
Task-aware Block Pruning with Output Distribution Signals for Large
Language Models

Anonymous ACL submission

Abstract001

Large language models provide excellent per-002
formance, but their practical deployment is lim-003
ited by significant inference costs. While block004
pruning effectively reduces latency with struc-005
tural coherence, existing methods typically rely006
on representation similarity or costly sensitiv-007
ity analyses, neglecting task-specific model008
behavior. This paper introduces an output-009
driven pruning method leveraging entropy-010
based estimations of output distributions to ac-011
curately identify less important model blocks.012
Extensive experiments validate the proposed013
method’s effectiveness, demonstrating substan-014
tial efficiency gains without compromising015
downstream task performance.016

1 Introduction017

Recent advances in large language models (LLMs)018

have demonstrated remarkable performance across019

diverse natural language tasks (Dubey et al., 2024;020

Jiang et al., 2023). However, their growing size021

and inference cost have raised practical concerns,022

especially in deployment scenarios in resource-023

constrained environments. Model compression024

techniques, including pruning, quantization, and025

knowledge distillation (KD), have emerged as criti-026

cal tools for addressing this efficiency-performance027

trade-off, and are often compatible with one an-028

other to yield additive benefits (Han et al., 2016;029

Mirashi et al., 2024; Zafrir et al., 2021; Kurtic et al.,030

2022; Zeng et al., 2024; Muralidharan et al., 2024;031

Song et al., 2024). Among them, pruning is es-032

pecially attractive when combined with recovery033

aids such as fine-tuning or KD1 as it inherit the034

strengths of larger models, avoiding costly neu-035

ral architecture search (Frankle and Carbin, 2019;036

Chen et al., 2020; Zhang et al., 2021; Sarah et al.,037

2024; Bercovich et al., 2025). In particular, block038

pruning offers structurally coherent reductions that039

1E.g., Llama-3.2-1B (Dubey et al., 2024)

translate well to real-world latency improvement 040

with stability (Zhong et al., 2025). However, prior 041

methods often rely on representational similarity 042

or performance sensitivity based on exhaustive 043

removal experiemnts, which may overlook task- 044

relevant internal behavior. This limitation moti- 045

vates the explicit output-driven perspective which 046

will be explored in this study. 047

While pruning has emerged as a powerful tool 048

to improve efficiency, its practical effectiveness 049

depends heavily on its pattern. Unstructured prun- 050

ing is difficult to exploit efficiently without spe- 051

cialized hardware (Kim et al., 2018; Chen et al., 052

2019), while width and layer-level depth pruning 053

often suffer from structural imbalance or instability, 054

resulting in minimal efficiency gains or severe per- 055

formance degradation (Kim et al., 2024; Lele et al., 056

2025; Xia et al., 2024; Zhang et al., 2024; He et al., 057

2024; Park et al., 2025). As a result, block pruning 058

has been gaining growing interest, which achieves 059

more proportional latency reductions with respect 060

to compression ratio (Kim et al., 2024; Song et al., 061

2024; Zhong et al., 2025). 062

This paper investigates block pruning for down- 063

stream tasks, which are challenging and require 064

explicit reasoning with distinct objectives, unlike 065

general language modeling (Bachmann and Nagara- 066

jan, 2024). Most existing methods, however, focus 067

on language modeling and rely solely on perplexity- 068

based sensitivity measures for importance estima- 069

tion (Kim et al., 2024; Song et al., 2024), which 070

fails to reflect downstream performance (Liu et al., 071

2023; Hu et al., 2024; Zeng et al., 2025). Thus, 072

the proposed method, inspired by the concept of 073

entropy estimation (EE) (Liu et al., 2020; Hu et al., 074

2023) with promising performance in capturing 075

internal model behavior, leverages output distri- 076

butions to estimate block importance. The main 077

contributions are as follows: 078

• We empirically demonstrate that analyzing 079
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Figure 1: To estimate the importance of each block, states are calculated for N samples based on the token
probability distribution output from every block, like EE and LogitLens (Kao et al., 2021; Nostalgebraist, 2020).
Then, they are compared to the nearest previous blocks and aggregated block-wisely via penalty counting (L0) and
averaging (L1). The graph on the right depicts L1. By sorting blocks with the scores, relatively less important
blocks are pruned.

