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ABSTRACT

Clinically accurate and interpretable automatic radiology reporting requires re-
liably grounding the identified abnormalities with the corresponding regions lo-
cated in the radiology image. In this paper, we propose to introduce self-critiquing
mechanisms into the automatic report generation process to ensure the identified
abnormalities can reliably grounded before they are reported. Instead of adopting
LLM-based reasoning to implement the self-critiquing mechanisms which will in-
cur high inference cost in test time, we propose a novel Radiology Self-Critiquing
Reporting (RadSCR) model framework which allows multi-faceted mechanisms
to be learned end-to-end to identify and verify some hypothesized abnormality
regions by comparing with i) alternative abnormalities, ii) alternative patients’
X-ray images, and iii) potential false negatives. The self-critiqued abnormality
proposals are then integrated using a retrieval-based approach to generate the final
report. Our experimental results show that RadSCR can outperform the state-of-
the-art report generation methods in terms of clinical accuracy by a large margin,
with improved reliability of abnormality localization.

1 INTRODUCTION

Automated radiology image reporting aims to reduce radiologists’ workloads on report preparation.
Recent development of deep learning models for generating X-ray reports has shown continuous
improvement on clinical accuracy Chen et al. (2020); Yan et al. (2023); Wang et al. (2024c). Yet, how
to reliably grounding a generated report with the regions of the abnormalities identified in the images
remains open, which is important as this is what radiologists carry out in practice. In this paper, we
propose to incorporate self-critiquing mechanisms into deep learning models for generating X-ray
reports so that the reliable grounding of the abnormality findings can be established.

Grounding radiology images with abnormality findings using deep learning models is non-trivial
as large-scale annotations of abnormality regions are still lacking. Some recent works explored
anatomy-awareness by making reference to detected anatomical parts (e.g., lung, heart, etc.) in the
image for grounding the findings, resulting in higher accuracy and better interpretability (Tanida
et al., 2023; Li et al., 2024; Dalla Serra et al., 2023; Yan et al., 2024). In practice, more fine-grained
abnormality regions are generally preferred for grounding. Also, carefully examining potential ab-
normality regions is often unavoidable if a reliable radiology report is to be prepared.

Self-critiquing is commonly adopted by medical professionals to reduce the chance of making di-
agnosis mistakes. In the context of report preparation, it refers to the process where radiologists
identify and validate the potential abnormality regions on the X-ray images before findings are con-
cluded. Existing automatic radiology reporting models are mostly trained based on statistical cor-
relations between regions and paired sentences (Fallahpour et al., 2025; Gai et al., 2024; Fan et al.,
2025), resulting in unavoidable hallucinations. The idea of self-critiquing is still under-explored,
except for a few works on visual question answering (Cheng et al., 2025; Wu & Mooney, 2019).

We argue that reliable radiology report generation requires “multi-faceted” self-critiquing mecha-
nisms for establishing reliable grounding of potential abnormalities. While large language model-
based paradigms like chain-of-thought have recently been explored to introduce test-time reasoning
to alleviate hallucination (Wu & Mooney, 2019; Cheng et al., 2024; Cocchi et al., 2025), we con-
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sider alternatives as LLM-based reasoning typically generates a long chain of “thinking” tokens
during inference and incurs high test-time cost (Huang et al., 2025; Geiping et al., 2025). Also,
deploying LLMs for applications with a low-resource environment is non-trivial. Our idea is to in-
corporate multi-faceted self-critiquing mechanisms into the model architecture to be learned during
the training, without requiring test-time scaling.

To this end, we propose a novel Radiology Self-Critiquing Reporting (RadSCR) model framework
which adopts a region-guided chest X-ray report generation paradigm with self-critiquing mecha-
nisms incorporated to mimic the self-critiquing thinking process of radiologists for enhancing the
report’s reliability. RadSCR first identifies an initial set of fine-grained visual proposals, each rep-
resented by a triplet of abnormality region, abnormality label and the corresponding visual features.
Self-critiquing is then realized by cross-checking the hypothesized visual proposals to see if their
visual features are distinct and relevant enough for the associated abnormalities. In particular, it
explores alternative abnormalities and alternative patients’ X-ray images, and then further takes a
holistic view of the image to double-check the possibility of missing abnormalities. The visual pro-
posals “discounted” by the possible alternatives are considered together for retrieving appropriate
sentences of abnormality findings from a report repository to be integrated by an LLM decoder to
generate the final report. We carried out comprehensive experiments to evaluate the effectiveness
of RadSCR using a variety of datasets including MIMIC CXR, ReXGradient, and IU X-ray. Our
experimental results demonstrate that RadSCR outperforms all the state-of-the-art report generation
baselines by a large margin, with improved localization of abnormality regions for grounding the
findings. The main contributions of the proposed RadSCR include:

• providing an automatic radiology reporting methodology guided by abnormality regions
for more fine-grained grounding of abnormality findings;

• introducing self-critiquing mechanisms into a deep model architecture for more reliable
grounding without the need to introduce LLM-based reasoning in test time;

• demonstrating via comprehensive empirical evaluation the effectiveness of introducing
self-critiquing mechanisms to achieve clinically accurate radiology X-ray reporting.

2 RELATED WORKS

Grounded Radiology Report Generation The grounding of the generated findings of the report
within the relevant regions on radiology images is important for medical image understanding and
diagnosis (Bannur et al., 2024). Various well-designed attention mechanism modules have been
proposed to locate abnormality region of interests (ROIs) for X-ray report generation. Wang et al.
(2024a) proposed to use class activation mapping (CAM) (Zhou et al., 2016) to guide the visual
attention module to identify regions of abnormalities, where vision-weighted maps are obtained
from a multi-abnormality classifier head topped at the visual encoder. Alternatively, the anatomy-
awareness approach tries to locate the anatomical parts relevant to the findings generated for ground-
ing. RGRG (Tanida et al., 2023) and ORGAN (Hou et al., 2023b) use a shared visual extractor to de-
tect the regions of the anatomical parts and then generate the report accordingly. BoxMed-RL (Jing
et al., 2025), MedPromptX (Shaaban et al., 2024) and MAIRA-2 (Bannur et al., 2024) learn to anno-
tate the anatomical regions and detect the possible pathology labels, followed by report generation.
However, localizing anatomical parts is not precise enough for the grounding purpose.

Radiology Reasoning in Visual Question Answering Radiology reporting typically involves a
multi-step diagnostic process to identify and locate abnormalities revealed in the image. Recent
advances in LLM-based reasoning approaches use chain-of-thought (CoT) to represent the process
for report generation. For instance, MedCoT (Liu et al., 2024) incorporates several LLMs as hi-
erarchical experts by CoT, where each expert’s output is further verified by a subsequent expert.
MedRAX (Fallahpour et al., 2025) decompose radiology image diagnosis into a sequence of tasks
and use multiple pre-trained models as agents to solve each task. ChestX-Reasoner (Fan et al., 2025)
further decomposes each diagnostic finding of the report into a step-by-step CoT where each CoT
contains a textual description, anatomical region, and expert-labeled clinical notes. Instead of using
CoT, RECAP (Hou et al., 2023a) and ORGAN (Hou et al., 2023b) implement diagnostic reason-
ing by finding a proper graph walk in a pre-constructed knowledge graph of clinical findings. Our
proposed RadSCR does not employ reasoning token generation in test time as CoT and achieves
self-critiquing by incorporating that directly into the model architecture. In the literature, there exist
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some recent works which also take the “what-if” approach as RadSCR for more reliable radiology
report generation. PGFC (Mahmood et al., 2025) uses a fact-checking model to determine whether
a pair of a clinical finding and an anatomical region match with each other or not. CoFE (Li et al.,
2025) creates counterfactual explanations by replacing patches on an X-ray image until the diagnosis
changes for contrastive learning, where localization and grounding are not considered. In contrast,
our proposed RadSCR critiques the predicted abnormality location by considering alternative abnor-
mality and alternative image, and false negative checking; and use these critiquing to enhance the
sentence retrieval reliability for report generation without generating counterfactual explanations.

