors.
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Fine-grain OOD. Several recent works have identified poor OOD detection performance on fine-grain
datasets with current methods (Ahmed & Courville, 2020; Roady et al., 2020; Zhang et al., 2021).
Both (Zhang et al., 2021) and (Ahmed & Courville, 2020) highlight that selecting holdout classes
from the original dataset is a more realistic OOD scenario that enforces detectors utilize semantically
meaningful features to detect OOD samples rather than utilizing non-semantic differences between
ID and OOD datasets to achieve good performance. Roady et al. (2020) also explore the issue of
OOD granularity by evaluating performance across coarse- and fine-grained samples and outline a
need for new methods to address fine-grained OOD detection. These previous two works emphasize
the importance of OOD granularity especially when developing solutions for real-world applications.
We expand upon these works by designing OOD detection datasets at varying levels of granularity.
We provide an in-depth analysis of performance across OOD granularity.

Scalable OOD. Current OOD detection techniques struggle to scale to higher resolution images or
to tasks with larger numbers of ID classes (Ahmed & Courville, 2020; Huang & Li, 2021; Roady
et al., 2020). Huang & Li (2021) improve upon current OOD detection techniques’ scalability by
partitioning the classification task into smaller subsets of semantically similar categories, thereby
reducing each decision’s complexity. Grouping labels into exclusive subsets allows for an explicit
“other” class to be added that is optimized to predict when the input is OOD for the current classifier.
This approach uses the training data from all other subsets in a similar manner to how outlier exposure
uses auxiliary outlier data (Hendrycks et al., 2019). However, Hendrycks et al. (2019) utilize an
entropy based optimization for the outliers instead of an explicit “other” class. Huang & Li (2021)
improve the scalability, but their approach is incapable of inference on ID and OOD data. Furthermore,
Huang & Li (2021) choose 8 class groupings from WordNet without providing a systematic process
of pruning the hierarchy. As the set of ID classes grows the relationships betweeen classes becomes
more complex and the decision of how to group labels becomes increasingly arbitrary. We utilize the
full WordNet hierarchy which provides natural boundaries between label subsets and systematically
prune the hierarchy. Note that our method does not use auxiliary outlier data and developing a
technique for improving uncertainty estimates via auxiliary data is left for future studies.

Hierarchical classifiers. Hierarchical classification methods have recently been exploited to improve
the classifier’s scalability to extremely large label space tasks (Ridnik et al., 2021) and to enhance
deep learning explainability (Wan et al., 2021). The current work seeks to utilize these properties
to improve OOD detection methods. Ridnik et al. (2021) utilize the WordNet hierarchy (Fellbaum,
1998) to train a classifier on Imagenet-21K including 11,221 ID classes aiming to improve pretrained
model weight available for transfer learning. Wan et al. (2021) instead generate a binary decision tree
from the learned weights of a standard softmax classifier using agglomerative clustering. Furthermore,
Wan et al. (2021) thoroughly analyze the hierarchical classifier’s behavior at each node in the tree to
explain the network’s prediction behavior. This method ensures that the hierarchical relationships
are based on visual similarity instead of human defined semantic similarity. However, for OOD
detection tasks we find binary trees generated from pretrained model weights do not perform as well
as shallower hierarchies for OOD tasks (table 4). Furthermore, we build upon (Wan et al., 2021)’s
interpretability study by utilizing the hierarchical structure to explain the common failure modes on
ID and OOD data.

Another group of techniques incorporate hierarchical structures into the feature extractor (Ahmed
et al., 2016; Yan et al., 2015) or training procedure (Alsallakh et al., 2018). In this work we do
not consider specialized network architectures and training procedures because we are interested
in comparing the performance of hierarchical vs. flat classification. We demonstrate in table 4
and in section 3.5 the advantages of hierarchical classification for interpretable OOD. Exploring
custom hierarchical architectures is a promising area of future research to improve interpretable OOD
methods.

Improved feature extractors. Vision transformers (Kolesnikov et al., 2021) and contrastive learning
(Chen et al., 2020) methods learn improved feature extractors leading to gains in overall classification
accuracy as well as transfer learning outcomes. Recently, (Tack et al., 2020; Winkens et al., 2020)
utilize a SimCLR-based (Chen et al., 2020) architecture and (Ren et al., 2021; Vaze et al., 2022) utilize
ViT (Kolesnikov et al., 2021) to improve feature representations and OOD performance. Likewise, our
hierarchical method will likely mutually benefit from learning improved feature extractors. However,
due to the significant computational resources required to train such models we leave integrating
hierarchical classifiers with contrastive learning and vision transformers for future studies.
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3 METHOD

We train a hierarchical softmax classifier (section 3.1) to generate path probabilities at all nodes in
the hierarchy with a multi-objective loss function to optimize for classification performance and
OOD detection (section 3.2). Path-wise probability and entropy scoring metrics replace softmax
probabilities for OOD detection to incorporate model certainty along the prediction path (section 3.3).
We employ these path-wise metrics as an inference stopping criterion to generate predictions on
intermediate nodes (section 3.4). Finally, we measure hierarchical distance and accuracy to perform
an in-depth analysis of model performance (section 3.5).

3.1 HIERARCHICAL CLASSIFICATION

We define a hierarchy, H, as a tree-structured directed acyclic graph so that there is a unique
path from the root node to each leaf node. For notation, associate each node in the tree with
an integer {0, 1, . . . , N} where 0 denotes the root node. Let par(n) ∈ {0, . . . , n − 1} denote
the parent of node n, let anc(n) ⊂ {0, . . . , n − 1} be the set of all ancestors of node n, and
let ch(n) ⊆ {n + 1, . . . , N} denote the set of children of node n. Finally, let Y ⊂ {0, 1, . . . , N}
denote the set of leaf nodes (i.e. nodes for which ch(n) = ∅) and Z = {0, 1, . . . , N} \ Y be the set
of internal nodes.

Each training data point has an input xi ∈ Rd and a label yi ∈ Y , which is associated with a leaf
node of the hierarchy. The training distribution, Dtrain = {(xi, yi)}, is comprised of tuples of input
images, xi, and associated leaf nodes, yi. For each node n in the set of internal nodes Z , we define
Dn ⊆ Dtrain to be all the samples (xi, yi) whose ancestors contain n. Likewise, define D¬n all the
examples that whose ancestors do not contain n.

