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ABSTRACT

Clinically accurate and interpretable automatic radiology reporting requires re-
liably grounding the identified abnormalities with the corresponding regions lo-
cated in the radiology image. In this paper, we propose to introduce self-critiquing
mechanisms into the automatic report generation process to ensure the identified
abnormalities can reliably grounded before they are reported. Instead of adopting
LLM-based reasoning to implement the self-critiquing mechanisms which will in-
cur high inference cost in test time, we propose a novel Radiology Self-Critiquing
Reporting (RadSCR) model framework which allows multi-faceted mechanisms
to be learned end-to-end to identify and verify some hypothesized abnormality
regions by comparing with i) alternative abnormalities, ii) alternative patients’
X-ray images, and iii) potential false negatives. The self-critiqued abnormality
proposals are then integrated using a retrieval-based approach to generate the final
report. Our experimental results show that RadSCR can outperform the state-of-
the-art report generation methods in terms of clinical accuracy by a large margin,
with improved reliability of abnormality localization.

1 INTRODUCTION

Automated radiology image reporting aims to reduce radiologists’ workloads on report preparation.
Recent development of deep learning models for generating X-ray reports has shown continuous
improvement on clinical accuracy|Chen et al.|(2020);|Yan et al.|(2023); Wang et al.|(2024c)). Yet, how
to reliably grounding a generated report with the regions of the abnormalities identified in the images
remains open, which is important as this is what radiologists carry out in practice. In this paper, we
propose to incorporate self-critiquing mechanisms into deep learning models for generating X-ray
reports so that the reliable grounding of the abnormality findings can be established.

Grounding radiology images with abnormality findings using deep learning models is non-trivial
as large-scale annotations of abnormality regions are still lacking. Some recent works explored
anatomy-awareness by making reference to detected anatomical parts (e.g., lung, heart, etc.) in the
image for grounding the findings, resulting in higher accuracy and better interpretability (Tanida
et al.|[2023; [Li et al.| [2024; Dalla Serra et al.,|2023; Yan et al., 2024])). In practice, more fine-grained
abnormality regions are generally preferred for grounding. Also, carefully examining potential ab-
normality regions is often unavoidable if a reliable radiology report is to be prepared.

Self-critiquing is commonly adopted by medical professionals to reduce the chance of making di-
agnosis mistakes. In the context of report preparation, it refers to the process where radiologists
identify and validate the potential abnormality regions on the X-ray images before findings are con-
cluded. Existing automatic radiology reporting models are mostly trained based on statistical cor-
relations between regions and paired sentences (Fallahpour et al.|, 2025; |Gai et al., [2024} [Fan et al.,
2023)), resulting in unavoidable hallucinations. The idea of self-critiquing is still under-explored,
except for a few works on visual question answering (Cheng et al.,|2025; Wu & Mooney}, 2019).

We argue that reliable radiology report generation requires “multi-faceted” self-critiquing mecha-
nisms for establishing reliable grounding of potential abnormalities. While large language model-
based paradigms like chain-of-thought have recently been explored to introduce test-time reasoning
to alleviate hallucination (Wu & Mooney, [2019; |Cheng et al., 2024} |Cocchi et al., [2025), we con-
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sider alternatives as LLM-based reasoning typically generates a long chain of “thinking” tokens
during inference and incurs high test-time cost (Huang et al., 2025} |Geiping et al., [2025). Also,
deploying LLMs for applications with a low-resource environment is non-trivial. Our idea is to in-
corporate multi-faceted self-critiquing mechanisms into the model architecture to be learned during
the training, without requiring test-time scaling.

To this end, we propose a novel Radiology Self-Critiquing Reporting (RadSCR) model framework
which adopts a region-guided chest X-ray report generation paradigm with self-critiquing mecha-
nisms incorporated to mimic the self-critiquing thinking process of radiologists for enhancing the
report’s reliability. RadSCR first identifies an initial set of fine-grained visual proposals, each rep-
resented by a triplet of abnormality region, abnormality label and the corresponding visual features.
Self-critiquing is then realized by cross-checking the hypothesized visual proposals to see if their
visual features are distinct and relevant enough for the associated abnormalities. In particular, it
explores alternative abnormalities and alternative patients’ X-ray images, and then further takes a
holistic view of the image to double-check the possibility of missing abnormalities. The visual pro-
posals “discounted” by the possible alternatives are considered together for retrieving appropriate
sentences of abnormality findings from a report repository to be integrated by an LLM decoder to
generate the final report. We carried out comprehensive experiments to evaluate the effectiveness
of RadSCR using a variety of datasets including MIMIC CXR, ReXGradient, and IU X-ray. Our
experimental results demonstrate that RadSCR outperforms all the state-of-the-art report generation
baselines by a large margin, with improved localization of abnormality regions for grounding the
findings. The main contributions of the proposed RadSCR include:

 providing an automatic radiology reporting methodology guided by abnormality regions
for more fine-grained grounding of abnormality findings;

* introducing self-critiquing mechanisms into a deep model architecture for more reliable
grounding without the need to introduce LLM-based reasoning in test time;

* demonstrating via comprehensive empirical evaluation the effectiveness of introducing
self-critiquing mechanisms to achieve clinically accurate radiology X-ray reporting.

2 RELATED WORKS

Grounded Radiology Report Generation The grounding of the generated findings of the report
within the relevant regions on radiology images is important for medical image understanding and
diagnosis (Bannur et al., |2024). Various well-designed attention mechanism modules have been
proposed to locate abnormality region of interests (ROIs) for X-ray report generation. [Wang et al.
(2024a) proposed to use class activation mapping (CAM) (Zhou et al., [2016) to guide the visual
attention module to identify regions of abnormalities, where vision-weighted maps are obtained
from a multi-abnormality classifier head topped at the visual encoder. Alternatively, the anatomy-
awareness approach tries to locate the anatomical parts relevant to the findings generated for ground-
ing. RGRG (Tanida et al.} 2023)) and ORGAN (Hou et al.,[2023b) use a shared visual extractor to de-
tect the regions of the anatomical parts and then generate the report accordingly. BoxMed-RL (Jing
et al.,[2025)), MedPromptX (Shaaban et al., 2024) and MAIRA-2 (Bannur et al.,|2024)) learn to anno-
tate the anatomical regions and detect the possible pathology labels, followed by report generation.
However, localizing anatomical parts is not precise enough for the grounding purpose.

Radiology Reasoning in Visual Question Answering Radiology reporting typically involves a
multi-step diagnostic process to identify and locate abnormalities revealed in the image. Recent
advances in LLM-based reasoning approaches use chain-of-thought (CoT) to represent the process
for report generation. For instance, MedCoT (Liu et al., |2024) incorporates several LLMs as hi-
erarchical experts by CoT, where each expert’s output is further verified by a subsequent expert.
MedRAX (Fallahpour et al., [2025)) decompose radiology image diagnosis into a sequence of tasks
and use multiple pre-trained models as agents to solve each task. ChestX-Reasoner (Fan et al.| 2025)
further decomposes each diagnostic finding of the report into a step-by-step CoT where each CoT
contains a textual description, anatomical region, and expert-labeled clinical notes. Instead of using
CoT, RECAP (Hou et al., 2023a) and ORGAN (Hou et al., [2023b) implement diagnostic reason-
ing by finding a proper graph walk in a pre-constructed knowledge graph of clinical findings. Our
proposed RadSCR does not employ reasoning token generation in test time as CoT and achieves
self-critiquing by incorporating that directly into the model architecture. In the literature, there exist
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some recent works which also take the “what-if”” approach as RadSCR for more reliable radiology
report generation. PGFC (Mahmood et all, [2023) uses a fact-checking model to determine whether
a pair of a clinical finding and an anatomical region match with each other or not. CoFE
creates counterfactual explanations by replacing patches on an X-ray image until the diagnosis
changes for contrastive learning, where localization and grounding are not considered. In contrast,
our proposed RadSCR critiques the predicted abnormality location by considering alternative abnor-
mality and alternative image, and false negative checking; and use these critiquing to enhance the
sentence retrieval reliability for report generation without generating counterfactual explanations.