the output distribution, rather than relying080

on similarity-based measures at the represen-081

tation level (Yang et al., 2025b) or compu-082

tationally expensive sensitivity metrics, pro-083

vides a more effective means of capturing084

internal model behavior, akin to EE and un-085

certainty quantification (Nostalgebraist, 2020;086

Kao et al., 2021; Chuang et al., 2024).087

• Six effective criteria options and two met-088

rics for characterizing output distributions are089

proposed through extensive experiments, en-090

abling efficient pruning via constrained search091

within a limited candidate space.092

• The necessity of observing model behavior on093

specific tasks is verified through experiments,094

highlighting the critical role of task-oriented095

importance estimation.096

2 Related Work097

Block pruning criteria include sensitivity on per-098

plexity (PPL), representation entropy, and angu-099

lar distance, with either one-shot or iterative re-100

moval (Kim et al., 2024; Song et al., 2024; Yang101

et al., 2025b; Gromov et al., 2025). To preserve102

performance, some approaches substitute or dupli-103

cate blocks supported by normalization, low-rank104

adaptation (LoRA), and approximation (Razzhi-105

gaev et al., 2024; Mikaelyan et al., 2025; Smith106

et al., 2025).107

3 Methodology 108

Inspired by EE, the proposing method hypothesizes 109

that internal states such as entropy on the interme- 110

diate output distribution can reliably indicate block- 111

wise capability, thereby avoiding costly ablation- 112

based experiments. To identify a robust and ef- 113

fective criterion of block-level capability, compre- 114

hensive experiments explore a candidate space in 115

Section 5.1, systematically evaluating various al- 116

ternatives beyond entropy that is more suitable for 117

capturing models’ internal certainty or representa- 118

tional maturity at each block. 119

The numerical values derived from criterion are 120

qualitative indicators that quantify the desirability 121

of models’ internal state or behavior via compar- 122

ison. For example, entropy over the prediction 123

score distribution is preferred to be low, meaning 124

that model is more certain or decisive on its output. 125

Building on this aspect, one strategy to identify the 126

blocks to prune is to penalize those that negatively 127

affect the reasoning process, by considering the 128

direction of change in the value, i.e., whether it 129

increases or decreases compared to the previous 130

block. This forms the basis of the first metric L0, 131

which assesses on whether an value suggests posi- 132

tive or negative contribution. 133

However, the reasoning for L0 metric deviates 134

substantially from conventional approaches that 135

assess the absolute magnitude of contribution, irre- 136

spective of the direction of change. In other words, 137
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Method ARC-E ARC-C BoolQ COPA HeSw. PIQA Wino. Avg.

Original Model 80.09 53.33 81.44 89.00 79.17 79.71 72.85 76.51

Prune 2 blocks (pruning ratio = 6.25%)
SLEB 76.60 48.29 74.80 87.00 74.33 77.80 70.48 72.76
Short’dLLaMA 76.05 49.23 75.66 90.00 74.97 77.86 70.88 73.52
EntroDrop 67.55 44.45 63.09 84.00 68.58 75.57 71.43 67.81
JointLayerDrop 62.58 42.75 62.45 78.00 57.89 70.89 62.04 62.37
L

(ENT)
0 78.07 49.91 78.20 90.00 77.21 78.78 73.09 75.04

Prune 4 blocks (pruning ratio = 12.5%)
SLEB 72.47 43.26 66.12 87.00 70.69 76.12 69.46 69.30
Short’dLLaMA 70.16 38.65 57.25 87.00 66.83 75.63 61.72 65.32
EntroDrop 40.78 33.53 58.59 67.00 37.43 61.86 58.48 51.10
JointLayerDrop 56.73 41.13 62.39 74.00 51.71 68.88 61.96 59.54
L

(ENT)
0 72.31 45.22 65.20 82.00 73.48 74.54 73.01 69.39

Prune 8 blocks (pruning ratio = 25%)
SLEB 61.78 31.74 42.11 77.00 57.98 71.82 53.59 56.57
Short’dLLaMA 61.83 31.66 42.05 77.00 57.94 71.87 53.83 56.60
EntroDrop 33.33 29.78 62.11 66.00 26.97 57.67 56.59 47.49
JointLayerDrop 50.51 37.97 62.54 68.00 46.72 65.23 61.40 56.05
L

(ENT)
0 55.81 37.20 76.48 73.00 58.58 68.82 70.17 62.87

Table 1: Zero-shot accuracy (%) of LLaMA 3-8B on each task after pruning. Best and the second best results are
indicated as bold and underline, respectively.

even an increase in entropy may imply that the138

block exerted influence within the broader context.139

Under this macro perspective, the alternative metric140

L1 is derived to reflect the magnitude of deviation141

rather than the sign of change. For each block, it142

computes the average absolute change across all143

N samples, as depicted in Figure 1. Blocks with144

smaller L1 scores are considered to contribute min-145

imally to overall variation and are thus selected146

for pruning. Both norm-based metrics are used to147

aggregate and compare states across blocks to deter-148

mine pruning candidates that contribute negatively149

or minimally onto the process. Table 1 reports only150

the best results obtained with L0, while secondary-151

best results are reported in Section 2.152

To clearly capture models’ behavior, multiple-153

choice question answering (MCQA) is adopted for154

a block importance estimation task. Comparing to155

the general text generation, MCQA differs signif-156

icantly in their cognitive and behavioral demands157

placed on models. Particularly, MCQA is a setting158

focused on restricted options, while in open-ended159

text generation tasks, entropy is computed over the160

full vocabulary space2, which introduces consider-161

able noise and interpretability challenges, i.e., high162

entropy may not reliably indicate genuine uncer-163

tainty, as it can be inflated by semantically insignif-164

icant tokens such as function words or punctuation.165

A more detailed comparison between MCQA and166

2For instance, LLaMA-3 8B has vocab size of 128,256.

