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ABSTRACT

We consider the general problem of learning a predictor that satisfies multiple
objectives of interest simultaneously. We work in an online setting where the
data distribution can change arbitrarily over time. Here, multi-objective learning
captures many common targets such as online calibration, regret, and multiaccuracy.
In the online setting, existing approaches to this problem that minimize the set of
objectives over the entire time horizon can fail to adapt to distribution shifts. We
correct this and propose algorithms that guarantee small error for all objectives
over any local time interval of a given width. Empirical evaluations on datasets
from energy forecasting and algorithmic fairness show that our methods can be
used to guarantee unbiasedness of the predictions over subgroups of concern and
ensure robustness under distribution shift.

1 INTRODUCTION

In an ever-changing world, real-time decision making necessitates coping with arbitrary distribution
shifts and adversarial behavior. These shifts can arise from seasonality, change in data distribution
induced by feedback loops or policy changes, and exogenous shocks such as pandemics or eco-
nomic crises. Online learning is a powerful framework for analyzing sequential data that makes no
assumptions on the data distribution.

Multi-objective learning is a generic framework that refers to any task in which a predictor must
satisfy multiple objectives or criterion of interest simultaneously. This general framework has led
to the development of online learning algorithms for numerous applications including multicali-
bration (Hebert-Johnson et al., |2018)), multivalid conformal prediction (Gupta et al., 2022), and
multi-group learning (Deng et al.,[2024). Despite being a desirable and promising notion, methods
from the online multi-objective learning literature have had little influence on the practice of machine
learning.

We attribute this to two shortcomings. First, the majority of the algorithms proposed in the literature
are not adaptive to abrupt changes in the data distribution: they learn a predictor that minimizes the
objectives over the entire time horizon. In changing environments and in the presence of adversarial
behavior, such algorithms will fail to cope with distribution shifts. Second, most prior work is purely
theoretical with scant empirical evaluation. As a result, the practical aspects of multi-objective online
algorithms have received limited consideration.

In this work, we aim to overcome the above shortcomings. We propose a locally adaptive multi-
objective learning algorithm that outputs predictors which (approximately) satisfy a set of objectives
over all local time intervals I C [T]. As we discussed above, multi-objective learning can be used to
address many common prediction tasks. As a case study, in this work, we focus on the multiaccuracy
problem in which the goal is to learn predictiors which are unbiased under covariate shift. We
seek a small multiaccuracy error while preserving accuracy relative to a given sequence of baseline
predictions. This is a problem of significant and broad interest across real-time decision-making and
deployed machine learning systems.

To close the empirical gap in this literature, we perform experiments on electricity demand forecasting
and predicting recidivism over time. We show that our proposed algorithm has low multiaccuracy error
over all intervals while the baselines have poor adaptivity. An alternative objective to multiaccuracy
that is popular in the literature is multicalibration (Haghtalab et al.|[2023a} |Garg et al.|[2024). Despite
being a stronger condition, we show that in practice existing online multicalibration algorithms only
achieve multiaccuracy at relatively slow rates. While adaptive extensions of online multicalibration
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Figure 1: GEFCom14-L electric load forecasting dataset. On the left hand side are the time series for
load and temperature. The dark brown curves denote the 2-week moving average. The shaded region
shows the competition duration. On the right-hand side, we plot local multiaccuracy error.

algorithms have been discussed 2022)), we show that they are less efficient and effective.
We will release a codebase that implements our algorithm and all the baselines used in the paper.

We note that although we focus on multiaccuracy in this paper, our general algorithm extends to
other multi-objective learning problems including multi-group learning (Tosh & Hsul, 2022)) and
omniprediction (Gopalan et all,[2022). We discuss these extensions toward the end.

1.1 PEEK AT RESULTS

To demonstrate the significance of local adaptivity in practice, we consider the probabilistic electricity
load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom2014)
[2016). The aim in the load forecasting track GEFCom2014-L is to forecast month-ahead
quantiles of hourly loads for a US utility from 01/2011 to 12/2011 based on historical load and
temperature data (Figure [Ta).