Weakly Supervised Abnormality Localization Lacking large-scale annotation of abnormality re-
gions in X-ray images makes supervised learning of abnormality localization difficult. Weakly-
supervised learning approaches for abnormality localization have been investigated. Attention
mechanisms are learned to attend regions of abnormalities, where abnormalities are then classi-
fied based on the visual features of these regions (Li et al.| 2018). Anatomical areas can also be
used to restrict potential regions for subsequent localization (Yu et al.l [2022). With a similar idea,
some coarse-grained abnormal regions can first be grounded before localizing the regions of specific
abnormalities (Ouyang et al, 2020; Wang et al.} [2024b). In general, how to precisely localize the
regions (not to over-cover or over-look) for grounding the report generation remains open.

RadSCR - Self-Critiquing Mechanisms
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Figure 1: An overall model architecture of the proposed RadSCR for radiology report generation.

3 METHODS

Given a radiology image I, our proposed Radiology Self-Critical Reporting (RadSCR) framework
generates a radiology report R with findings of abnormalities grounded with abnormality regions
identified in /. First, a set of visual proposals of abnormalities is hypothesized. To obtain the
visual proposals, an X-ray image I encoded as the visual features V is first fed to a classifier to
predict the presence of a set of A/ abnormalities. The potential region of the m-th predicted positive
abnormality, represented as a bounding box B,,, can be located using Grad-CAM
[2017). For each abnormality, a concept embedding E,, is to be learned. A region-based visual
proposal of the m-th abnormality is thus denoted as a triple (V, By,,, E,,,), and represented as:

P,, = PropEncoder(V, B, Ey,). (1

Then, the hypothesized visual proposals are critiqued for their distinctiveness and relevancy using
multi-faceted self-critiquing mechanisms. Three mechanisms are introduced to critique the visual
proposals { P,,,} by proposing i) alternative abnormalities, ii) alternative patient X-ray images, and

iiii) potentially missing abnormalities, represented respectively as: {C"™}, {C™8)}, and C(Nee),
Each hypothesized visual proposal P, is considered together their corresponding alternative visual
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proposals C,(qf ") and C,%mg) to retrieve relevant sentences from the report repository, denoted as
Qm. CMNe8) s used to retrieve additional sentences of potential false negatives which could be
missed in the localization step, denoted as U. They are then fed to an LLM decoder with a pre-
defined prompt for sentence aggregation and final report generation. The process is denoted as:

R = Generate({Qm},U);  {{Qm}, U} = Retrieve({(P,,, C\APW) cUme)yy oMeg))y — (2)

Fig. [[|provides an overview of the RadSCR framework, with details to be presented.

3.1 CONSTRUCTING RADIOLOGY VISUAL PROPOSALS

We represent the visual features V' € R*WXP of an X-ray image I as a patch map H x W with
D-dimensional features encoded by a visual encoder, denoted as V' = VisEncoder(I).

Initial Abnormality Prediction The presence of the m-th abnormality is predicted by feeding the
average visual features of V over the dimension of H#W to a fully connected network FCN : RP —
RV, where the predicted probability is computed as:

D = Sigmoid(FCN(AvgPool(V)). 3)
The M abnormalities with p,,, > 0.5 form the set of potential (positive) abnormalities in /.

Abnormality Region Localization: The relevant regions on the image I associated with each pre-
dicted positive abnormality are then to be localized. As conventional object detectors do not gen-
eralize well to out-of-distribution (OOD) abnormalities, we leverage the class activation mapping
(CAM) to compute the pixel-level saliency on the image I for each predicted positive abnormal-
ity |[Fu et al.[(2020), with the saliency map denoted as W,,, = CAM(VisEncoder, I, m) (as shown
in Fig. . Then, a set of corresponding bounding boxes, denoted as BBoxes = {by, 1, bim 2...}, is
estimated based on WW,,, using the objectness estimation algorithm proposed by |Cheng et al.|(2014),
where b, . is a patch-level mask sharing the same size of I with the patches set as 1 to indicate
the presence of the m-th abnormality, or 0 otherwise. The localized region of the m*" abnormality
B,, € R" is then formed by the union of the bounding boxes in BBozes, given as:

B, = Map(MaXPool({bml, b, 2, })) ()

Region-based Visual Proposal Encoding: We conceptualize the A/ abnormalities and the common
chest X-ray background using (A +1) global concept representations F € RNV+DXP (10 be learned
as detailed in Section . {E,, € R! XD}{){:l corresponds to the concept representations of the N
abnormalities, and Eny; € R'*P is the padding representation of the background.

The region-based visual proposal for the m-th positive abnormality (V| B, E,,) is represented
as: P, = PropEncoder(V, B,,, E,,). We implement the proposal encoder by first obtaining the
spatial-aware abnormality representation F},, based on abnormality region mask B,,, with the con-
cept representation F,,,, and then concatenating it with the visual features V' at the patch level to
obtain an abnormality proposal representation P,,, € R*W*P given as :

P, = FFN(V S3) Fm); Fn = Embedding(Bm: Em)a (5

where Embedding() replaces the slots of abnormality localization in B,,, with E,,, and the remain-
ing slots with padding embedding Fxr11, and FFN(-) is a two-layer feed-forward network.

3.2 LEARNING SELF-CRITIQUING MECHANISMS

To ensure the reliability of the visual proposals, we mimic the thinking process of radiologists to re-
examine the proposals’ correctness by considering i) alternative abnormalities, ii) alternative patient
X-ray image, and iii) potential false negative abnormalities. With reference to each visual proposal
(V, B, Emn), we modify different components to form additional proposals for the critiquing.

Critiquing Based on Alternative Abnormalities For chest X-ray images, some abnormalities with
similar appearance are hard to differentiate. To self-critique if a positive abnormality is distinct
enough as compared to other abnormalities, we compute the visual proposal of an alternative abnor-
mality (V, B,,, E!.), where E/ can be the concept representation of an abnormality selected from

m m
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the predicted negative abnormalities or those predicted positive but in some areas not covered by
B,,,. The corresponding representation is given as:

CAP) — PropEncoder(V, By, E.,). ©

Critiquing Based on Alternative X-ray Images To check if a visual proposal is specific enough
and relevant for diagnosing the abnormality among patients with different abnormalities, we form
another type of alternative proposal for critiquing by replacing the visual features of the hypothe-
sized visual proposal (V') with those of a randomly selected image from other patients (V). The
representation of the critique is obtained by:

C’gmg) = PropEncoder(V', B,,, Epn). @)

Critiquing by Considering Potential False Negatives: As all the visual proposals are hypothe-
sized using fine-grained localization, abnormalities characterized by more holistic features could be
“overlooked”. To double-check for such false negatives, we leverage the global concept representa-
tions of the predicted negative abnormalities to make an additional complementary visual proposal.
Localizing the predicted negatives is non-trivial as reliable bounded boxes are absent. Instead, we
compute an overall complementary visual proposal by taking an average pooling of the concept rep-
resentation of all the predicted negatives, given as Ey = AvgPool({E,,|pm < 0.5,m € [1,N]}).
We then associate it with a region by aggregating the bounding boxes of the major anatomical parts
in the Chest region based on the automatic detection tool (Seibold et al.l 2023) if not annotated,
denoted as By. The visual proposal is thus denoted as (V, By, Ey), and represented as:

C(Nee) — PropEncoder(V, By, Ey). (8)

3.3 RETRIEVAL-BASED REPORT GENERATION WITH SELF-CRITIQUING

With an X-ray image represented as ({(Py,, C\i™, Cii™#))}, C(Neg)) we adopt the retrieval-based
approach for report generation (Endo et al.| 2021} [Yang et al., |2021; [Ranjit et al.l 2023} [Yan et al.,
2024). Sentences of relevant findings matched with the image are first retrieved from a repository of
radiology reports and then combined using an LLM to generate the final report.