Given the input xi, the network outputs probability distributions pn = [pn,1, . . . , pn,|ch(n)|] for each
internal node n, where pn,j ≥ 0 and

∑|ch(n)|
j=1 pn,j = 1. In practice, we model each pn as a softmax

function of the features in the penultimate layer of a neural network. We parameterize a distribution
on leaf nodes as the product of probabilities associated with each node along that path,

Pr(yi = k | xi) =
∏

a∈anc(k)\0

ppar(a),a. (1)

As noted by (Wan et al., 2021), path-wise probabilities allow for errors at intermediate nodes to be
corrected as opposed to making “hard” decisions at each level of the tree and following the path to
the prediction. Note that the path probabilities in eq. (1) form a proper probability distribution such
that

∑
k∈Y Pr(yi = k | xi) = 1. At test time, we take the network’s prediction to be the leaf node

with the highest probability, ŷi = argmaxk∈Y Pr(yi = k | xi).

3.2 HIERARCHICAL OOD LOSS

To achieve high ID accuracy and reliable OOD detection we propose a weighted multi-objective loss
to optimize the hierarchical classifier. Formally, it is defined as,

Lsoft =
∑
n∈Z

Wn ·
∑

(x,y)∈Dn

H [onehotn(y),pn(x))] (2)

Wn =
|{j ∈ {1 . . . N} : n ∈ anc(j)}|

N
(3)

Lother =
∑
n∈Z

∑
(x,y)∈D¬n

H [U(|ch(n)|),pn(x)] (4)

L = α · Lsoft + β · Lother, (5)

where H[p, q] is the cross-entropy from p to q and parn(y) is the one-hot vector for the ancestor of y
corresponding to node n, onehotn(y) = [1(k ∈ anc(y)) : k ∈ ch(n)].

The first objective optimizes the network for ID classification accuracy by applying cross-entropy to
the network’s predictions Pr(k|xi) = [Pr(yi = k|xi)]k∈Y for each sample in the training distribution,
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Dtrain (eq. (2)) 1. The second objective (eq. (4)) drives the probabilities at internal nodes that are
not along the path from root to ground-truth node to the uniform distribution, parameterized by size,
(U(s)) with cross-entropy. This utilizes in-distribution data as outliers for all nodes in the hierarchy
that are not one of its ancestors.

As in Ridnik et al. (2021), we find that weighting the cross-entropy contribution of each internal
node improves optimization. We weight each node’s loss, eq. (3), based on the proportion of the
total number of classes (N ) which are children of the node. This assigns higher weight to nodes that
are closer to the root of the tree as these decisions have the greatest effect downstream classification
performance.

3.3 PREDICTION PATH ENTROPY OOD METRIC

We propose prediction path based OOD scoring functions for performing OOD detection with
hierarchical classifiers. First, we propose using maximum prediction path probabilities calculated
according to eq. (1) which is hierarchical analog to max softmax probability for standard networks.
Second, we propose using either the mean path-wise entropy, Hmean, or the maximum path-wise
entropy, Hmax, as metrics for OOD detection. Formally, these are defined as,

Hmean(xi) =
1

|anc(ŷi)|
∑

n∈anc(ŷi)

H[pn] (6)

Hmax(xi) = max
n∈anc(ŷi)

H[pn], (7)

3.4 INFERENCE STOPPING CRITERION

Given a hierarchical classifier optimized over Dtrain, we define a stopping criterion utilizing the
performance statistics on the validation data. Specifically, we select a true negative rate (TNR) on
the ID data to decide our inference stopping threshold from the micro-averaged receiver operating
characteristic (ROC) curve. In practice, this TNR threshold will be determined by the specific
application’s prediction fidelity requirements. Micro-averaged ROC curves are used to generate the
TNR thresholds for each node in Z . We utilize path probabilities Pr(n|xi) as the threshold score.

During inference the leaf node prediction ŷ is determined, then the prediction path anc(ŷ) is traversed
from root to leaf. If any of the nodes in the path do not meet the TNR threshold, the parent node is
chosen as the prediction (fig. 1). Both global path probability and node-wise probability and mean-,
min-entropy were explored as TNR threshold metrics.

3.5 HIERARCHICAL ACCURACY AND DISTANCE

We analyze the hierarchical classifier’s inference on ID and OOD samples with top-1 accuracy, as
well as, average hierarchical distance. The groundtruth for OOD samples is the closest ancestor that is
contained within ID hierarchy. For example, the OOD node junco in 1 is assigned the ID groundtruth
node bird.

Furthermore, we consider the inference procedure’s failure modes by decomposing the hierarchy
distance into two parts: (1) the prediction and (2) the groundtruth distance to their closest common
parent. Hierarchy distance is defined as the number of edges in the hierarchy between two nodes. By
recording the groundtruth and prediction distances to the closest common parent we can determine
how frequently the model incorrectly predicts, overpredicts, and underpredicts for a set of inputs.
fig. 1 (bottom) depicts common error cases that are encountered and their corresponding hierarchy
distances.

4 EXPERIMENTS

4.1 OOD DATASETS

1When Wn = 1∀n ∈ Z the form in eq. (2) is equivalent to the entropy over the leaf nodes H[y,Pr(k|Dtrain)]
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Figure 2: IMAGENET-100 pruned WordNet hierar-
chy. Red edges correspond to OOD paths and blue
to ID.

Fine-grain OOD datasets. Some applications
may face more extreme OOD examples than
others. To construct OOD detection tasks with
varying degrees of difficulty, we leveraged the
fact that the Imagenet-1K classes correspond
to nouns in the WordNet hierarchy (Fellbaum,
1998). We generated OOD sets by holding out
subsets of Imagenet-1K classes in entire sub-
trees of the WordNet hierarchy. Withholding
large subtrees—those rooted at low depths of
the hierarchy—leads to coarse-grained OOD
detection tasks, since the held-out classes are
very different from the training classes. Hold-
ing out small subtrees—those rooted at nodes
deep in the hierarchy—leads to fine-grained
OOD-detection tasks. We created 2 datasets
Imagenet-100 and Imagenet-1K starting from
a 100 class subset of Imagenet-1K classes and
the full Imagenet-1K dataset. Table 2 provides
summary statistics of both Imagenet datasets.

We used the 100 class dataset, Imagenet-100, to
evaluate the effects of additional fully-connected (FC) layers and hierarchy choice. We prune the
WordNet hierarchy for this dataset by removing all nodes with a single child and manually combining
semantically similar leaf nodes into groups of 5. Figure 2 shows the hierarchy with randomly chosen
coarse- and fine-grain OOD classes in red and the training classes in blue.

We used Imagenet-1K to evaluate the hierarchical classifier’s scalability to large ID datasets. Again,
we prune the WordNet hierarchy by first removing all nodes with a single child. We then further
pruned the hierarchy to a fixed number of internal nodes by iteratively pruning the node with the
minimum entropy by merging its children. We use training distribution statistics to calculate the
entropy for each internal node. However, we find that these simplified hierarchies do not improve ID
accuracy or OOD performance.