We consider the binary task of predicting whether the electricity demand exceeds 150MW at time
step ¢ and evaluate whether the predictions are multiaccurate with respect to discrete temperature
groups {[0, 20), [20, 40), . .., [80, 100)} (in °F). Informally, obtaining mutliaccuracy with respect to
temperature ensures our predictions are accurate at any time-of-day and during all seasons. Figure [Tb]
shows the multiaccuracy error of our proposed locally adaptive algorithm compared to a non-adaptive
multiaccuracy algorithm, plotted as a weekly (168-hourly) rolling average. We can see that the
multiacuracy error of the adaptive algorithm is close to zero across all time intervals, while the
non-adaptive variant has high variance.

1.2 RELATED WORK

Our work is most closely related to the literature on multicalibration (Hebert-Johnson et al., 2018),
multiaccuracy 2019), and omniprediction (Gopalan et al.,[2022). Each of these multiob-
jective criteria have been studied in both the online and batch settings. Most closely related to our
work, Kim et al.| (2019) and |Globus-Harris et al.|(2023) give algorithms for obtaining multi-accurate
and multi-calibrated (resp.) predictors in the batch setting that are guaranteed to have accuracy no
worse than that of a given base predictor.

In the online advesarial setting, a number of works develop algorithms for obtaining multiaccuraty,
multicalibration, and/or omniprediction globally over all time steps (Lee et al, [2022; [Garg et all,
2024} [Okoroafor et all, 2025} [Haghtalab et al.| 20234} 2025). Our work will in particular
build on the algorithmic framework developed in 2022). This methodology has deep roots
in the online learning literature and builds on ideas in blackwell approachability
and its connection to no-regret learning |Abernethy et al.[ (201 1.
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To obtain time-local guarantees we will draw on the literature on adaptive and strongly-adaptive
regret (Herbster & Warmuth| [1998} |Daniely et al., 2015 Jun et al.,|2017; Haghtalab et al., 2023b)).
Our work will most closely rely upon the work of |Gradu et al.[(2023)) to obtain multiobjective error
bounds over any local time interval. In the context of multiobjective learning, local guarantees
have been discussed previously in[Lee et al.|(2022). However, the literature contains no empirical
evaluations of these methods. We provide experiments evaluating the algorithms of |Lee et al.| (2022)
in Section[4.3]and find that our approach achieves significantly lower error rates in practice.

1.3 PRELIMINARIES

We use X to denote our feature space and ) = [a, b] to denote our label space, which we assume
to be bounded and convex. Our goal is to learn a sequence of predictors p; € YV, t = 1,2,...,T
that guarantee loss minimization simultaneously for every objective within a set £ over time. Each
objective, or criterion, is a function £ : [0,1] x X x Y — [—1, 1] that takes as input a predictor p;,
features x; € X, and label y; € ) and returns an objective value. We assume the loss is bounded in
[—1, 1]. We will use [T] to denote the set {1,2,...,T}.

Multi-objective learning aims to learn a predictor that simultaneously minimizes every objective in L.
We study the problem of multi-objective learning in an online, adversarial setting.

Definition 1 (Online multi-objective learning). For a set of objectives £ = {£: [0,1] x X x )} —
[0,1]} and sequence of data points x¢, y;, t € [T], the online multi-objective problem is to learn a
sequence of predictors p; that minimize

1

T
I?eagc T ;‘g(pt(xt)axta yt)7

where (2, y;) can be generated advesarially dependent on the entire history of data and predictions
up to time ¢.

Next, we define two instantiations of multi-objective problems that are commonly studied in the
literature—multiaccuracy and multicalibration. We parameterize the multiaccuracy criterion by a
function class F and the goal is to be unbiased for all f € F, i.e., there is no systematic correlation
between the prediction residuals and any f € F.

