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Abstract

Recent developments in neural network optimization have brought a renewed interest to non-
diagonal preconditioning methods. Momentum Orthogonalized by Newton-Schulz (Muon) is a
promising algorithm which uses approximate orthogonalization of matrix-valued updates to ef-
ficiently traverse poorly conditioned loss landscapes. However, the theoretical underpinnings of
Muon’s performance, particularly in high-dimensional regimes, remain underexplored. This paper
investigates the isotropic scaling dynamics of Muon compared to SGD in a matrix-valued linear
regression setting. We derive risk recursion equations for both optimizers under isotropic data as-
sumptions, and find the correct scaling rules for increasing batch size with dimension for efficient
training. Our work suggests that in the high dimensional limit, Muon’s default normalization by
the Frobenius norm may not be sufficient to maintain its nonlinear properties.

1. Introduction

The training of modern large-scale neural networks demands optimizers that can efficiently navi-
gate high-dimensional, non-convex loss landscapes. Many settings, including those involving trans-
former based models, require the use of some kind of explicit or implicit preconditioning — the
most commonly used being AdamW [10, 11], which is generally considered robust and hardware
efficient. In recent years researchers have attempted to move beyond diagonal preconditioning meth-
ods like AdamW towards non-diagonal preconditioners which take into account larger structure in
the gradients [8].

One recent optimizer that has garnered significant interests is Muon, a method which takes ad-
vantage of the fact that most parameters are matrix valued [9]. Muon uses Newton-Schulz (NS)
iterations to approximately orthogonalize SGD-momentum updates [3]. Empirical results suggest
that Muon can significantly accelerate convergence, but there is not yet a good quantitative theoret-
ical understanding of the convergence properties of this algorithm.

We analyze Muon’s training dynamics in a setting where we can analytically predict full learning
curves in certain high dimensional limits. We introduce a matrix-valued linear regression problem
motivated by the gradient structure in real neural networks. Under the assumption of isotropic
data, we derive closed-form recursion relations for the risk for SGD and Muon. We leveraged
free probability theory [12] to approximate high-dimensional gradient moments for Muon, allowing
us to account for the nonlinear effects of NS iterations. We found that the normalization scheme in
Muon requires sufficiently large batch size to train well, but at such large batch, the nonlinear nature
of the NS iterations vanishes. Our results suggest that future high-dimensional theoretical analysis
of Muon is indeed tractable, and suggests that alternative normalization strategies may be needed
for Muon for training very large models.
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The paper is organized as follows: Section 1 provides background on Muon and its relation to
prior optimizers. Section 2 defines notation and assumptions. Sections 3 and 5 present our theoreti-
cal results, followed by a discussion of their implications. Proofs can be found in Appendix C.

2. Preliminaries

Muon relies on the fact that the neural network parameters in a single layer are matrix-valued, and
tries to exploit this matrix structure to improve optimization. Therefore any theoretical analysis of
Muon is only interesting if the problem has the appropriate structure. Motivated by this, we consider
the problem of minimizing a stochastic risk function with matrix-valued parameters,

min  {Z(W) = E(x,.x00-L (W3 (Xin, Xou)) } M

WGRNoutXNjn

given input and output characteristic vectors (xin, Xout), and .Z is the mean squared error (MSE)

ZL(W; (Xin, Xour)) = % (f (Xin, Xout) = Y (W, Xin, xout))2 > (2)

where f (xin, Xout) 18 the target value and y(W, xiq, Xout) 1S the model prediction.
In this work, we focus on a matrix-valued linear regression model y(W, xin, Xout) := xguthin,
where y € R is a scalar output, W € RNow*Nin g the parameter matrix. In iteration ¢, we minimize

the stochastic risk in (1) by parameterizing the algorithm using

student W, € RNow*Nn  with fixed teacher W* := argminy, Z(W) € RNew*Nin 3)

used to generate noiseless targets f(Xin, Xout) := xng*xin. Here, xi;, € RMn is an input feature

vector, and xoy € RNt is an output feature vector, both are drawn from isotropic distributions
satisfying Exff’lz = 0'12 Idy,, and Ex?uzt = 0'22 Idy,, . Define T := E(xou ® Xin)®2. Then, T;jxe = 6ix0 j¢-
This implies that the risk (i.e., the loss (2) averaged over (xi, Xout)) iS

RW) =By x) L W) = 3B ((Xou ® xin)®2, (W = WH)®?) = LW - W*|I£. )

To analyze optimization algorithms, it is important to first examine the structure of the gradient.
For a batch of B samples, the stochastic gradient is calculated analytically in the implementation as

B
1 (i) (i) (i) o (i)
G= B Z(yplredicted - yte:rget) ) xoilt ® xir: o)
i=1

where ® denotes the tensor product. This can be rewritten in matrix form as G = B~ (Z - xou) T - Xin
where xi, € RB*Nin is a matrix containing the batch of xj, vectors (each row is a sample), Xyt €
RBXNou i5 a matrix containing the batch of x,, vectors (each row is a sample), and Z € RE*E is

a diagonal matrix with entries Z;; = (ygi dicted — yt(zfr)get), the per-sample residuals. The resulting

gradient G € RNowx*Nin j5 3 matrix with the same shape as the parameter matrix W. This structure
is similar to gradients in fully connected layers of neural networks, where ( ygl dicted — yt(;r)get)xéi)t is
replaced by the derivative 0. /dh for an activation vector 4 in an intermediate layer.

The key insight is that the distribution and correlation of the inputs directly affect the singular
value spectrum of the gradient. When the batch size B is comparable to the dimensions of the
parameter matrix (N, and Noy), higher order moments of the distributions become important. In
this work we will focus on the i.i.d. input case; we expect these effects are even more important for

anisotropic data distributions.
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3. Optimization Algorithms
3.1. Standard Stochastic Gradient Descent (SGD)

For each batch of data (xip, xout) With batch size B, SGD updates the parameters as

B
1
Wis = Wy =1 V(Wi (xins ¥ou)) = W = = > Vw-Z(Wes (el xi). (6)

where 7 is the learning rate, xij;, = {xi(rf)}f; 1> Xout = {xéﬁ)t f; |» and the gradient is averaged over
all samples in the batch. To compare with Muon, we also consider normalized SGD where the
gradient is scaled by its Frobenius norm — that is, the replacement G;.; < Gy+1/||Gy+1]|r, Where

G r41llF = V(Gt+1, Gr41). The parameter update then becomes Wiy = Wy — 1, G141/ ||Gr411lF.

3.2. Momentum Orthogonalized by Newton-Schulz (Muon)

Muon, as defined by [9], applies a Newton-Schulz (NS) iteration to approximately orthogonalize
the gradient matrix. This prevents the network from learning only in a few dominant directions and
ensures isotropic updates. For a batch of data (xi,, xou) Of size B, we compute the batch gradient
Giy1 € RNowXNin at jteration ¢ + 1 as

B
Gl = - Z Vw2 (W; (i), x50) = Z xoxl el (W —woxlhy. )
B
Then, we form the momentum buffer M;,; = uM; = (1 — u)Gsq with u € [0,1). The
momentum step may be implemented with other averaging conventions; our analysis below uses
this canonical form. Recall that for p € R\{0} and bounded linear operator R € Z(J¢), we
define the Schatten p-norm of R as [|R]|, := Tr (|[R|?)"/P. This extends t0 ||R||e := Amax(|R]),
where Amax(|R|) is the largest eigenvalue of |R|. The gradient is normalized by its Schatten p-
norm before NS iteration; i.e., M, «— M [|M; |, = M,/Tr(|M,|P)1/p In particular, the standard
implementation of Muon [9] sets p = 2, which is equivalent to normalizing the gradient by its
Frobenius norm ||M;||g. This is the case we analyze in the main text; in Appendix D.3 we present
the scaling analysis for the case p = oo, where || M, || is the operator norm of the gradient.
The NS iteration then approximates the orthogonalization operation

Ortho(E) = argmin {IlO —E|| : either 07O =1d or 00" =1d}. )

O eRNouw*Nin: || 0|5 <1

Along with the momentum step, this is equivalent to replacing M, with the nearest semi-orthogonal
matrix UV from its singular value decomposition M; = UZVT. Specifically, we can view the
one-step NS iteration as using a quintic polynomial in X to approximate the matrix sign function,

011 =DP5(Z;a, b, C)Mt+1, where ®5(Z;a,b,c) =ald+bXX" + c(ZET)Z, 9)

with fixed hyperparameters a, b, c. One can apply K Newton-Schulz iterations to project the mo-
mentum buffer onto the nearest semi-orthogonal matrix. Denote the K-step NS iterates by NS (+)
and the output after K steps by Oy := Ot( +1) NS K([\7I,+1). Now, NSk is an explicit, iterative
map that converges rapidly to the semi-orthogonal factor of its argument. Finally, we update the

parameters with the orthogonalized momentum W;,| = Wy — 104
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4. Main results

In this section, we present the core theoretical results for the convergence of SGD and Muon in a
matrix-valued optimization setting with isotropic input and output data. We analyze the expected
risk dynamics under large-dimensional regimes, where the batch size B, input dimension Nj,, and
output dimension Ny scale to infinity with ratios to be determined later. Theorem 2 establishes
a risk recursion for SGD with normalized gradients, extending classical analyses to matrix-valued
problems. Theorem 4 derives a similar recursion for the Muon update, leveraging free probability
techniques to approximate gradient moments in high dimensions. These results provide insights
into the interplay between batch size, problem dimensions, and convergence behavior.