Coarse-grain OOD datasets. For further comparison to other baseline methods and analysis of far-
OOD data we used coarse-grain OOD datasets for baseline comparisons. Specifically, we compared
to the iNaturalist (Horn et al., 2018), SUN (Xiao et al., 2010), Places365 (Zhou et al., 2018), and
Textures (Cimpoi et al., 2014) subsets from (Wan et al., 2021).

4.2 MODEL TRAINING

All models were trained from scratch as the available pretrained weights were trained on the fine-
grained OOD holdout classes. We used a ResNet50 (He et al., 2016) backbone for all models and
trained for 90 epochs of stochastic gradient descent (SGD). We used a learning rate of 0.1 with learning
rate decay steps with a decay factor of 0.1 performed at epoch 30 and 60. The momentum and weight
decay parameters were 0.9 and 10−4, respectively. We standardized the training hyperparameters to
avoid performance differences due to the optimization procedure.

4.3 RESULTS

Fine-grain OOD performance We found that the hierarchical softmax classifier (HSC) outperformed
baseline methods on the Imagenet-100 dataset and performs within 2% of the best performing baseline
for Imagenet-1K dataset (table 6). The hierarchical classifiers benefit from additional FC layers on top
of the ResNet50 feature extractor due to the additional complexity of classifying into several disjoint
sets (table 7). This also suggests that specialized hierarchical network architectures (Ahmed et al.,
2016; Yan et al., 2015; Alsallakh et al., 2018) that learn features specific to each node’s classifier
may further improve OOD performance. We assessed the effect of holdout class granularity and
found that the softmax-based OOD heuristics (MSP, ODIN, and prediction path probability) are
most sensitive to fine-grain OOD samples whereas MOS and path entropy metrics perform best on
coarse-grain OOD as shown in table 6. Also, we find that outlier exposure improves coarse-grain
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Table 1: Hierarchical softmax classifier (HSC) performance on the Imagenet-100 and Imagenet-1K
datasets. The Lsoft and Lother weights (α, β) and the OOD metric are given in parenthesis for each
HSC model. OOD performance is measured by AUROC scores for the fine-, medium- and coarse-
OOD classes as well as the overall OOD performance. The best performing baseline and HSC models
are bolded. Each cell includes the performance statistics across 3 models trained with separate
random seeds. For ensemble OOD methods (Lakshminarayanan et al., 2017) cells follow the format:
“mean(std)/ensemble”. Note that relative Mahalanobis Ren et al. (2021) performance is reported as it
outperformed the original method (Lee et al., 2018). All models are ResNet50 architectures trained
for 90 epochs. All numbers are percentages.

MODEL (METHOD) ACCURACY
AUROC

FINE MEDIUM COARSE OVERALL

IMAGENET 100

MSP (HENDRYCKS & GIMPEL, 2017) 81.26(0.53)/82.75 72.47(0.31)/73.62 — 92.62(0.67)/94.38 90.25(0.62)/91.94
ODIN (LIANG ET AL., 2018) 81.26(0.53)/82.75 72.93(1.87)/74.36 — 95.90(0.47)/96.71 93.20(0.36)/94.08
MAHALANOBIS (REN ET AL., 2021) 81.26(0.53) 78.05(0.09) — 91.34(0.62) 89.78(0.54)
MOS (HUANG & LI, 2021) 82.41(0.02) 70.00(0.72) — 96.66(0.23) 93.66(0.22)

HSC (α = 1, β = 0, PRED) 82.38(0.06)/83.25 76.78(3.38)/79.80 — 93.93(0.22)/95.08 91.33(0.28)/92.38
HSC (α = 1, β = 0, Hmean) 82.38(0.06)/83.25 77.27(3.83)/75.86 — 96.90(0.11) /96.89 93.92(0.20)/93.17
HSC (α = 1, β = 0.2, PRED) 82.85(0.14)/84.05 79.40(0.76)/80.67 — 95.06(0.13)/96.05 92.29(0.15)/93.33
HSC (α = 1, β = 0.2, Hmean) 82.85(0.14)/84.05 79.40(0.67)/76.35 — 97.23(0.11)/96.93 94.08(0.13)/93.30

IMAGENET 1K

MSP (HENDRYCKS & GIMPEL, 2017) 74.94(0.08)/77.05 74.30(0.24)/74.90 79.33(0.17)/81.32 80.42(0.19)/82.71 77.96(0.11)/79.57
ODIN (LIANG ET AL., 2018) 74.94(0.08)/77.05 76.25(0.11)/77.62 79.84(0.21)/81.82 81.95(0.15)/84.02 79.18(0.13)/80.98
MOS (HUANG & LI, 2021) 75.00(0.43) 74.71(0.90) 74.00(0.53) 87.11(0.40) 77.32(0.59)

HSC (α = 1, β = 0, PRED) 73.79(0.13)/76.51 72.73(0.47)/73.42 78.33(0.27)/80.49 80.64(0.17)/82.92 77.07(0.24)/78.78
HSC (α = 1, β = 0, Hmean) 73.79(0.13)/76.51 64.84(0.64)/61.45 77.03(0.28)/75.02 82.86(0.11)/85.43 74.47(0.31)/73.09
HSC (α = 1, β = 0.05, PRED) 74.46(0.06)/76.79 72.86(0.56)/73.69 79.40(0.29)/81.45 82.38(0.58)/84.35 77.99(0.41)/79.63
HSC (α = 1, β = 0.05, Hmean) 74.46(0.06)/76.79 63.54(0.74)/61.56 76.62(0.35)/75.44 84.54(0.40)/86.01 74.27(0.34)/73.45

OOD performance across all HSC metrics. Finally, we find that the Imagenet-100 trained ODIN
detector is the best performer on the 4 far-OOD datasets table 9. However, MOS is the best performer
on iNaturalist, SUN and Places when scaling the number of ID classes to the Imagenet-1K dataset.

Hierarchy selection. In table 4, we evaluate the sensitivity to hierarchy depth and composition
for Imagenet-100 datasets with two human-defined semantic, WordNet (Fellbaum, 1998) based
hierarchies and a visually-derived binary decision tree induced from the learned weights of a standard
softmax classifier following the procedure from (Wan et al., 2021). The two-level hierarchy is created
using the direct parents of the leaf-nodes from WordNet. We find that the performance across all
OOD metrics introduced in section 3.3 is comparable. In particular, there is no apparent benefit to
visually-derived hierarchies vs. human-defined semantic hierarchies. However, we believe that the
hierarchy is a critical design choice and is likely application dependent. Specifically, the hierarchy’s
class balance, depth, and alignment with visual features are important characteristics to consider. In
natural image classification domains, human-defined semantic structures may improve interpretability
because they project image inputs into a human conceptual framework even though they may not
perfectly represent the visual properties of the input.