Definition 2 (Online multiaccuracy). Let F = {f : X — [0, 1]} be a class of functions on X. In
online multiaccuracy, we instantiate fnma, , (p¢(7¢), T¢, y¢) = o f(@¢) - (y: — pe(w¢)) for every sign
o ={£} and f € F and define the multiaccuracy error #y4 in the ¢, norm as

T
v = sup %Zaf(xt) : (yt *pt(xt))- (D
t=1

Another popular online prediction target is calibration. In a binary classification task, calibration
asks that among instances with predicted probability v, a fraction v of them are observed to be
truly labeled as 1. To implement this in practice, we discretize the label interval [0, 1] into m bins
Vi :={[0,1/m), [1/m,2/m),...]} and ask for calibration in each bin v € V;,,. Multicalibration is
a stronger and fine-grained notion that requires a predictor to be calibrated under all reweightings
f € F. Standard calibration is then the special case where 7 = {x > 1} is a singleton function
class containing only the identity.

Definition 3 (Online multicalibration). Fix a set of functions F and m > 1. In online multicalibration
we instantiate {nc;, , (Pe(2t), Te,y:) = of (@) - W{pe(we) € v} - (y¢ — pe(x4)) for every sign
o={£}, f € F,and v € V,,, and define the multicalibration error ¢yic in the ¢, norm as

T

1
te= sup =y of(a) Mpi(e) €0} (e — pia)). &)
feF,oce{t},veV,, =1

A direct calculation shows that the online multicalibration error always upperbounds the multiaccuracy
error.
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In this work, we give a multi-objective learning algorithm that achieves small multiaccuracy error
while preserving accuracy relative to a base predictor sequence p;,t € [T]. We define the latter
accuracy objective as regret

T
1 -
greg = f Zgacc(pt(xt)v yt) - gaoc(pt(xt)v yt)a 3)
t=1

where f,.c > 0 is any proper loss for the mean (i.e. any loss such that E, p[y] €
argmin,E, . p[¢(p, y)] for all distributions P on ).) (e.g., log loss or squared error/Brier score).

2 METHODS

2.1 ONLINE MULTI-OBJECTIVE LEARNING

The online multi-objective learning problem can be viewed as a sequential prediction task over T’
rounds. A common approach is to imagine a two-player game between a learner, who observes
x; € X and chooses a predictor p;, and an adversary who maintains a probability distribution
¢ € A(L) over the mixture of objectives £. After the learner acts, the label y; is revealed and
the realized objective values {¢(p;(x¢, x¢,y:) : £ € L} are observed. The goal of the learner is to
simultaneously minimize every objective in L. In other words, the learner’s goal is to minimize the
maximum accumulated objective value after T rounds:

T

max C(pe(wt), Tes Yr)- 4)
t=1
In parallel, the adversary updates its distribution ¢(*) to assign larger probability to objectives that
incurred larger value in round ¢.

At its core, our algorithm is an exponential reweighting algorithm (Freund & Schapirel [1997). We
uniformly initialize probabilities qél) for each objective ¢ € L and update qét) using multiplicative
weights. We fix a function class Fya C {f : X — [0,1]} that we desire multiaccuracy with
respect to and define £ := {lma;, : [ € Fuma,0 € {£}} U {lieg} including the regret objective.

Thus, we maintain q(t) over 2| Fya| + 1 objectives with > fo qﬁif LT qr(gg) = 1. This algorithmic

technique has been previously employed for multicalibration objectives (Lee et al.,2022; [Haghtalab
et al.| [2023a)); however, our empirical evaluation shows that it does not yield an effective online
multiaccuracy algorithm.

The learner best-responds to the adversary by choosing a predictor p, that minimizes the expected

objective value over the mixture ¢(*) for the worst case label: argmin ma))}( Do qét)é(pt (1), Tt Ye)-
Dt ye
The key idea to upper bound (4) using this minimax optimal strategy was proposed in [Lee et al.

(2022). The algorithms we present in this work build on this idea. We show in SectionE]that this
strategy yields predictors with low multiaccuracy error and regret.

2.2 LOCALLY ADAPTIVE MULTI-OBJECTIVE LEARNING

The minimization goal defined in () ceases to be useful when environments are changing and the
data distribution shifts arbitrarily over time. As a simple example, fix the singleton function class
Fuma = {x +— t} and consider targeting just the multiaccuracy error (i.e., set L = {lma,, : f €
Fuma,o € {£}}). Let the labels be given as y; = 1 for the first 7'/2 rounds and y; = 0 for the
last 7'/2 rounds. Here, the constant predictor p; = 1/2 minimizes the multiaccuracy error in .
Nevertheless, this predictor performs poorly in the individual intervals 1 < ¢ < T/2and t > T/2
compared to the optimal predictor that switches from p; = 1 to p, = 0 after t = T'/2.