Representations of Sentence and Prototype: We represent a sentence annotated with the m-th
abnormality in a report as s(,,). For each report, we concatenate all sentences of the same abnor-
mality into one to ease the subsequent retrieval. To allow robust retrieval of s,,,) based on the visual
proposal Pp,, we argue that it is important for not only s(,,) aligning well with P, but also its
higher-level clinical concepts (called “prototypes” in the following sections). For each abnormality,
we assume K prototypes, represented as O := {ok}’,le. We learn the sentence representation S(m)
and the prototype representation o, (s, ) so that they are close to P, over all the sentences in the

repository, where pt(s) gives the index of s’s associated prototype.

To compute s(,y,), we first apply pre-trained ClinicalBERT (Yan & Pei, 2022) to obtain spe,t € RIXP
where [ is the sentence length, and then cross-attention Attn,() between spe-+ with the concept
representation F,,, to pick up the associated semantics. Then, self-attention Attng() with average
pooling is used to obtain the sentence representation s,,) € RI*P:

S(m) = AvgPool(Attng(T},,T7,.Ty,)) where T, = Attny(spert, Em, Em)- 9)

To derive the prototypes O, we first apply K-means to the TF-IDF representation of the sentences
in the report repository. The sentence-cluster association is then fixed. The representation of the
k-th prototype is initialized by applying average pooling to the representations of the associated
sentences, denoted as o, = AvgPool({s : pt(s) = k}), and will be optimized during training.

Retrieving Relevant Sentences with Self-Critiquing and Report Generation: Given the visual
proposal P,,, relevant sentences are retrieved among those annotated with the m** abnormality to
support the report generation. To support more robust retrieval of relevant sentences, we compute
the similarity score between the visual proposal P, and a sentence s,,) by considering also the
sentence’s prototype, given as:

U(vas(m)) :PmQS(m) +Q1Pm®opt(s(m))v (10)
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where © is the dot product and o is the importance weight of the prototype-based similarity. For

enhancing reliability, we incorporate the alternative visual proposals C’ff b and Cﬁmg) to suppress

P, and discount the similarity score as:
5’(Pm7 S(m)) = O’(Pm, S(m)) — Qo (O’(Cﬁ?bn), S(m)) + O’(Cﬁmg), S(m))), (11

where s is the importance weight of the alternative proposals. The top-M sentences retrieved based
on the discounted similarity score 5 (P, $(;,)) form the candidate set of sentences {Qn } 7t ;.

For the complementary visual proposal C'N*8), the use of prototypes is not needed as the predicted
negatives are aggregated together in our formulation. The similarity score between C(N°8) and the
sentences corresponding to Ey (denoted as s(q)) can be computed by o (C (Neg) 5(0)) = Cc(Neg)
5(0)- The top-(N'—M) sentences based on o(CN°8) 5)) form the complementary set of candidate

sentences denoted as {U,, }ﬁf:_lM.

To generate the final report R, an LLM is adopted to integrate the retrieved results using a prompt:
R = LLM(Prompt({Q.,, }2 1, {U A1), (12)

In our experiment, the Prompt is designed so that all sentences in () are expected to be used for
report generation, while those in U are only used if they do not contradict @) (as shown in Fig.[3).

3.4 Loss FUNCTION FOR MODEL LEARNING

The RadSCR model M is designed with the following learnable components: the visual encoder
VisEncoder(), the initial abnormality predictor FCN(), the abnormality concept representations
{E.}, the visual proposal encoder PropEncoder(), the sentence attention mechanisms Attng() and
Attny(), and the prototype representations O. For model learning, we define an objective function
with a set of loss terms to achieve reliable retrieval.

Loss for Visual-Language Alignment: For each image-report pair (indexed by 7) in the training
batch B, each underlying visual proposal P, should be close to the positive samples which are the

ground-truth sentence sz m) and the prototype o;) (5 0m))? but far from the negative samples containing

sentences of: a) other abnormalities {séﬁm)} = {séj)} je{1...M}\m: b) same abnormality but in dif-
ferent reports {sa;)} = {s%m) }ji={1...18|}\is and c) same abnormality but with different prototypes
{oﬁpt(sém))} = {Ok}ke{l../c}\pt(sgm)y The loss term is thus defined as:

E(PFOP) =Lc(Py,, Szm)v {Szﬁm)}) + Lo (P, Szm)v {527?1)}) + Lo (P, Opt(sfm))’ {Oﬂpt(sf,n))})'
(13)
where Lo (p, {pos}, {neg}) refers to the symmetric contrastive loss to force p close to the positive
samples {pos} and far from the negative samples {neg} (Radford et al., 2021). By optimizing
Eq. (13), the representations of the visual proposals, sentences and prototypes on one hand will
be aligned. Due to end-to-end learning, the abnormality localization is also learned in a weakly-
supervised manner. Note that we drop the index ¢ in the following sections for the clarity.

Loss for Self-critiquing: To learn the self-critiquing mechanisms, we make use of triplet loss to

push s,y close to P, but apart from alternative proposals C,(f ) and C,(émg) to improve retrieval
reliability. The loss term is defined as:

M
1
Loy = 57 D (Lx(56m) P CHPY) + L1(5(m)s P, CR™)), (14)

m=1

where Lr(a, pos,neg) is triplet loss with a being the anchor, pos the positive sample, and neg the
negative sample.

For false negative self-critiquing, we define an additional contrastive loss to guide C'(N°®) to be close
to the sentences with abnormalities present but not hypothesized (positive mentions) {§z;.)}, but far

from those with abnormalities absent from being mentioned (negative mentions) {§G) }

Loveg) = Lo(CN® {55 1,(50))). (15)
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We train the proposed RadSCR model by optimizing: L(prop) + B1L A1) + B2L(Neg) With the
importance weights 5, and (5.

4 EXPERIMENT

Data We test the proposed RadSCR on three publicly available X-ray image-report datasets MIMIC
CXR (Johnson et al.,[2019a3b), ReXGradient (Zhang et al.l[2025) and IU XRay (Demner-Fushman
et al., [2016) for report generation, report retrieval and abnormality detection. We also use VinDR-
CXR (Nguyen et al.,|2022) to test the performance of abnormality localization on X-ray images.

Baselines For performance comparison, we evaluate a set of state-of-the-art approaches, including
i) VLM-based approaches: Transformer (Vaswani et al.l [2017), R2Gen (Chen et al., |2020),
R2GenCMN (Chen et al.[(2021) RGRG (Tanida et al., [2023)), ii)) LLM-based approaches: Qwen3-VL
(3B) (Yang et all 2025), MedGamma (4B) (Sellergren et al., [2025), LLaVA-Med (7B) (Li
etal.,2023), LLaVA-Rad (7B) (Zambrano Chaves et al.,2025), CoMT (7B) (Jiangetal.,|2025)),
and iii) retrieval-based approaches: BiomedCLIP (Zhang et al., |2023), MedCLIP |Wang et al.
(2022), BioViL (Boecking et al., [2022), X-REM (Jeong et al., [2023) and CXR-RePaiR (Endo
et al.| 2021). Related implementation details are reported in the Appendix A.1.