Scalability to large ID datasets. In table 6, we find that HSC classifiers are able to scale to large ID
datasets. However, the performance of the path-wise entropy based OOD detection metric Hmean

under-performs. We suspect that this can be attributed to deep, imbalanced hierarchies where some
branches receive extremely low weights making optimization more difficult (eq. (3)). Indeed, we
find that simplifying the hierarchy with custom pruning and a 2 level hierarchy we can regain the
lost OOD performance and even outperform the best baseline table 5. Therefore, well balanced
hierarchies and models with sufficient capacity avoid this optimization problem.

5 ANALYSIS

Hierarchical classifiers decompose the classification problem into simpler intermediate tasks. By
analyzing the model’s confidence at each intermediate decision, we can understand where the model
becomes uncertain. Wan et al. (2021) show that through analyzing intermediate decisions we can
explain the model’s decision process to understand where the model makes mistakes and how it
behaves on ambiguous labels, and we can use that insight to improve human trust in the predic-
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tor. Therefore, hierarchical classifiers may greatly improve the interpretability and explainability
compared to softmax classifiers.

We build off of this work by leveraging intermediate model confidence estimates to determine at what
level of granularity to make a prediction. For ID data this corresponds to making more conservative
predictions when the model is uncertain, based on the intuition that a correct, less specific prediction
improves the user’s confidence in a model than an incorrect, more specific prediction. Similarly,
for OOD data the same method can indicate exactly where the sample diverges from the training
distribution and therefore can predict the sample’s parent class, allowing the user to make more
informed decisions in the face of novel inputs.

5.1 THRESHOLDING TO REDUCE FALSE-POSITIVES

First, we aim to understand the effects of OOD data on the hierarchical classifier’s performance
and if thresholding is effective for detecting and predicting OOD samples. We plot the micro-ROC
curves (fig. 3) for 4 synsets each corresponding to a separate classification decision in the hierarchy.
The “artifact”, “dog” and “bird” synsets include one or more OOD samples and the “ball” synset
does not have any corresponding OOD samples (see fig. 2). Notice in Figure 3 that when adding the
activations of the OOD data (“OOD” curve) the number of false-positives increases and AUROC
drops compared to the ID-only curve because the OOD data is being predicted more confidently than
some ID data. This occurs across all synsets in the hierarchy even in the “ball” synset that does not
contain any OOD descendants. However, when we employ a path-wise probability based threshold at
99% TNR on the training data (“THR” curves in fig. 3), the performance is recovered in all synsets.
The micro-ROC curves for all synsets is displayed in fig. 13.

5.2 OOD INFERENCE PERFORMANCE

Next, we compare path-wise and node-wise thresholding methods (section 3.4). In path-wise
thresholding, a global uncertainty threshold is set and the prediction is made at the deepest node that
meets the threshold. In the node-wise method, a threshold is set for each internal node to determine if
the node is certain enough to make a prediction.

On the Imagenet-100 dataset, we achieve 73% accuracy on the OOD samples while maintaining 74%
ID accuracy using a path-wise probability threshold chosen at 95% TNR as witnessed by the blue
line in Figure 10. In fig. 4, we plot the ID and OOD hierarchy distance over the TNRs used to set
the prediction threshold to analyze the inference method’s behavior. Note that the ODIN baseline is
only capable of predicting a leaf-node or not predicting at all. This leads to the larger OOD hierarchy

Figure 3: Imagenet-100 synset micro-ROC
curves for ID data only, ID and OOD, and ID
and OOD with a TNR=0.95 path threshold.

Figure 4: Imagenet-100 ID and OOD average hiear-
archy distance across TNR threshold values for path-
wise and node-wise threshold metrics with ODIN
baseline.
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distance across the TNR spectrum (fig. 4 grey), as well as, the faster decline in ID performance
compared to the node-wise thresholding method (fig. 4 black vs green). Figure 10 further shows the
limitations of binary OOD detectors as they are incapable of predicting on OOD samples.

The large step changes and deviation of path-wise thresholding in Figure 10 and Figure 4 reflect that
the path-wise thresholds cause the network to predict at increasingly coarse nodes as the confidence
degrades with increasing depth (i.e. specificity, see eq. (1)). Whereas the behavior of the node-wise
thresholding technique changes the required certainty at all nodes in the hierarchy leading to smoother
behavior and tighter standard deviations in the green and red lines in Figure 4 and Figure 10. When the
distribution of OOD classes is balanced across granularity levels, the node-wise inference technique
greatly outperforms the path-wise technique due to the step wise nature of the path-wise technique
(figs. 6 to 9).

Accuracy is a binary indicator of performance for each sample which is well suited to softmax and
other flat classifiers that do not capture the relationships between classes. However, for inference on
OOD data and prediction under uncertainty, hierarchy distance is useful as a measure of the semantic
differences between the prediction is to the groundtruth. We show that OOD average hierarchy
distance consistently decreases and the ID average hierarchy distance remains relatively constant
(fig. 4, bottom). While the ID accuracy drops from 82.75% to 74.46% at the 95% TNR node-wise
threshold, the average hierarchy distance decreases from 0.4045 to 0.4005 (fig. 4 bottom right). This
indicates that the increase in hierarchy distance from the ∼8% drop in ID accuracy is counteracted
by predicting the ∼17% of original error cases at a lower specificity, thereby reducing the average
hierarchy distance. Therefore, by allowing the hierarchical classifier to predict with less specificity,
we can improve the overall prediction quality by removing uncertain leaf node predictions.

5.3 INFERENCE ERROR ANALYSIS

Error analysis is crucial to interpreting deep learning methods (Wan et al., 2021). We find that
analyzing the hierarchy distance between prediction and groundtruth nodes for ID and OOD samples
illuminates the common pathologies of our inference method fig. 12. Specifically, we find that
both the path- and node-wise OOD errors commonly occur from over-prediction indicated by the
concentration of samples along the prediction axis with a ground-truth distance of 0. Conversely, the
ID data is generally under-predicted by 1 node indicating that the most uncertain ID samples are
being predicted at a coarser granularity fig. 12. In the standard ROC based metrics, the OOD samples
with a greater certainty than the leaf-level ID predictions would be considered false-positives. We
believe that analyzing the hierarchical distance is a more appropriate compared to standard AUROC
metrics for fine-grained OOD scenarios as it allows for predicting uncertain ID samples at a coarser
level which is likely the desired behavior when the ID and OOD are very closely related.