To account for distribution shifts in changing environments, we will now strengthen out objective
by requiring the learner to choose the “locally best” predictor in all intervals I = [r, s] C [T]. The
locally adaptive multi-objective learning problem is then to learn a sequence of predictors p; that
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Algorithm 1 Locally adaptive multiaccurate mean estimation

Input: Function class Fyma C {f : X — [0, 1]}; base predictor sequence py, t € [T];
hyperparameters 7, 7.
Input: Sequence of samples {(x1,41), ..., (zT,yr)}

RO I 1

Loaya,, = s VS € Fua,o € {£1}.
(1) 1

2 tree = BT

3: foreach t € [T] do

& prlan) o= avgminmage 3 gyn, 0 F(e0) (= p(20) + g (fas (P(0),) — e F(1).9)

5 q&:fl)d x qﬁij _exp (n-of(z)(ys — pi(x1))) forall f € Fya,0 € {£1}
6 ﬁ”m&wWﬂ%%@))emmm%»
7
8:

(t+1) _ (t+1)
Ay, = (=) G, *‘mﬁzﬂzi
(t+1) _ ~(t+1)
reg = (1 'y) qre + W
Output: Sequence of (randomized) predictors p1, ..., pr
minimize
sup  |max » L(pi(xe), xe,ye)]- )

I=[rs]C[T] | Y€£ 1=

We develop a locally adaptive multiaccuracy algorithm (Algorithm [T)) that minimizes (5). We lend
our procedure adaptivity by modifying an algorithm proposed in the online control setting by |Gradu
et al.| (2023), which is inspired by the Fixed Share algorithm (Herbster & Warmuth, [1998). At every
update step, we add a uniform exploration term to the exponential weights update. This prevents any
objective’s weight from becoming too small and provably allows the learner to compete with the best
predictor in every interval.

Strong adaptivity. We note that there exist online learning algorithms that guarantee strongly
adaptive regret (Daniely et al.,[2013), i.e., low error for intervals of any length |I|. This is a stronger
guarantee compared to the guarantee over fixed interval widths and comes with a log T" overhead in
runtime and memory. It is straightforward to apply this to our algorithm—in fact, strong adaptivity
extensions have been discussed for multicalibration (Lee et al., 2022} [Haghtalab et al., [2023al).
However, we find that they do not perform well in practice (Section 4.4).

2.3 SIGNIFICANCE OF THE REGRET OBJECTIVE

In our applications, we will start with a base forecaster, p; that was constructed in advance for that
application. Our goal will be to improve p; to be multiaccurate. While doing this, it is important that
we do not degrade the accuracy of p;, thereby rendering its predictions less useful. Our algorithm
achieves small multiaccuracy error while preserving the accuracy relative to a base predictor by
including an additional regret objective. In our empirical evaluation we will show that in the absence
of this objective, a version of our method that targets multiaccuracy alone incurs high accuracy loss
relative to the base predictors py, t € [T].

In general, even in the absence of a base predictor, it is not advisable to solely target multiaccuracy.
Indeed, if we exclude the regret objective in Algorithml one can show that the best response of the
learner yields the predictor: p; = IL{ > fo qM Ar. O flay) > 0} This solution has a pathological
behavior where the predictor will only take values O or 1 at every step. This makes the predictions
useless for real-time decision-making in an online setting. Our regret objective recovers the predictor
from this problem by enforcing solutions that do not lie in the extremes. In practical settings where p;
is not available in advance, we recommend combining our procedure with a standard online learning
algorithm (e.g. online gradient or mirror descent) that provides an appropriate baseline (Algorithm [2)).
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3 THEORY

We now show that our proposed algorithm achieves small multiaccuracy error and regret over any

local time interval of fixed width. From here on, we use shorthands El(\,t&f_g = o f(x)(yr — pe(xe))

and ér(etg) = Lace (Dt (x4), Y1) — lace (Pt (1), Yt)- gl(v[Zx and qIE,IL denote vectors of size 2|Fya| that

comprise, respectively, the objective values and probabilities for all multiaccuracy objectives. All
proofs are deferred to Appendix [A]

We first show that the maximum objective value over any time interval I is upper bounded by the
cumulative expected value of the individual objectives.