Weakly Supervised Abnormality Localization Lacking large-scale annotation of abnormality re-
gions in X-ray images makes supervised learning of abnormality localization difficult. Weakly-
supervised learning approaches for abnormality localization have been investigated. Attention
mechanisms are learned to attend regions of abnormalities, where abnormalities are then classi-
fied based on the visual features of these regions (Li et al., 2018). Anatomical areas can also be
used to restrict potential regions for subsequent localization (Yu et al., 2022). With a similar idea,
some coarse-grained abnormal regions can first be grounded before localizing the regions of specific
abnormalities (Ouyang et al., 2020; Wang et al., 2024b). In general, how to precisely localize the
regions (not to over-cover or over-look) for grounding the report generation remains open.

Figure 1: An overall model architecture of the proposed RadSCR for radiology report generation.

3 METHODS

Given a radiology image I , our proposed Radiology Self-Critical Reporting (RadSCR) framework
generates a radiology report R with findings of abnormalities grounded with abnormality regions
identified in I . First, a set of visual proposals of abnormalities is hypothesized. To obtain the
visual proposals, an X-ray image I encoded as the visual features V is first fed to a classifier to
predict the presence of a set of N abnormalities. The potential region of the m-th predicted positive
abnormality, represented as a bounding box Bm, can be located using Grad-CAM (Selvaraju et al.,
2017). For each abnormality, a concept embedding Em is to be learned. A region-based visual
proposal of the m-th abnormality is thus denoted as a triple (V,Bm, Em), and represented as:

Pm = PropEncoder(V,Bm, Em). (1)

Then, the hypothesized visual proposals are critiqued for their distinctiveness and relevancy using
multi-faceted self-critiquing mechanisms. Three mechanisms are introduced to critique the visual
proposals {Pm} by proposing i) alternative abnormalities, ii) alternative patient X-ray images, and
iii) potentially missing abnormalities, represented respectively as: {C(Abn)

m }, {C(Img)
m }, and C(Neg).

Each hypothesized visual proposal Pm is considered together their corresponding alternative visual
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proposals C
(Abn)
m and C

(Img)
m to retrieve relevant sentences from the report repository, denoted as

Qm. C(Neg) is used to retrieve additional sentences of potential false negatives which could be
missed in the localization step, denoted as U . They are then fed to an LLM decoder with a pre-
defined prompt for sentence aggregation and final report generation. The process is denoted as:

R = Generate({Qm}, U); {{Qm}, U} = Retrieve({(Pm, C(Abn)
m , C(Img)

m )}, C(Neg)). (2)

Fig. 1 provides an overview of the RadSCR framework, with details to be presented.

3.1 CONSTRUCTING RADIOLOGY VISUAL PROPOSALS

We represent the visual features V ∈ RHW×D of an X-ray image I as a patch map H × W with
D-dimensional features encoded by a visual encoder, denoted as V = VisEncoder(I).

Initial Abnormality Prediction The presence of the m-th abnormality is predicted by feeding the
average visual features of V over the dimension of HW to a fully connected network FCN : RD →
RN , where the predicted probability is computed as:

pm = Sigmoid(FCN(AvgPool(V )). (3)

The M abnormalities with pm > 0.5 form the set of potential (positive) abnormalities in I .

Abnormality Region Localization: The relevant regions on the image I associated with each pre-
dicted positive abnormality are then to be localized. As conventional object detectors do not gen-
eralize well to out-of-distribution (OOD) abnormalities, we leverage the class activation mapping
(CAM) to compute the pixel-level saliency on the image I for each predicted positive abnormal-
ity Fu et al. (2020), with the saliency map denoted as Wm = CAM(VisEncoder, I,m) (as shown
in Fig. 1). Then, a set of corresponding bounding boxes, denoted as BBoxes = {bm,1, bm,2...}, is
estimated based on Wm using the objectness estimation algorithm proposed by Cheng et al. (2014),
where bm,∗ is a patch-level mask sharing the same size of I with the patches set as 1 to indicate
the presence of the m-th abnormality, or 0 otherwise. The localized region of the mth abnormality
Bm ∈ RHW is then formed by the union of the bounding boxes in BBoxes , given as:

Bm = Map
(
MaxPool({bm,1, bm,2, ...})

)
. (4)

Region-based Visual Proposal Encoding: We conceptualize the N abnormalities and the common
chest X-ray background using (N+1) global concept representations E ∈ R(N+1)×D (to be learned
as detailed in Section 3.3). {Em ∈ R1×D}Nm=1 corresponds to the concept representations of the N
abnormalities, and EN+1 ∈ R1×D is the padding representation of the background.

The region-based visual proposal for the m-th positive abnormality (V,Bm, Em) is represented
as: Pm = PropEncoder(V,Bm, Em). We implement the proposal encoder by first obtaining the
spatial-aware abnormality representation Fm based on abnormality region mask Bm with the con-
cept representation Em, and then concatenating it with the visual features V at the patch level to
obtain an abnormality proposal representation Pm ∈ RHW×D, given as :

Pm = FFN(V ⊕ Fm); Fm = Embedding(Bm, Em), (5)

where Embedding() replaces the slots of abnormality localization in Bm with Em and the remain-
ing slots with padding embedding EN+1, and FFN(·) is a two-layer feed-forward network.

3.2 LEARNING SELF-CRITIQUING MECHANISMS

To ensure the reliability of the visual proposals, we mimic the thinking process of radiologists to re-
examine the proposals’ correctness by considering i) alternative abnormalities, ii) alternative patient
X-ray image, and iii) potential false negative abnormalities. With reference to each visual proposal
(V,Bm, Em), we modify different components to form additional proposals for the critiquing.