We emphasize that prior theoretical analyses rarely address matrix-valued objectives under
isotropic data, despite their relevance to modern architectures. As a consequence, even the be-
havior of SGD in this regime is not fully understood. Establishing a precise baseline for SGD with
normalized gradients is thus a prerequisite for evaluating Muon, enabling a controlled comparison
that isolates the role of Newton-Schulz orthogonalization in shaping the risk dynamics.

In what follows, the filtration .%; = o (Wy, G1, ..., G;) captures the history up to step ¢. Let the
risk be defined as in (4), where W, W* € RNouxNin x e RNow x; e RNin_ Assume B, Nin, Nout —
oo with ratios to be determined later. The input and output vectors xi,, Xou are i.i.d. with E[xfiz]
0'12 Idy, and E[xf’uzt] = 0'22 Idn,, for o, 0 > 0. The stochastic gradient G, satisfies E[||G, II%IL%] <

C%(W;_) for some constant C > 0. The learning rate , > 0 satisfies ; = O(1/L).

Theorem 1 (SGD risk recursion with unnormalized gradient) The expected SGD risk given as
in (1) at iteration t + 1, conditioned on the filtration .%;, satisfies the finite difference equation

B (BWer)|Z0) = (1 =200 41787 (B+3+ NinNow + 2(Nin + Nou) ) Z(W). - (10)

Theorem 2 (SGD risk recursion with normalized gradient) Denote the constant k .= B/(B +
NinNow). For large batch size B and problem dimensions Ni,, Nou, the expected risk of streaming
SGD at iteration t + 1, conditioned on F;, satisfies the finite difference equation

2 /
E[Z (W) F2) = Z (W) - nt\/ﬂ\/%(Wt + % +0 @) . (11)

ne
VB2k~1

Remark 3 This result extends the classical SGD convergence analyses [5, 7] to the matrix-valued
setting with isotropic input and output data and the fully connected normalized gradient structure.

One interesting batch size scaling regime for SGD is the large batch regime B = aNjyNout
for an O(1) constant & (does not scale with Nj, or Noy). This is the largest regime we can take,
which trains efficiently (in terms of flops or number of data points processed) and shows universal
behavior for training at a reasonable speed with non-scaling step size. In this regime for vanilla
SGD (Theorem 1), the risk recursion shows a linear decay rate modulated by 1 —n, + 7?(1 +a~ '),
implying convergence in O(1) steps. For normalized SGD (Theorem 2), the optimal learning rate
scales as n; = O (+/k); in this regime, vk = v/2a/(a + 1) = O(1) again leading to convergence in a

2
dimension-independent number of steps. the asymptotic risk R, ~ g—? is also well-behaved.

An alternative batch size scaling regime for SGD is the batch-fan proportional regime where
batch is proportional to the matrix widths — Nj,/B = ¢ and Noy/B = ¢ for O(1) constants ¢ and
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. For unnormalized SGD (Theorem 1), the risk recursion yields a linear decay rate modulated
by the constant k! = B¢y + 0(1). The optimal learning rate in this case is proportional to «, so
the learning rate is O(B~'). In this regime learning takes O(B) steps to reach a target loss value;
this implies that O(B?) = O(NiyNoy) samples must be processed. This is in fact just as sample
efficient as the large batch regime, which trains using O (1) steps but O (N, Noy) samples per step.
For normalized SGD, the limiting risk at long times is given by «~'72 /8. In this setting getting
a dimensionally-independent value for the risk requires o« B~'/2. This once again implies O(B)
steps for convergence, again matching the sample efficiency of the large batch regime. Detailed
analysis of both regimes can be found in Appendix C.3.

Similarly, Theorem 4 below develops an analogous recursion for Muon and reveals how the
adaptive preconditioning built into Muon modifies the contraction rates of the expected risk.

Theorem 4 (Muon risk recursion on isotropic data) Let the one-step Muon update be given by
Wi =W, — 77G1+17 Gy = (a Id +b(GtG;—) + C(GZG:)Z)G“ (12)

where the quintic polynomial ®s5(X;a, b, ¢) = aX + bX? + c¢X° approximates the matrix sign func-
tion in the limit. Assume that the dimensions B, Nip, Nout — o0 with fixed ratios B/Niy — ¢,
B/Now — ¥, and the gradient moments B[{(A;, (G:G[)1G,)|.#] can be approximated by their
free probability limits, dominated by non-crossing partitions, as described in Proposition 9. For
each sample i, let the quadratic zt(i) = (xéfl)t, Atxi(rf)) be the per-sample residual inner product. Un-
der isotropic assumptions, these are approximately i.i.d. Gaussian with variance (J'i. Then, in the

Jjoint large-dimensional limit, the expected risk at iteration t + 1, conditioned on %, is
BRI Z] = 4 (I8E - 2B 1A, Gl Z) + PE(IG IRl Z])  (3)
= RW;) =D (R W))) + 50°V (% (Wy)). (14)
The drift and variance terms are given by, respectively,

D(HW)) :=E[(Ar, Gr1)| 4]

_ 4a%(Wt) bNinNout EZZ
TETGG )2 B (BTHG,G))P
t Yy
NinNout 212 NiﬂNgut 4 N gut 212 2¢# (W)
S (Ez°)~ + 7 (Ez™) + S (Ez?) (ETr(G,GtT))5/2(1 +0(1)),

and
2abETr((G;G])?)  (b*+2ac)ETr((G,G))3)
ETG.GN)E  (ET(G,GN))

WBTH((GG))  PET(GGD |,
(ETr(G,G)))* " (ETr(G,G)))3 (T+oth),

Y (#W) =E[IGnllfl 7] = (a* +
(15)

where the higher order gradient moments ETr((G,G[)?), 1 < g <5, are given by (102).

A detailed analysis of the dynamics under the different batch size scaling regimes can be found
in Appendix D.2; we summarize the key points here.
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In the isotropic setting, the large batch regime B = aNj,Nqy quickly leads to uninteresting
dynamics for Muon due to the fact that the spectrum of GG " degenerates to a point, and all the mo-
ments E[Tr((G,G/)?)] are proportional to E[Tr(G,G;)]. This may not be true in the anisotropic
case; see discussion.

The batch-fan regime avoids issues with the spectrum of GG, but another issue arises: the
quintic polynomial @5 degenerates to its first-order approximation as dimension becomes large.
This means that at very large model size, the dynamics of Muon degenerates to normalized SGD.
The effects of the non-linear terms can be rescued with alternative normalization schemes; for ex-
ample using the operator norm p = co, the third order term contributes even at infinite width (Ap-
pendix D.3). We hypothesize that this normalization issue may still be present in many anisotropic
settings as well.

The cost of the NS iterations are manageable in both scaling regimes. The per-sample gradi-
ent computational cost often will scale at least as O (BNj,Noy) (particularly when examining real
models, e.g. transformer blocks on long sequences). The NS iterations scale closer to O(NiyN2,, +
NoutNV. 12n ), which is the same order as the per-sample gradients for the batch-fan proportional regime,
and subleading in the large batch regime. Correctly identifying computational bottlenecks in prac-
tice can be more difficult and relies on careful analysis of parallelization strategies and hardware
utilization. Regardless, our work suggests that in the isotropic regime the batch-fan scaling is more
promising but requires rethinking of the normalization in Muon to scale to very large matrix sizes.

Finally, we note that in transformer architectures the Muon update enjoys an additional structural
advantage: the NS orthogonalization acts only on the parameter matrix itself and is independent of
the sequence length. As a result, the computational overhead of NS does not grow with context size.
This makes the method particularly appealing in large-sequence transformer regimes.