Model Setting We train RadSCR on MIMIC CXR (training set) and evaluate it by the test sets
of MIMIC CXR, ReXGradient and IU XRay. We use the Swin Transformer (Liu et al., 2021)) as
visual extractor and Phi (4B) (Ren et al.| 2025) as the LLM decoder with its parameters frozen. We
consider ' = 37 abnormalities annotated by Chest ImaGenome [Wu et al| (2021). The prototype
number is set to IO = 5 for each abnormality, where sentences with positive mentions are clustered
into 4 groups and those with negative mentions form the remaining one.

4.1 PERFORMANCE EVALUATION ON REPORT GENERATION

Evaluation Metrics: We evaluate the generated reports by i) CheXbert (Smit et al., [2020) of 14
observation accuracy, ii) Clinical Efficacy (CE) (Chen et al., [2020) extended to 37 abnormalities
(CE-Abn) and the normality of 25 anatomical parts (CE-Organ), iii) RadGraph-F1 (Jain et al.,
2021)) which also considers relationship correctness among observations, iv) RadNLI (Miura et al.,
2021) which measures inference correctness of contradiction, entailment or neutral between gener-
ated reports and ground-truth, and v) BLEU (Papinent et al., 2002), METEOR (Banerjee & Lavie,
2005)) and ROUGE-L (Lin, [2004) for measuring n-gram accuracy. The ground-truth annotations are
used as targets in computing the metrics.

Model CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn.  Organ P. C. Pr. Re. F-1
Transformer | 0.201 0.304 0.208 0.269 0.191 0.130 0.161 0.217 0.135
VLM- R2Gen 0.203 0.303 0.207 0476 0205 0.243 0.168 0.187 0.128
based R2Gen-CMN | 0.157 0402 0.258 0416 0.201 0.137 0.144 0.199 0.109
RGRG 0.383 0489 0.251 0.669 0321 0.248 0379 0.326 0.317

Qwen3-VL 0.184 0.195 0.065 0.289 0.081 0.046 0253 0.160 0.112
LMM- MedGamma | 0419 0.413 0219 0407 0.141 0.086 0.469 0.143 0.150
based LLaVA-Med | 0397 0.135 0.041 0555 0.202 0.139 0332 0335 0312
LLaVA-Rad 0487 0.512 0399 0.661 0285 0.220 0314 0.322 0.286

CoMT 0406 0250 0.151 0485 0.218 0.151 0331 0.290 0.274
BiomedCLIP | 0.309 0.221 0.184 0.675 0.235 0.175 0335 0314 0.305

Retrieval BioViL 0403 0367 0325 0595 0232 0.173 0300 0.302 0.274
based  MedCLIP 0.032 0297 0.106 0.153 0.112 0.071 0.175 025 0.161
CXR-RePaiR | 0.385 0423 0380 0.630 0.251 0.191 0.293 0.292 0.264

X-REM 0.382 0402 0382 0.615 0243 0.186 0303 0.310 0.280

RadSCR 0.574 0.610 0572 0.744 0422 0367 0440 0.433 0.408

Table 1: Performance comparison on report generation based on MIMIC CXR data. “P.” and “C.”:
Partial and Complete correctness of observation relationship; “Pr.” and “Re.”: Precision and Recall.

Experimental Results and Discussion: We conduct extensive experiments for performance eval-
uation based on MIMIC CXR, ReXGradient and IU Xray datasets. Table |1| shows the results on
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Model CheXbert CE RadGraph-F1 RadNLI

Acc. F-1 Abn.  Organ P. C. Pr. Re. F-1
RadFM 0.566 0.635 0545 0.652 0.399 0367 0432 0401 0.395
MAIRA-2 | 0.581 0.621 0.565 0.701 0.444 0379 0.445 0422 0410
RadSCR | 0.574 0.610 0.572 0.744 0422 0367 0440 0.433 0.408

Table 2: Performance comparison on MIMIC CXR against some recent models with larger decoders.

MIMIC CXR. Among baselines, LLaVA-Rad shows effective performance in diagnosing common
chest abnormalities evaluated by CheXbert, and the region-based RGRG shows a high accuracy
of reporting clinical observations relationship (occurrence and anatomical location) evaluated by
RadGraph-F1. RadSCR outperforms other baselines in both clinical accuracy metrics CheXbert
and RadGraph-F1. Meanwhile, RadSCR gives the best performance in the detection of anatom-
ical abnormalities, as indicated by CE-Abn and CE-Organ scores, covering a wide range of
chest abnormalities and their anatomical locations. In addition, RadSCR gives the highest RadNLI
scores, indicating fewer diagnostic statements contradictory to the ground truth in the generated re-
ports. These results suggest that RadSCR can effectively improve clinical accuracy in terms of both
abnormality detection and diagnostic coherence to the ground-truth for report generation. Similar
results are obtained for ReXGradient and IU Xray datasets (see Appendix A.1 for more details). We
further compared RadSCR with some more recent models with larger decoders, including MAIRA-
2 (7B) (Bannur et al., [2024) and RadFM (Wu et al., [2025), as shown in Table@ Although they have
significantly larger model sizes, our proposed RasSCR still achieved comparable results.

Ablation Study: To better understand the impact of different components in RadSCR, an abla-
tion study is conducted by removing (i) self-critiquing mechanisms in both training and testing, (ii)
self-critiquing mechanisms in testing only, (iii) LLM decoder, and (iv) abnormality prototypes. The
results are shown in Table Referring to (i) and (ii), removing the self-critiquing mechanisms leads
to obvious performance degradation. Meanwhile, the self-critiquing mechanism in inference can
ensure generated reports of better quality (see (ii)). In addition, by eliminating C'(N°8), the scores of
both CheXbert (F-1) and CE-Abn drop, indicating the lower accuracy of abnormality detection.
It shows that the global features used by C'Ne&) could help RadSCR identify certain missed abnor-
malities. Furthermore, results in (iii) indicate drops in the RadNLI score when LLM is removed,
indicating its role in ensuring the content coherence of the retrieved sentences and the generated
report. Also, results in (iv) show that removing the prototypes leads to drops in CE-Organ and
RadGraph-F1 scores which also consider the accuracy of the associated anatomical parts. The
use of prototypes allows sentences of the same abnormalities with context variations (e.g., regions
of observation) to be better organized for more fine-grained retrieval.

RadSCR w/o. CheXbert(F-1) CE-Abn CE-Organ RadGraph(Complete) RadNLI(F-1)
- 0.610 0572 0.744 0.367 0.408
cme) 0.581 0.542 0.691 0.371 0.388

@ ou 0.560 0.523 0.688 0.300 0.369
CcMee) 0.602 0.556 0.709 0.345 0.367
c™ 0.561 0.535 0.689 0.289 0.359
CTme) 0.605 0.450 0.669 0311 0.325)]

ay UM 0577 0.465 0.6481| 0.253 0.335
C(Nee) 04911 0.545 0.668 0.354 0.398
c™) 0.545) 0379, 0.653) 0.231) 0.343

(iiiy ~LLM 0611 0.554 0.724 0351 0.326]

(iv) {0k}, 0.591 0377)1  0.751 021047 0.357

Table 3: Results of ablation study by MIMIC CXR. C'*) refers to {C (Img) "(Abn) & (Ncg)}. “1
and “}” indicate the scores with the largest and second largest drops, respectively.