6 CONCLUSION

In this work, we propose a method for performing inference on OOD samples with hierarchical
classifiers. We argue that in the fine-grain OOD scenario, detecting a sample as OOD is often
not the optimal behavior when the sample is a descendant of an ID class. Hierarchical inference
also improves ID prediction when the model’s uncertainty is large and a more certain, less precise
prediction is available. Hierarchical classification enforces that intermediate predictions are made
that can be directly analyzed to better interpret, explain, and validate the model’s decisions prior
to deployment. We provide empirical evidence to support these claims and consider hierarchical
inference to be a promising direction for future research for creating trusted real-world machine
learning systems.
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A APPENDIX

A.1 COMPUTE RESOURCES

All experiments were run on an internal compute cluster with nodes containing 8 NVIDIA RTX
A5000 GPUs. Imagenet 100 experiments were trained on 1 GPU for 90 epochs which completed in
∼8 hours for the longest running experiments. Imagenet 1K experiments were trained on 2 GPUs
with data parallelization. Training for the Imagenet 1K’s longest running experiments lasted ∼52.5
hours.

A.2 HIERARCHY STATISTICS

Table 2: Imagenet dataset holdout set statistics. The number of leaf nodes that are held out due to
trimmed branches at each level of granularity. The uniform probability used to choose the holdout
nodes and the hierarchy depths for each granularity level are given for each dataset.

DATASET
MAX DEPTH # LEAF HOLDOUTSINTERNAL

LEAFS COARSE MEDIUM FINE

IMAGENET 100
6 15 0 2

28 — — —
100 LVLS 2 — LEAFS

BALANCED IMAGENET 100
6 15 5 10

28 — — —
100 LVLS 2 4–5 LEAFS

IMAGENET 1K
15 74 101 54

369 P=0.25 0.0625 0.0125
1000 LVLS 3–6 7–10 11–15

A.3 BALANCED IMAGENET 100 RESULTS

Figure 5: BALANCED IMAGENET 100 pruned WordNet hierarchy. Red edges correspond to OOD
paths and blue to ID.
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Table 3: Hierarchical softmax classifier (HSC) performance on the Balanced Imagenet 100 dataset.
The Lsoft and Lother weights (α, β) and the OOD metric are given in parenthesis for each HSC model.
OOD performance is measured by AUROC scores for the fine-, medium- and coarse- OOD classes
as well as the overall OOD performance. Each cell includes the performance statistics across 3
models trained with separate random seeds. For ensemble OOD methods (Lakshminarayanan et al.,
2017) cells follow the format: “mean(std)/ensemble”. Note that relative Mahalanobis Ren et al. (2021)
performance is reported as it outperformed the original method (Lee et al., 2018). All models are
ResNet50 architectures trained for 90 epochs. All numbers are percentages.

MODEL (METHOD) ACCURACY
AUROC

FINE MEDIUM COARSE OVERALL

BALANCED IMAGENET 100

MSP (HENDRYCKS & GIMPEL, 2017) 80.85(0.23)/82.11 72.11(0.65)/73.91 71.07(0.58)/73.51 92.32(0.49)/93.66 82.04(0.28)/83.72
ODIN (LIANG ET AL., 2018) 80.85(0.23)/82.11 79.16(0.56)/80.37 74.35(0.57)/75.84 96.09(0.63)/96.78 86.82(0.23)/87.82
ENERGY (LIU ET AL., 2020) 80.85(0.23)/82.11 79.30(0.59)/80.48 74.22(0.57)/75.35 95.97(0.71)/96.77 86.79(0.26)/87.77
MAHALANOBIS (REN ET AL., 2021) 80.85(0.23) 83.07(0.80) 72.66(0.59) 91.11(0.89) 85.36(0.64)
MOS (HUANG & LI, 2021) 80.35(0.21) 81.49(0.65) 86.80(0.35) 74.23(1.05) 86.80(0.35)

HSC (α = 1, β = 0, PRED) 81.19(0.26)/81.83 69.44(0.90)/71.25 71.57(1.44)/73.11 93.29(0.18)/94.49 81.72(0.44)/83.18
HSC (α = 1, β = 0, Hmean) 81.19(0.26)/81.83 69.81(1.01)/78.56 68.12(1.61)/72.75 96.46(0.11)/96.69 82.85(0.60)/86.66
HSC (α = 1, β = 0, Hmax) 81.19(0.26)/81.83 66.57(0.76)/78.86 71.00(1.53)/73.44 89.46(0.23)/94.39 78.75(0.60)/85.72
HSC (α = 1, β = 0, Hmin) 81.19(0.26)/81.83 70.72(1.85)/73.56 28.15(2.41)/71.45 95.21(0.79)/95.56 75.87(0.98)/84.21
HSC (α = 1, β = 0, ENERGY) 81.19(0.26)/81.83 75.88(2.03)/70.26 70.02(3.12)/61.97 98.28(0.11)/98.24 86.10(1.20)/82.87
HSC (α = 1, β = 0.2, PRED) 81.83(0.10)/82.97 73.91(1.04)/75.52 73.88(1.19)/75.86 94.20(0.09)/95.32 84.05(0.46)/85.47
HSC (α = 1, β = 0.2, Hmean) 81.83(0.10)/82.97 74.23(1.01)/80.38 70.64(1.33)/74.54 96.65(0.03)/96.43 84.84(0.42)/87.43
HSC (α = 1, β = 0.2, Hmax) 81.83(0.10)/82.97 71.29(0.89)/80.74 73.18(1.02)/74.23 92.68(0.14)/95.12 82.30(0.44)/86.84
HSC (α = 1, β = 0.2, Hmin) 81.83(0.10)/82.97 73.72(1.98)/81.94 27.26(0.85)/75.26 95.76(0.37)/96.33 77.00(0.44)/88.02
HSC (α = 1, β = 0.2, ENERGY) 81.83(0.10)/82.97 80.03(1.20)/73.79 73.50(2.09) /64.63 98.01(0.04)/98.62 87.93(0.63)/84.68

A.4 IMAGENET 100 HIERARCHY EXPERIMENTS

Table 4: ID and OOD sensitivity to hierarchy selection on the Imagenet-100 dataset. H type indicates
whether the hierarchy is defined by human semantics or learned visual feature clustering. All numbers
are percentages.

Hierarchy H H Type Accuracy Path Predition Path Entropy
Mean Max Min

2 Lvl WN Semantic 82.19(0.38) 91.73(0.17) 93.43(0.08) 92.12(0.04) 93.08(0.13)

Pruned WN Semantic 82.38(0.06) 91.33(0.28) 93.92(0.20) 89.16(0.46) 93.70(0.13)

Binary NBDT (Wan et al., 2021) Visual 81.28(0.48) 91.33(0.29) 92.92(0.14) 86.68(0.18) 93.15(0.24)

A.5 IMAGENET 1K HIERARCHY EXPERIMENTS

Table 5: Effect of hierarchy selection on Imagenet-1K dataset. H type indicates whether the hierarchy
is defined by human semantics or learned visual feature clustering. Note all models are HSC with α
and β in parentheses. All numbers are percentages.