Critiquing Based on Alternative Abnormalities For chest X-ray images, some abnormalities with
similar appearance are hard to differentiate. To self-critique if a positive abnormality is distinct
enough as compared to other abnormalities, we compute the visual proposal of an alternative abnor-
mality (V,Bm, E′

m), where E′
m can be the concept representation of an abnormality selected from
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the predicted negative abnormalities or those predicted positive but in some areas not covered by
Bm. The corresponding representation is given as:

C(Abn)
m = PropEncoder(V,Bm, E′

m). (6)

Critiquing Based on Alternative X-ray Images To check if a visual proposal is specific enough
and relevant for diagnosing the abnormality among patients with different abnormalities, we form
another type of alternative proposal for critiquing by replacing the visual features of the hypothe-
sized visual proposal (V ) with those of a randomly selected image from other patients (V ′). The
representation of the critique is obtained by:

C(Img)
m = PropEncoder(V ′, Bm, Em). (7)

Critiquing by Considering Potential False Negatives: As all the visual proposals are hypothe-
sized using fine-grained localization, abnormalities characterized by more holistic features could be
“overlooked”. To double-check for such false negatives, we leverage the global concept representa-
tions of the predicted negative abnormalities to make an additional complementary visual proposal.
Localizing the predicted negatives is non-trivial as reliable bounded boxes are absent. Instead, we
compute an overall complementary visual proposal by taking an average pooling of the concept rep-
resentation of all the predicted negatives, given as E0 = AvgPool

(
{Em|pm < 0.5,m ∈ [1,N ]}

)
.

We then associate it with a region by aggregating the bounding boxes of the major anatomical parts
in the Chest region based on the automatic detection tool (Seibold et al., 2023) if not annotated,
denoted as B0. The visual proposal is thus denoted as (V,B0, E0), and represented as:

C(Neg) = PropEncoder(V,B0, E0). (8)

3.3 RETRIEVAL-BASED REPORT GENERATION WITH SELF-CRITIQUING

With an X-ray image represented as ({(Pm, C
(Abn)
m , C

(Img)
m )}, C(Neg)) we adopt the retrieval-based

approach for report generation (Endo et al., 2021; Yang et al., 2021; Ranjit et al., 2023; Yan et al.,
2024). Sentences of relevant findings matched with the image are first retrieved from a repository of
radiology reports and then combined using an LLM to generate the final report.

Representations of Sentence and Prototype: We represent a sentence annotated with the m-th
abnormality in a report as s(m). For each report, we concatenate all sentences of the same abnor-
mality into one to ease the subsequent retrieval. To allow robust retrieval of s(m) based on the visual
proposal Pm, we argue that it is important for not only s(m) aligning well with Pm, but also its
higher-level clinical concepts (called “prototypes” in the following sections). For each abnormality,
we assume K prototypes, represented as O := {ok}Kk=1. We learn the sentence representation s(m)

and the prototype representation opt(s(m)) so that they are close to Pm over all the sentences in the
repository, where pt(s) gives the index of s’s associated prototype.

To compute s(m), we first apply pre-trained ClinicalBERT (Yan & Pei, 2022) to obtain sbert ∈ Rl×D

where l is the sentence length, and then cross-attention Attnx() between sbert with the concept
representation Em to pick up the associated semantics. Then, self-attention Attns() with average
pooling is used to obtain the sentence representation s(m) ∈ R1×D:

s(m) = AvgPool(Attns(T
′
m, T ′

m, T ′
m)) where T ′

m = Attnx(sbert, Em, Em). (9)

To derive the prototypes O, we first apply K-means to the TF-IDF representation of the sentences
in the report repository. The sentence-cluster association is then fixed. The representation of the
k-th prototype is initialized by applying average pooling to the representations of the associated
sentences, denoted as ok = AvgPool({s : pt(s) = k}), and will be optimized during training.

Retrieving Relevant Sentences with Self-Critiquing and Report Generation: Given the visual
proposal Pm, relevant sentences are retrieved among those annotated with the mth abnormality to
support the report generation. To support more robust retrieval of relevant sentences, we compute
the similarity score between the visual proposal Pm and a sentence s(m) by considering also the
sentence’s prototype, given as:

σ(Pm, s(m)) = Pm ⊙ s(m) + α1Pm ⊙ opt(s(m)), (10)
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where ⊙ is the dot product and α1 is the importance weight of the prototype-based similarity. For
enhancing reliability, we incorporate the alternative visual proposals C(Abn)

m and C
(Img)
m to suppress

Pm and discount the similarity score as:

σ̃(Pm, s(m)) = σ(Pm, s(m))− α2

(
σ(C(Abn)

m , s(m)) + σ(C(Img)
m , s(m))

)
, (11)

where α2 is the importance weight of the alternative proposals. The top-M sentences retrieved based
on the discounted similarity score σ̃(Pm, s(m)) form the candidate set of sentences {Qm}Mm=1.

For the complementary visual proposal C(Neg), the use of prototypes is not needed as the predicted
negatives are aggregated together in our formulation. The similarity score between C(Neg) and the
sentences corresponding to E0 (denoted as s(0)) can be computed by σ(C(Neg), s(0)) = C(Neg) ⊙
s(0). The top-(N−M) sentences based on σ(C(Neg), s(0)) form the complementary set of candidate
sentences denoted as {Un}N−M

n=1 .

To generate the final report R, an LLM is adopted to integrate the retrieved results using a prompt:

R = LLM
(
Prompt({Qm}Mm=1, {Un}N−M

n=1 )
)
. (12)

In our experiment, the Prompt is designed so that all sentences in Q are expected to be used for
report generation, while those in U are only used if they do not contradict Q (as shown in Fig. 3).

3.4 LOSS FUNCTION FOR MODEL LEARNING

The RadSCR model M is designed with the following learnable components: the visual encoder
VisEncoder(), the initial abnormality predictor FCN(), the abnormality concept representations
{Em}, the visual proposal encoder PropEncoder(), the sentence attention mechanisms Attns() and
Attnx(), and the prototype representations O. For model learning, we define an objective function
with a set of loss terms to achieve reliable retrieval.

Loss for Visual-Language Alignment: For each image-report pair (indexed by i) in the training
batch B, each underlying visual proposal P i

m should be close to the positive samples which are the
ground-truth sentence si(m) and the prototype oipt(s(m))

, but far from the negative samples containing

sentences of: a) other abnormalities {si(¬m)} := {si(j)}j∈{1...M}\m; b) same abnormality but in dif-

ferent reports {s¬i
(m)} := {sj(m)}j:={1...|B|}\i; and c) same abnormality but with different prototypes

{o¬pt(si
(m)

)} := {ok}k∈{1..K}\pt(si
(m)

). The loss term is thus defined as:

L(Prop) = LC(P
i
m, si(m), {s

i
(¬m)}) + LC(P

i
m, si(m), {s

¬i
(m)}) + LC(P

i
m, opt(si

(m)
), {o¬pt(si

(m)
)}).
(13)

where LC(p, {pos}, {neg}) refers to the symmetric contrastive loss to force p close to the positive
samples {pos} and far from the negative samples {neg} (Radford et al., 2021). By optimizing
Eq. (13), the representations of the visual proposals, sentences and prototypes on one hand will
be aligned. Due to end-to-end learning, the abnormality localization is also learned in a weakly-
supervised manner. Note that we drop the index i in the following sections for the clarity.

Loss for Self-critiquing: To learn the self-critiquing mechanisms, we make use of triplet loss to
push s(m) close to Pm but apart from alternative proposals C(Abn)

m and C
(Img)
m to improve retrieval

reliability. The loss term is defined as:

L(Alt) =
1

2M

M∑
m=1

(
LT (s(m), Pm, C(Abn)

m ) + LT (s(m), Pm, C(Img)
m )

)
, (14)

where LT (a, pos, neg) is triplet loss with a being the anchor, pos the positive sample, and neg the
negative sample.