5. Discussion

Our analysis provides theoretical insights into the convergence behavior of SGD and the Muon opti-
mizer in the matrix-valued setting with isotropic data and highlights the role of orthogonalization in
balancing gradient singular values. One key finding is that for SGD, the large batch (B = Ny Noyt)
and batch fan proportional (Nj,/B = ¢, Nout/ B = ) regimes both have similar dynamics and com-
putational efficiency; however, for Muon, in the isotropic case the large batch regime degenerates
quickly. It is not clear under what conditions this degeneracy occurs for the anisotropic case; this is
a topic for future study.

We also found that even the batch fan proportional regime loses the non-linear information from
NS at large enough N due to the normalization scheme, and eventually degenerates to (normalized)
SGD. This suggests that at very large model sizes alternative normalization schemes may indeed
be necessary to maintain good, predictable performance. We conjecture that this issue is more
fundamental and persists over a large variety of data distributions.

Our results highlight the importance of our matrix flavored linear regression model; the standard
high-dimensional linear regression does not have the structure to probe these behaviors. Our work
suggests that theoretical analysis of Muon is indeed tractable using methods from random matrix
theory. The next step is to repeat this study in anisotropic settings, where Muon is expected to
actually outperform SGD. Studies in these more realistic settings may uncover actionable insights
about Muon and suggest potential improvements to the algorithm.
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Appendix A. Algorithms pseudocode

Algorithm 1: Isotropic Muon

Algorithm 2: Isotropic streaming SGD

Data: n > 0, u € [0, 1), (xin, Xout), 4, b, ¢
Result: Optimized parameters Wr
M_1 — 0, W_l, W* ~ N(O, IdNomein)
fort=0to7 —1do
G, & VwZL(W; + uM; _1; (Xin, Xout))
M; — My + (1 - )G,
M; Mt/”Mth

Data: n > 0, u € [0, 1), (xin, Xout)
Result: Optimized parameters Wr
M_1 — 0, W_1, W* ~ N(O, IdNomem)
fort=0to7T —1do

G, — VwZL(W;-1; (Xin, Xour))

My — puM;—y + (1 — p)G,

Wi « Wy —nMr ;

0, — NEWTONSCHULZ(M,; a, b, ¢) end

Wis1 <« Wy —n0; return Wy
end
return Wr

Appendix B. Plots and experimental analysis

To investigate the scaling behavior of SGD and Muon, we perform a sweep over different batch
sizes B and learning rates 7; such that the ratio 1,/ B remains constant. This allows us to isolate the
effect of scaling N, the system size, or model dimensionality, while holding the effective learning
rate per sample fixed.

Experiments are conducted for N = 200, 300, 500, and the performance of both algorithms is
evaluated in terms of convergence speed and final loss reached. The results indicate that as N in-
creases, Muon maintains a relatively consistent convergence while SGD degrades more. Notably,
maintaining a fixed n,/B exposes differences in how each algorithm handles gradient noise and
curvature scaling with model size. For larger N, Muon exhibits better robustness to batch-size-
induced variance, suggesting that Muon’s adaptive components scale more favorably under fixed
effective learning rate conditions. These findings highlight the importance of considering algorith-
mic stability and noise sensitivity when scaling model size, even under normalized optimization
hyperparameters like fixed 5, /B.



)

R(W

R(W,)

HIGH-DIMENSIONAL ISOTROPIC SCALING DYNAMICS OF MUON AND SGD

Muon scaling, N=200, Ir/sqrt(B) ratio=0.002

10°
\
107
[ 50000 100000 150000 200000 250000 300000
Number of samples
(a) n;/B =0.002
Muon scaling, N=200, Ir/sqrt(B) ratio=0.004
10°
6x10"
4x107
3x107

0 50000 100000 150000 200000 250000 300000
Number of samples

(c) :/B = 0.004

00 Ir=4.00e-02
50 Ir=3.16e-02
50 Ir=3.16e-02
=225 Ir=3.00e-02
25 Ir=3.00e-02
00 Ir=2.83e-02

B=50 Ir=1.41e-02
— Empirical
Theoretical

—— B=1600 Ir=1.60e-01
B=1600 Ir=1.60e-01
= B=800 Ir=1.13e-01
B=800 Ir=1.13e-01
= B=400 Ir=8.00e-02
- B=400 Ir=8.00e-02
—— B=250 Ir=6.32e-02
- B=250 Ir=6.32e-02
= B=225 Ir=6.00e-02
B=225 Ir=6.00e-02
== B=200 Ir=5.66e-02
B=200 Ir=5.66e-02
= B=175 Ir=5.29e-02
- B=175Ir=5.29¢-02

B=150 Ir=4.90e-02

B=150 Ir=4.90e-02

B=100 Ir=4.00e-02

B=100 Ir=4.00e-02

— Empirical
--- Theoretical

Muon scaling, N=200, Ir/sqrt(B) ratio=0.003

10°
6x107
= 4x10?
3x107
2x107
0 50000 100000 150000 200000 250000 300000
Number of samples
(b) 1;/B = 0.003
Muon scaling, N=200, Ir/sqrt(B) ratio=0.005
10°
g
~
6x107

o 50000 100000 150000 200000 250000 300000
Number of samples

(d) 1;/B = 0.005

=== B=250 Ir=4.74e-02
= B=225 Ir=4.50e-02

B=50 Ir=2.12e-02
B=50 Ir=2.12e-02
— Empirical
=== Theoretical

B=50 Ir=3.54e-02
B=50 Ir=3.54e-02
— Empirical
--- Theoretical

Figure 1: Muon scaling, sweeping over fixed n;/B ratio (N = 200)



)

R(W

HIGH-DIMENSIONAL ISOTROPIC SCALING DYNAMICS OF MUON AND SGD

Muon scaling, N=300, Ir/sqrt(B) ratio=0.001
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Muon scaling, N=500, Ir/sqrt(B) ratio=0.0005
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Figure 7: Muon scaling, sweeping logarithmically over batch sizes with optimal learning rates

Normalized SGD scaling with optimal Ir (N=200) 100 Normalized SGD scaling with optimal Ir (N=300) 100 Normalized SGD scaling with optimal Ir (N=500)

100

R(W,)

0 100000 200000 300000 400000 500000 600000 ] 100000 200000 300000 400000 500000 600000 00 02 04 6 8
Number of samples Number of samples Number of samples

(@) N =200 (b) N =300 (c) N =500

To
«i0¢

Figure 8: SGD scaling, sweeping logarithmically over batch sizes with optimal learning rates
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Figure 9: Scaling of optimal learning rates as a function of batch sizes for all three algorithms.

We optimize the learning rate for each fixed N and each algorithm via grid search, and pick the
learning rate that gives the lowest loss after some fixed number of samples processed. This gives
good early time learning properties for SGD and for Muon. We sweep logarithmically over 2923,
Then, for each algorithm, we plot the set of learning curves across B for these optimal learning rates
with num_samples = B X steps on the x-axis. Both x- and y-axes scales are held fixed in each
column of Figure 7 and Figure 8.

Figure 7 and Figure 8 show that, near the crossover region B ~ N, SGD behaves more stably
and is better collapsed, while Muon diverges more easily while only slightly varying batch sizes
inside the crossover region. Overall, Muon shows greater variability in the final convergent loss
values than SGD, when the batch size B is large (e.g., when reaching 16 X N). Initially, both
algorithms are exponentially decaying with the steepest descent possible. However, Muon and SGD
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converge differently even when tuned optimally, where SGD plateaus earlier while Muon continues
decreasing longer, indicating different asymptotic behaviors. It is also interesting that we observe
different optimal ratios between Muon and SGD: with a fixed n/VB ratio, SGD handles larger
effective step sizes without diverging or incurring high risk. They achieve different optimal risk
values at the same B and N values. In general, Muon almost always reaches optimal performance
at larger B compared to SGD, which indicates that the position of optimal batch size with respect to
a fixed N differs between SGD and Muon.

Moreover, Figure 9 shows the optimal learning rate versus batch size for Muon and normalized
SGD. The Muon curves vary much more in final loss reached as a function of B/N, while SGD
curves show fairly linear scaling trend even at larger batch sizes compared to muon, which already
starts to level off.

The above phenomena clearly indicate that there are behaviors of Muon that cannot be approxi-
mated by SGD at any learning rate or batch size. Muon deviates from the small batch size universal
regime in a way different from SGD, in addition to having different learning curves. In particular,
the effects around B = N, as we transition from B < N to B > N, is much stronger for muon as
compared to SGD.

Muon (equal risk at init) with optimal Ir (N=200) Muon (equal risk at init) with optimal Ir (N=300) Muon (equal risk at init) with optimal Ir (N=500)
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ioe

Figure 10: Muon scaling with different Wy, W* setup while preserving ||W; — W*||g, swept over
optimal learning rates for each batch size.

