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Abstract

The focus of this study is on the generalization of neural networks, particularly in
the context of sensor placement for global climate models’ forecasts. The goal is to
determine if sensor placement strategies derived through training a deep learning
model, which is tasked with reconstructing a physical field from a set of measure-
ments, can be effectively applied to a real high-resolution ocean global circulation
model. The research compares different sensor placement methods, including one
achieved using the Concrete Autoencoder method. Through modeling under varied
initial conditions of the World Ocean state, it was found that sensor placements
informed by deep learning methods outperformed others in forecast accuracy when
using a comparable number of sensors. This finding underscores the potential of
deep learning-informed sensor placement as a powerful tool for refining the pre-
dictive capabilities of global climate models and accelerating the data assimilation
system without extensive revisions to their source code.

1 Introduction

Problem of Integration of Deep Learning Approaches into Climate Models. Integrating deep
learning models into contemporary climate modeling systems presents considerable challenges. Most
of these climate models, including the Community Earth System Model (CESM) (1; 2; 3), the
Energy Exascale Earth System Model (E3SM) (4; 5; 6), and the Earth System Model 4 (ESM4)
(7; 8), have been developed in Fortran. They are optimized for running on CPU clusters, employing
from thousands to hundreds of thousands of cores. Implementing deep learning methodologies,
particularly for aspects such as turbulence parametrization, within these established systems is
technically daunting. This complexity stems from the extensive development time required for a
single climate model, often spanning 5 to 20 years, leading to a massive codebase with millions of
lines of code. Integrating deep learning approaches necessitates a significant overhaul of sections
related to memory and parallelization management to ensure compatibility and enable the integration
of GPU accelerators. Specifically, the incorporation of more recent techniques, such as physics-
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informed neural networks or deep learning-based solvers, would necessitate substantial effort and
resources.

Potential of Integrating Deep Learning Approaches into the Data Assimilation Subsystem of
Climate Models. There exists a crucial component within climate models — the data assimilation
system — that has a significant impact on enhancing the accuracy of model solutions. Historical
research indicates that a climate model equipped with a data assimilation system, even with less
sophisticated turbulence parametrizations, often outperforms models with advanced turbulence
parametrizations but no data assimilation (9; 10). Data assimilation systems are deeply integrated
with climate models’ atmospheric and ocean modules, complicating the incorporation of deep
learning without extensive revisions. Consequently, ocean models like HYCOM (11; 12) continue
using traditional methods such as the ensemble Kalman filter (EnKF), while atmospheric models like
those at the ECMWF (13; 14) employ 4D variational assimilation (4D-Var). As the volume of data
from diverse sources such as satellites, weather stations, ships, and buoys grows, the speed of data
assimilation is increasingly becoming a constraining factor. This issue is especially pronounced for
ocean models, as the majority do not include adjoint models necessary for the 4D-Var method. The
complexity of ocean dynamics and the corresponding computational intensity make the integration of
adjoint models particularly challenging. Consequently, the EnKF method is often favored for these
models despite 4D-Var’s suitability for assimilating large volumes of observations. In practice, to
mitigate this limitation, contemporary global ocean models often perform data assimilation just once
per simulation day, processing the cumulated data, a compromise that could potentially affect the
forecast’s precision. Although there have been some efforts to harness deep learning to improve the
speed of these data assimilation systems (15; 16), these have been confined to simpler models, like
the Lorenz system or a two-layer quasi-geostrophic channel model.

Accelerating Data Assimilation via Feature Selection. One method of accelerating data assimilation
systems, without compromising the ability to process a large number of measurements, involves
preprocessing the data to filter out irrelevant measurements. For instance, if one obtains a 2D field of
sea surface temperature from satellite observations, covering the entire global ocean, the challenge
of speeding up the data assimilation system reduces to a problem of optimal sensor placement.
However, the classical formulation of the optimal sensor placement problem aims to minimize
the reconstruction error and reduce the number of sensors, thereby improving data efficiency (17).
Notably, the reconstruction error is computed simultaneously with the time the measurements are
taken. This scenario is distinct from the traditional data assimilation workflow. In typical settings,
data assimilation, serving as the correction of physical fields, is performed once per simulation day.
The solver for the thermohydrodynamic equations then operates for the next 24 simulation hours.
After these 24 hours, the forecast error is evaluated. This practice stands in contrast with optimal
sensor placement techniques, which determine reconstruction errors right as measurements are taken,
marking a clear methodological difference. This contrast raises the critical research question:

• Generalization: Does sensor placement, determined by immediate reconstruction errors,
lead to improved forecast accuracy in real-world ocean forecasting?