For false negative self-critiquing, we define an additional contrastive loss to guide C(Neg) to be close
to the sentences with abnormalities present but not hypothesized (positive mentions) {ŝ+(j)}, but far
from those with abnormalities absent from being mentioned (negative mentions) {ŝ−(j)}:

L(Neg) = LC(C
(Neg), {ŝ+(j)}, {ŝ

−
(j)}). (15)
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We train the proposed RadSCR model by optimizing: L(Prop) + β1L(Alt) + β2L(Neg) with the
importance weights β1 and β2.

4 EXPERIMENT

Data We test the proposed RadSCR on three publicly available X-ray image-report datasets MIMIC
CXR (Johnson et al., 2019a;b), ReXGradient (Zhang et al., 2025) and IU XRay (Demner-Fushman
et al., 2016) for report generation, report retrieval and abnormality detection. We also use VinDR-
CXR (Nguyen et al., 2022) to test the performance of abnormality localization on X-ray images.

Baselines For performance comparison, we evaluate a set of state-of-the-art approaches, including
i) VLM-based approaches: Transformer (Vaswani et al., 2017), R2Gen (Chen et al., 2020),
R2GenCMN Chen et al. (2021) RGRG (Tanida et al., 2023), ii) LLM-based approaches: Qwen3-VL
(3B) (Yang et al., 2025), MedGamma (4B) (Sellergren et al., 2025), LLaVA-Med (7B) (Li
et al., 2023), LLaVA-Rad (7B) (Zambrano Chaves et al., 2025), CoMT (7B) (Jiang et al., 2025),
and iii) retrieval-based approaches: BiomedCLIP (Zhang et al., 2023), MedCLIP Wang et al.
(2022), BioViL (Boecking et al., 2022), X-REM (Jeong et al., 2023) and CXR-RePaiR (Endo
et al., 2021). Related implementation details are reported in the Appendix A.1.

Model Setting We train RadSCR on MIMIC CXR (training set) and evaluate it by the test sets
of MIMIC CXR, ReXGradient and IU XRay. We use the Swin Transformer (Liu et al., 2021) as
visual extractor and Phi (4B) (Ren et al., 2025) as the LLM decoder with its parameters frozen. We
consider N = 37 abnormalities annotated by Chest ImaGenome Wu et al. (2021). The prototype
number is set to K = 5 for each abnormality, where sentences with positive mentions are clustered
into 4 groups and those with negative mentions form the remaining one.

4.1 PERFORMANCE EVALUATION ON REPORT GENERATION

Evaluation Metrics: We evaluate the generated reports by i) CheXbert (Smit et al., 2020) of 14
observation accuracy, ii) Clinical Efficacy (CE) (Chen et al., 2020) extended to 37 abnormalities
(CE-Abn) and the normality of 25 anatomical parts (CE-Organ), iii) RadGraph-F1 (Jain et al.,
2021) which also considers relationship correctness among observations, iv) RadNLI (Miura et al.,
2021) which measures inference correctness of contradiction, entailment or neutral between gener-
ated reports and ground-truth, and v) BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie,
2005) and ROUGE-L (Lin, 2004) for measuring n-gram accuracy. The ground-truth annotations are
used as targets in computing the metrics.

Model CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn. Organ P. C. Pr. Re. F-1

VLM-
based

Transformer 0.201 0.304 0.208 0.269 0.191 0.130 0.161 0.217 0.135
R2Gen 0.203 0.303 0.207 0.476 0.205 0.243 0.168 0.187 0.128
R2Gen-CMN 0.157 0.402 0.258 0.416 0.201 0.137 0.144 0.199 0.109
RGRG 0.383 0.489 0.251 0.669 0.321 0.248 0.379 0.326 0.317

LMM-
based

Qwen3-VL 0.184 0.195 0.065 0.289 0.081 0.046 0.253 0.160 0.112
MedGamma 0.419 0.413 0.219 0.407 0.141 0.086 0.469 0.143 0.150
LLaVA-Med 0.397 0.135 0.041 0.555 0.202 0.139 0.332 0.335 0.312
LLaVA-Rad 0.487 0.512 0.399 0.661 0.285 0.220 0.314 0.322 0.286
CoMT 0.406 0.250 0.151 0.485 0.218 0.151 0.331 0.290 0.274

Retrieval
-based

BiomedCLIP 0.309 0.221 0.184 0.675 0.235 0.175 0.335 0.314 0.305
BioViL 0.403 0.367 0.325 0.595 0.232 0.173 0.300 0.302 0.274
MedCLIP 0.032 0.297 0.106 0.153 0.112 0.071 0.175 0.25 0.161
CXR-RePaiR 0.385 0.423 0.380 0.630 0.251 0.191 0.293 0.292 0.264
X-REM 0.382 0.402 0.382 0.615 0.243 0.186 0.303 0.310 0.280
RadSCR 0.574 0.610 0.572 0.744 0.422 0.367 0.440 0.433 0.408

Table 1: Performance comparison on report generation based on MIMIC CXR data. “P.” and “C.”:
Partial and Complete correctness of observation relationship; “Pr.” and “Re.”: Precision and Recall.

Experimental Results and Discussion: We conduct extensive experiments for performance eval-
uation based on MIMIC CXR, ReXGradient and IU Xray datasets. Table 1 shows the results on
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Model CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn. Organ P. C. Pr. Re. F-1

RadFM 0.566 0.635 0.545 0.652 0.399 0.367 0.432 0.401 0.395
MAIRA-2 0.581 0.621 0.565 0.701 0.444 0.379 0.445 0.422 0.410
RadSCR 0.574 0.610 0.572 0.744 0.422 0.367 0.440 0.433 0.408

Table 2: Performance comparison on MIMIC CXR against some recent models with larger decoders.

MIMIC CXR. Among baselines, LLaVA-Rad shows effective performance in diagnosing common
chest abnormalities evaluated by CheXbert, and the region-based RGRG shows a high accuracy
of reporting clinical observations relationship (occurrence and anatomical location) evaluated by
RadGraph-F1. RadSCR outperforms other baselines in both clinical accuracy metrics CheXbert
and RadGraph-F1. Meanwhile, RadSCR gives the best performance in the detection of anatom-
ical abnormalities, as indicated by CE-Abn and CE-Organ scores, covering a wide range of
chest abnormalities and their anatomical locations. In addition, RadSCR gives the highest RadNLI
scores, indicating fewer diagnostic statements contradictory to the ground truth in the generated re-
ports. These results suggest that RadSCR can effectively improve clinical accuracy in terms of both
abnormality detection and diagnostic coherence to the ground-truth for report generation. Similar
results are obtained for ReXGradient and IU Xray datasets (see Appendix A.1 for more details). We
further compared RadSCR with some more recent models with larger decoders, including MAIRA-
2 (7B) (Bannur et al., 2024) and RadFM (Wu et al., 2025), as shown in Table 2. Although they have
significantly larger model sizes, our proposed RasSCR still achieved comparable results.