In Figure 11, we test two different initializations for Muon with the same starting risk and plot
loss curves, where we initialize W, as an i.i.d. random matrix, W, as a random matrix with singular
values that are all 1. We scale W, by some factor @ so that ||W; — W*|| = ||aW, — W*||. Note that
we use the same W* for both simulations. We average over 5 seeds for the sampling randomness of
the trajectory while keeping Wy, aW,, W* the same for all runs. This indicates that matrix statistics
do not matter much in the isotropic case, as long as the initial expected loss is kept equal.
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Muon risk constants with optimal Ir and B (N=200)
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Figure 11: Muon risk update ratio Z(W;41)/%(W;), swept over various optimal learning rates for

each batch size. It can be seen that the Muon risk recurrence does not follow the same
affine linear pattern in the SGD risk update as in (10).
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Normalized SGD co-scaling (Ir=0.1 N=100)
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Figure 13: Muon co-scaling (rule 1) with Ni,/B = ¢, Nout/B = .
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Appendix C. SGD risk, isotropic case
C.1. Basic SGD risk recursion on isotropic data, Theorem 1
Proof Let the SGD risk be Z(W,) := IE(xou, (W, — W*)xin). If E = E(Xou ® xin)®?, then
Eij.k,e =0ik0j¢, and
E ( (Xour ® xin) %, (Wy = W*)®2) = 3 (Y, (W, = W*)*2)
(Wy = W*)ij (Wy = W) 0860 = $1IWe = W2, (16)

where the first equality follows from (v,Aw) = (v w,A) and (a,b) ® (c,d) = (a® c,b ® d).
Denote by .%; := o (Wj, ((xm)s ,(xout)§’)) : s < 1) the natural filtration up to time 7 in the
SGD process, where ((xm)s , (xout)s )i:1 is a batch of i.i.d. input-output pairs sampled at each
iteration to compute the stochastic gradient, and W, is the weight matrix at iteration ¢ which is
Z-measurable. The expected risk is then

E(Z(Wiii| 7)) = 5E(|Wear = W*IIEIZ2)

B N L2
1g ||W, - W* - 77tB_1 Zx(();)t ®xi(;)(x(()3, (W, — W"‘)xi(;))”F 9,]
=1
3 (W, = W2 = 20 (W, = W E[Gratl Z1) + 1B [(Grar, Gea)| 75
. _ 17
In the third equality, we use the definition of the gradient G,,; := B~! 2.8 g xi(;) D (w, -

i=1%out out’

W*)xi(n) Y. Expanding the inner product of G, gives two cases, where we have squared terms with
the same index i and cross-product terms with different indices i # j, i.e.,

(G, Gi) 1) = B2l . BIGmlE[# |+ 1ies Y BlIGmIR#]). )

i€[B] i,je [B

To evaluate the second sum in (18), note that

E(x (1) (]))(x(l) (j))(x(i) ®xi(rf)’ W, — W*><x(]) (J)’ W, — W*>

out’ out in X out out

—E<om A @ ®x(1)®x()®x()®x(”®xi(r'1’),ld®ld®(W,—W*)®2>

out out out

19)

(615627036018, 512034 (W, — W*)®2)

Z (We =W5)ij (W, = W)e
i,j,k,

Definition 5 (Non-crossing pairings [12]) Let 7 be a partition of [n]. If there existsi < j < k < {
such that i, k are in one block V of m and j,{ are in another block W of n, we say that V and W
cross. If no pair of blocks of m cross, then we say that nt is non-crossing. The set of non-crossing
partitions of |n] is denoted NE (n). The set of non-crossing pairings of [n] is denoted NE»(n).

Example 1
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(i) Ifweseti=5,j=6,k="7,{=8, then with paired partitions in the form = = {(1,5), (2,7),
(3,6),(4,8)} € /E2(8) = (), the above sum immediately simplifies to

D We = W)y (Wy = W eSudje = ) (We = W5 = W = WHIIE. (9
ikl i)

(ii) We form non-crossing partition n = {(5,7), (1,2), (6,3,4,8)} € NC(8) with the same index
assignments
612057034068012834(Wy = W*)®2 = Now(|W; — W*I3, (21)

where the Nyt factor is due to the fact that indices 1,2 are isolated and none of i, j, k,{
equals them. Similarly, the isolation of (3,4) will contribute a factor of Ni,.

Theorem 6 (Wick) Let X1, X3, ..., X, be a Gaussian family. Then we have for any k € N and
1 <i(1),i(2),...,i(k) < nthat

k
n Xi(j)
i=1

Here, 92,(k) denotes the set of all pairings of the set {1, ..., k}.

E

= > ]| ElxeXwl] (22)

nePy (k) {r,s}en

Definition 7 (Tensor contractions [6]) Let <7, O be finite-dimensional real vector spaces, which
we equip with inner products and so are finite-dimensional Hilbert spaces. Recall that as a vector
space </ @ U is all (finite) linear combinations of simple tensors, i.e., those of the form a ® b where
a € o/ and b € O. This becomes an algebra, allowing scalars to commute, i.e., for ¢ € R,

c(a®b)=(ca)®b=a® (cb) (23)
and by allowing ® to distribute over addition,
(a+b)®@c=(@®c)+(b®c) and a®(b+c)=(a®b)+(a®c). (24)

General tensor contractions generalize matrix multiplication and dot products. We will use the
inner product (-, -) operator in various ways to describe this contraction. Each &/ and O carries
with it an inner product, and so &/ ® O has a natural inner product which for simple tensors is

defined by
<a®b,c®d>ﬂ®ﬁ:<aac>%<b9d>ﬁ' (25)

This is extended to the full space of ® O by bilinearity. This, for example, can be connected to
the Frobenius inner product. If we represent an element A € R? ® RY in the orthonormal basis
{e,- ® ej} as A = Zi,j A;je; ® ej, then we have the identification

(A,B)osoo = ) AijBij = Tr (ABT). (26)

i,J
In particular, the dot products written above extend naturally to

(A ®0)? = (d®0O)Q (A ®0) = g% @ O 27)
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where the last isomorphism corresponds to reshaping the tensor to have its ambient directions listed
first, and its observable directions second. Furthermore, tensor computations naturally give rise to
an inner product on higher tensor products, which we define first for simple tensors, t; := (a; ® 0;)

fori=1,2,3,4,
(11 ® 12,13 ® 14) (g 0152 = (11, 13) o0 (12, 14) /00 (28)

= (a1, a3) (a2, as) ;01,03) 5 02,04) 5 .

This is once more extended by multi-linearity.

From Theorem 6, we know that

Ex®m= > [] EGxex, (29)

pairings {u,v } €pairing

we have that And thus in the case i = j, the first sum in (18) evaluates to

EG xOy el ey (xl0 @ D W, = Wy (x () @ 1D, W, — W)
=B ()% & ()™ 10 e (W, - W) 50

= ((812057 + 815627 + 017025) (534068 + 03608 + 538046), 512034 (W, — W*)®2)
= (NinNout + 2(Nin + Now) +4)[W; = W|I%.
In summary,
ME(G 1, Gre)|F)
_ (BB = DIW, = W2+ B(NinNow +2(Nin + Now) +4)IW, = W*E) (31

2
n
= Et(B + 3 + NinNout + 2(Nin + Nouw)) [|W; = W*||12:

Similarly, we can expand the second term in (17):

<W, W*, E[(xm@x D)9 (W, - W*)x<>>|ﬂ,]
= (W, - W B | @) @ xi W - w7 )
:E[< D & xD w, - W*> }

= (5[0 @x)| 7| 10 oW, - w*)*2)

(32)
out
= (613624, 612034 (W, — W*)®?)
= Z (W = W) j(Wy = W), 06ik6 66k, ¢
ikt
= ”W[ - W*H]zia
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and therefore

277t<Wt - W*, E(Gt+1 |yt)>

B
2’7 . . . .
= 2 B[ (we-wraly e (e (Wi - W)
i=1

out out> %] (33)
=2 [|W, - W*H%
Combining everything yields
E(Z (W1 |F1))
= L (IWs = WA = 2, IW, - W
40?87 (B 43+ NiNou + 2(Nin + Now)) W, = W*|12) (34)
= 4 (1= 200+ 2B (B4 3+ NinNow + 2(Nin + Now)) ) (W, = W* 2

= BERW)LF) (1= 200 +02B™" (B +3+ NiNow + 2(Nin + Now)))

where %HW, - W*||% =% (W,) = E(Z(W,)|.%;) as Z(W,) is .F;-measurable.
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C.2. SGD risk updates with normalized gradient, Theorem 2