Effect of sampling more alternative proposals: We can extend the self-critiquing mechanisms by

sampling more alternative proposals Cffbn) and Cﬁ,{mg). We first tested the number of alternatives
randomly sampled N, from zero to three for both C(AP") and CI™8) | with the results shown in
Fig. N, = 0 indicates that no alternative is considered. For cases with NV, > 1, the averaged
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effect of multiple sampled alternatives are computed for discounting the hypothesized proposal. By
jointly increasing the number of C'(AP™) and C'"™8), the best performance is obtained at N, =2,
where 2 x M alternative abnormalities and 2 x M alternative X-ray images are considered. While
the result implies that considering multiple alternatives can improve the effectiveness of the self-
critiquing mechanisms, the optimal ways of sampling the alternatives remain open. We tested also
different schemes of controlling randomness based on the patients’ metadata and achieved further
performance improvement (see Appendix A.1 for more details).

In addition, other than random sampling, we further investigated the effectiveness of other strategic
schemes of sampling alternatives, including sampling those most similar to the visual proposal (hard
samples), sampling those least similar (easy samples), as well as sampling a mixture of them. As
shown in Table[d] some strategic sampling schemes (e.g., Random+hard+easy) can further boost the
performance for some metrics. In general, how to better sample the alternatives to achieve more
effective self-critiquing is an interesting direction of extending the RadSCR’s framework.

0.760 0.600 0.380 0.420
0.610 0740 0.580 0.360
0.560 0.400
0.340
0.600 0.720 0.540 0.380
059 0.700 0.520 0.320
0.680 0.500 0.300 0.360
0.480 (Abn)
0.580 0,660 0.280 03019/ o C
0.460 0.260 A (o g Climg)
0.570 0.640 0.440 0.320
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
NP NP NP NI’ NP
(a) CheXbert (F-1) (b) CE-Abn. (c) CE-Organ (d) RadGraph (Complete) (e) RadNLI (F-1)

Figure 2: Performance of RadSCR with different numbers of alternative proposals sampled.

Sampling CheXbert CE RadGraph-F1 RadNLI

Acc. F-1 Abn.  Organ P. C. Pr. Re. F-1
One alternative abnormality sampling
Random 0.574 0.610 0.572 0.744 0422 0.367 0.440 0433 0.408

Only hard sample 0.561 0.577 0532 0.720 0432 0362 0444 0451 0413
Only easy sample 0.568 0.593 0.566 0.751 0426 0361 0432 0412 0.399
Three alternative abnormalities sampling

Random 0.570 0.609 0.577 0.731 0.441 0.377 0.448 0455 0.419
Random+hard+easy | 0.575 0.606 0.583 0.739 0.446 0.381 0442 0.462 0.421

Table 4: Performance of different alternatives sampling schemes for critiquing on MIMIC CXR.

4.2 PERFORMANCE EVALUATION ON RETRIEVAL RESULTS

To further evaluate the ranking quality of the sentence retrieval results, we make use of Accuracy-K
and some preference ordering metrics. The former gives the percentage of target sentences found
in the top-K results. For the latter, we consider the top-50 results and measure the percentage
of sentences with correct positive diagnoses ranking higher than the following three types of less
preferred sentences: i) Incomplete: sentences with correct positive abnormalities but incomplete,
i) Partially Correct: sentences with correct and incorrect positive abnormalities, and iii) Incorrect:
sentences without correct positive abnormalities. We denote the three preference ordering (PO)
metrics as PO-1, PO-2 and PO-3. As shown in Table [5] RadSCR performs consistently better than
the baselines for highly-ranked sentences as indicated by Acc@5 and Acc@10. It also achieves the
best preference ordering scores, indicating its effectiveness in preserving overall sentence ranking.

4.3 PERFORMANCE EVALUATION ON ABNORMALITY PREDICTION AND LOCALIZATION

To illustrate the importance of introducing region-awareness for abnormality prediction, we cre-
ate a baseline which uses again Swin Transformer (Swin) as visual extractor, followed by linear
projection layers (MLP) instead of the fine-tuned RadSCR for abnormality prediction. As shown
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Model IR Accuracy Preference Order
Acc@5 Acc@10 PO-1 (Incomplete) PO-2 (Partially Correct) PO-3 (Incorrect)

CXR-RePaiR | 0.106 0.106 0.010 0.015 0.026
BiomedCLIP 0.266 0.288 0.478 0.514 0.467
MedCLIP 0.010 0.042 0.480 0.534 0.432
BioViL 0.171 0.171 0.523 0.528 0.523
X-REM 0.243 0.302 0.023 0.025 0.031
RadSCR 0.277 0.347 0.644 0.659 0.606

Table 5: Comparing the quality of sentence retrieval based on MIMIC CXR dataset.

in Table [f] Swin+RadSCR outperforms Swin+MLP for all accuracy metrics, indicating that the
proposed RadSCR with the region-awareness introduced can effectively improve the discriminative
properties of the visual feature for abnormality prediction.

Model F-17  FPR| PR-AUCT ROC-AUCYT
Swin+MLP 0.160  0.440 0.562 0.756
Swin+RadSCR | 0.208  0.425 0.703 0.900

Table 6: Evaluation on abnormality prediction. FPR refers to false positive rate.

We also compare RadSCR’s performance on abnormality localization with two existing weakly-
supervised localization methods, including one based on the patch-based approach TDIL (Li et al.}
2018) and another one based on the attention-based approach HAM (Ouyang et al.,2020). The eval-
uation is based on VinDR dataset, and the mean average precision score is adopted for the metrics.
As shown in Table [7, with the threshold of the Intersection of Union (IoU) set as 0.1/0.3/0.5,
Swin+RadSCR can better localize the ground-truth abnormality regions by a large margin com-
pared to the baselines (see Appendix for more details).

Model IoU(0.1) IoU(0.3) IoU(0.5)
TDIL 0.125 0.095 0.077
HAM 0.134 0.102 0.081
Swin+MLP 0.210 0.054 0.012
Swin+RadSCR 0.308 0.199 0.101

Table 7: Evaluation of abnormality localization on VinDR dataset with annotations of abnormality
regions. The available model weights of TDIL and HAAL used in this experiment are trained on
ChestXray8 (Wang et al., 2017), and Swin+MLP/RadSCR are trained on MIMIC CXR.

5 CONCLUSION

We propose a novel Radiology Self-Critiquing Reporting model framework called RadSCR which
learn multi-faceted mechanisms to self-reflect and verify the potential abnormality regions by con-
structing visual proposals of hypothesized abnormalities presented. The self-critiqued proposals are
then integrated by a retrieval-based approach to generate reliable radiology reports, outperforming
the SOTA report generation methods in terms of clinical accuracy and improved reliability of the
located abnormality regions. Limitation The possibly false negative abnormalities are critiqued in
the whole chest region on the X-ray images. Thus, the critique results on these critique results might
not indicate any specific abnormality region to be localized.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, the authors prepare the implementation details in the
Appendix section, including i) Data: Three datatsets used in the experiments are publicly accessible
where the download links are provided in Appendix [A.T] The data pre-processing is referred to
the baselines (Chen et al., 2020; 2021); ii) Model Implementation: The backbone modules of the
proposed model are referred to the implementation provided by huggingface . co where the links
of model structures and the pre-trained weights are provided in Appendix iii) Baselines: The
implementation of the baselines are all referred to their official source codes and papers, where the
links of pre-trained parameters of their model weights are provided in Appendix [A.5] The results
may have minor variations due to the different machines deployed; and iv) Evaluation Metrics:
The implementation of the evaluation metrics are presented in Appendix where the evaluation
details and the links of the open-source codes are provided.
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A APPENDIX

A.1 EXPERIMENT RESULTS ON MORE DATASETS

We present the experimental results on MIMIC CXR dataset [ﬂ We also tested our proposed ap-
proaches with the baselines using the IU Xray [|and ReXGradient [|datasets (as shown in Table .
As observed, our proposed RadSCR achieved SOTA performance in most clinical accuracy metrics
in both datasets, demonstrating the effectiveness of using RadSCR in clinical application to generate

accurate radiology reports.