Ablation Study: To better understand the impact of different components in RadSCR, an abla-
tion study is conducted by removing (i) self-critiquing mechanisms in both training and testing, (ii)
self-critiquing mechanisms in testing only, (iii) LLM decoder, and (iv) abnormality prototypes. The
results are shown in Table 3. Referring to (i) and (ii), removing the self-critiquing mechanisms leads
to obvious performance degradation. Meanwhile, the self-critiquing mechanism in inference can
ensure generated reports of better quality (see (ii)). In addition, by eliminating C(Neg), the scores of
both CheXbert(F-1) and CE-Abn drop, indicating the lower accuracy of abnormality detection.
It shows that the global features used by C(Neg) could help RadSCR identify certain missed abnor-
malities. Furthermore, results in (iii) indicate drops in the RadNLI score when LLM is removed,
indicating its role in ensuring the content coherence of the retrieved sentences and the generated
report. Also, results in (iv) show that removing the prototypes leads to drops in CE-Organ and
RadGraph-F1 scores which also consider the accuracy of the associated anatomical parts. The
use of prototypes allows sentences of the same abnormalities with context variations (e.g., regions
of observation) to be better organized for more fine-grained retrieval.

RadSCR w/o. CheXbert(F-1) CE-Abn CE-Organ RadGraph(Complete) RadNLI(F-1)
- 0.610 0.572 0.744 0.367 0.408

(i)

C(Img) 0.581 0.542 0.691 0.371 0.388
C(Abn) 0.560 0.523 0.688 0.300 0.369
C(Neg) 0.602 0.556 0.709 0.345 0.367
C(∗) 0.561 0.535 0.689 0.289 0.359

(ii)

C(Img) 0.605 0.450 0.669 0.311 0.325↓↓
C(Abn) 0.577 0.465 0.648↓↓ 0.253 0.335
C(Neg) 0.491↓↓ 0.545 0.668 0.354 0.398
C(∗) 0.545↓ 0.379↓ 0.653↓ 0.231↓ 0.343

(iii) LLM 0.611 0.554 0.724 0.351 0.326↓
(iv) {Ok}Kk=1 0.591 0.377↓↓ 0.751 0.210↓↓ 0.357

Table 3: Results of ablation study by MIMIC CXR. C(∗) refers to {C(Img), C(Abn), C(Neg)}. “↓↓”
and “↓” indicate the scores with the largest and second largest drops, respectively.

Effect of sampling more alternative proposals: We can extend the self-critiquing mechanisms by
sampling more alternative proposals C(Abn)

m and C
(Img)
m . We first tested the number of alternatives

randomly sampled Np from zero to three for both C(Abn) and C(Img), with the results shown in
Fig. 2. Np = 0 indicates that no alternative is considered. For cases with Np > 1, the averaged
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effect of multiple sampled alternatives are computed for discounting the hypothesized proposal. By
jointly increasing the number of C(Abn) and C(Img), the best performance is obtained at Np = 2,
where 2×M alternative abnormalities and 2×M alternative X-ray images are considered. While
the result implies that considering multiple alternatives can improve the effectiveness of the self-
critiquing mechanisms, the optimal ways of sampling the alternatives remain open. We tested also
different schemes of controlling randomness based on the patients’ metadata and achieved further
performance improvement (see Appendix A.1 for more details).

In addition, other than random sampling, we further investigated the effectiveness of other strategic
schemes of sampling alternatives, including sampling those most similar to the visual proposal (hard
samples), sampling those least similar (easy samples), as well as sampling a mixture of them. As
shown in Table 4, some strategic sampling schemes (e.g., Random+hard+easy) can further boost the
performance for some metrics. In general, how to better sample the alternatives to achieve more
effective self-critiquing is an interesting direction of extending the RadSCR’s framework.

Figure 2: Performance of RadSCR with different numbers of alternative proposals sampled.

Sampling CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn. Organ P. C. Pr. Re. F-1

One alternative abnormality sampling
Random 0.574 0.610 0.572 0.744 0.422 0.367 0.440 0.433 0.408
Only hard sample 0.561 0.577 0.532 0.720 0.432 0.362 0.444 0.451 0.413
Only easy sample 0.568 0.593 0.566 0.751 0.426 0.361 0.432 0.412 0.399
Three alternative abnormalities sampling
Random 0.570 0.609 0.577 0.731 0.441 0.377 0.448 0.455 0.419
Random+hard+easy 0.575 0.606 0.583 0.739 0.446 0.381 0.442 0.462 0.421

Table 4: Performance of different alternatives sampling schemes for critiquing on MIMIC CXR.

4.2 PERFORMANCE EVALUATION ON RETRIEVAL RESULTS

To further evaluate the ranking quality of the sentence retrieval results, we make use of Accuracy-K
and some preference ordering metrics. The former gives the percentage of target sentences found
in the top-K results. For the latter, we consider the top-50 results and measure the percentage
of sentences with correct positive diagnoses ranking higher than the following three types of less
preferred sentences: i) Incomplete: sentences with correct positive abnormalities but incomplete,
ii) Partially Correct: sentences with correct and incorrect positive abnormalities, and iii) Incorrect:
sentences without correct positive abnormalities. We denote the three preference ordering (PO)
metrics as PO-1, PO-2 and PO-3. As shown in Table 5, RadSCR performs consistently better than
the baselines for highly-ranked sentences as indicated by Acc@5 and Acc@10. It also achieves the
best preference ordering scores, indicating its effectiveness in preserving overall sentence ranking.

4.3 PERFORMANCE EVALUATION ON ABNORMALITY PREDICTION AND LOCALIZATION

To illustrate the importance of introducing region-awareness for abnormality prediction, we cre-
ate a baseline which uses again Swin Transformer (Swin) as visual extractor, followed by linear
projection layers (MLP) instead of the fine-tuned RadSCR for abnormality prediction. As shown
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Model IR Accuracy Preference Order
Acc@5 Acc@10 PO-1 (Incomplete) PO-2 (Partially Correct) PO-3 (Incorrect)

CXR-RePaiR 0.106 0.106 0.010 0.015 0.026
BiomedCLIP 0.266 0.288 0.478 0.514 0.467
MedCLIP 0.010 0.042 0.480 0.534 0.432
BioViL 0.171 0.171 0.523 0.528 0.523
X-REM 0.243 0.302 0.023 0.025 0.031
RadSCR 0.277 0.347 0.644 0.659 0.606

Table 5: Comparing the quality of sentence retrieval based on MIMIC CXR dataset.

in Table 6, Swin+RadSCR outperforms Swin+MLP for all accuracy metrics, indicating that the
proposed RadSCR with the region-awareness introduced can effectively improve the discriminative
properties of the visual feature for abnormality prediction.

Model F-1↑ FPR↓ PR-AUC↑ ROC-AUC↑
Swin+MLP 0.160 0.440 0.562 0.756
Swin+RadSCR 0.208 0.425 0.703 0.900

Table 6: Evaluation on abnormality prediction. FPR refers to false positive rate.

We also compare RadSCR’s performance on abnormality localization with two existing weakly-
supervised localization methods, including one based on the patch-based approach TDIL (Li et al.,
2018) and another one based on the attention-based approach HAM (Ouyang et al., 2020). The eval-
uation is based on VinDR dataset, and the mean average precision score is adopted for the metrics.
As shown in Table 7, with the threshold of the Intersection of Union (IoU) set as 0.1/0.3/0.5,
Swin+RadSCR can better localize the ground-truth abnormality regions by a large margin com-
pared to the baselines (see Appendix for more details).