generation settings is discussed in Section 5.1. 167

By constraining models’ output space to a small 168

set of discrete given options, MCQA promotes in- 169

terpretability and allows for clearer attribution of in- 170

ternal state changes to task-relevant decision points. 171

This task-constrained setting not only improves sig- 172

nal clarity but also strengthens the validity of en- 173

tropy observation regarding block-wise capability 174

and redundancy. Mitigation of confounding fac- 175

tors in free-form generation is further supported 176

by auxiliary heuristics, such as restricting token 177

outputs to a fixed choice set (e.g., A, B, C, D) and 178

preventing pruning of a few early blocks empiri- 179

cally shown to be important, as implemented in the 180

other works (Kim et al., 2024; Song et al., 2024). 181

4 Experiments 182

We conducted experiments ARC-Easy and em- 183

ployed pretrained open-source LLMs with 32 trans- 184

former blocks, including LLaMA 3-8B and Mistral- 185

7B (Clark et al., 2018; Grattafiori et al., 2024; Jiang 186

et al., 2023). Section 5 reports results on LLaMA 187

3-8B, while Section C presents results on Mistral- 188

7B. For MCQA tasks with 1024 samples from the 189

ARC-Easy training set, inference was performed 190

with logits processors from transformers library 191

to strictly force model to decode only the provided 192

answer key options (Hugging Face, 2025). Block- 193

level pruning was applyed with two norm-based 194

metrics (L0, L1), setting the number of blocks to 195

prune at most 8 (i.e., pruning ratio = 25%). 196
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Evaluation was implemented on the following197

datasets: ARC Easy & Challenge (ARC-E &198

ARC-C) (Clark et al., 2018), BoolQ (Clark et al.,199

2019), COPA (Gordon et al., 2012), HellaSwag200

(HeSw.) (Zellers et al., 2019), PIQA (Bisk et al.,201

2020), and WinoGrande (Wino.) (Sakaguchi et al.,202

2021). As baselines, ShortenedLLaMA, SLEB,203

and EntroDrop implement block pruning, whereas204

JointLayerDrop conducts layer-wise pruning (Kim205

et al., 2024; Song et al., 2024; Yang et al., 2025b;206

He et al., 2024).207

5 Results208

Three baselines and the proposed method L0 with209

entropy are evaluated under equal pruning ratios210

across multiple benchmarks. Results for pruning 2,211

4, and 8 blocks (corresponding to 6.25%, 12.5%,212

and 25% pruning ratios, respectively) are reported213

in Table 1. At 6.25% pruning ratio, L(ENT)
0 consis-214

tently yields top scores across all downstream tasks,215

while JointLayerDrop underperforms all block-216

based methods on most tasks. At 12.5% pruning217

ratio, L(ENT)
0 maintains its lead with an average218

score of 69.39%, slightly higher than SLEB and219

considerably above ShortenedLLaMA and Joint-220

LayerDrop, with notable strength on WinoGrande221

and HeSwag.222

When pruning 8 blocks which is three forth of 32223

blocks, L(ENT)
0 exhibits strong robustness, achiev-224

ing 62.87% on average. Particularly high accuracy225

is retained on BoolQ (76.48%) and WinoGrande226

(70.17%), while competing methods experience227

significant degradation. JointLayerDrop yields the228

lowest overall performance (37.82%), indicating229

instability under aggressive sparsity. These results230

demonstrate the effectiveness of output distribution-231

based pruning in preserving accuracy across di-232

verse tasks, especially under high pruning ratios.233

5.1 Ablation Study234

Criteria candidate space. To identify a reliable235

criterion, various options in candidate space were236

considered, such as confidence score (i.e., the maxi-237

mum prob. in the distribution) (Valade, 2024; Yang238

et al., 2025a), the gap between the top-1 and top-2239

probs. (Schuster et al., 2022; Valade, 2024), and240

the entropy over all token probs. in the dist. (Xin241

et al., 2020; Liu et al., 2020; Hu et al., 2023; Valade,242

2024). These indicators differ in scope: a single, a243

pair, or a full set of probabilities in a distribution,244

or a pair of distributions. Details of the candidate245

Method Avg. Acc.@8 AUC@8

L0
MCQA 62.87 561.73
TG 58.02 552.51

L1
MCQA 58.92 536.90
TG 59.59 552.19

SLEB 56.57 536.24
Short’dLLaMA 56.60 530.61
EntroDrop 45.68 000.00
JointLayerDrop 56.05 000.00

Table 2: Average zero-shot accuracy (%) of LLaMA
3-8B after pruning eight blocks and AUC over prun-
ing ratios from 0% to 25%, across different option set-
tings. As a state criterion, entropy was most effective for
MCQA, while gap performed best for text generation
(TG).

space are summarized in Table 3, and Table 4 re- 246

ports performance in terms of the average accuracy 247

across tasks and the AUC of the accuracy curve 248

over pruning ratios from 0% to 25%. 249

Importance of task setting. To highlight the im- 250

portance of restricting the lens scope, task-level 251

comparison is conducted between multiple-choice 252

QA (MCQA) and text generation (TG), which dif- 253

fer fundamentally in output characteristics: MCQA 254

involves a constrained, discrete choice space with 255

known answers, while TG requires open-ended gen- 256

eration with higher entropy and variance. As shown 257

in Table 2, the best-performing state criterion varies 258

by task, yet those listed outperform all baselines. 259

This finding supports both the use of task-specific 260

observation datasets for criterion search, rather than 261

relying solely on general language modeling, and 262

the importance of leveraging output distributions 263

over internal representations, to avoid overlooking 264

task-dependent redundancy or reasoning signals. 265

6 Conclusion 266

This work introduces a simple yet effective method 267

for block pruning in LLMs using output distribu- 268

tion signals, such as entropy and probability gaps. 269

The approach eliminates reliance on language mod- 270

eling loss and exhaustive sensitivity analysis and 271

enables pruning aligned with task-relevant inter- 272

nal behavior. Extensive experiments demonstrate 273

improved performance preservation over baselines 274

and robustness under high sparsity. The results 275

highlight the importance of task-specific observa- 276

tion and output-level signals for effective and inter- 277

pretable pruning. 278
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Limitations279