Lemma 1. Letc=  sup ;Z. Assume that v < 1/2. Then, for any interval I = [r,s] C [T,
ee{el) ey

> T
z o7 +qreg4;g2max{maxzemf zzs:g} cn(Zq“ o gger;g)
t=r 6)

1 2| F +1
=2 (o (2PN ey ),
n v

where the data (xy,y;),t € [T are fixed and the randomness is from qét), teLlin Algorithm

Note that c is typically small as we rescale the objectives to be bounded by 1. Next, we show that the
cumulative expected value of the objectives is non-positive over any interval /.

Lemma 2. For any interval I = [r,s] C [T,

E:q(t)T gt <o

Greg treg

This lemma follows from the minimax-optimal strategy of the learner and has been shown to hold
in|Lee et al.[(2022). We combine the previous two lemmas to get our main result.

Theorem 1. Assume that v < 1/2. Then, for any interval I = [r,s| C [T,
t
s o S, S} < (S )

1 2| Fumal + 1
(log (' w )+ um),
|| ¥

where the data (x¢,y:),t € [T] are fixed and the randomness is from qét), teLin Algorithm

@)

If we substitute the optimal values v = =L and n= log((Q‘FMAIHQ) 211 +1 s in (7)), we obtain
20T i K a0
t=r 1IMA MA

~—

+1
(t)
max{maxm E MAfa- |I| E Kreg} < 7] (10g((2|]:MA +1)-2/I]) + 1).

AN+ e

t=r

_ log(|£] - |I])
‘O< 1 )

We note that the optimal values for v and 7 used above depend on quantities that are unknown
a priori in practice: the interval width |I|, the constant ¢, and the expected squared objective
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2 2
\/ Z::r qﬁzjgl(\z + qr(etg) Eﬁetg . We let the user pick a fixed interval width 7, noting that a smaller
choice of 7 gives stronger locally adaptive guarantees at the cost of a looser upper bound. We
follow (Gibbs & Candes| (2024)) in selecting an adaptive value of 7 that updates online as

log((2|Fmal +1)-27) +1
s)T ,(s 2 s s 27
Zi:t—r—i—l qlE/[g gl(\/[/)\ + qlgeg)ér(eg)

where we fix ¢ = 1. This choice lets the algorithm adaptively track changes in the moving average of
the expected squared objective over the most recent 7 time steps.

n= =

4 EXPERIMENTS

4.1 DATASETS

GEFCom2014 electric load forecasting. Global Energy Forecasting Competition 2014 (GEF-
Com2014) (Hong et al.| 2016)) was a probabilistic energy forecasting competition conducted with
four tracks on load, price, wind and solar forecasting. In this work, we study the electricity demand
forecasting track GEFCom2014-L. In Section[I.1] we shared details regarding the task and Figure[Ta]
displays the load and temperature trends over time. We consider a binary load prediction task for
our empirical evaluation where y; = 1{load; > 150MW}. We construct our baseline predictions p;
using the quantiles forecasted by Ziel & Liu|(2016) who outperform top entries of the competition.

COMPAS dataset. |[Larson et al.|(2016) analyzed the COMPAS tool used to predict recidivism for
criminal defendants in Broward County, Florida and found that certain groups of defendants are more
likely to be incorrectly judged as high risk of recidivism. In Figure 2] we plot the true recidivism
rate over time for different racial groups. We consider the recidivism prediction task and evaluate
the local multiaccuracy of predictors with respect to the African-American, Caucasian, and Hispanic
subgroups. We use the COMPAS risk scores provided in the dataset as our baseline predictions.
Following the analysis of |Barenstein| (2019), we drop the data points beyond the two year cutoft.