Model IoU(0.1) IoU(0.3) IoU(0.5)
TDIL 0.125 0.095 0.077
HAM 0.134 0.102 0.081
Swin+MLP 0.210 0.054 0.012
Swin+RadSCR 0.308 0.199 0.101

Table 7: Evaluation of abnormality localization on VinDR dataset with annotations of abnormality
regions. The available model weights of TDIL and HAAL used in this experiment are trained on
ChestXray8 (Wang et al., 2017), and Swin+MLP/RadSCR are trained on MIMIC CXR.

5 CONCLUSION

We propose a novel Radiology Self-Critiquing Reporting model framework called RadSCR which
learn multi-faceted mechanisms to self-reflect and verify the potential abnormality regions by con-
structing visual proposals of hypothesized abnormalities presented. The self-critiqued proposals are
then integrated by a retrieval-based approach to generate reliable radiology reports, outperforming
the SOTA report generation methods in terms of clinical accuracy and improved reliability of the
located abnormality regions. Limitation The possibly false negative abnormalities are critiqued in
the whole chest region on the X-ray images. Thus, the critique results on these critique results might
not indicate any specific abnormality region to be localized.

6 ETHICS STATEMENT

The authors confirm that there are no i) human subjects or practices to data set releases, ii) potentially
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, the authors prepare the implementation details in the
Appendix section, including i) Data: Three datatsets used in the experiments are publicly accessible
where the download links are provided in Appendix A.1. The data pre-processing is referred to
the baselines (Chen et al., 2020; 2021); ii) Model Implementation: The backbone modules of the
proposed model are referred to the implementation provided by huggingface.cowhere the links
of model structures and the pre-trained weights are provided in Appendix A.2; iii) Baselines: The
implementation of the baselines are all referred to their official source codes and papers, where the
links of pre-trained parameters of their model weights are provided in Appendix A.5. The results
may have minor variations due to the different machines deployed; and iv) Evaluation Metrics:
The implementation of the evaluation metrics are presented in Appendix A.4, where the evaluation
details and the links of the open-source codes are provided.
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A APPENDIX

A.1 EXPERIMENT RESULTS ON MORE DATASETS

We present the experimental results on MIMIC CXR dataset 1. We also tested our proposed ap-
proaches with the baselines using the IU Xray 2 and ReXGradient 3 datasets (as shown in Table 8).
As observed, our proposed RadSCR achieved SOTA performance in most clinical accuracy metrics
in both datasets, demonstrating the effectiveness of using RadSCR in clinical application to generate
accurate radiology reports.

Model CheXbert CE RadGraph RadNLI
Acc. F1 Abn. Organ P. C. Pr. Re. F1

IU Xray

VLM-
based

Transformer ♭ 0.806 0.512 0.169 0.595 0.358 0.281 0.452 0.411 0.396
R2Gen ♭ 0.788 0.418 0.171 0.600 0.306 0.236 0.453 0.408 0.396
R2Gen-CMN ♭ 0.820 0.445 0.177 0.612 0.348 0.283 0.486 0.404 0.410
RGRG 0.668 0.459 0.155 0.720 0.340 0.228 0.450 0.431 0.399

LMM-
based

Qwen3-VL 0.394 0.099 0.032 0.354 0.129 0.073 0.355 0.220 0.215
MedGamma 0.719 0.310 0.158 0.482 0.186 0.117 0.514 0.222 0.238
LLaVA-Med 0.620 0.282 0.033 0.582 0.215 0.142 0.330 0.341 0.320
LLaVA-Rad 0.801 0.518 0.324 0.717 0.290 0.204 0.326 0.318 0.309
CoMT 0.395 0.135 0.005 0.701 0.284 0.190 0.484 0.337 0.365

Retrieval
-based

BiomedCLIP 0.795 0.381 0.050 0.716 0.315 0.240 0.342 0.422 0.351
BioViL 0.781 0.436 0.268 0.710 0.299 0.209 0.384 0.360 0.345
MedCLIP 0.087 0.092 0.089 0.657 0.164 0.121 0.170 0.215 0.148
CXR-RePaiR 0.741 0.385 0.274 0.672 0.258 0.188 0.344 0.339 0.321
X-REM ♭ 0.778 0.464 0.255 0.732 0.309 0.233 0.357 0.397 0.350
RadSCR 0.796 0.499 0.366 0.752 0.369 0.300 0.381 0.466 0.390

ReXGradient

VLM-
based

Transformer 0.612 0.429 0.081 0.560 0.180 0.111 0.312 0.300 0.296
R2Gen 0.601 0.455 0.090 0.567 0.178 0.117 0.322 0.319 0.310
R2Gen-CMN 0.620 0.450 0.101 0.580 0.190 0.121 0.333 0.311 0.319
RGRG 0.401 0.222 0.095 0.630 0.198 0.135 0.357 0.345 0.335

LMM-
based

Qwen3-VL 0.368 0.170 0.060 0.298 0.080 0.047 0.271 0.197 0.163
MedGamma 0.563 0.342 0.174 0.408 0.142 0.092 0.516 0.196 0.217
LLaVA-Med 0.440 0.191 0.098 0.555 0.193 0.129 0.338 0.331 0.318
LLaVA-Rad 0.626 0.478 0.326 0.680 0.228 0.167 0.340 0.313 0.309
CoMT 0.653 0.143 0.665 0.070 0.235 0.653 0.494 0.315 0.349

Retrieval
-based

BiomedCLIP 0.635 0.332 0.215 0.583 0.171 0.137 0.325 0.340 0.318
BioViL 0.529 0.311 0.115 0.632 0.164 0.116 0.359 0.354 0.345
MedCLIP 0.668 0.009 0.259 0.293 0.077 0.028 0.333 0.331 0.331
CXR-RePaiR 0.517 0.357 0.156 0.585 0.192 0.143 0.336 0.333 0.323
X-REM 0.547 0.398 0.157 0.598 0.213 0.167 0.346 0.344 0.332
RadSCR 0.644 0.459 0.344 0.698 0.240 0.179 0.369 0.351 0.356

Table 8: Comparison of report generation by clinical accuracy metrics on IU Xray and ReXGradient
data. Models with ♭ are tested using the official parameters pre-trained on the testing dataset.

We also evaluate the proposed approach and the baselines by natural language generation (NLG)
metrics (BLUE, METEOR and ROUGE). The results are shown in Table 9. As observed, the proposed
RadSCR achieves SOTA performances in MIMIC CXR and ReXGradient datasets. We noted that
the Transformer, R2Gen and R2Gen-CMN obtain comparable performances in IU Xray data,

1https://physionet.org/content/mimic-cxr-jpg/2.0.0
2https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university
3https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K
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which are trained by IU Xray data. Compared with the rest models, which are not fine-tuned in
IU Xray, these three models could better learn the reporting styles maintained by the dataset itself,
which results in better n-gram accuracy measured by NLG metrics.

Model MIMIC CXR IU XRay ReXGradient
B. M. R. B. M. R. B. M. R.