In this paper, output distributions at intermediate280

blocks are derived using the LM head attached to281

the final block. While this is a naïve practice for282

probing internal behavior like LogitLens (Nostal-283

gebraist, 2020), a more precise analysis would be284

available by attaching new LM heads to each block285

and training them accordingly (Schuster et al.,286

2022; Chuang et al., 2024). Such block-specific su-287

pervision may yield more faithful representations288

of each block’s behavior. Additionally, the gener-289

alizability of the proposed method across architec-290

tures and scales requires further validation.291

References292

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The293
pitfalls of next-token prediction. In Proceedings of294
the 41st International Conference on Machine Learn-295
ing, volume 235 of Proceedings of Machine Learning296
Research, pages 2296–2318. PMLR.297

Akhiad Bercovich, Tomer Ronen, Talor Abramovich,298
Nir Ailon, Nave Assaf, Mohammad Dabbah, Ido299
Galil, Amnon Geifman, Yonatan Geifman, Izhak300
Golan, Netanel Haber, Ehud Karpas, Roi Koren,301
Itay Levy, Pavlo Molchanov, Shahar Mor, Zach302
Moshe, Najeeb Nabwani, Omri Puny, and 7 others.303
2025. Puzzle: Distillation-based nas for inference-304
optimized llms. In Proceedings of the 42nd Inter-305
national Conference on Machine Learning, volume306
NNN of Proceedings of Machine Learning Research,307
pages NNN–NNN. PMLR.308

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng309
Gao, and Yejin Choi. 2020. PIQA: reasoning about310
physical commonsense in natural language. In The311
Thirty-Fourth AAAI Conference on Artificial Intelli-312
gence, AAAI 2020, The Thirty-Second Innovative Ap-313
plications of Artificial Intelligence Conference, IAAI314
2020, The Tenth AAAI Symposium on Educational315
Advances in Artificial Intelligence, EAAI 2020, New316
York, NY, USA, February 7-12, 2020, pages 7432–317
7439. AAAI Press.318

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia319
Liu, Yang Zhang, Zhangyang Wang, and Michael320
Carbin. 2020. The lottery ticket hypothesis for pre-321
trained BERT networks. In Advances in Neural In-322
formation Processing Systems 33: Annual Confer-323
ence on Neural Information Processing Systems 2020,324
NeurIPS 2020, December 6-12, 2020, virtual.325

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne326
Sze. 2019. Eyeriss v2: A flexible accelerator for327
emerging deep neural networks on mobile devices.328
IEEE Journal on Emerging and Selected Topics in329
Circuits and Systems, 9:292–308.330

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon331
Kim, James R. Glass, and Pengcheng He. 2024. Dola:332

Decoding by contrasting layers improves factuality in 333
large language models. In The Twelfth International 334
Conference on Learning Representations, ICLR 2024, 335
Vienna, Austria, May 7-11, 2024. OpenReview.net. 336

Christopher Clark, Kenton Lee, Ming-Wei Chang, 337
Tom Kwiatkowski, Michael Collins, and Kristina 338
Toutanova. 2019. BoolQ: Exploring the surprising 339
difficulty of natural yes/no questions. In Proceedings 340
of the 2019 Conference of the North American Chap- 341
ter of the Association for Computational Linguistics: 342
Human Language Technologies, Volume 1 (Long and 343
Short Papers), pages 2924–2936, Minneapolis, Min- 344
nesota. Association for Computational Linguistics. 345

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 346
Ashish Sabharwal, Carissa Schoenick, and Oyvind 347
Tafjord. 2018. Think you have solved question 348
answering? try arc, the ai2 reasoning challenge. 349
Preprint, arXiv:1803.05457. 350

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 351
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 352
Akhil Mathur, Alan Schelten, Amy Yang, Angela 353
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 354
Archi Mitra, Archie Sravankumar, Artem Korenev, 355
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82 356
others. 2024. The llama 3 herd of models. CoRR, 357
abs/2407.21783. 358

Jonathan Frankle and Michael Carbin. 2019. The lottery 359
ticket hypothesis: Finding sparse, trainable neural 360
networks. In 7th International Conference on Learn- 361
ing Representations, ICLR 2019, New Orleans, LA, 362
USA, May 6-9, 2019. OpenReview.net. 363

Andrew Gordon, Zornitsa Kozareva, and Melissa Roem- 364
mele. 2012. SemEval-2012 task 7: Choice of plau- 365
sible alternatives: An evaluation of commonsense 366
causal reasoning. In *SEM 2012: The First Joint 367
Conference on Lexical and Computational Seman- 368
tics – Volume 1: Proceedings of the main conference 369
and the shared task, and Volume 2: Proceedings of 370
the Sixth International Workshop on Semantic Eval- 371
uation (SemEval 2012), pages 394–398, Montréal, 372
Canada. Association for Computational Linguistics. 373

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 374
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 375
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 376
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 377
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 378
tra, Archie Sravankumar, Artem Korenev, Arthur 379
Hinsvark, and 542 others. 2024. The llama 3 herd of 380
models. Preprint, arXiv:2407.21783. 381