Proof To derive the SGD risk equation with a normalized gradient, we start with the given SGD
risk and modify the gradient update to account for normalization by the Frobenius norm. The
risk is defined as Z(W;) = %E(xout, (W, = WH)xqy) = %HW, - W*||12:, and the natural filtration is
G = o (W, ((xin)ﬁi), (xout)gi))ile : s < t). The unnormalized gradient is G,+; = B~ Zl 1 (():l)t

xi(rf)(x(()f])t, (W, — W*)xi(lf)). For the normalized case, the gradient is scaled by its Frobenius norm

via Gyy1 — ”gt’—:l‘llp where ||G41llr = V{(G41,Gr41). The parameter update becomes W,y =
W, — nlllgt’—:l‘np. We need to compute the expected risk at the next iteration, E(Z(W;41)|-%;)

%E(HWHI - W*||12:|3Zt). Substituting the update rule

G
Wi = W* =W, - W* -, —2L_ (35)
|Gi+1llr

Taking the Frobenius norm squared and the conditional expectation,

E([Wi1 = W*IIE172)

=E Wt—W*—Th Gt+1 2}}
NG i+1llE g
2 36)
Gy Gyl
=E|||W, - W*||2 -2 <W wr, — >+2— 7
W= ol =2 AW =W G e ) TG e ]
G
= [|[W; —W*II%—ZmE [<Wt_W*’ ad ><th +77z2-
G ra1llr
Thus, the expected risk is
G
B(R (W) 1) = | (nWt WA - 2B KW W “11”F> ﬁ] . 77,2) NET
1+
Since Z(W;) = %||Wt - W*“]Z: is .%;-measurable, we have
* Gt+1 T]t
E(Z W) 7)) = Z (W) —nE [< -W7, > T . (38)
NG iatlle 2

To proceed, we approximate by assuming that for large batch sizes B, the gradient G;4+; behaves
like a Gaussian random variable due to the central limit theorem, and we use properties of Gaus-
sian distributions to handle the normalization. Assume G,+1 is approximately Gaussian with mean

E[G1| ] = B 2B B @x D (x ) (W, - w*)x!?)|.Z,] = W, - W* (from the unnormalized
derivation), and covariance determined by o->. For a Gaussmn vector Z ~ N(u,X) in a Hilbert

space, the expectation E [<ﬁl’zﬁ>] can be approximated as

a,z a,
afie2)] . _en .
IZ|| E[1Z]1?]
Here, u = W, — W*, and (W, - W*, u) = ||W, — W*||%. We would need to evaluate
W; —W*, G
| WGt (40)
G r+1llp
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where W, is .%;-measurable, and .%; = o (W, ((xin)éi), (xout)f,i) )l.li , - s < t). From the unnormal-
ized derivation, we know that E[G;y1|.%;] = W; — W* and that

E[(Gi+1, Grs)| 1] = (B + 3+ NinNout + 2(Nin + Now) | Wy = W2 (41)
Define k = B + 3 + NinNout + 2(Nin + Nou) and denote A, = W, — W* and 0% = E[llGHlH%lﬁ}] =
§||At||12:. Since G;4; = B™! Z?:I Z;, where Z; = PR xi(lf)<x(i) (W, — W*)xi(lf)), and the Z; are

out out?
i.i.d. given .%;, we apply the central limit theorem for large B. Each Z; € RNouxXNin =~ RNowNin and

we treat G4 as approximately Gaussian in the tensor space with mean u = E[G41|.%] = A; and
variance Var(G,41|.%;) = B~! Var(Z;|.%,). For large B, the central limit theorem suggests

VB(Gya1 — 1) 5 N(0,3), 42)

where X = Cov(Z;|.%;) is the covariance tensor of Z;. The variance of the Frobenius norm is
2 L BIG 217 = [E[Get | 712 = SR = a2 = <= a2 43)
0 =E[IG1llgl ] = |EB[Grat| ] lg = BII g = A NIE = 7 1A |-
As B — oo, assuming Njp, Noy are fixed or grow slower than B, we have that

lim «/B =1+ B~ (NinNou + 2(Nin + Now) +3) = 1 + 0 (B‘lNinNout) . (44)

B—

Thus 02 = ||As]|% - O (B~ NiyNow). To approximate
F PP

|: <Al7 Gl‘+1>
G r+1llF

we first let X = (A;, G;41) and Y = ||G 41 ||g. Then,

jt:|, (45)

B

X =(A ! Z; Y= 1BZ-lBZ- (46)
= [’EZ il = E; ,,E; il

i=1

From the unnormalized case, E[ X|.%;] = ||At||% and E[Y?|.%,] = VALY ||§. Thus, we can approxi-
mate G4 —% N(A;, %). Consider furthermore the projection
2 _
X = (A0, Grn) = N (I8 B (AL ZA)) )
The variance of X is
Var(X|.7;) = BT'E[(Zi, )| 1] - BB (Zi, A F)°. (48)
Since E[(Z;, A)|.Z:] = A%, and E[(Z;, A2 7] = B[(xy @x1)), A2 (xlur, (A)xi V2. F4], we
can reuse the unnormalized result for the case i = j,
E[(Z, At>2|yt] = (NinNout + 2(Nin + Nout) + 4)||At||12-7 (49)
Thus
Var(X|.Z;) = B~ [(NinNou + 2(Nin + Nouw) + D |17 = 1A ] (50)
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For large B, the norm ||G 41 lr = VE[Y?].%;] = /% ||A; |lr. We apply the approximation

[Xl ] E[X|.%] 0( Var(Y) )
VE[Y2|.%] E[Y]Z:]3

This is justified by the central limit theorem and the fact that ¥ concentrates around its mean for large
B. And since E[Y?] = 1A ||, for an approximately Gaussian G4, the variance of Y 2= |IGi ||%
is

D

17,

Var(Y?| %) = E[G 1 It Z:] = (ELIG 1 lIfl7:1)?

2 (52)
=BlIGmIHZ - (§1ad)
We expand the first term,
2
G raillf = Z(Gt+l)i2j = Z (G141)ij(Grs1)ke(Gi11)ij (G a1 ke (53)
0 i okt
Since G;4; = B~} 2?:1 Z;, we have
B
(Grat)ij = 5 mZ:l(Zm)zj, IGrallf = B4 l ;;’[ m’n;qzl(Zm)ij(Zn)kt’(zp)ij(zq)kt’- (54)
Taking the expectation,
1 B
BUGwIFZ) =25 D) D) Bl (Zoke(Zp)ij(Zg)el ). (55)

i,j,k,t m,n,p,q=1

Since the Z; are i.i.d., the expectation is non-zero only when the indices pair appropriately. We use
the Wick theorem (as in the unnormalized case) for the Gaussian approximation,

Bl(Zn)ij (Zaa(Zp)ijZoul Fd = Y || BlUZDan(Z)eal 7). 56)

neP(4) {r,syen
where indices (a, b), (¢, d) correspond to the paired terms. The pairings are:
s {(m,n), (p, @) }: E[(Zn)ij(Zn)i1BI(Zp)ij(Zg)ki]-
* {(m,p), (n,q@)}: B[(Zm)ij (Zp)i; 1E[(Zn)ki(Zg)xa]-
* {(m,q), (n, p)}: B[(Zn)ij (Zg) i 1E[(Zn)i(Zp)if]-
Summing over indices and considering contributions,
E[(Z:)i;(Z)x1| Z:] = (6:x6 1) (NinNout + 2(Nin + Now) +4) |A |12, (57)

For large B, the dominant terms come from pairings where indices align. The second moments are

. . _JElN(ZDab(Zi)cal F:]  ifi =,
E[(Zl)ab(zj)ailyt] - {(At)ub(At)cd ifi # j, (58)
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where . . _ _
(ZD)ab = (xS (el xlor, A,
From the unnormalized derivation (case i = j):
E[(Zi, A1 F] = (NinNou + 2(Nin + Now) + D 1A, |17

For the pairing {(i, j), (k,[)}, we compute:

E[(Z)2,(Z)2 41741 ifi=j=k=1,
E[(Z)2 | FNB(Zi)2 | F) ifi=j.k=1i#k,
ENZ)ab(Z)ab(Zi)ea(Z)eal F1] = 1 (D)2, (A2, ifi=k,j=1i#j,
(A2, (A2, ifi=1,j=ki#],
(Ar)ab(Ar)ab(Ar)ea(Ar)ea  if all distinct.