Our research is aimed to address this specific question. The contents below are organized as follows:
Firstly, we examine existing methods for optimal sensor placement and propose a modification to
the Concrete Autoencoder (18). This modified version is capable of optimizing sensor location on
high-resolution grids and automatically selecting the optimal number of sensors. Next, will test
the proposed modification on a small-scale dataset of 2D temperature and salinity fields near the
Svalbard group of islands and compare it with the baselines. Following this, we implement the
proposed modification on a large-scale sensor optimization problem. This application focuses on
the temperature field for the global ocean, with a resolution of 0.25 degrees or a grid size of 1440
by 720. Lastly, we conduct a series of simulations with the global ocean model, incorporating data
assimilation at the optimal locations we discovered. We then assess the forecast accuracy resulting
from these simulations and discuss the obtained results.

2 Feature Selection for High-Dimensional Spatio-Temporal Data

The full state of a typical global ocean model has about 100 million dimensions for a 0.25-degree
resolution and about 1 billion dimensions for a 0.1-degree resolution. Classical methods for optimal
sensor placement, which are based on Singular Value Decomposition such as PCA-QR (17; 19), are
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not suitable for problems of this scale. Currently, deep learning-based approaches such as Concrete
Autoencoder (18) or Feature-Selection Networks (20) have only been tested for significantly lower
resolution datasets, with data dimensionality of order 104 to 105. In this section, we propose a
modification of the Concrete Autoencoder architecture and demonstrate the effectiveness of this
modified version on a 2D temperature field at a 0.25-degree resolution, which has a dimensionality of
106. The proposed modifications are as follows:

• Replace the Concrete Layer by the Straight-Through Gradient Estimator. Sensor
locations are parameterized by a scalar field. In the forward pass, we apply a step function
to the scalar field and multiply an input physical field by the obtained binary mask. In the
backward pass, we replace the ill-defined gradients of the step function with the gradients of
the identity map and apply gradient clipping. After multiplication by the binary mask input
physical field is fed to the UNet model which tries to reconstruct the initial field.

• Least Square GAN Loss Enhances Spatial Sensor Separation. The loss function consists
of three terms: Least Square GAN loss, Pixel-Wise L2 loss, and the mean value of the binary
mask parameterizing sensor locations. As shown in Figure 1, both the PCA-QR method and
our Concrete Autoencoder (referred to as CA) struggle with closely placed sensors, which
leads to correlated measurements. However, the addition of the LSGAN loss qualitatively
changes the sensor pattern, allowing for more separated sensors. It also exhibits the lowest
reconstruction error, as seen in Table 1.

• Dynamic Increase of the Sensor Loss Term. The weight of the loss term, equal to the
mean value of the binary mask λmask, changes dynamically during training. In the first
warm-up stage, λmask = 0; this is performed to initially achieve good reconstruction quality.
Next, during the sparsification stage, λmask is increased by ∆λmask at every epoch. This
allows the Concrete Autoencoder to minimize the number of sensors without significantly
increasing the reconstruction error.

Figure 1: (a) Ground truth temperature field at 45 m depth at 00:00 7th August 2017. The recon-
structed fields: (b) Climate at 00:00 7th August, no sensors. (c) PCA-QR, 42 sensors. (d) PCA-QR,
72 sensors. (e) Concrete Autoencoder (CA), 72 sensors. (f) CA with LSGAN, 42 sensors.

Based on the RMSE values from Table 1, we have chosen the configuration of the Concrete Au-
toencoder with the LSGAN loss term for the high-resolution experiments at the grid size of 1440 x
720. Since the PCA-QR method is computationally expensive for this resolution, we compared the
reconstruction method with the nearest neighbor interpolation on a regular grid with 1,000 and 8,000
sensors.

3 Generalization of Sensor Placement in Operational Ocean Forecasting

Overview of the Experiment with Global Ocean Circulation Model and Data Assimilation. A
simulation was conducted to assess the impact of sensor placement on forecast accuracy, simulating
a situation where the initial global ocean state substantially deviates from the ground truth. In this
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Table 1: Reconstruction Errors for Different Sensor Placement Methods for Temperature and Salinity
Fields at 3m and 45m Depth with Grid Size 104 x 284, and for Temperature Field at 9m Depth with Grid
Size 1440 x 720. The reanalysis produced by the INMIO ocean model was used for training and validation.