Hierarchy H H Type Accuracy Path Predition Path Entropy
Mean Max Min

Full (α = 1, β = 0.05) Semantic 74.34(0.03) 77.73(0.25) 74.21(0.35) 76.68(0.09) 62.04(0.75)

Custom Prune (α = 1, β = 0.05) Semantic 74.12(0.05) 78.24(0.17) 71.31(0.16) 75.97(0.15) 60.95(0.30)

2 Lvl (α = 1, β = 0.1) Semantic 75.03(0.10) 78.94(0.24) 79.76(0.28) 79.52(0.22) 69.91(1.43)
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A.6 IMAGENET 100 AND IMAGENET 1K ADDITIONAL OOD METRICS

Table 6: Hierarchical softmax classifier (HSC) performance on the Imagenet-100 and Imagenet-1K
datasets with additional OOD metrics. The Lsoft and Lother weights (α, β) and the OOD metric are
given in parenthesis for each HSC model. OOD performance is measured by AUROC scores for
the fine-, medium- and coarse- OOD classes as well as the overall OOD performance. The best
performing baseline and HSC models are bolded. Each cell includes the performance statistics across
3 models trained with separate random seeds. For ensemble OOD methods (Lakshminarayanan et al.,
2017) cells follow the format: “mean(std)/ensemble”. Note that relative Mahalanobis Ren et al. (2021)
performance is reported as it outperformed the original method (Lee et al., 2018). All models are
ResNet50 architectures trained for 90 epochs. All numbers are percentages.

MODEL (METHOD) ACCURACY
AUROC

FINE MEDIUM COARSE OVERALL

IMAGENET 100

MSP (HENDRYCKS & GIMPEL, 2017) 81.26(0.53)/82.75 72.47(0.31)/73.62 — 92.62(0.67)/94.38 90.25(0.62)/91.94
ODIN (LIANG ET AL., 2018) 81.26(0.53)/82.75 72.93(1.87)/74.36 — 95.90(0.47)/96.71 93.20(0.36)/94.08
ENERGY (LIU ET AL., 2020) 81.26(0.53)/82.75 72.76(1.99)/74.00 — 95.72(0.50)/96.63 93.02(0.39)/93.97
MAHALANOBIS (REN ET AL., 2021) 81.26(0.53) 78.05(0.09) — 91.34(0.62) 89.78(0.54)
MOS (HUANG & LI, 2021) 82.41(0.02) 70.00(0.72) — 96.66(0.23) 93.66(0.22)

HSC (α = 1, β = 0, PRED) 82.38(0.06)/83.25 76.78(3.38)/79.80 — 93.93(0.22)/95.08 91.33(0.28)/92.38
HSC (α = 1, β = 0, Hmean) 82.38(0.06)/83.25 77.27(3.83)/75.86 — 96.90(0.11) /96.89 93.92(0.20)/93.17
HSC (α = 1, β = 0, Hmax) 82.38(0.06)/83.25 76.11(3.02)/75.21 — 91.50(0.40)/94.81 89.16(0.46)/91.35
HSC (α = 1, β = 0, Hmin) 82.38(0.06)/83.25 69.10(6.96) /72.92 — 98.04(0.07)/98.26 93.70(0.13)/93.98
HSC (α = 1, β = 0, ENERGY) 82.38(0.06)/83.25 75.28(1.01)/71.28 — 98.22(0.11)/97.96 94.17(0.15)/93.25
HSC (α = 1, β = 0.2, PRED) 82.85(0.14)/84.05 79.40(0.76)/80.67 — 95.06(0.13)/96.05 92.29(0.15)/93.33
HSC (α = 1, β = 0.2, Hmean) 82.85(0.14)/84.05 79.40(0.67)/76.35 — 97.23(0.11)/96.93 94.08(0.13)/93.30
HSC (α = 1, β = 0.2, Hmax) 82.85(0.14)/84.05 78.81(0.68)/76.02 — 94.57(0.29)/95.49 91.79(0.27)/92.05
HSC (α = 1, β = 0.2, Hmin) 82.85(0.14)/84.05 76.81(0.73)/78.00 — 98.15(0.07)/98.49 94.38(0.07)/94.87
HSC (α = 1, β = 0.2, ENERGY) 82.85(0.14)/84.05 75.29(1.18)/71.32 — 98.22(0.06)/98.51 94.17(0.17)/93.71

IMAGENET 1K

MSP (HENDRYCKS & GIMPEL, 2017) 74.94(0.08)/77.05 74.30(0.24)/74.90 79.33(0.17)/81.32 80.42(0.19)/82.71 77.96(0.11)/79.57
ODIN (LIANG ET AL., 2018) 74.94(0.08)/77.05 76.25(0.11)/77.62 79.84(0.21)/81.82 81.95(0.15)/84.02 79.18(0.13)/80.98
ENERGY (LIANG ET AL., 2018) 74.94(0.08)/77.05 76.20(0.08)/77.83 79.28(0.21)/81.05 81.45(0.17)/83.24 78.80(0.13)/80.53
MOS (HUANG & LI, 2021) 75.00(0.43) 74.71(0.90) 74.00(0.53) 87.11(0.40) 77.32(0.59)

HSC (α = 1, β = 0, PRED) 73.79(0.13)/76.51 72.73(0.47)/73.42 78.33(0.27)/80.49 80.64(0.17)/82.92 77.07(0.24)/78.78
HSC (α = 1, β = 0, Hmean) 73.79(0.13)/76.51 64.84(0.64)/61.45 77.03(0.28)/75.02 82.86(0.11)/85.43 74.47(0.31)/73.09
HSC (α = 1, β = 0, Hmax) 73.79(0.13)/76.51 73.65(0.35)/70.25 77.19(0.24)/77.57 77.01(0.18)/78.69 76.00(0.22)/75.47
HSC (α = 1, β = 0, Hmin) 73.79(0.13)/76.51 52.97(2.35)/59.65 57.05(0.57)/65.10 69.41(0.21)/73.53 58.64(0.46)/65.33
HSC (α = 1, β = 0, ENERGY) 73.79(0.13)/76.51 54.36(1.52)/51.40 78.12(0.15)/76.77 86.27(0.09)/88.07 72.36(0.54)/71.24
HSC (α = 1, β = 0.05, PRED) 74.46(0.06)/76.79 72.86(0.56)/73.69 79.40(0.29)/81.45 82.38(0.58)/84.35 77.99(0.41)/79.63
HSC (α = 1, β = 0.05, Hmean) 74.46(0.06)/76.79 63.54(0.74)/61.56 76.62(0.35)/75.44 84.54(0.40)/86.01 74.27(0.34)/73.45
HSC (α = 1, β = 0.05, Hmax) 74.46(0.06)/76.79 73.83(0.37)/70.24 77.93(0.04)/78.37 78.87(0.20)/78.89 76.83(0.18)/75.87
HSC (α = 1, β = 0.05, Hmin) 74.46(0.06)/76.79 59.13(1.38)/62.92 58.96(0.51)/62.16 69.49(1.51)/74.22 61.50(0.91)/65.25
HSC (α = 1, β = 0.05, ENERGY) 74.46(0.06)/76.79 57.46(1.11)/54.65 78.05(0.71)/77.88 88.13(0.11)/89.81 73.77(0.59)/73.19
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A.7 BALANCED 100 HIERARCHY DISTANCE AND ACCURACY

Figure 6: Balanced Imagenet 100 average
hierarchy distance vs. TNR threshold values.