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, 382
Paolo Glorioso, and Dan Roberts. 2025. The un- 383
reasonable ineffectiveness of the deeper layers. In 384
The Thirteenth International Conference on Learning 385
Representations, ICLR 2025, Singapore, April 24-28, 386
2025. OpenReview.net. 387

Song Han, Huizi Mao, and William J. Dally. 2016. Deep 388
compression: Compressing deep neural network with 389

5

https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html
https://icml.cc/virtual/2025/poster/45275
https://icml.cc/virtual/2025/poster/45275
https://icml.cc/virtual/2025/poster/45275
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.48550/ARXIV.2407.21783
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=ngmEcEer8a
https://openreview.net/forum?id=ngmEcEer8a
https://openreview.net/forum?id=ngmEcEer8a
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149


pruning, trained quantization and huffman coding. In390
4th International Conference on Learning Represen-391
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,392
2016, Conference Track Proceedings.393

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.394
2024. What matters in transformers? not all attention395
is needed. Preprint, arXiv:2406.15786.396

Boren Hu, Yun Zhu, Jiacheng Li, and Siliang Tang.397
2023. Smartbert: A promotion of dynamic early exit-398
ing mechanism for accelerating BERT inference. In399
Proceedings of the Thirty-Second International Joint400
Conference on Artificial Intelligence, IJCAI 2023,401
19th-25th August 2023, Macao, SAR, China, pages402
5067–5075. ijcai.org.403

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang,404
and Yansong Feng. 2024. Can perplexity reflect large405
language model’s ability in long text understanding?406
In The Second Tiny Papers Track at ICLR 2024.407

Hugging Face. 2025. Utilities for generation.408
https://huggingface.co/docs/transformers/409
v4.53.2/en/internal/generation_utils#410
transformers.LogitsProcessor. Accessed:411
2025-07-16.412

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-413
sch, Chris Bamford, Devendra Singh Chaplot, Diego414
de las Casas, Florian Bressand, Gianna Lengyel, Guil-415
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,416
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,417
Thibaut Lavril, Thomas Wang, Timothée Lacroix,418
and William El Sayed. 2023. Mistral 7b. Preprint,419
arXiv:2310.06825.420

Wei-Tsung Kao, Tsung-Han Wu, Po-Han Chi, Chun-421
Cheng Hsieh, and Hung-Yi Lee. 2021. Bert’s output422
layer recognizes all hidden layers? some intriguing423
phenomena and a simple way to boost bert. Preprint,424
arXiv:2001.09309.425

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault426
Castells, Shinkook Choi, Junho Shin, and Hyoung-427
Kyu Song. 2024. Shortened LLaMA: A simple depth428
pruning for large language models. In ICLR 2024429
Workshop on Mathematical and Empirical Under-430
standing of Foundation Models.431

Dongyoung Kim, Junwhan Ahn, and Sungjoo Yoo.432
2018. Zena: Zero-aware neural network accelera-433
tor. IEEE Design & Test, 35:39–46.434

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-435
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,436
and Dan Alistarh. 2022. The optimal BERT surgeon:437
Scalable and accurate second-order pruning for large438
language models. In Proceedings of the 2022 Con-439
ference on Empirical Methods in Natural Language440
Processing, EMNLP 2022, Abu Dhabi, United Arab441
Emirates, December 7-11, 2022, pages 4163–4181.442
Association for Computational Linguistics.443

Nahush Lele, Arnav Chavan, Aryamaan Thakur, and444
Deepak Gupta. 2025. Rethinking the value of445

training-free structured pruning of LLMs. Trans- 446
actions on Machine Learning Research. 447

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu 448
Ma. 2023. Same pre-training loss, better downstream: 449
Implicit bias matters for language models. In Interna- 450
tional Conference on Machine Learning, ICML 2023, 451
23-29 July 2023, Honolulu, Hawaii, USA, volume 452
202 of Proceedings of Machine Learning Research, 453
pages 22188–22214. PMLR. 454

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, 455
Haotang Deng, and Qi Ju. 2020. Fastbert: a self- 456
distilling BERT with adaptive inference time. In 457
Proceedings of the 58th Annual Meeting of the As- 458
sociation for Computational Linguistics, ACL 2020, 459
Online, July 5-10, 2020, pages 6035–6044. Associa- 460
tion for Computational Linguistics. 461

Liana Mikaelyan, Ayyoob Imani, Mathew Salvaris, 462
Parth Pathak, and Mohsen Fayyaz. 2025. Deltallm: 463
Compress llms with low-rank deltas between shared 464
weights. Preprint, arXiv:2501.18596. 465

Aishwarya Mirashi, Purva Lingayat, Srushti Sonavane, 466
Tejas Padhiyar, Raviraj Joshi, and Geetanjali Kale. 467
2024. On importance of pruning and distillation for 468
efficient low resource NLP. CoRR, abs/2409.14162. 469

Saurav Muralidharan, Sharath Turuvekere Sreenivas, 470
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, 471
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, 472
and Pavlo Molchanov. 2024. Compact language mod- 473
els via pruning and knowledge distillation. In Ad- 474
vances in Neural Information Processing Systems, 475
volume 37, pages 41076–41102. Curran Associates, 476
Inc. 477

Nostalgebraist. 2020. interpreting gpt: the logit lens. 478
LessWrong. 479

Seungcheol Park, Sojin Lee, Jongjin Kim, Jinsik Lee, 480
Hyunjik Jo, and U Kang. 2025. Accurate sub- 481
layer pruning for large language models by exploit- 482
ing latency and tunability information. In Proceed- 483
ings of the Thirty-Fourth International Joint Con- 484
ference on Artificial Intelligence, IJCAI 2025, Mon- 485
treal, Canada, August 16-22, 2025, pages NNN5272– 486
NNN5280. ijcai.org. 487