Physical
Field

Grid Size Reconstruction
Method

Placement
Method

Number of
Sensors

MED(Bias) MED(RMSE)

Temp. 3m 104x284 Climate - 0 −0.19 0.98
Temp. 3m 104x284 PCA-QR PCA-QR 77 0.13 1.03
Temp. 3m 104x284 CA CA 77 −0.07 0.73
Temp. 45m 104x284 Climate - 0 −0.09 0.88
Temp. 45m 104x284 PCA-QR PCA-QR 72 0.11 1.10
Temp. 45m 104x284 CA CA 72 −0.05 0.83
Temp. 45m 104x284 CA-GAN CA-GAN 42 0.07 0.73
Salin. 3m 104x284 Climate - 0 0.58 0.84
Salin. 3m 104x284 PCA-QR PCA-QR 57 −0.03 0.66
Salin. 3m 104x284 CA CA 57 0.05 0.53
Salin. 45m 104x284 Climate - 0 0.59 0.72
Salin. 45m 104x284 PCA-QR PCA-QR 61 0.02 0.30
Salin. 45m 104x284 CA CA 61 0.26 0.41
Temp. 9m 1440x720 Climate - 0 −0.224 0.903
Temp. 9m 1440x720 Near. Neib. Regular 1326 −0.007 1.246
Temp. 9m 1440x720 Near. Neib. Regular 8671 0.005 0.598
Temp. 9m 1440x720 Near. Neib. CA 1236 0.26 1.90
Temp. 9m 1440x720 CA CA 1236 −0.20 0.69

experiment, initial conditions for the ocean and ice models were altered while atmospheric conditions
from the control experiment were maintained. In the series s** experiments, the state of the ocean
on September 11, 2019, was chosen as the initial conditions. The experiments were conducted with
atmospheric forcing that began on September 11, 2020, and taken from the control experiment a01.
The model then assimilated data from the control experiment a01 temperature state at 9m depth at
sensor locations. Forecast accuracy of the 3D global ocean temperature state in the top 100 meters
served as the primary metric for sensor placement quality. The results are presented in Table 2.

Table 2: Summary of experiments, sensor details, and forecast accuracy compared to control experi-
ment a01. Forecast accuracy is averaged over the top 100 meters and over time for the first 20 days.

Experiment Placement method Sensors Bias (Avg),
◦C

RMSE
(Avg), ◦C

s00 - 0 −0.222 1.128
s23 ARGO, 1 day 302 −0.213 1.175
s24 ARGO, 4 days 1299 −0.223 1.170
s25 ARGO, non-stationary placement ∼280-380 −0.146 1.226
s36 Regular 1306 −0.078 1.149
s37 Regular 3379 −0.102 1.138
s38 Regular 6792 −0.106 1.127
s39 Regular 13581 −0.100 1.127
s44 Concrete Autoencoder (CA) 1160 −0.100 1.139
s53 Regular (3443) from CA reconstruction 964 (3443) −0.185 1.141
s54 Regular (3443) from CA reconstruction 1236 (3443) −0.202 1.144
a01 Reanalysis with data assimilation,

temperature and salinity profiles, sea ice
compactness, sea level anomaly

∼ 11200 - -

Results and Discussion. The results in Table 2 suggest that when comparing experiments s24, s36,
and s44, each with approximately one thousand sensors, the s44 arrangement, which was obtained
using the Concrete Autoencoder method, has the lowest RMSE value (Bias −0.100, RMSE 1.139).
A similar forecast accuracy value is found in the s37 arrangement with data assimilation from 3,379
regularly placed sensors (Bias −0.102, RMSE 1.138). This suggests a positive response to the
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research question from the introduction section, considering the Concrete Autoencoder was trained to
restore the temperature field concurrently with the measurements.

However, our approach has several limitations. In experiments s53 and s54, we used the fields recon-
structed from 964 and 1236 measurements by the Concrete Autoencoder for data assimilation instead
of the ground truth fields resampled at a regular grid. We didn’t observe significant improvements in
this case, but there also wasn’t a drop in accuracy. Both of these methods still outperform regular
and ARGO placement methods. Additionally, to speed up the ocean model runs, we implemented
aggressive data assimilation which resulted in moderate data assimilation shocks. As a result, low
values of RMSE were observed for experiment s00, which was conducted without data assimilation.
Despite this, our choice allowed us to conduct a significantly larger number of experiments.
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4 Supplementary Material

4.1 Algorithms

Our Concrete Autoencoder architecture consists of a trainable binary mask and a reconstructing
image-to-image neural network with a U-Net architecture (21) and bilinear upsampling. The U-Net
takes, as input, a physical field multiplied by the binary mask and predicts the reconstructed field in
the full computational domain. Our binary mask representing sensor locations is parametrized by the
scalar field of parameter w via a step function

mask = step(w).