Rolling average of y

0.6

All
African-American
0.4 Caucasian
Hispanic

0.5

0.3

0.2

,bo\' 4)6” S o 3 O),oq ,_),\,“’ b‘é" N »
N2 N2 N2 ¥ N2 > 4 \
"vQ ’LQ ’19 ’LQ ,19 ’LQ Q Q
Date

Figure 2: COMPAS dataset. Rolling average of true recidivism over time.

4.2 BASELINES

We consider baselines that differ in their adaptivity and the set of objectives we consider in £. We
refer to our locally adaptive algorithm with the multiaccuracy and regret objectives (Algorithm
as MA+reg and its non—aative variant as MA+reg (non-adaptive). The non-adaptive variant is a

special case of Algorithm|l|with v = 0 and n = O(4/ %)

We explain the baselines below:

1. Baseline predictor p;: These are the predictions that were constructed in advance for the
application and are our input to Algorithm T}

2. Multiaccuracy algorithm (MA) with £ := {lma,, : f € Fma, o € {£}}: This is a specific
case of our algorithm where the set £ does not include the regret objective.
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3. Multicalibration (MC): We implement the online multicalibration algorithm from Lee et al.
(2022). This is a competitive algorithm as multicalibration is a stronger condition than
multiaccuracy. |Lee et al.|(2022) show that their algorithm can guarantee multicalibeating in
addition to multicalibration, i.e., the predictions satisfy an accuracy objective (specifically,
low squared error) on subgroups along with calibration. Hence, we consider the squared
error objective as /... in our regret objective for fair comparison.

4.3 LOCAL MULTIACCURACY AND REGRET EVALUATION

In this section, we evaluate the local multiaccuracy error £ys and regret £, incurred by the algorithms
we defined above.

First, we look at the results on GEFCom2014-L dataset (Figure E[) We take the interval width
|7| = 336 hours (2 weeks) for this set of experiments. We compute empirical local multiaccuracy and
regret rates over this moving 2 week-window. It can be seen that the constructed baseline predictor p;
has high local multiaccuracy error and all algorithms improve over this baseline. Overall, the adaptive
algorithms (MA and MA+reg) have close to zero multiaccuracy over all local intervals. On the other
hand, the non-adaptive algorithms have high variance. It is interesting to note that the multicalibration
algorithm (MC) has significantly slower multiaccuracy rates in practice.

Next, we turn to study the empirical local regret of these algorithms. As expected, the MA baseline
has non-zero local regret and we lose accuracy with respect to the predictor p; in the absence of the
regret objective. MA-+reg consistently preserves or improves accuracy over p;. As promised by the
multicalibration+multicalibeating algorithm in|Lee et al.[(2022]), we observe that MC generally has
negative regret, although with poorer adaptivity compared to MA+reg.
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Figure 3: Local multiaccuracy error and regret on GEFCom2014-L dataset.
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Figure 4: Local multiaccuracy error and regret on COMPAS dataset.

Now, we examine our results on the COMPAS dataset (Figure EI) Here, we fix |I| = 50 days. Our
findings from above are seen to generalize here. p;, MC, and MA+reg (non-adaptive) show minimal
adaptivity to the underlying shifts and are expected to perform poorly across some subgroups over
local intervals; whereas, our proposed algorithm has significantly better local multiaccuracy. We note
that while MA performs slightly better in terms of multiaccuracy compared to MA+reg, it suffers
from significantly higher regret as can be seen from the right plot.



Under review as a conference paper at ICLR 2026

4.4 COMPARISON WITH STRONGLY ADAPTIVE BASELINE

Finally, we compare our algorithm with a strongly adaptive extension of the online multicalibration
algorithm proposed in[Lee et al. (2022) (Figure[5). This algorithm guarantees low multicalibration
error on all subintervals in 7" at the expense of higher runtime and memory. While we use the fixed
width value |I| = 336 in our algorithm, we perform a general evaluation here over different interval
widths. We find that while adaptivity slightly improves the performance of the multicalibration
algorithm, MA+reg still has significantly better local multiaccuracy across all interval widths. We
note that there may be practical modifications that improve the empirical performance of the adaptive
multicalibration algorithm.

|/| =168 (one week) |/| = 336 (two weeks) |/| =672 (four weeks)

o MC (non-adaptive)
e —— MA+reg (non-adaptive)
= 0.6 —— MC (strongly adaptive)
o ) —— MA+reg
>
o
e 0.4
3
o
O
'g 0.2
=
=

0.0

Q Q Q Q
IS O DS

Time

Figure 5: Local multiaccuracy error on GEFCom2014-L under different interval widths.