Model CheXbert CE RadGraph RadNLI
Acc. F1 Abn.  Organ P. C. Pr. Re. F1
IU Xray
Transformer b 0.806 0.512 0.169 0.595 0.358 0.281 0.452 0411 0.396
VLM- R2Gen b 0.788 0.418 0.171 0.600 0.306 0.236 0.453 0.408 0.396
based R2Gen-CMN b | 0.820 0445 0.177 0.612 03483 0.283 0.486 0.404 0.410
RGRG 0.668 0.459 0.155 0.720 0.340 0.228 0.450 0431 0.399
Qwen3-VL 0.394 0.099 0.032 0.354 0.129 0.073 0.355 0.220 0.215
LMM.- MedGamma 0.719 0310 0.158 0482 0.186 0.117 0.514 0222 0.238
based LLaVA-Med 0.620 0.282 0.033 0.582 0.215 0.142 0.330 0.341 0.320
LLaVA-Rad 0.801 0.518 0.324 0.717 0290 0.204 0.326 0.318 0.309
CoMT 0.395 0.135 0.005 0.701 0.284 0.190 0.484 0.337 0.365
BiomedCLIP 0.795 0381 0.050 0.716 0315 0.240 0.342 0422 0.351
Retrieval BioViL 0.781 0436 0268 0.710 0299 0.209 0384 0.360 0.345
“based MedCLIP 0.087 0.092 0.089 0.657 0.164 0.121 0.170 0215 0.148
CXR-RePaiR 0.741 0.385 0.274 0.672 0258 0.188 0.344 0.339 0.321
X-REM b 0.778 0464 0255 0.732 0309 0.233 0.357 0.397 0.350
RadSCR 0.796 0.499 0366 0.752 0.369 0.300 0.381 0.466 0.390
ReXGradient
Transformer 0.612 0429 0.081 0.560 0.180 0.111 0.312 0.300 0.296
VLM- R2Gen 0.601 0455 0.090 0.567 0.178 0.117 0.322 0.319 0.310
based R2Gen-CMN 0.620 0450 0.101 0.580 0.190 0.121 0.333 0311 0.319
RGRG 0401 0.222 0.095 0.630 0.198 0.135 0.357 0.345 0.335
Qwen3-VL 0.368 0.170 0.060 0.298 0.080 0.047 0.271 0.197 0.163
LMM.- MedGamma 0.563 0342 0.174 0408 0.142 0.092 0.516 0.196 0.217
based LLaVA-Med 0440 0.191 0.098 0.555 0.193 0.129 0.338 0.331 0.318
LLaVA-Rad 0.626 0.478 0.326 0.680 0.228 0.167 0.340 0.313 0.309
CoMT 0.653 0.143 0.665 0.070 0.235 0.653 0.494 0.315 0.349
BiomedCLIP 0.635 0332 0.215 0.583 0.171 0.137 0.325 0.340 0.318
Retrieval BioViL 0.529 0.311 0.115 0.632 0.164 0.116 0359 0.354 0.345
“based MedCLIP 0.668 0.009 0.259 0.293 0.077 0.028 0.333 0.331 0.331
CXR-RePaiR 0.517 0.357 0.156 0.585 0.192 0.143 0336 0.333 0.323
X-REM 0.547 0.398 0.157 0.598 0213 0.167 0346 0.344 0.332
RadSCR 0.644 0459 0344 0.698 0.240 0.179 0.369 0.351 0.356

Table 8: Comparison of report generation by clinical accuracy metrics on IU Xray and ReXGradient
data. Models with b are tested using the official parameters pre-trained on the testing dataset.

We also evaluate the proposed approach and the baselines by natural language generation (NLG)
metrics (BLUE, METEOR and ROUGE). The results are shown in Table[9] As observed, the proposed
RadSCR achieves SOTA performances in MIMIC CXR and ReXGradient datasets. We noted that
the Transformer, R2Gen and R2Gen—CMN obtain comparable performances in [U Xray data,

'https://physionet.org/content/mimic-cxr—jpg/2.0.0
Zhttps://www.kaggle.com/datasets/raddar/chest-xrays—indiana-university
*https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K
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which are trained by IU Xray data. Compared with the rest models, which are not fine-tuned in
IU Xray, these three models could better learn the reporting styles maintained by the dataset itself,
which results in better n-gram accuracy measured by NLG metrics.

Model MIMIC CXR IU XRay ReXGradient
B. M. R. B. M. R. B. M. R.
Transformer | 0.115 0.160 0.287 | 0.231 0.360 0.402 | 0.099 0.121 0.192
VLM- R2Gen 0.100 0.142 0.282 | 0.214 0.346 0.383 | 0.081 0.119 0.199
based R2Gen-CMN | 0.132 0.210 0.302 | 0.244 0.398 0.414 | 0.085 0.212 0.233
RGRG 0.154 0.328 0.365 | 0.128 0.333 0.380 | 0.091 0.255 0.264

Qwen3-VL 0.040 0.199 0.142 | 0.040 0.209 0.140 | 0.030 0.177 0.111
MedGamma | 0.037 0.206 0.144 | 0.036 0.209 0.140 | 0.028 0.185 0.118

]f)liz/(li_ LLaVA-Med | 0.111 0.231 0.243 | 0.090 0213 0.224 | 0.079 0.220 0.201
LLaVA-Rad 0.206 0.336 0342 | 0.141 0.270 0.288 | 0.138 0.279 0.256

CoMT 0.100  0.290 0.219 | 0.100 0.333 0.240 | 0.077 0.263  0.200
BiomedCLIP | 0.152 0.266 0.269 | 0.129 0.258 0.257 | 0.094 0.197 0.186

Retrieval BioViL 0.168 0300 0.289 | 0.188 0.333 0317 | 0.144 0.263 0.241
-based MedCLIP 0.090 0.237 0.168 | 0.120 0.266 0.233 | 0.075 0.229 0.163
CXR-RePaiR | 0.174 0312 0.294 | 0.162 0.295 0.290 | 0.120 0.230  0.205

X-REM 0.161 0.286 0.291 | 0.166 0.294 0.309 | 0.137 0.258 0.226

RadSCR 0.344 0.460 0.452 | 0.176 0311 0.312 | 0.157 0.290 0.259

Table 9: Comparison of report generation by NLG metrics on MIMIC CXR, IU Xray and ReXGra-
dient data. “B.”, “M.” and “R.” indicates BLEU, METEOR and ROUGE scores.

Effect of controlling randomness during alternative patient sampling We provide additional
evaluation results by using different selection strategies based on the available metadata in the testing
stage. As shown in Table. [I0] controlling the randomness during alternative patient sampling is
beneficial. In future work, we will also address how to achieve controlled sampling for datasets
without available metadata.

Sampling CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn.  Organ P. C. Pr. Re. F-1

MIMIC CXR

- 0.574 0.610 0572 0.744 0.422 0367 0.440 0.433 0.408
PA/AP 0.588 0.615 0.566 0.759 0429 0370 0435 0421 0.399
Posture 0.570 0.613 0579 0.762 0.427 0.369 0451 0429 0415

ReXGradient

- 0.644 0459 0344 0.698 0.240 0.179 0.369 0.351 0.356
Sex 0.639 0460 0347 0.685 0.237 0.171 0.365 0.348 0.352
Age 0.650 0.462 0351 0.703 0.243 0.175 0374 0.342 0.350

Table 10: Results of applying controlled sampling in alternative image critiquing.