To determine the optimal number of sensors, we optimize the parameters of the binary mask using a
straight-through gradient estimator proposed in (22) with gradient clipping. In the backward pass,
we replace the ill-defined gradients of the step function with the gradients of the identity function.
The straight-through gradient estimator allows us to use a single matrix w of parameters for different
numbers of sensors.

The loss function of the Concrete Autoencoder has three main terms

LCA(θ) = LLSGAN + Lpixel-wise + λmaskLsensors, (1)

where λmask dynamically changes during training. In the first warm-up stage, λmask = 0, this is
performed to initially achieve good reconstruction quality. Next, at the sparsification stage, λmask is
increased by ∆λmask at every epoch. This allows the Concrete Autoencoder to minimize the number
of sensors without a significant increase in the reconstruction error. A similar procedure was proposed
in the original version of the Concrete Autoencoder (18) where the annealing procedure was applied
to the temperature parameter of the Gumbel-softmax distribution.

Consider a random batch t1, . . . , tK sampled from {1, . . . , T}. Following Pix2Pix framework (23),
the loss function LLSGAN requires that the Concrete Autoencoder produces physical fields that are
indistinguishable by the PatchGAN discriminator from the real fields

LLSGAN =
1

K

K∑
i=1

MSE(Dϕ(CAθ(mask⊙ F(ti))), I)

In addition to the requirement for the realism of the generated physical fields, we require an element-
by-element correspondence of the reconstructed physical fields with the ground truth ones. The
L2-norm is used to measure pixel-wise error

Lpixel-wise =
1

K

K∑
i=1

||CAθ(mask⊙ F(ti))− F(ti)||L2

The sparsification of sensors is achieved by adding the average value of the binary mask to the loss
function

Lsensors = E||mask||L1

We require the discriminator to distinguish the physical fields produced by the Concrete Autoencoder
from the real ones, thus defining its loss as

LD(ϕ) =
1

2

1

K

K∑
i=1

[
MSE(Dϕ(CAθ(mask⊙ F(ti))),O) + MSE(Dϕ(F(ti)), I)

]
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The full training procedure for the Concrete Autoencoder is outlined in Algorithm 1.

Algorithm 1: Concrete Autoencoder Training.
Input:
F = {F(t)}—train dataset of historical values of a physical field, t ∈ {1, . . . , T} denotes a

time moment
CAθ—randomly initialized Concrete Autoencoder network with parameters θ, which

reconstructs physical field from sparse measurements; parameters of the binary mask are also
included in θ

Dϕ—randomly initialized PatchGAN Discriminator with parameters ϕ
mask—binary mask defining initial sensor locations sampled proportionally to the information

entropy field
Nwarm-up steps—number of training steps on the warm-up stage
Nsparsification steps—number of training steps on the sensor sparsification stage
I - matrix filled with ones
O - matrix filled with zeros
λmask = 0—weight of the mask term in CA loss
∆λmask ≥ 0—weight increase of λmask in sparsification stage

for m = 1 to Nwarm-up steps +Nsparsification steps do
choose t1, . . . , tK randomly from {1, . . . , T}
Update the Concrete Autoencoder weights:
Lsensors = E||mask||L1

Lpixel-wise =
1
K

∑K
i=1 ||CAθ(mask⊙ F(ti))− F(ti)||L2

LLSGAN = 1
K

∑K
i=1 MSE(Dϕ(CAθ(mask⊙ F(ti))), I)

LCA(θ) = LLSGAN + Lpixel-wise + λmaskLsensors
θ ← Adam(θ,∇θLCA(θ))
Update the discriminator weights:
LD(ϕ) = 1

2
1
K

∑K
i=1

[
MSE(Dϕ(CAθ(mask⊙ F(ti))),O) + MSE(Dϕ(F(ti)), I)

]
ϕ← Adam(ϕ,∇ϕLD(ϕ))
if m ≥ Nwarm-up steps then

Increase the sparsification weight:
λmask ← λmask +∆λmask

end if
end for
Output:

CAθ∗— Concrete Autoencoder network with optimal parameters θ∗
mask∗—binary mask with optimal sensor placement

Consider a random batch t1, . . . , tK sampled from {1, . . . , T}. Following Pix2Pix framework (23),
the loss function

LLSGAN

requires that the Concrete Autoencoder produces physical fields that are indistinguishable by the
PatchGAN discriminator from the real fields

LLSGAN =
1

K

K∑
i=1

MSE(Dϕ(CAθ(mask⊙ F(ti))), I).