Summing over indices, we can case into the following scenarios.
(i) i = j = k = [ (contributes B terms):

> BI(Z)Z,(Z)2 7).
a,b,c,d

Using the Gaussian moment for Z;:
B[(Z)2(Z0)2417:) = BUZ) | FBN(Z); g | Fi] + 2BU(Z0) b (Zi)eal Fi 1P

Since
E[(Zi)ab(zi)cdltg;t] = (6a06bd)(NinN0ut + 2(Ivin + Nout) + 4)”At ”]2:,

summing over all indices gives a factor proportional to Noy¢Nip,

a,b,c,d

(1) i = j,k =1,i # k (contributes B(B — 1)):

Z E[(Z)%p| ZEL(Zi)2 4| F:] ~ (NinNow) * 1A I
a,b,c,d

(iii) i=k,j=1lori=1,j =k (contributes 2B(B — 1)):

D (A2, (A02, = 1Al

a,b,c,d
(iv) i, J, k, € all distinct (contributes B(B — 1)(B —2)(B — 3)):

D802, (802, = 1Al

a,b,c,d
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(60)

(61)

(62)

(63)

(64)

D BUZ)ap(Z)eal Fi* = D (NinNow + 2(Nin + Now) + DA E ~ (NinNow) *[1A .
a,b

(65)

(66)

(67)

(68)
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Combining all four cases, after summing, the fourth moment scales as the square of the second
moment E[||G 4 [|.7] ~ 3 (gllAtH%)z. Thus, Var(Y?|.%;) ~ 2 (%||At||12:)2. Then it immediately

follows that Var(Y) ~ ZE(;2; §||At||]2:. Since E[Y] ~ \/%HAtHF, the error term is

Varm_O(crz/(NoutNm):O( _ B ) (69)

E[Y]* 7\ (o+k/B)? k32 NouNin

For large B, k ~ B. Hence,

A2 (|A,||F) \[ (n t||F)
7, | = 1A : (70)
] NCS o

E|: <Al7 Gl‘+1>
G r+1llr

Now, the expected risk is

<Al’Gl+l> ﬁt]*_n—%
IGre1llE 2

2
= (W) - n(\f It +0 121 t”F))%’ an

2
=%(WZ>—m\/§ 24 (W:) +0 nt—v‘@(W’))ﬂ—f

VBk 2
where the last equality follows from the fact that Z(W;) = %HA,H% and ||A¢|lg = V2Z(W;). As
B, Nout, Nin — o0, the error term is o (/% (W;)), assuming NoyNip > B~1/2 Thus, the leading-
order approximation is

2
BB W) |F2) = ROV,) = 1| ST + "+ 0 (). 72

This shows the nonlinear dependence on the risk due to normalization. |

E(Z(Wir)|F1) = Z(W;) — n:E [
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C.3. Asymptotic behavior of the SGD risk

Next, we show that B oc NijyNoy is the appropriate scaling limit with universal behavior for training
at a reasonable speed in SGD with a normalized gradient, and compute the final loss as ¢t — oco. In
other words, we want to ensure that the training dynamics achieve a balance between convergence
speed and stability, and to determine the asymptotic risk in terms of B, Ny, Noyt, and 1;. For large
B, we approximate k ~ B/(B + NinNou). The leading-order recursion is

E[Z WD) F:] ~ Z(Wy) — \/B+N N t\/%’(Wz (73)

To analyze training speed, we need the risk to decrease at a reasonable rate, meaning the descent
term dominates the noise term and leads to convergence in a practical number of iterations. The
nonlinear term /% (W;) suggests a different convergence behavior compared to unnormalized SGD,
where the risk decreases linearly. The coefficient of the nonlinear term should be neither too small
(which slows convergence) nor too large (which could destabilize the update due to large steps). Let
B = aNjn Ny, where a is a constant, and analyze the coefficient

\/2_3 :\/ 2arNinNow :\/ 22 _ o(1), (74)
B + NinNou @NinNout + NinNout a+1

for the recursion to yield effective descent and ensure that the step size 7, 4/ %\/%(W,) is signifi-
cant relative to Z(W;). We examine different scaling regimes:

* B << NinNout: The descent term becomes —U,JZB/(NinNout)%(W,). If B is small in the
sense that B = 0(NijnNout), this makes the descent term negligible unless r; > 1, which leads
to slow convergence and risks instability since the noise term 7?/2 grows quadratically.

* B > NinNout: The recursion becomes E[Z(W;11)|-7;] ~ Z(W;) =1 V2R (W;) + = n . While
this maximizes the descent term, a very large B is computationally expensive, as 1t requires
processing many samples per iteration, which may not be practical for large-scale problems.

Even though the error term O (nt NZAULDIA BK) is small, the computational cost outweighs
the marginal gain in descent rate.

* B o« NinNout: Assume that B = aN;yNou, the descent term coefficient ,lz—f e (0, V2 2).

This scaling ensures the descent term is O (1,+/%(W;)), providing significant progress per
iteration without excessive computational cost. We can approximate « ~ B + NjyNoyt =

(@ + 1)NinNoy, VBk ~ AJa(a + 1) NinpNoy. The error term scales as O (nt\/%(Wt)/VBK) ~

0 (nt\/%(Wt)/(\/a(af n 1)NinN0ut)), which is o(yZ(W,)) for large NinNou. Thus, the ap-
proximation is tight, and B o« Nj, Ny, balances computational efficiency and convergence
speed as batch size co-scales with problem size.

To find the final loss as  — oo in the B o< Nj, Noy regime, we assume a constant learning rate
n; =n = O(1/L) for simplicity. Let R, = Z(W;). We take the expectation over all iterations while
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assuming the risk converges to a steady state R, = lim; 0o E[R;|-%;], i.€., E[Rs+1] = E[R;] = Ro.
Then, the SGD risk recursion in the iteration limit is

Res ~ Reo — x| —22 E[\/R]+n2 (75)
o~ e I\ BN Now o

Since VR, concentrates around its mean for large B, we approximate E[VR.] ~ VR to get

2B n?
~ep | —== L 76
0~=n B + NinNout R°°+2' (76)

Solving with B = aNijy Noy: gives

2
n _ 772(3 + NinNout) _ 7]2(61/ +1)

3 [ 2B 8B 8a
B+NinN0ul

R, = o))
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Appendix D. Muon risk updates
D.1. Proof of Theorem 4
Proof Define A; := W, — W*. Recall the one-step Muon update
G141 = aG; + b(G;G])G, + ¢(G,G])*G,;
- (a 1d+b(G,G + c(GtG,T)2) G, (78)
=U®5(Z;a,b,c)VT

where @5(Z;a,b,c) = aX + bZ3 + ¢X’ is some quintic polynomial with fixed hyperparameters
a, b, ¢ such that limpy e <I>§V = 1. The expected risk in the isotropic case is

E(ZWes))|F1) = 3E(IWis1 = W*IE|.F)
= 3E (IIWr - W* =G |I§|ffz) (79)
= 1 (1A = 27B (A G )7 + B (G, Gt 7))
We further expand the expected risk in terms of (G,G/)?G, and A,. Note that

E({Ar, Gie)|F1) = aE ((Ar, G) |.F1)

<58 [(8.(G,66)| 7] + B[ GanPaz]

and
E(As, (G,G;)9G,) =ETr [A] (G,G])?G]|

1 T T
- BZq+lE Tr [At( l_[ GimGjm)Gk]
il,jl,...,iq,jq,kE[B] me[q]
1
= qu+1E Z Tr [A,T 1—[ ( m ®xé’;’t)( (J)ﬁ“t@xjm) (x ®x0ut) X
i],jl,...,iq,jq,kE[B] me|[q]
n k k
x 1_[ m’Atxout < out’Alxj ><xin’Atxout>]
nelq]

1 q
= =B D [T ules aTaic) (w, a7l )

i1,02500sig, k=1 €=
J1sd2seendg21 igr1=k
ip Je Je e+l T i _
X<xout’xout> <xin’ Xin ><Xm,A Xout < A 0ut>

q
D) ST ([ 11 b Arddier ) Ardbyeragn (B0

I =

[]yeees iq, k>1  ai,cr,f1se-es by,dy,eq..., =1
Jlseees quI aq,Cq,qu[Nm] bq,dq,eqe[Nout]
ag+ls aq+2_1 bq+1 ,bq+2:1

k
X E[(xm)a +1 (xout)bL 41 (xln)aq+2 (xout)b +2X

X 1—[ (xln) (xout) (xm) (xout) (xout) (xout) (xll’l) (xm)l“l]

telq]
(81)
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where we employed tensor simplification rules such as

B 2k
1 : ; 1 j
B Z ' ®x, = (E) Z <xlﬂ’xljri>< e Xin) <xm’xjk>5111251213 © Oy
i=1 i J15eeoika i 21
ok (82)
) (_) Z <)Cl] x12><xl2 xl3> <xm’xi111>’

B
[lyeens ir>1

given either of xi, or xoy is orthonormal, and for contractions with cyclic indices, E(xiln, xizn) (xizn, xi1n> =
Njip contributes one factor of Ny,, and the same holds for more contractions with cyclic indices
like E(x e X )(xizn,x?n)(x?n,xiln) = Nin. On the other hand, contractions with paired indices satisfy
]E(xm, xl )(xm, xzn) = Nizn . To approximate the higher-order mixed gradient moments, we introduce
the notlon of freeness as a non-commutative analogue of the classical notion of independence in
probability theory—free independence.