Figure 7: Balanced Imagenet 100 hieararchy
accuracy vs. TNR threshold values.

A.8 IMAGENET 1K HIERARCHY DISTANCE AND ACCURACY

Figure 8: Imagenet 1K average hierarchy dis-
tance vs. TNR threshold values.

Figure 9: Imagenet 1K hieararchy accuracy
vs. TNR threshold values.

A.9 ID AND OOD INFERENCE ACCURACY VS. TNR

Figure 10: Imagenet-100 ID and OOD accuracy across TNR threshold values for path-wise and
synset-wise threshold metrics with ODIN baseline.
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A.10 SUPPLEMENTAL HIERARCHY DISTANCE CONFUSION MATRICES

(a) Node-wise Inference (b) Path-wise Inference

Figure 11: Imagenet-100 path- and node-wise inference hierarchy distance confusion matrices on ID
and OOD data.
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A.11 SUPPLEMENTAL HIERARCHY DISTANCE CONFUSION MATRICES

(a) Node-wise Inference (b) Path-wise Inference

Figure 12: Imagenet-100 path- and node-wise inference hierarchy distance confusion matrices on ID
and OOD data.
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A.12 SUPPLEMENTAL MICRO-ROC CURVES

Figure 13: Imagenet-100 synset micro-ROC curves for ID data only, ID and OOD, and ID and OOD
with a TNR=0.95 prediction path threshold.
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A.13 HIERARCHICAL PERFORMANCE BY DEPTH

Hierarchical classifiers provide interpretable decisions by introducing additional classification tasks
at each internal node in the hierarchy. While this allows for improved interpretability and ability
to perform verification, each additional classifier is another potential point of failure. We mitigate
this by using “soft” decisions by using path probabilities for predictions instead of traversing the
hierarchy in a top-down fashion akin to a decision tree as suggested by Wan et al. (2021). We plot
percentage of classification errors that occur at each hierarchy depth (figs. 14 to 16) and compare
the performance of hierarchical classifiers to a flat classifier. To determine the depth of the error we
follow the prediction path in a top-down fashion and record where the depth of the node where the
error occurs. For example, for the Imagenet 100 dataset, if a sample’s groundtruth is “house finch”
and the classifier predicts “puffer”, then the error was made by the “vertebrate” node’s classifier and
the error depth is 2 (see fig. 2). Note that this can be performed for any prediction regardless of
whether the classifier can only produce leaf node predictions. We calculate OOD error depths by
assigning each OOD sample a ground truth to be the deepest internal node that is contained in the set
of ID classes as we do when calculating hierarchical accuracy and hierarchical distance (section 5.2).
As we are trying to evaluate the prediction accuracy and not the inference mechanism, we calculate an
“oracle” accuracy for these plots. Specifically, an OOD prediction is “correct” if its path contains the
OOD groundtruth path and predicted nodes that are at deeper levels than the groundtruth are ignored.
For example, in the Imagenet 100 dataset “junco” is OOD and its groundtruth value is assigned to its
closest ancestor that is contained in the ID set which is “bird”. For the purposes of these plots, if a
classifier predicts “house finch” whose path also contains “bird”, the prediction is considered to be
correct (see fig. 2).

In figs. 14 to 16 it is clear that hierarchical and flat classifiers tend to misclassify similar difficult
samples and have similar ID and OOD accuracy performance. Also, note that when the OOD
accuracy performance drops in the Imagenet 1K dataset (fig. 16), the hierarchical classifiers begin
to outperform the flat classifier. Since we keep the feature extractor the same between hierarchical
and flat classifiers it is perhaps not surprising that they learn similar feature sets that lead to similar
leaf node mistakes. The main focus of the current work is to compare the OOD performance of
hierarchical versus flat models. This restricts our ability to explore additional hierarchical feature
extractors as it would not allow for direct performance comparisons. An extension of the current
work would explore hierarchical feature extractors to improve each node’s classification performance
by learning additional features that are optimized to distinguish between a given node’s children.
Another interesting future direction is to identify poorly performing internal nodes’ classifiers during
training and explicitly attempt to improve their performance through adapting the nodes’ weights
(eq. (3)) or by developing other techniques.

Figure 14: Imagenet 100 errors by hierarchy
depth for ID and OOD datasets. The mean ac-
curacy is given in the right-most column and its
scale is on the right-hand side.

Figure 15: Balanced Imagenet 100 errors by
hierarchy depth for ID and OOD datasets. The
mean accuracy is given in the right-most column
and its scale is on the right-hand side.
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Figure 16: Imagenet 1K errors by hierarchy depth for ID and OOD datasets. The mean accuracy is
given in the right-most column and its scale is on the right-hand side.

A.14 FULLY CONNECTED HEAD EXPERIMENTS

Table 7: Hierarchical softmax classifier (HSC) performance on the Imagenet-100 dataset when adding
additions fully-connected (FC) layers to classification head. AUROC scores are provided for each
OOD method: MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), MOS (Wan et al.,
2021). Note that the node-wise scaling of the HSC methods is different from table 6 causing the
discripancy in HSC numbers. All numbers are percentages.