5 EXTENSIONS
We now discuss the several extensions of our general algorithm.

Quantile estimation. Analogous to mean estimation, our algorithm can be used to update predicted
quantiles to satisfy group-conditional coverage guarantees while preserving the quantile loss ¢, (also
referred to as pinball loss) with respect to baseline quantile predictions. We provide the full algorithm
in Algorithm 3] Note that we have to allow 6, to be random in this algorithm.

Multi-group learning. Our algorithm can be extended to multi-group learning with the set of
objectives of the form 1{x; € ¢}(¢(pi(xt),ye) — £(f(z1),y¢)) for groups g € G and functions
feF.

Omniprediction. Omniprediction is a straightforward extension of our algorithm where the set of
objectives are of the form ¢(p; (), y:) — £(f (x¢), y:) for functions f € F and losses £ € L.

6 DISCUSSION

We present adaptive multi-objective learning algorithms that guarantee small error for all objectives
over local time intervals. In this growing literature, we hope our work serves as an initial step toward
bridging the empirical gap. We note two limitations of our work: firstly, our guarantees hold over
intervals of fixed width. Developing efficient algorithms that provide stronger guarantees in this
setting remains an important problem. Second, our empirical evaluation focuses on a subset of
objectives and validation on broader problems is interesting future work.

REPRODUCIBILITY STATEMENT

We provide the code to run our algorithms and reproduce our experiments as part of the supplementary
material. We state the assumptions in the main text and include proofs for our theoretical results in
Appendix [A] We describe all experimental details in Section 4]
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A PROOFS

A.1 PROOF OF LEMMA 1

We follow the calculations of|Gradu et al.| (2023)) and |Gibbs & Candes|(2024). The primary difference
between our work and these articles is that our losses may take on negative values. The constant ¢
introduced below accounts for this.

Let Wt = ZfawMAMeXP (- of (@) (ye — pe(x4))) +
Wil exp (0 (lace (Pt (1), y) — lace (B (24), ). We initialize wﬁdi =1forall f € F,o € {£1}

and wr(eg 1. By construction, the probabilities q( ) = wl(vaf NAOr™ 1(\2\ ro T wr(etg)) and

Qr(etg) = wr(etg) (>Xfo wﬁij + wr(etg)) Thus,

W +1)
w®)

Z qMAf exXp no-f(xt)(yt Dt (xt)))'i'qlgg exp (n(gacc (pt(xt)7 yt) - Zacc(ﬁt (-rt)7 yt)) .

We use the inequalities 1 — a < exp(—a) and exp(a) < 1+a+ £ a2 to get

W (t+1) T
e < e naun Ga + erayn 0+ na@Qe + a6,
where c = sup ;l. This inductively implies, for interval I = [r, s]

ee{el) ey

W(s+1)
wr

T T
< o (an(t) (€ + a0 1 g9 + g0 )

On the other hand, for any fixed ¢ € L, wétH) > wét) (1 — ) exp (n¢®). Without loss of generality,
we proceed with a fixed f and o, noting that the same calculations will follow for /.. This gives

(s+1) s
Wws+1) WA,
o 2 e 2 =M, e | D00l
t=r

S G| 1 I o)
> (=g g e ;n MA;.

Combining the two inequalities and taking logarithm on both sides yields

S

8 (t) )T 4(t) 2 ()T (1) 2
(1 — ) + log (W) +;775MAf, < anMA bvatenaua fua +

t=r

2
nalQ 8 + en?q)el)”.