Definition 8 (C*-probability space and non-commutative random variables [12]) In general we
refer to a pair (7, ), consisting of a unital algebra </ and a unital linear functional ¢ : o/ — C
with ¢(1) = 1, as a non-commutative probability space. If < is a x-algebra and ¢ is a state, i.e., in
addition to ¢(1) = 1 also positive (which means ¢ (a*a) > 0 for all a € <f ), then we call (<7, ¢) a
*-probability space. If <7 is a C*-algebra and ¢ a state, (<7, ¢) is a C*-probability space. Elements
of < are called non-commutative random variables.

Proposition 9 In the large-dimensional limit where B, Ni,, Noyw — o with fixed ratios B/ Ni, = ¢
and B/Noy = ¥, the normalized trace E [B_l Tr(AtT(GGT)qG)] converges in probability to the
free probability moment

[A7(GGT)*G] = lim B 'ETr [A] (GGT)G], (83)
where T is the normalized trace in a C*-probability space, and G is treated as a free random
variable with a distribution determined by the isotropic covariance Ex® Exffuzt = Id. The ex-
pectation of the trace is approximated by the contribution of non-crossing pairings of the indices
i1, sigs J1s- .5 Jg, k given by the free cumulant expansion of the moment, where

Bxt[A] (GGT)? G] =ETr[A] (GG")? G]

1 1
- ;%L)E Z Z v(igs jg»i1) l_[.u(l{ Jesiev1), (84)

115025-0050g >
Jio2seesjg=1 ki‘ oJ

where

(@, By) = (x AT xE Y8 AT 3 (& xB Vb X
(85)
v(a, B,y) = pla, By Ax), Al y [ 1) ).

This reflects the dominance of non-crossing partitions in the free limit, weighted by the ratios ¢, .
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Proof In the C*-probability space (<7, ¢), let (A) = ﬁTr(A) and define by = xout ® x
by =x! ®xl,, so the trace satisfies
¢ (A (GGT)qG)
q 1 B
=y (Af Z bfbm()o(b*At)QD(bmA;r)) 3 Z bng(brA)
el n=1 (86)
1 < .
= Bl Z @ (AtT ﬂ(bzf ]{)bk) l_[ @(b7 AN (D, AT ) p(bEA).
(10 J1seeeniqelig k=1 =1
The free cumulant expansion for the moment is
(A-rb”b;r1 biqb;'qbk) = Z Kﬂ(AT7b”,b;,... blq, Ja ,br). (87)

neNE (2q+2)

The dominant non-crossing partition pairs indices to maximize cycles. Consider the partition 7 =
{(1,2¢+2),(2,3),(4,5),...,(2¢q,2q + 1)}. For (1,2q +2), we pair A] with by, which contributes

k2 (A, by). For (2¢,2¢ + 1), we pair b;,, b7, contributing k> (bj,, b;{). Thus
K2(bl[’ jg) ()D(blc ]p) Qo(bl[))(p(b )_ N [<xm,-x]€><x0ut’ (j)ﬁt ] :6ipijin’ (88)
and for A/, by,
1
@(A] i) = 7— Tr(A] (x5, ® x7)) = <xm,AT s Ele(A7br)] =0. (89)
out O
Thus ko (A, br) ~ ¢(A] by), and the scalar terms are p(byA) = ( Out,Atx"’) o(bj,A]) =
N (x/¢, ATx!%,). The expectation becomes
q . . .
B ([ [ 81joNin - Gk A7) ﬂ(xout, Ay el AT I K b (90)
=1
Summing over iy = j¢, (84) becomes
¢ (A (GGT)q G)
91

1

— ‘1 T L k

- B2q+1 z / N <xm’A z)lut> | |<x0ut’Afx [> <xout’Al‘xin> :
[1yens ig,k=1

cut A,x » and one (x JA X Qut) Using Isserlis’

theorem for Gaussian variables, we know E[(xout,Atx’f 2] = Tr(AJddn, A 1dy,,) = Tr(AA]).

For the cross terms, E[(xll;, Alx Out)(xout, Atxi’;)] [(xout, Atxk )(xout, A,x" )] = (A,xm, A,xk) =

(xm ATA,xk) and E[(xk ATAtxk )] =Tr(A]Addy,) = Tr(ATAt) Thus summing (84) gives

The expectation involves 2¢ + 1 terms of the form (x¢

N 5
e D OarlTH(AADITr(AT A
iseesigsk=1 92)
q
_ T +1 q T +1
W [TI'(A A )]q B‘I‘HN [TI'(A[A )]q
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Since Ny, ~ ¢ B, the normalized trace is scales as

¢?

1
EETr[AtT (GGT)?G]=0 (B =

[Tr(AtATﬂ‘I“) 93)

The subleading terms come from matched k indices. WLOG assume k = i1, then (84) turns into

B
Z Ok, B <xout’ Afx”) ]—[<xout’ Atxilr’;)2<x;‘1,xijri> <xcjzﬁt’ (l)lut ] ' %94)
[T iq,k 1
This introduces a cycle xl’I‘1 - xljri g xéﬁt — xout, which mandates i} = j; = --- = j,. The
expectation then becomes
N [l A1) = 0 (2 + DUITr(AA])] CoD2) 95)
Summing over i; and normalizing gives
d(2q+1)! 241
=72 B(2q + 1)1 Tr(A,A])]4+D/2 = (T[T (A:A])] 2 (96)

This is subleading by a factor of B~!, as the unmatched case scales as B~(7+2),

The proof is then completed by noting that if the index & is not matched with any i, or j, for
1 < u,v < g, then following Theorem 9, the last three factors (x]" xEy ek AT Out>(xl’1‘1,AtT xk
can be Contracted twice via the leading Wick pairings in the Gauss1an expectatlon first, pairing

the two x terms across the inner products yields an identity operator expectation E[xk (xk )] =
Id, reducmg to (xqu ATxk Mxt, ATxK ); second, pairing the two remaining ATxX terms yields
E[(ATxk )(ATxk )T] = ATA, resulting in <x"’ ATAx”> = (A,xm,A,x’q) + o(1). This closes the

chain in a non-crossing manner. [ |

We make use of the cases where ¢ = 1,2 in Theorem 9 to arrive at
E(<At’Gt+l>|ﬂt)
= aE (A, G) | 7)) + bE (A1, (G/G])G)|7:) + B (A, (G,G])*G, )| 7))

7
ZZGHAIHIZ: bEZ (BNmNout)

s ((Ez2)232 Tr(AT A) NinNout + (Ez) B Tr(ATA)NinN2,, + (E22)? B2 Tr(A] A) Out)

Lemma 10 (Gradient re-normalization) Let 6, := Tr(GG[ ) and 6, = Tr(GG])?G,. Then,
in the limits of B — co, B/Njn — ¢, B/Nout — ¥, we have that E [(ﬁq(ﬁl_q] ~ EG,(E®,)"? and
that E [6,67712] ~ EG,(EG,) 7!/

After gradient normalization, high-dimensional concentration from the lemma implies
a ”At ||12: + bEZ2 BNinNout
(ETr(G,G])'/? B> (ETr(G, GT))3/2

(Ez?)2B? Tr(A] A)NinNow + (Bz*) B Tr(A] A)NinN2,, + (Ez%)2B? Tr(A] A)N2,,
35 (ETr(G,G7))5/2

E[{Ar, G} F1] =2

(98)

n out
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On the other hand, the last term expands into

E<Gt+l, Gt+1>
= a’E(G,,G,) + b’E((G,G])G:,(G,G])G,) + ¢*E{(G,G])*G, (G,G])*G,)
+2abE(G,, (G,G])G;) +2acE(G,, (G,G])*G,) + 2bcE((G,;G] )G, (G,G])*G,)

= a®ETr(G,G;) + 2abETr(G,G])? + (b* + 2ac)ETr(G;G[)* + 2bcETr(G,G])* + *ETr(G,G[)°.
99)
To compute the expected traces in these equations, we adapt the combinatorial counting ap-
proach in [1, 2, 12], which we describe in detail below.