A.2 MODEL IMPLEMENTATION

We use Swin Transformer (Base) (Liu et al., 2021ﬂ as visual encoder and Clinical-BERT as lan-
guage encoder (Yan & Pei| 2022ﬂ The input images are resized to 224 x 224 and split into
HW = 49 patches, while the dimension is set to D = 512. The training epoch is set to 40 with the
learning rate set to 5e-5 and the batch size set to 64. The maximum length of a sentence is set to
60 tokens. The important weights are setting for i) prototype similarity: oy = 0.4, ii) alternative vi-
sual proposals C'(AP) and C(™8): o, = 0.5, iii) self-critiquing loss L A1) of alternative proposals
B1 = 0.4, and iv) self-critiquing loss £(neg) 0f complementary proposals 32 = 0.6.

‘nttps://huggingface.co/microsoft/swin-base-patch4-window7-224
Shttps://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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To obtain the saliency map of the abnormality classification, we use the XGrad-CAM (Fu et al.,
2020) 7] to extract the class activation map from the visual encoder. The bounding box extraction is
referred to the open-source code ﬂ

We use Phi (4B) (Ren et al., [2025) as the LLM decoderﬂ The prompt used for LLM decoding is
shown in Fig.

{user}

## Instruction

You are a Al assistant specialised in radiology X-ray imaging topics. You are provided with two sets of the diagnostic
results and expected to summarized them and generate a comprehensive radiology report. Below are requirements for
the report generation

*REQUIREMENTS**

- There are two sentence sets, one is *Primary* set, another is *Secondary* set. All sentences in *Primary* set MUST BE
USED for summarizing, where the details are expected to be maintained. The repeated content can be omitted. The
conflicts across the sentences can be removed.

- The sentences in *Secondary* set are used for summarizing if they are not opposite the content of the sentences in
*Primary* set. To summarize the sentences, the details are expected to be maintained, the repeated content can be
omitted and the conflicts across the sentence can be removed.

- The sentence set are provided with the format of "{Abnormality}": "{Sentence}". {Abnormality} is the chest-related
abnormality in radiology domain, indicating the diagnostic target of the following sentence. {Sentence} is a sentence
extracted from the radiology report, describing the observation related to {Abnormality}.

- Just output the report directly. DO NOT add additional explanations or introduce in the answer unless you are asked to.

## Example
*Primary* set

"{Example_Abnormality4}": "{Example_Sentence,4}",
"{Example_Abnormality,,}": "{Example_Sentence,}",

}
*Secondary* set
{
"{Example_Abnormality,4}": "{Example_Sentence,4}",
"{Example_Abnormality,,}": "{Example_Sentence,,)}",
}

Report to be generated:
"Report": "{Example_Report}"

## Input
{

"{Abnormality,4}": "{Sentence}",
"{Abnormality,,}": "{Sentence,}",

*Secondary* set

"{Abnormality,4}": "{Sentence,4}",
"{Abnormality,o}": "{Sentenceoo}",

}

## Output
Report to be generated:

{assistant}

Figure 3: Prompting data example used for the LLM decoder of the proposed RadSCR.

®https://github.com/jacobgil/pytorch-grad-cam

"https://github.com/batmanlab/AGXNet /blob/ee99ef199f1f96f7d0c35336935bd]17664e733c/
utils.py

https://huggingface.co/microsoft/Phi-4-reasoning
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The experiment is conducted with an Intel(R) Xeon Gold CPU (2.70GHz) and four sets of NVIDIA
Tesla V100S GPU. The training / inference time is reported in Table.

Module Training (s) | Inference (s)
Abnormality Region Localization 0.311 0.193
Self-Critiqued Sentence Retrieval 0.463 0.300
LLM-based Report Generation - 0.203

Table 11: The estimated time of training / inference per image.

N = 37 abnormalities targeted by RadSCR are provided by Chest ImaGenome [Wu et al.| (2021)
which are annoated on MIMIC CXR data: Low lung volumes, Plerual effusion, Edema, Atelec-
tasis, Opacity, Pneumonia, Calcification, Lung cancer, Lesion, Mass/nodule, Costophrenic angle
blunting, Consolidation, Aspiration, Hyperaeration, Vascular redistribution, Emphysema, Intersti-
tial lung disease, Scarring, Vascular congestion, Pneumothorax, Fluid overload/heart failure, Gran-
uloma, Lobar/segmental collapse, Tube/line, Alveolar hemorrhage, Increased reticular markings/ild
pattern, Infiltration, Enlargement, Medical device, Pericardial effusion, Mediastinal displacement,
Mediastinal widening, Hernia, Tortuous aorta, Spinal degenerative changes, Bone deformity, and
Bone fracture.

A.3 ABNORMALITY-AWARE RETRIEVAL REPOSITORY CONSTRUCTION

To retrieve the relevant report sentences for critiquing the visual proposal, we first construct N' = 37
sentence repositories of NV = 37 abnormalities. For MIMIC CXR data, we use annotations provided
by the Chest ImaGenome [Wu et al.| (2021), where each sentence of the report in MIMIC CXR is
annotated with the abnormalities and anatomical parts mentioned. For IU Xray and ReXGradient
without annotations, we use a BERT-based text classifier to predict all the abnormalities mentioned
and the positive abnormalities described in the report. This text classifier is trained by the Chest
ImaGenome annotations on MIMIC CXR reports. We collect sentences of the same abnormality
into the same sentence repository. Sentences with more than one abnormality mentioned can be
collected in multiple repositories. Given that some reports might mention some but not all negative
abnormalities, there could be no sentences for some abnormalities to be collected. In this case, we
will supplement the sentences of non-mentioned abnormalities by some simple templates.

A.4 EVALUATION METRIC

CE-Abn covers 37 abnormalities considered by RadSCR. We finetune a text classifier (Sap-
BERT |Liu et al. (2020ﬂ) to predict whether these 37 abnormalities are mentioned as positive (ob-
served on X-ray image) in the given report. The labels are annotated Chest ImaGenome Wu et al.
(2021)).

CE-Organ covers 25 anatomical parts annotated Chest ImaGenome Wu et al.|(2021), including:
Left lung, Right lung, Left upper lung zone, Right upper lung zone, Left mid lung zone, Right mid
lung zone, Left lower lung zone, Right lower lung zone, Left hilar structures, Right hilar structures,
Aortic arch, Cardiac silhouette, SVC, Cavoatrial junction, Upper mediastinum, Left costophrenic
angle, Right costophrenic angle, Left clavicle, Right clavicle, Left apical zone, Right apical zone,
Spine, Trachea, Left hemidiaphragm, and Right hemidiaphragm. We finetune a text classifier (Sap-
BERT [Liu et al. (2020@) to predict whether there are any positive abnormalities associated with
these 25 anatomical parts.

CheXBe rt covers 14 common observations considered in [Irvin et al.| (2019): Enlarged cardio-
mediastinum, Cardiomegaly, Lesion, Lung opacity, Edema, Consolidation, Pneumonia, Atelectasis,
Pneumothorax, Pleural effusion, Lung Other, Fracture, Support devices, and No Findings.

RadGraphE] covers 14,579 entities and 10,889 relations defined in the related work [Jain et al.
2021)).

‘https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
Uhttps://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
Uhttps://github.com/stanfordmlgroup/Chexbert
Zhttps://github.com/Stanford-AIMI/radgraph
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RadNL I covers the inference relationships of Contradiction, Entailment and Neutral.
Preference Order (PO) measures the correctness of 37 abnormalities considered in the RadSCR.