MODEL ACCURACY BASELINE AUROC PATH PREDICTION
PATH ENTROPY

MEAN MIN

IMAGENET 100

MSP 81.26(0.53) 90.25(0.62) — — —
ODIN 81.26(0.53) 93.20(0.36) — — —
MOS 82.41(0.02) 93.66(0.22) — — —

MSP FC3 82.12(0.29) 90.68(0.41) — — —
ODIN FC3 82.12(0.29) 93.78(0.31) — — —
MOS FC3 81.82(0.15) 93.49(0.49) — — —

HSC (α = 1, β = 0) 78.36(0.87) — 89.09(0.65) 92.39(0.43) 92.68(0.24)
HSC (α = 1, β = 0.2) 83.05(0.12) — 92.16(0.26) 93.93(0.27) 94.29(0.27)

HSC FC3 (α = 1, β = 0) 81.90(0.08) — 91.51(0.35) 93.86(0.20) 93.46(0.18)
HSC FC3 (α = 1, β = 0.2) 82.73(0.24) — 91.80(0.46) 93.78(0.28) 94.57(0.20)

A.15 SUPPLEMENTAL OOD GRANULARITY PERFORMANCE
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Table 8: Hierarchical classifier performance on the fine-grain Imagenet-1K datasets. AUROC scores
are provided for each OOD method: (Ours) Hierarchical softmax classifier (HSC), MSP (Hendrycks
& Gimpel, 2017), ODIN (Liang et al., 2018), MOS (Wan et al., 2021). All models are ResNet50
architectures trained for 90 epochs. FC: Number of fully-connected layers for classifier

DATASET MODEL
AUROC

FINE MEDIUM COARSE

IMAGENET 100

MSP 72.47(0.31) — 92.62(0.67)

ODIN 72.93(1.87) — 95.90(0.47)

MOS 70.00(0.72) — 96.66(0.23)

MSP FC3 72.55(1.22) — 93.09(0.39)

ODIN FC3 69.05(0.75) — 97.08(0.26)

MOS FC3 69.78(2.65) — 96.66(0.21)

HSC (PRED) 74.63(0.92) — 91.02(0.67)

HSC (Hmean) 73.09(0.95) — 94.96(0.46)

HSC (Hmin) 62.24(0.72) — 96.74(0.25)

HSC OE (PRED) 71.11(1.98) — 94.96(0.04)

HSC OE (Hmean) 70.01(1.93) — 97.11(0.07)

HSC OE (Hmin) 65.14(1.40) — 98.18(0.13)

HSC FC3 (PRED) 72.22(0.56) — 94.09(0.44)

HSC FC3 (Hmean) 71.55(0.49) — 96.83(0.28)

HSC FC3 (Hmin) 59.69(1.57) — 97.96(0.01)

HSC FC3 OE (PRED) 71.86(0.17) — 94.46(0.53)

HSC FC3 OE (Hmean) 70.67(0.25) — 96.86(0.33)

HSC FC3 OE (Hmin) 68.87(0.11) — 97.99(0.23)

IMAGENET 1K

MSP 74.30(0.24) 79.33(0.17) 80.42(0.19)

ODIN 76.25(0.11) 79.84(0.21) 81.95(0.15)

MOS 74.71(0.90) 74.00(0.53) 87.11(0.40)

HSC (PRED) 72.73(0.47) 78.33(0.27) 80.64(0.17)

HSC (Hmean) 64.84(0.64) 77.03(0.28) 82.86(0.11)

HSC (Hmin) 52.97(2.35) 57.05(0.57) 69.41(0.21)

HSC OE (PRED) 72.62(0.20) 79.19(0.19) 82.00(0.44)

HSC OE (Hmean) 63.65(0.60) 76.60(0.49) 84.23(0.23)

HSC OE (Hmin) 60.64(0.22) 59.02(0.57) 69.60(1.81)

A.16 PERFORMANCE ON FAR-OOD BENCHMARKS
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Table 9: Coarse-grain OOD dataset baseline performance. AUROC scores are provided for each
OOD method: (Ours) Hierarchical softmax classifier (HSC), MSP (Hendrycks & Gimpel, 2017),
ODIN (Liang et al., 2018), MOS (Wan et al., 2021). All models are ResNet50 architectures trained
for 90 epochs. FC: Number of fully-connected layers for classifier

ID DATASET MODEL
AUROC

INATURALIST SUN PLACES TEXTURES

IMAGENET 100

MSP 92.22(0.46) 93.62(0.23) 92.24(0.17) 88.60(0.57)

ODIN 95.60(0.34) 97.30(0.19) 96.10(0.13) 94.85(0.35)

MOS 93.50(0.04) 95.85(0.04) 94.72(0.12) 95.13(0.21)

MSP FC3 93.04(0.23) 94.77(0.03) 93.43(0.13) 90.07(0.13)

ODIN FC3 96.52(0.10) 98.00(0.07) 96.87(0.04) 95.89(0.12)

MOS FC3 93.83(0.32) 95.89(0.20) 94.83(0.14) 94.78(0.18)

HSC (PRED) 91.22(0.27) 92.64(0.59) 91.25(0.76) 87.69(0.03)

HSC (Hmean) 91.83(0.26) 93.40(0.55) 92.33(0.71) 89.83(0.04)

HSC (Hmin) 86.50(0.82) 94.19(0.68) 92.66(0.87) 92.88(0.06)

HSC OE (PRED) 94.05(0.40) 95.73(0.19) 94.59(0.03) 91.51(0.15)

HSC OE (Hmean) 94.38(0.29) 96.31(0.18) 95.45(0.02) 93.44(0.14)

HSC OE (Hmin) 90.73(0.39) 96.30(0.19) 95.06(0.19) 95.22(0.22)

HSC FC3 (PRED) 93.25(0.48) 95.25(0.36) 93.80(0.36) 90.82(0.21)

HSC FC3 (Hmean) 94.09(0.47) 96.08(0.29) 94.87(0.28) 92.79(0.17)

HSC FC3 (Hmin) 91.93(0.47) 96.79(0.12) 95.53(0.10) 95.29(0.19)

HSC FC3 OE (PRED) 93.83(0.20) 95.68(0.12) 94.32(0.18) 90.82(0.29)

HSC FC3 OE (Hmean) 94.13(0.10) 96.19(0.14) 95.16(0.12) 92.69(0.22)

HSC FC3 OE (Hmin) 91.20(0.76) 96.42(0.14) 95.14(0.11) 94.93(0.06)

IMAGENET 1K

MSP 88.16(0.13) 81.05(0.16) 80.63(0.18) 80.18(0.23)

ODIN 91.05(0.33) 86.12(0.39) 84.72(0.31) 85.40(0.59)

MOS 95.22(0.35) 92.06(0.14) 90.59(0.13) 83.32(0.98)

HSC (PRED) 88.56(0.50) 80.77(0.30) 80.36(0.15) 80.43(0.23)

HSC (Hmean) 89.92(0.38) 86.08(0.22) 84.75(0.11) 82.93(0.23)

HSC (Hmin) 80.04(0.86) 88.22(0.55) 85.66(0.48) 75.77(0.38)

HSC OE (PRED) 88.03(0.15) 80.31(0.06) 79.90(0.23) 80.31(0.44)

HSC OE (Hmean) 88.21(0.45) 85.57(0.03) 84.17(0.15) 82.51(0.33)

HSC OE (Hmin) 72.39(3.60) 78.21(0.92) 76.68(0.94) 78.75(0.97)
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