We rearrange to get the following inequality

(t)Tﬁ(t) + qrt)éreg = Z é(t) Ape N ( Z qMA f(t) + Qregdetg >

)
—|I(1 — +log [ ——— |.
- ) g(WMAH)

t=r
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As v < 1/2, we can use the inequality log(1 — ) > —2~ to get the final inequality
T T
Sl o> S, - oo ST )
t=r

1 2| F 1
z (log <|MA|+> + |]|27>,
n v

As the same calculation holds for any objective £ € L, we get the final result
- 2
Z g 10, + ¢l0el8) > max {H;ax S Ak, Z éreg} en < S gl 2y g0 )
7 t=r

t=r
1 2| A +1
_ (log (MA|) +|1|27>,
n Y

This result was shown in|Lee et al. (2022)) and we follow the same calculations.

A.2 PROOF OF LEMMA 2

Let u(t)(p7 y) = fqus/izt,fao—f(xt)(y - p(iEt)) + Qr(etg)(gacc(p<xt)ay) - gacc(]at(xt);y))' Let
A(Y) denote the spaée of distributions over )). Applying Sion’s Minimax Theorem, we get
; ® — i E ® _ n B ofu® " Thi
min max u'(p,y) = min P By ~p[ut(p,y)] plgx, min B, p[u”(p,y)]. This

conveys that the minimax-optimal strategy p; of the learner can achieve u(*) (p,y) as low as if the
adversary moved first and the learner could best-respond. In this latter case, p = E,p[y] gives

u® (p,y) < 0.

Thus, the minimax optimal strategy guarantees that min, max,ecy v (p,y) < 0 forall ¢ € [T]. This
yields the desired inequality

Z Ghin Chin + 4l < 0.

A.3 PROOF OF THEOREM 1

Applying Lemma 2]to the inequality (6) in Lemmal[I] gives
T 2
e oS, S o Sl 7 ) -
5 t=r

1 2| F 1
— (log (|MA|+> + I27> <0.
n v

Rearranging and dividing both sides by |I| yields the desired inequality,

1 ¢ )T )(t)
max {mauxu| g,&fg m Zéreg} I( () E(A + qﬁig)zrgg )

1 2|Fmal +1
— (1og (IMA|> + |[|27)_
| gl
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B DEFERRED ALGORITHMS

Algorithm 2 Locally adaptive multiaccurate mean estimation (learning p; online)

Input: Function class Fya € {f : X — [0,1]}; Fprea = {f5 : 8 € R}; hyperparameters 7, .
Input: Sequence of samples {(x1,41), ..., (zT,y7)}
I aua,, = m7 Vf € Fua, 0 € {£1}.

1) 1
2: Qreg = A Fval+L

3: 61 =0

4: for each ¢ € [T do

50 Beyr =B — YVl (fp,(xe), ye)
6:  pr(xi) == fp,(w1)

7

)
pu(ay) 1= axgmin max ZqMAf () (y = p(wr)) + 4l (lace (P(1), y) = luce (e (1), 9)

8: (jﬁxfl)a o q1£/[/)xf _exp (17 - af(xt)(yt —pe(xy))) forall f € F,o € {+,—}
9 dieg ) oc qlid exp (i (Upi(wr), w) - (e (e), r)

10: Qﬁ:;l =(1-9) 611(\;:;2, + m

gV =0 - aY + st

Output: Sequence of (randomized) predictors py, ..., pr

Algorithm 3 Locally adaptive multiaccurate quantile estimation

Input: Function class Fya C {f : & — [0,1]}; quantile level o; quantile predictions 8;,t € [T];
hyperparameters 7, .
Input: Sequence of samples {(x1,41), ..., (zr,yr)}

e _

1: inf = 2|T1AH_17 Vf € Fua,0 € {£1}.
(1) _ 1

2 g = 37T

: for each t € [T] do

4 Oy(vy) = argmin max > qMAf o f(x)(1{y < 6} — ) + ¢ (f 0,y) — Lq (Ht,yt))
feA(@) YEY

50 Gy, X Gn, . exp (70 f(2)(L{ye < Oi(30)} — @) forall f € Fya, 0 € {&1}
6 i oc g exp (0 (LalOr(z).ye) — CaOr )
7: ﬁ:,l)” =1-7) fil(ﬂfll + m
8 by =(-vae " + gt
Output: Sequence of (randomized) quantile predictors 61, ..., 0
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776 . We plot the moving average of the binary y over a window size 336 (2 weeks) and compare with the
777 baselines predictions p; constructed using quantile forecasts.
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