BLUE, METEOE and ROUGE are refer to a public-accessed implementatio

A.5 BASELINE IMPLEMENTATION

Transformer composes an encoder of three-level transformer layers and a decoder of three-level
transformer layers, as implemented by |Chen et al. (ZOZOE

The remaining baselines are implemented according to their official codes and pre-trained
weights, including R2Gen |Chen et al.|(2020): https://github.com/cuhksz-nlp/R2Gen;
R2Gen-CMN |Chen et al| (2021): *https://github.com/cuhksz—nlp/R2GenCMN;
RGRG (Tamida et al| (2023): https://github.com/ttanida/rgrg; CXR-
RePaiR |[Endo et al| (2021): |https://github.com/rajpurkarlab/CXR-RePaiR,
MdeCLIP |Wang et al| (2022):https://github.com/RyanWangZf/MedCLIP,
BiomedCLIP /hang et al. (2023):https://huggingface.co/microsoft/
BiomedCLIP-PubMedBERT_256-vit_lbase_patchl6_224, BioViL Boecking
et al| (2022):https://github.com/martinzwm/biovil, X-REM [Jeong et al.
(2023):https://github.com/rajpurkarlab/X-REM, TDIL |Li et al| (2018) and
HAM Ouyang et al.| (2020):https://github.com/oyxhust /HAM.

A.6 EVALUATION ON ABNORMALITY LOCALIZATION

VinDr-CXR |[Nguyen et al.[ (2022; 202OE] provides annotations of abnormality regions, including
Infiltration, Lung Opacity, Consolidation, Nodule/Mass, Pulmonary fibrosis, Pleural thickening,
Aortic enlargement, Cardiomegaly, ILD, Other lesion, Pleural effusion, Calcification, Enlarged PA,
Lung cavity, Atelectasis, Mediastinal shift, Lung cyst, Pneumothorax, Emphysema, Clavicle frac-
ture, Rib fracture, and Edema.

ChestXray8 Wang et al. (20171T_7]pr0vides annotations of abnormality regions, including Atelectasis,
Cardiomegaly, Pleural effusion, Infiltrate, Mass, Nodule, Pneumonia, and Pneumothorax.

We evaluated the localization results of the abnormalities shared across MIMIC CXR (Chest Im-
aGenome), VinDr-CXR and ChestXray8. We noted that the localization annotations of the same
abnormality from different datasets could be variable to some extent, as the localization results of
radiologists could be affected by population differences, local operating rules, or personal experi-
ences. However, for common chest abnormalities, their relevant regions to be localized by different
radiologists should be similar in most cases, as the related diagnostic consensus for these abnormal-
ities has been studied for years.

A.7 VISUALIZATION OF ABNORMALITY LOCALIZATION

We present two cases of progressive change of saliency maps with abnormality region localized by
RadSCR during the training process (as shown in Fig. 4] and Fig.[3). As observed, trained RadSCR
could localize relevant regions of the abnormalities presented. Meanwhile, the localized regions also
covers some irrelevant areas, which indicates that the weakly-supervised abnormality localization is
still challenging.

A.8 LATENT SPACE VISUALIZATION

We present the visualization of concept embedding, prototype embedding, and sentence embedding
of randomly sampled sentence sets learned with and without the proposed self-critiquing mechanism
(as shown in Fig. [6] and Fig.[7). For each abnormality in every setting (with / without the proposed

Bhttps://github.com/Mayo-Clinic-RadOnc-Foundation-Models/Radiology-NLI
“https://github.com/salaniz/pycocoevalcap
Bhttps://github.com/cuhksz-nlp/R2Gen

Yhttps://vindr.ai/datasets/cxr
"https://nihcc.app.box.com/v/ChestXray-NIHCC
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Lungs are hyperinflated with flattening of the diaphragms and increased AP diameter suggestive of COPD.
Minor left base atelectasis/Sarring is seen. No definite focal consolidation is seen. There is no pleural effusion
or pneumothorax. Cardiac silhouette is top-normal to mildly enlarged. The aorta is calcified.

Ground-
truth
Report

The image shows a chest X-ray. The heart appears to be slightly enlarged (cardiomegaly). The cardiomediastinal
silhouette is remarkable for aortic arch calcifications. Further evaluation with echocardiography would be needed
to determine the exact cause. There are no pleural effusions or pneumothorax. The right sixth rib surgical
fracture is redemonstrated. The lungs are hyperinflated. Mild atelectasis is seen in the lung bases without focal
consolidation. The mediastinum is clear. The mediastinal and hilar contours are unremarkable. No free air below
the right hemidiaphragm is seen. Mediastinal contours are normal with mild aortic tortuosity.

True Positive Enlargement, Calcification, Atelectasis, Hyperaeration False Positive Fracture, Tortuous Aorta

Generated
Report

Hyperaeration

Atelectasis

Scarring

Enlargement

Calcification

Figure 4: Illustration of progressive changing of saliency maps with abnormality localizations dur-
ing the training process of RadSCR (Case I). The reference annotation of the abnormality regions
(bounding boxes within green lines) are also provided which are inferred from the paired report.
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'é 5 Slight interval increase in the degree of left retrocardiac airspace opacity, which may represent worsening
3 § 2 | atelectasis versus Gonsolidation. The right lung is grossly clear. No pleural effusion or pneumothorax. The
&~ £ | cardiomediastinal silhouette is unchanged

PA and lateral views of the chest. The heart is in a normal position, and there is no evidence of cardiomegaly.
The lungs are clear of focal consolidation, effusion, or pulmonary vascular congestion. In comparison with the
study of ___, there has been interval improvement in left lower lobe atelectasis. There is no pulmonary edema.
There is no pneumothorax or pleural effusion. The aortic arch is not opacified. The left lung has a small opacity,
which may represent a chronic process. There is evidence of old rib fractures, particularly on the left side. The
mediastinal and hilar contours are normal.

Generated
Report

True Positive Opacity, Atelectasis, Hyperaeration False Positive Fracture

Reference Annotation

Opacity

Atelectasis

Consolidation

2 W

Figure 5: Tllustration of progressive changing of saliency maps with abnormality localizations during
the training progress of RadSCR (Case II).
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self-critiquing mechanism), we present the visualization of one concept embedding, X = 5 proto-
type embeddings, and 100 randomly sampled sentence embeddings of which sentences are associ-
ated with each k' prototype (in total 500 sentence embeddings for each abnormality). We use the
t-SNE algorithm to project the D-dimensional embeddings into a 2-dimensional vector. In general
speaking, the points of embeddings learned with the self-critiquing mechanism are gathered more
than those without the self-critiquing mechanism in most plots. It might indicate that the critiqued
embeddings could represent the related information of each abnormality with less irrelevant features.
However, this kind of visualization is also affected by the dimension reduction algorithm we use,
while it is not the only way to explain these visualization results. We also note that how to properly
interpret the learned representation in latent space remains open.

A.9 TRENDS OF SENTENCE SIMILAR SCORES OF THE VISUAL PROPOSAL AND THE
ALTERNATIVES DURING TRAINING

The proposed RadSCR allows the visual proposal P, and the alternatives (C"™, C"™#)) interact

by contrasting their similarity scores with the sentence s(,,,) to compute a discounted similarity score
(P, 5(m)) (according to Eq. 11). In addition, C' (Neg) fyrther supplements P, to recover the false

negatives. As shown in Figure@ during training, the similarity score between P, and s(,,,) increases

while the scores between (Co "™, ™)) and S(m) decrease, as anticipated. Also, the similarity

score between the false negatives C'N°2) and the corresponding sentences 5(0) increases, so that the
learned model can pick up the missed abnormalities.
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Figure 6: Visualization of concept embedding, prototype embedding and sentence embeddings in
the latent space (Part I).
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Figure 7: Visualization of concept embedding, prototype embedding and sentence embeddings in
the latent space (Part II).
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Figure 8: Trends of the sentence similar scores of the visual proposal and the alternatives during
training. o (P, S(m))s U(C’T(nAbn),s(m)), U(C’T(,{mg),s(m)), and o(CVe9) 5)) are the similarity

scores defined in Section 3.3, and G (P, 5(,n,)) is the overall discounted score.
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