VLM-
based

Transformer 0.115 0.160 0.287 0.231 0.360 0.402 0.099 0.121 0.192
R2Gen 0.100 0.142 0.282 0.214 0.346 0.383 0.081 0.119 0.199
R2Gen-CMN 0.132 0.210 0.302 0.244 0.398 0.414 0.085 0.212 0.233
RGRG 0.154 0.328 0.365 0.128 0.333 0.380 0.091 0.255 0.264

LMM-
based

Qwen3-VL 0.040 0.199 0.142 0.040 0.209 0.140 0.030 0.177 0.111
MedGamma 0.037 0.206 0.144 0.036 0.209 0.140 0.028 0.185 0.118
LLaVA-Med 0.111 0.231 0.243 0.090 0.213 0.224 0.079 0.220 0.201
LLaVA-Rad 0.206 0.336 0.342 0.141 0.270 0.288 0.138 0.279 0.256
CoMT 0.100 0.290 0.219 0.100 0.333 0.240 0.077 0.263 0.200

Retrieval
-based

BiomedCLIP 0.152 0.266 0.269 0.129 0.258 0.257 0.094 0.197 0.186
BioViL 0.168 0.300 0.289 0.188 0.333 0.317 0.144 0.263 0.241
MedCLIP 0.090 0.237 0.168 0.120 0.266 0.233 0.075 0.229 0.163
CXR-RePaiR 0.174 0.312 0.294 0.162 0.295 0.290 0.120 0.230 0.205
X-REM 0.161 0.286 0.291 0.166 0.294 0.309 0.137 0.258 0.226
RadSCR 0.344 0.460 0.452 0.176 0.311 0.312 0.157 0.290 0.259

Table 9: Comparison of report generation by NLG metrics on MIMIC CXR, IU Xray and ReXGra-
dient data. “B.”, “M.” and “R.” indicates BLEU, METEOR and ROUGE scores.

Effect of controlling randomness during alternative patient sampling We provide additional
evaluation results by using different selection strategies based on the available metadata in the testing
stage. As shown in Table. 10, controlling the randomness during alternative patient sampling is
beneficial. In future work, we will also address how to achieve controlled sampling for datasets
without available metadata.

Sampling CheXbert CE RadGraph-F1 RadNLI
Acc. F-1 Abn. Organ P. C. Pr. Re. F-1

MIMIC CXR
- 0.574 0.610 0.572 0.744 0.422 0.367 0.440 0.433 0.408
PA/AP 0.588 0.615 0.566 0.759 0.429 0.370 0.435 0.421 0.399
Posture 0.570 0.613 0.579 0.762 0.427 0.369 0.451 0.429 0.415
ReXGradient
- 0.644 0.459 0.344 0.698 0.240 0.179 0.369 0.351 0.356
Sex 0.639 0.460 0.347 0.685 0.237 0.171 0.365 0.348 0.352
Age 0.650 0.462 0.351 0.703 0.243 0.175 0.374 0.342 0.350

Table 10: Results of applying controlled sampling in alternative image critiquing.

A.2 MODEL IMPLEMENTATION

We use Swin Transformer (Base) (Liu et al., 2021)4 as visual encoder and Clinical-BERT as lan-
guage encoder (Yan & Pei, 2022)5. The input images are resized to 224 × 224 and split into
HW = 49 patches, while the dimension is set to D = 512. The training epoch is set to 40 with the
learning rate set to 5e-5 and the batch size set to 64. The maximum length of a sentence is set to
60 tokens. The important weights are setting for i) prototype similarity: α1 = 0.4, ii) alternative vi-
sual proposals C(Abn) and C(Img): α2 = 0.5, iii) self-critiquing loss L(Alt) of alternative proposals
β1 = 0.4, and iv) self-critiquing loss L(Neg) of complementary proposals β2 = 0.6.

4https://huggingface.co/microsoft/swin-base-patch4-window7-224
5https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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To obtain the saliency map of the abnormality classification, we use the XGrad-CAM (Fu et al.,
2020) 6 to extract the class activation map from the visual encoder. The bounding box extraction is
referred to the open-source code 7.

We use Phi (4B) (Ren et al., 2025) as the LLM decoder 8. The prompt used for LLM decoding is
shown in Fig. 3.

Figure 3: Prompting data example used for the LLM decoder of the proposed RadSCR.

6https://github.com/jacobgil/pytorch-grad-cam
7https://github.com/batmanlab/AGXNet/blob/ee99ef199f1f96f7d0c35336935bd117664e733c/

utils.py
8https://huggingface.co/microsoft/Phi-4-reasoning
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The experiment is conducted with an Intel(R) Xeon Gold CPU (2.70GHz) and four sets of NVIDIA
Tesla V100S GPU. The training / inference time is reported in Table. 11.

Module Training (s) Inference (s)
Abnormality Region Localization 0.311 0.193
Self-Critiqued Sentence Retrieval 0.463 0.300
LLM-based Report Generation - 0.203

Table 11: The estimated time of training / inference per image.

N = 37 abnormalities targeted by RadSCR are provided by Chest ImaGenome Wu et al. (2021)
which are annoated on MIMIC CXR data: Low lung volumes, Plerual effusion, Edema, Atelec-
tasis, Opacity, Pneumonia, Calcification, Lung cancer, Lesion, Mass/nodule, Costophrenic angle
blunting, Consolidation, Aspiration, Hyperaeration, Vascular redistribution, Emphysema, Intersti-
tial lung disease, Scarring, Vascular congestion, Pneumothorax, Fluid overload/heart failure, Gran-
uloma, Lobar/segmental collapse, Tube/line, Alveolar hemorrhage, Increased reticular markings/ild
pattern, Infiltration, Enlargement, Medical device, Pericardial effusion, Mediastinal displacement,
Mediastinal widening, Hernia, Tortuous aorta, Spinal degenerative changes, Bone deformity, and
Bone fracture.

A.3 ABNORMALITY-AWARE RETRIEVAL REPOSITORY CONSTRUCTION

To retrieve the relevant report sentences for critiquing the visual proposal, we first construct N = 37
sentence repositories of N = 37 abnormalities. For MIMIC CXR data, we use annotations provided
by the Chest ImaGenome Wu et al. (2021), where each sentence of the report in MIMIC CXR is
annotated with the abnormalities and anatomical parts mentioned. For IU Xray and ReXGradient
without annotations, we use a BERT-based text classifier to predict all the abnormalities mentioned
and the positive abnormalities described in the report. This text classifier is trained by the Chest
ImaGenome annotations on MIMIC CXR reports. We collect sentences of the same abnormality
into the same sentence repository. Sentences with more than one abnormality mentioned can be
collected in multiple repositories. Given that some reports might mention some but not all negative
abnormalities, there could be no sentences for some abnormalities to be collected. In this case, we
will supplement the sentences of non-mentioned abnormalities by some simple templates.

A.4 EVALUATION METRIC

CE-Abn covers 37 abnormalities considered by RadSCR. We finetune a text classifier (Sap-
BERT Liu et al. (2020)9) to predict whether these 37 abnormalities are mentioned as positive (ob-
served on X-ray image) in the given report. The labels are annotated Chest ImaGenome Wu et al.
(2021).