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Gon- 488
charova, Nikolai Gerasimenko, Ivan Oseledets, Denis 489
Dimitrov, and Andrey Kuznetsov. 2024. Your trans- 490
former is secretly linear. In Proceedings of the 62nd 491
Annual Meeting of the Association for Computational 492
Linguistics (Volume 1: Long Papers), pages 5376– 493
5384, Bangkok, Thailand. Association for Computa- 494
tional Linguistics. 495

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 496
ula, and Yejin Choi. 2021. Winogrande: an adver- 497
sarial winograd schema challenge at scale. Commun. 498
ACM, 64(9):99–106. 499

Anthony Sarah, Sharath Nittur Sridhar, Maciej Szankin, 500
and Sairam Sundaresan. 2024. Llama-nas: Efficient 501

6

http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2406.15786
https://doi.org/10.24963/IJCAI.2023/563
https://doi.org/10.24963/IJCAI.2023/563
https://doi.org/10.24963/IJCAI.2023/563
https://openreview.net/forum?id=Cjp6YKVeAa
https://openreview.net/forum?id=Cjp6YKVeAa
https://openreview.net/forum?id=Cjp6YKVeAa
https://huggingface.co/docs/transformers/v4.53.2/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/v4.53.2/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/v4.53.2/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/v4.53.2/en/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/v4.53.2/en/internal/generation_utils#transformers.LogitsProcessor
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2001.09309
https://arxiv.org/abs/2001.09309
https://arxiv.org/abs/2001.09309
https://arxiv.org/abs/2001.09309
https://arxiv.org/abs/2001.09309
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://api.semanticscholar.org/CorpusID:46758871
https://api.semanticscholar.org/CorpusID:46758871
https://api.semanticscholar.org/CorpusID:46758871
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.279
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.279
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.279
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.279
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.279
https://openreview.net/forum?id=7KkytYYhMv
https://openreview.net/forum?id=7KkytYYhMv
https://openreview.net/forum?id=7KkytYYhMv
https://proceedings.mlr.press/v202/liu23ao.html
https://proceedings.mlr.press/v202/liu23ao.html
https://proceedings.mlr.press/v202/liu23ao.html
https://doi.org/10.18653/V1/2020.ACL-MAIN.537
https://doi.org/10.18653/V1/2020.ACL-MAIN.537
https://doi.org/10.18653/V1/2020.ACL-MAIN.537
https://arxiv.org/abs/2501.18596
https://arxiv.org/abs/2501.18596
https://arxiv.org/abs/2501.18596
https://arxiv.org/abs/2501.18596
https://arxiv.org/abs/2501.18596
https://doi.org/10.48550/ARXIV.2409.14162
https://doi.org/10.48550/ARXIV.2409.14162
https://doi.org/10.48550/ARXIV.2409.14162
https://proceedings.neurips.cc/paper_files/paper/2024/file/4822991365c962105b1b95b1107d30e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4822991365c962105b1b95b1107d30e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/4822991365c962105b1b95b1107d30e5-Paper-Conference.pdf
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.ijcai.org/proceedings/2025/NNNNNNNNNNNNNNNNNNNN583
https://www.ijcai.org/proceedings/2025/NNNNNNNNNNNNNNNNNNNN583
https://www.ijcai.org/proceedings/2025/NNNNNNNNNNNNNNNNNNNN583
https://www.ijcai.org/proceedings/2025/NNNNNNNNNNNNNNNNNNNN583
https://www.ijcai.org/proceedings/2025/NNNNNNNNNNNNNNNNNNNN583
https://doi.org/10.18653/v1/2024.acl-long.293
https://doi.org/10.18653/v1/2024.acl-long.293
https://doi.org/10.18653/v1/2024.acl-long.293
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://doi.org/10.1007/978-3-031-91979-4_7
https://doi.org/10.1007/978-3-031-91979-4_7


neural architecture search for large language models.502
In Computer Vision - ECCV 2024 Workshops - Milan,503
Italy, September 29-October 4, 2024, Proceedings,504
Part XI, volume 15633 of Lecture Notes in Computer505
Science, pages 67–74. Springer.506

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,507
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.508
2022. Confident adaptive language modeling. In509
Advances in Neural Information Processing Systems510
35: Annual Conference on Neural Information Pro-511
cessing Systems 2022, NeurIPS 2022, New Orleans,512
LA, USA, November 28 - December 9, 2022.513

James Seale Smith, Chi-Heng Lin, Shikhar Tuli, Haris514
Jeelani, Shangqian Gao, Yilin Shen, Hongxia Jin, and515
Yen-Chang Hsu. 2025. FlexiGPT: Pruning and ex-516
tending large language models with low-rank weight517
sharing. In Proceedings of the 2025 Conference of518
the Nations of the Americas Chapter of the Associ-519
ation for Computational Linguistics: Human Lan-520
guage Technologies (Volume 1: Long Papers), pages521
718–730, Albuquerque, New Mexico. Association522
for Computational Linguistics.523