In addition to the requirement for the realism of the generated physical fields, we require an element-
by-element correspondence of the reconstructed physical fields with the ground truth ones. The
L2-norm is used to measure pixel-wise error

Lpixel-wise =
1

K

K∑
i=1

||CAθ(mask⊙ F(ti))− F(ti)||L2
.

The sparsification of sensors is achieved by adding the average value of the binary mask to the loss
function

Lsensors = E||mask||L1
.
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We require the discriminator to distinguish the physical fields produced by the Concrete Autoencoder
from the real ones, thus defining its loss as

LD(ϕ) =
1

2

1

K

K∑
i=1

[
MSE(Dϕ(CAθ(mask⊙ F(ti))),O) + MSE(Dϕ(F(ti)), I)

]
.

4.2 Sensor Locations and Training Dynamics

The training dynamics of the Concrete Autoencoder on the grid 1440 times 720 are shown in Figure
5. The sensor locations used in experiments s44 and s53 are shown in 3 and 4 correspondingly.

Figure 2: The training dynamics of the Concrete Autoencoder at the sensor sparsification stage.
(a) RMSE as a function of epoch, (b) number of sensors as a function of epoch, and (c) RMSE
as a function of the number of sensors, with the epoch indicated by the color bar. The red dots in
(a–c) denotes the Concrete Autoencoder checkpoint at the epoch 508 used in further analysis.

Figure 3: Sensor locations in the experiments s44. Learned by the Concrete Autoencoder at epoch
508.

4.3 Dataset Description for Training the Concrete Autoencoder

INMIO Ocean general circulation model. The system of equations of three-
dimensional ocean dynamics and thermodynamics in the Boussinesq and hydrostatic approximations
is solved by the finite volume method (24) on the type B grid (25; 26; 27). The ocean model IN-
MIO (28) and the sea ice model CICE (29) operate on the same global tripolar grid with a nominal
resolution of 0.25◦. The vertical axis of the ocean model uses z-coordinates on 49 levels with a
spacing from 6 m in the upper layer to 250 m at the depth. The barotropic dynamics are described with
the help of a two-dimensional system of shallow water equations by the scheme (30). The horizontal
turbulent mixing of heat and salt is parameterized with a background (time-independent) diffusion
coefficient equal to the nominal value at the equator and scaled toward the poles proportionally to the
square root of the grid cell area. To ensure numerical stability in the equations of momentum transfer,
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Figure 4: Original sensor locations in the experiment s53. Learned by the Concrete Autoencoder at
epoch 634.

the biharmonic filter is applied with a background coefficient scaled proportionally to the cell area to
the power 3/2 and with the local addition by Smagorinsky scheme in formulation (31) for maintaining
sharp fronts. Vertical mixing is parameterized by the Munk–Anderson scheme (32), with convective
adjustment performed in the case of an unstable vertical density profile. At the ocean–atmosphere
interface, the nonlinear kinematic-free surface condition is imposed with heat, water, and momentum
fluxes calculated by the CORE bulk formulae (33). Except for vertical turbulent mixing, all the
processes were described using time-explicit numerical methods, which allow simple and effective
parallel scaling. The time steps of the main cycle for solving model equations are equal for the ocean
and the ice. The ocean model, within the restrictions of its resolution, implements the eddy-permitting
mode by not using the laplacian viscosity in the momentum equations.

The sea ice model CICE v. 5.1. For this experiment, an elastic-viscous-plastic rheology model was
applied to parameterize the ice dynamics, and zero-layer approximation was used for thermodynamics
calculations. To explicitly resolve elastic waves, a subcycle with small time steps was set. The
simulation mode includes the processing of five categories of ice thickness and one category of snow
thickness using an upwind transport scheme and a description of melt ponds.