CE-Organ covers 25 anatomical parts annotated Chest ImaGenome Wu et al. (2021), including:
Left lung, Right lung, Left upper lung zone, Right upper lung zone, Left mid lung zone, Right mid
lung zone, Left lower lung zone, Right lower lung zone, Left hilar structures, Right hilar structures,
Aortic arch, Cardiac silhouette, SVC, Cavoatrial junction, Upper mediastinum, Left costophrenic
angle, Right costophrenic angle, Left clavicle, Right clavicle, Left apical zone, Right apical zone,
Spine, Trachea, Left hemidiaphragm, and Right hemidiaphragm. We finetune a text classifier (Sap-
BERT Liu et al. (2020)10) to predict whether there are any positive abnormalities associated with
these 25 anatomical parts.

CheXBert11 covers 14 common observations considered in Irvin et al. (2019): Enlarged cardio-
mediastinum, Cardiomegaly, Lesion, Lung opacity, Edema, Consolidation, Pneumonia, Atelectasis,
Pneumothorax, Pleural effusion, Lung Other, Fracture, Support devices, and No Findings.

RadGraph12 covers 14,579 entities and 10,889 relations defined in the related work Jain et al.
(2021).

9https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
10https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
11https://github.com/stanfordmlgroup/CheXbert
12https://github.com/Stanford-AIMI/radgraph
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RadNLI13 covers the inference relationships of Contradiction, Entailment and Neutral.

Preference Order (PO) measures the correctness of 37 abnormalities considered in the RadSCR.

BLUE, METEOE and ROUGE are refer to a public-accessed implementation14.

A.5 BASELINE IMPLEMENTATION

Transformer composes an encoder of three-level transformer layers and a decoder of three-level
transformer layers, as implemented by Chen et al. (2020)15.

The remaining baselines are implemented according to their official codes and pre-trained
weights, including R2Gen Chen et al. (2020): https://github.com/cuhksz-nlp/R2Gen;
R2Gen-CMN Chen et al. (2021): https://github.com/cuhksz-nlp/R2GenCMN;
RGRG Tanida et al. (2023): https://github.com/ttanida/rgrg; CXR-
RePaiR Endo et al. (2021): https://github.com/rajpurkarlab/CXR-RePaiR,
MdeCLIP Wang et al. (2022):https://github.com/RyanWangZf/MedCLIP,
BiomedCLIP Zhang et al. (2023):https://huggingface.co/microsoft/
BiomedCLIP-PubMedBERT_256-vit_base_patch16_224, BioViL Boecking
et al. (2022):https://github.com/martinzwm/biovil, X-REM Jeong et al.
(2023):https://github.com/rajpurkarlab/X-REM, TDIL Li et al. (2018) and
HAM Ouyang et al. (2020):https://github.com/oyxhust/HAM .

A.6 EVALUATION ON ABNORMALITY LOCALIZATION

VinDr-CXR Nguyen et al. (2022; 2020)16 provides annotations of abnormality regions, including
Infiltration, Lung Opacity, Consolidation, Nodule/Mass, Pulmonary fibrosis, Pleural thickening,
Aortic enlargement, Cardiomegaly, ILD, Other lesion, Pleural effusion, Calcification, Enlarged PA,
Lung cavity, Atelectasis, Mediastinal shift, Lung cyst, Pneumothorax, Emphysema, Clavicle frac-
ture, Rib fracture, and Edema.

ChestXray8 Wang et al. (2017)17 provides annotations of abnormality regions, including Atelectasis,
Cardiomegaly, Pleural effusion, Infiltrate, Mass, Nodule, Pneumonia, and Pneumothorax.

We evaluated the localization results of the abnormalities shared across MIMIC CXR (Chest Im-
aGenome), VinDr-CXR and ChestXray8. We noted that the localization annotations of the same
abnormality from different datasets could be variable to some extent, as the localization results of
radiologists could be affected by population differences, local operating rules, or personal experi-
ences. However, for common chest abnormalities, their relevant regions to be localized by different
radiologists should be similar in most cases, as the related diagnostic consensus for these abnormal-
ities has been studied for years.

A.7 VISUALIZATION OF ABNORMALITY LOCALIZATION

We present two cases of progressive change of saliency maps with abnormality region localized by
RadSCR during the training process (as shown in Fig. 4 and Fig. 5). As observed, trained RadSCR
could localize relevant regions of the abnormalities presented. Meanwhile, the localized regions also
covers some irrelevant areas, which indicates that the weakly-supervised abnormality localization is
still challenging.

A.8 LATENT SPACE VISUALIZATION

We present the visualization of concept embedding, prototype embedding, and sentence embedding
of randomly sampled sentence sets learned with and without the proposed self-critiquing mechanism
(as shown in Fig. 6 and Fig. 7). For each abnormality in every setting (with / without the proposed

13https://github.com/Mayo-Clinic-RadOnc-Foundation-Models/Radiology-NLI
14https://github.com/salaniz/pycocoevalcap
15https://github.com/cuhksz-nlp/R2Gen
16https://vindr.ai/datasets/cxr
17https://nihcc.app.box.com/v/ChestXray-NIHCC
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Figure 4: Illustration of progressive changing of saliency maps with abnormality localizations dur-
ing the training process of RadSCR (Case I). The reference annotation of the abnormality regions
(bounding boxes within green lines) are also provided which are inferred from the paired report.
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Figure 5: Illustration of progressive changing of saliency maps with abnormality localizations during
the training progress of RadSCR (Case II).
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self-critiquing mechanism), we present the visualization of one concept embedding, K = 5 proto-
type embeddings, and 100 randomly sampled sentence embeddings of which sentences are associ-
ated with each kth prototype (in total 500 sentence embeddings for each abnormality). We use the
t-SNE algorithm to project the D-dimensional embeddings into a 2-dimensional vector. In general
speaking, the points of embeddings learned with the self-critiquing mechanism are gathered more
than those without the self-critiquing mechanism in most plots. It might indicate that the critiqued
embeddings could represent the related information of each abnormality with less irrelevant features.
However, this kind of visualization is also affected by the dimension reduction algorithm we use,
while it is not the only way to explain these visualization results. We also note that how to properly
interpret the learned representation in latent space remains open.

A.9 TRENDS OF SENTENCE SIMILAR SCORES OF THE VISUAL PROPOSAL AND THE
ALTERNATIVES DURING TRAINING

The proposed RadSCR allows the visual proposal Pm and the alternatives (C(Abn)
m , C

(Img)
m ) interact

by contrasting their similarity scores with the sentence s(m) to compute a discounted similarity score
σ̃(Pm, s(m)) (according to Eq. 11). In addition, C(Neg) further supplements Pm to recover the false
negatives. As shown in Figure 8, during training, the similarity score between Pm and s(m) increases
while the scores between (C

(Abn)
m , C

(Img)
m ) and s(m) decrease, as anticipated. Also, the similarity

score between the false negatives C(Neg) and the corresponding sentences s(0) increases, so that the
learned model can pick up the missed abnormalities.
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Figure 6: Visualization of concept embedding, prototype embedding and sentence embeddings in
the latent space (Part I).
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Figure 7: Visualization of concept embedding, prototype embedding and sentence embeddings in
the latent space (Part II).
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Figure 8: Trends of the sentence similar scores of the visual proposal and the alternatives during
training. σ(Pm, s(m)), σ(C

(Abn)
m , s(m)), σ(C

(Img)
m , s(m)), and σ(C(Neg), s(0)) are the similarity

scores defined in Section 3.3, and σ̃(Pm, s(m)) is the overall discounted score.
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