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun524
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. SLEB:525
Streamlining LLMs through redundancy verification526
and elimination of transformer blocks. In Proceed-527
ings of the 41st International Conference on Machine528
Learning, volume 235 of Proceedings of Machine529
Learning Research, pages 46136–46155. PMLR.530

Florian Valade. 2024. Accelerating large language531
model inference with self-supervised early exits.532
Preprint, arXiv:2407.21082.533

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi534
Chen. 2024. Sheared LLaMA: Accelerating lan-535
guage model pre-training via structured pruning. In536
The Twelfth International Conference on Learning537
Representations.538

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and539
Jimmy Lin. 2020. Deebert: Dynamic early exiting540
for accelerating BERT inference. In Proceedings of541
the 58th Annual Meeting of the Association for Com-542
putational Linguistics, ACL 2020, Online, July 5-10,543
2020, pages 2246–2251. Association for Computa-544
tional Linguistics.545

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu,546
Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao, and547
Weiping Wang. 2025a. Dynamic early exit in reason-548
ing models. Preprint, arXiv:2504.15895.549

Liangwei Yang, Yuhui Xu, Juntao Tan, Doyen Sahoo,550
Silvio Savarese, Caiming Xiong, Huan Wang, and551
Shelby Heinecke. 2025b. Entropy-based block prun-552
ing for efficient large language models. Preprint,553
arXiv:2504.03794.554

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen,555
and Moshe Wasserblat. 2021. Prune once for all:556
Sparse pre-trained language models. In NeurIPS557
2021 Workshop on Efficient Natural Language and558
Speech Processing (ENLSP).559

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 560
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 561
machine really finish your sentence? In Proceedings 562
of the 57th Conference of the Association for Compu- 563
tational Linguistics, ACL 2019, Florence, Italy, July 564
28- August 2, 2019, Volume 1: Long Papers, pages 565
4791–4800. Association for Computational Linguis- 566
tics. 567

Chao Zeng, Songwei Liu, Shu Yang, Fangmin Chen, 568
Xing Mei, and Lean Fu. 2024. GQSA: group quan- 569
tization and sparsity for accelerating large language 570
model inference. CoRR, abs/2412.17560. 571

Hansi Zeng, Kai Hui, Honglei Zhuang, Zhen Qin, Zhen- 572
rui Yue, Hamed Zamani, and Dana Alon. 2025. Can 573
pre-training indicators reliably predict fine-tuning 574
outcomes of llms? Preprint, arXiv:2504.12491. 575

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and 576
Jinjun Xiong. 2021. Why lottery ticket wins? A the- 577
oretical perspective of sample complexity on sparse 578
neural networks. In Advances in Neural Information 579
Processing Systems 34: Annual Conference on Neu- 580
ral Information Processing Systems 2021, NeurIPS 581
2021, December 6-14, 2021, virtual, pages 2707– 582
2720. 583

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, 584
Barbara Plank, Bernd Bischl, Mina Rezaei, and Kenji 585
Kawaguchi. 2024. Finercut: Finer-grained inter- 586
pretable layer pruning for large language models. In 587
Workshop on Machine Learning and Compression, 588
NeurIPS 2024. 589

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun 590
Quan, and Liangzhi Li. 2025. Blockpruner: Fine- 591
grained pruning for large language models. In Find- 592
ings of the Association for Computational Linguistics, 593
ACL 2025, Vienna, Austria and virtual meeting, July 594
27–August 1, 2025, pages NNN1–NNN2. Associa- 595
tion for Computational Linguistics. 596