ERA5 atmospheric forcing. We used the ERA5 reanalysis (34) for the period 2004–2020 as the external
forcing to determine the water and momentum fluxes on the ocean–atmosphere and ice–atmosphere
interfaces. Wind speed at 10 m above sea level and temperature and dew point temperature at 2 m
were transmitted to the ice–ocean system every 3 h. In addition, the accumulated fluxes of incident
solar and long-wave radiation and precipitation (snow and rain) were also read with the same period.

Ensemble Optimal Interpolation (EnOI). A detailed description of the EnOI method is presented
in the work (35). For our calculation, we used the original parallel realization of the EnOI method for
data assimilation in the INMIO model (36).

The basic equations of the EnOI method are as follows (37):

Fa = Fb +K(yobs −HFb), (2)

where K is defined as
K = BHT (HBHT +R)−1, (3)

Fb (background) and Fa (analysis) are vectors of size n representing the model solution before
and after data assimilation, respectively; n is the number of model grid points weighted by the
number of model variables to be corrected (temperature, salinity, sea level, etc.); yobs is the vector
of observations of size m; m is the total number of observation points where various data were
obtained; K(n×m) is the gain matrix; R(m×m) is the covariance matrix of observation errors, it is
assumed that the matrix R = rI is the identity matrix multiplied by a scalar parameter r; H(m× n)
is the matrix, representing the projection operator of model values into the observational data space;
B(n× n) is the covariance matrix of model errors.
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The EnOI method belongs to a group of assimilation methods that rely on some approximation
of matrix B based on an ensemble of model solution vectors. This approximation allows for the
estimation of the covariance matrix of model errors. In practice, the ensemble is used to approximate
matrix HBHT of size m×m. The inverse (HBHT +R)−1 is then computed using SVD, which
can be a limiting factor in the assimilation of a large number of observations.

4.4 Baseline

Climate. The simplest baseline in ocean modeling, reconstruction, and forecasting is climate
interpolated in time to the correct date. We calculated our climate values on the training set for every
day of a year, according to the formula

F climate(i, j, d) =
1

Nyears

Nyears∑
y=1

F (i, j, y, d), (4)

where F (i, j, y, d) is the value of a physical field with coordinates (i, j) at day number d =
{1, 2, . . . , 365} in year y from the training set, Nyears is the number of years with day d in the
training set.

4.5 Evaluation Metrics

In this study, we use evaluation metrics based on the GODAE OceanView Class 4
forecast verification framework (38). The bias metric measures the correspondence be-
tween the mean forecast and the mean observation. To calculate the spatial and tem-
poral distributions of the bias, we average over time at each spatial location (i, j) using
Equation (5) and average over the spatial coordinates at each time point in the test set using Equa-
tion (6), respectively.

Bias(i, j) =
1

#{τ ∈ TestSet}
∑

τ∈TestSet

(F recon(i, j, τ)− F ref (i, j, τ)), (5)

where F recon(i, j, τ) is the reconstructed values of a physical field at a point with coordinates (i, j)
and at time moment τ , F ref (i, j, τ) is the original reanalysis values of a physical field in the same
point.

Bias(τ) =
1

N i

1

N j

Ni∑
i=1

Nj∑
j=1

(F recon(i, j, τ)− F ref (i, j, τ)), (6)

where N i ·N j is the total number of computational cells for the field considered.

The second metric used is the Root Mean Square Error (RMSE). It was calculated for each grid
point (i, j) by averaging along the time dimension using Equation (7) and for each time moment in
the test set by averaging along the spatial dimensions using Equation (8)

RMSE(i, j) =

√
1

#{τ ∈ TestSet}
∑

τ∈TestSet

(F recon(i, j, τ)− F ref (i, j, τ))2 (7)

RMSE(τ) =

√√√√ 1

N i

1

N j

Ni∑
i=1

Nj∑
j=1

(F recon(i, j, τ)− F ref (i, j, τ))2 (8)

The scalar metrics presented in Table 1 were calculated by taking the median along the time dimension.
The spatial forecast errors for the static concrete autoencoder sensor placement (s44) and the static
regular sensor placement (s36) are presented in Figure 5 and Figure 6, respectively. The errors for the
real dynamic sensor locations of ARGO buoys (s25) are shown in Figure 7.
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Figure 5: Average RMSE for the temperature field forecast over the top 100m using static concrete
autoencoder sensor placement s44 (in Celsius).

Figure 6: Average RMSE for the temperature field forecast over the top 100m using static regular
sensor placement s36 (in Celsius).

Figure 7: Average RMSE of the temperature field forecast over the top 100m using real dynamic
sensor locations of ARGO buoys s25 (in Celsius).
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