A Experiment Details 597

All experiments are implemented in PyTorch us- 598

ing Huggingface Transformers on four Nvidia 599

Titan Xp GPUs, each with 12 GB of memory. 600

Evaluation was executed with EleutherAI/lm- 601

evaluation-harness library. 602

For text generation in ablation study, models’ 603

behavior was observed using Wikitext-2. Since 604

no answer key is specified in text generation, the 605

next token was treated as the target and inference 606

proceeded without logits processors. States were 607

observed over the first 1024 tokens of Wikitext-2. 608

Although ShortenedLLaMA also introduced a 609

Taylor-based metric, only PPL sensitivity was 610

adopted in comparison experiments due to the high 611

computational overhead of gradient calculation. 612

7

https://doi.org/10.1007/978-3-031-91979-4_7
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
https://doi.org/10.18653/v1/2025.naacl-long.31
https://doi.org/10.18653/v1/2025.naacl-long.31
https://doi.org/10.18653/v1/2025.naacl-long.31
https://doi.org/10.18653/v1/2025.naacl-long.31
https://doi.org/10.18653/v1/2025.naacl-long.31
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://proceedings.mlr.press/v235/song24f.html
https://arxiv.org/abs/2407.21082
https://arxiv.org/abs/2407.21082
https://arxiv.org/abs/2407.21082
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://doi.org/10.18653/V1/2020.ACL-MAIN.204
https://doi.org/10.18653/V1/2020.ACL-MAIN.204
https://doi.org/10.18653/V1/2020.ACL-MAIN.204
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.03794
https://arxiv.org/abs/2504.03794
https://arxiv.org/abs/2504.03794
https://neurips2021-nlp.github.io/papers/34/CameraReady/Prune_Once_for_All_ENLSP2021%20(9).pdf
https://neurips2021-nlp.github.io/papers/34/CameraReady/Prune_Once_for_All_ENLSP2021%20(9).pdf
https://neurips2021-nlp.github.io/papers/34/CameraReady/Prune_Once_for_All_ENLSP2021%20(9).pdf
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.48550/ARXIV.2412.17560
https://doi.org/10.48550/ARXIV.2412.17560
https://doi.org/10.48550/ARXIV.2412.17560
https://doi.org/10.48550/ARXIV.2412.17560
https://doi.org/10.48550/ARXIV.2412.17560
https://arxiv.org/abs/2504.12491
https://arxiv.org/abs/2504.12491
https://arxiv.org/abs/2504.12491
https://arxiv.org/abs/2504.12491
https://arxiv.org/abs/2504.12491
https://proceedings.neurips.cc/paper/2021/hash/15f99f2165aa8c86c9dface16fefd281-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/15f99f2165aa8c86c9dface16fefd281-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/15f99f2165aa8c86c9dface16fefd281-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/15f99f2165aa8c86c9dface16fefd281-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/15f99f2165aa8c86c9dface16fefd281-Abstract.html
https://openreview.net/forum?id=jrSWzgno4W
https://openreview.net/forum?id=jrSWzgno4W
https://openreview.net/forum?id=jrSWzgno4W
https://doi.org/NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN10.18653/V1/2024.FINDINGS-ACL.10
https://doi.org/NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN10.18653/V1/2024.FINDINGS-ACL.10
https://doi.org/NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN10.18653/V1/2024.FINDINGS-ACL.10


Abbreviation Definition

CONF Confidence score (top-1 probability)
K Probability assigned to the answer key
G Gap between top and second probs.
ENT Entropy of the output token probability distribution
CE Cross-entropy between output distributions of the final and intermediate blocks
KLD KL divergence between output distributions of the final and intermediate blocks

Table 3: List of state criteria options.

SLEB StLm. EntDr. JLD L
(CONF)
0 L

(K)
0 L

(G)
0 L

(ENT)
0 L

(CE)
0 L

(KLD)
0

Avg. Acc.@2 72.76 73.52 64.68 62.37 70.12 70.12 70.12 75.04 70.38 70.12
Avg. Acc.@4 69.30 65.32 49.71 59.54 68.40 68.40 67.72 69.39 69.11 68.48
Avg. Acc.@8 56.57 56.60 45.68 56.05 63.94 63.94 60.98 62.87 61.95 63.94
AUC@8 536.24 530.61 000.00 000.00 546.53 546.53 539.33 561.73 546.39 546.61

Table 4: Average of zero-shot accuracy (%) of LLaMA 3-8B after pruning eight blocks and AUC over pruning
ratio from 0% to 25%. Best results are in bold; second-best results are underlined. StLm., EntDr., and JLD are the
abbreviation of ShortenedLLaMA, EntroDrop, and JointLayerDrop, respectively. The L0 metrics are defined in
Section 3.

B State Criteria613

Table 3 summarizes the candidate state criteria614

used to assess block-wise importance. Each cri-615

terion captures models’ internal behavior based on616

token probability distributions and is applied via617

norm-based aggregation metrics, L0 and L1. Ab-618

lation results in Table 4 report average accuracy619

after pruning LLaMA 3-8B and the area under the620

curve (AUC) across pruning ratios from 0% to 25%.621

Among all candidates, entropy (ENT) consistently622

demonstrates strong performance across tasks, par-623

ticularly in the MCQA setting, highlighting its re-624

liability as a state indicator. Other criteria such as625

confidence score (CONF), gap (G), cross-entropy626

(CE), and KL divergence (KLD) yield comparable627

yet slightly lower accuracy. Based on these find-628

ings, entropy is adopted as the default criterion in629

the main experiments, while other options remain630

viable depending on the application context.631

C Mistral-7B Results632

Table 5 presents performance after pruning on633

Mistral-7B across multiple downstream tasks. Each634

method prunes the same number of blocks, en-635

abling direct comparison under equal compres-636

sion ratios. These results confirm the effectiveness637

of output-distribution-based pruning in retaining638

task-relevant capacity, especially under constrained639

pruning budgets.640
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Method ARC-E ARC-C BoolQ COPA HeSw. PIQA Wino. Avg.

Original Model

Prune 2 blocks (pruning ratio = 6.25%)
SLEB 76.22 46.67 77.71 88.00 77.30 80.03 67.96 73.41
Short’dLLaMA 74.87 44.62 74.53 88.00 73.88 42.20 78.62 72.02
EntroDrop
JointLayerDrop

Prune 4 blocks (pruning ratio = 12.5%)
SLEB 71.68 41.98 74.22 87.00 72.83 77.58 64.96 70.04
Short’dLLaMA 66.84 34.30 59.51 88.00 60.68 75.41 56.43 63.02
EntroDrop 29.97 29.35 32.94 71.00 33.49 56.20 61.09 44.86
JointLayerDrop 49.83 36.09 62.51 66.00 46.18 64.47 62.75 55.40

Prune 8 blocks (pruning ratio = 25%)
SLEB 63.59 35.75 59.54 79.00 62.95 72.47 60.85 62.02
Short’dLLaMA 51.73 26.28 54.89 70.00 48.28 69.26 52.17 53.23
EntroDrop 26.77 29.18 42.48 72.00 28.25 56.15 55.80 44.38
JointLayerDrop 49.20 36.77 62.45 66.00 45.37 63.93 62.51 55.18

Table 5: Zero-shot accuracy (%) of Mistral-7B on each task after pruning. Best results are in bold; second-best
results are underlined.
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