i1, J1 i2, 5 J2,14, ja,1s i3, J3

Figure 15: An admissible vertex partitioning (left) and its associated cactus graph (right). We iden-
tify vertices with the same color and join them with black and blue edges representing
contributions of Nj, and Ngy, respectively. On the right, we count that there are four
i, j identifications with four black and three blue edges. Thus, the unnormalized tracial
moment reads B4N§1Ngu[ in that order. By topological symmetry, there are ten ways
of obtaining the same contribution up to relabeling the 7, j indices. If we flip the edge
colors, we get another ten contributions of B“NfIl N2 .. We additionally weigh these
contributions with the z moments, which can be exactly described by the number of
outgoing edges for each identification. Thus, the total contribution of this configuration
is 10(Ez%)* (Ez*) (B*N} N3, + B*N2 N2 ).

in” out ou

Our goal is to write down the formulation for any moment ¢ > 1 in terms of the statistics of these
diagrams. To this end, we decouple the Gaussian factors in (81) and (84) using the above incident
graph representations. As a first step, we represent the indices i1, ji, . . ., iy, j4 (and & for the second
trace) as vertices in a cycle graph with 2¢ vertices for Tr(G,G/ )9, alternating between i, and j,
connected by edges representing inner products, e.g., (x(’;‘;t, Xty or (¢, xfﬁ” ). For the second trace,
an additional vertex k and edges involving A, are included, as shown in Figure 17. The cactus graph
is formed by partitioning the indices into blocks (identifications), where each block corresponds
to a vertex in the cactus graph, with edges representing inner products, weighted by Ni,, Noyt, Or
Tr(A/[ A;), corresponding to inner products or A,-related terms. We focus on non-crossing partitions

with even-sized blocks denoted by

NE(1,...,n) :={n e NE(],...,n)|every block of 7 has even size},

as these yield the leading-order terms due to maximal index summations. Let Cf" (m) denote the

number of black cycles of length ¢; and Cgi () denote the number of blue cycles of length ¢;

33



HIGH-DIMENSIONAL ISOTROPIC SCALING DYNAMICS OF MUON AND SGD

i1, J1 2,13, J3

Figure 16: A non-admissible matching and its corresponding cactus graph. We see that there is a
cycle {iz,i4, js} < {J2,i3,j3} with heterogeneously decorated edge colors. In addi-
tion, we observe that these two groups are odd-sized partitions. This breaks the perfect
matching condition and introduces moments of lower order.

J1

i1, j2 Ji,12

J2

Figure 17: To compute terms like (A, (G;G/)4G,) (for ¢ < 2) in Theorem 9, we just need one
extra modification to the admissible matching and its cactus graph. By contracting the
chain of inner products <x{:,xi’; )(xi’j1 , A:x’gm (xilr'l, Ath(’)‘ut) in (84), we can replace one

of the Nj,-edges (colored in orange) with Tr(A,;A;) in the cactus graph. The moment
contribution in this case is thus B2 Tr(A] A) NinNout.

in the corresponding cactus graph representation of partitioning n. Define N as the number of
identifications we partitioned iy, ji,...,i4, j; into. Let the number of outgoing edges at the k-th
cactus graph vertex be Ex. Then, by Figure 15, we have that for g > 1,

N ¢

1+0(1) ]_IE Ex gN 2 €' ()
BZq z in

RENECVN(1,...,.2q) k=1

5, CY (n)

ETr(G,G])? = NI ., (100)

and following Figure 17, we can write (after replacing one copy of Ni, by Tr(A] A;))

N . ti
1+o(1 Cli(m)-1 ¥ C
B (A, (G,G])7G,) = -EotD) S [N iadEng Y N

B2q+1 out
TENEVN(L,...,2q) k=1
(101)
Calculating Ez? for arbitrary powers p is also straightforward: Theorem 6 gives us the even mo-
ments of one Gaussian random variable X in the form E[X>"] = #%2,(2m)-c>™ = 2m—1)"E[X?],
where #%7(2m) denotes the number of pairings of 2m elements. Denote o, := Varz, then

Z = (x(()fﬁt, A,xi(;)) is a Gaussian scalar random variable, and we have the first few even moments
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Ez? = O'Z,’ Ez* = 3(a'§t)2, Ez® = 15(0'§t)3, Ez® = 105(0‘§t)4, and Ez'0 = 945(0’§t)5. The first to

fifth-order tracial moments are listed below for reference:

ETr(G:G/) = BEz*(BNinNow), (102)

ETt((G,G))?) = B~ ((JE,ZZ)ZBZNmNgut

+ (B2)? BN Now + B BN2 N2, ) (103)

ETr((G,G])*) =B (15z2)331331v3nzv§ut +BZ?EZ*3B°N] N2, + BZ?EZ*3B2N: N2,
(104)

in” ' out

FEZ°BN3 N3, + (Ez2)?BIN3 Ny + (Ez2)3B3NinN§m) (1+0(1)),
ETr((G:G[)")
= B (BE4B NN

n’'out

+EZ?EZ04B? N2 N2, + (EZ?)*B*N} Now + (E2*)*B*Nin N

out

+ (Bz)2B* N3 N2, + (EZ?)*2B*N2 N3, + (EZ2)*4B*N2 N3, + (EZ%)*4B*N2 N2,
+ (BZ?) Bz 2B N N2, + (E2?) EZ* 2B N2 Ny, + (B2 EZ*4B3 N N2,
+ (E2?)EZ* 4B N2 N3y + (EZ)?EZ*8B> N N3, + (Ez*)?2B>N3 N2

in” ' out n* ' out

(105)

+(EzH)22BNA N3, + B BNANA + (Ezz)ZEz4SB3N§1N§m) (1+0(1)),
ETr((G/G/)’)

_ B0 (BSNianOm(EzZ)S + B3Ny N3, (B2 + 20BN N3, (B22)°

+ 10B°N; N2, (Ez?)’ + 10B° N2 N (E2?)’ + 10B*NZ N3, (Ez%) Bz

+10B*N) N2 (EZ*) Ez* + 20BN No (E2*) Ez* + 20B*N;} N3 (EZ*)’Ez*
+10B°N) N3, Bz*(Bz*)* + 5B N N3 (Bz*)?Ez° + 10B° N N3 Bz* (Ez*)?

+ 55BN N3, (EZ?)*EZS + 25BN N2 B2 (Bz*)? + 25BN N2 (EZ%)?EZ® (106)
+5B2N} N3 EZ*Ez® + 5B2N} N3, EZ*EZz® + 5B*N> N2 Bz *Ez°

+5B*N> N3 Ez’Ez® + BN2 N3, Ez'° + 10B*N} N3 (E2?)*Ez*

+ 10B*N: N2 (B2 E* + 5B*NE N2 (B2?) B + 5B*N3 N2, (%) EZ?
+5B*N} N3 (BEZ?) Bz + 5B*N] Now (B2*) Ez* + 10BN N3, (EZ) Ez*

o

+10B*N; N3

3u(BZ?) Bzt + 5B N2 N3 (BZ%)?EZ° + SB3Ni5nN3ut(Ez2)2Ez6) (1+o0(1)).

An interesting observation is that, for moments ¢ > 1, the number of terms in the moment formula
progresses following the sequence (3(]‘1) /(2¢q + 1) which, according to [13], enumerates non-crossing
trees and colored partitions of a convex polygon by non-crossing diagonals [4]. Finally, normalizing

the gradient square term by the Frobenius norm of G, yields

a*ETr(G,G]) 2abETr((G,G])?) (b*+2ac)ETr((G,G])%)

E{(G¢+1,G = + +
(Gt Grn) ETr(G,G]) (ETr(G,GT))? (ETr(G,GT))3 107,
2bcETr((G:G)Y .\ ETr((G;G])?)
(ETr(G,G]))* (ETr(G:G)))®
We thus finished simplifying (81). |
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D.2. Asymptotic behavior of the Muon risk: Gradient normalization by the Frobenius norm

Regime 1: Nin/B = ¢, Nout/B = . Recall that Muon updates the parameters as Wy = W, —
1Gi+1, where the transformed gradient is G4y = (ald+b(G,G;) +¢(G,G;)?) G,, and G,
L3820 @ xD Gl (W = W) /IIG, llp. The risk is 2(W;) = LE(rou, (Wr = W)xin)
%HA,H%. The scaling rule implies that Ni, = ¢B, Ny = ¥B, NiuNow = ¢ B%. The variable

z= (x(()f])t, A,xi(ri)) is Gaussian with variance and higher even moments

MR 22(w)
© NinNow  NinNow’
22(W)\* _ 122(W,)>
NinNout) - ¢2¢ZB4 ’

ox, = ElZ’]

E[z*] =3(0})* = 3(

22W)\® 1202 (W)
E[°] = 15(E[z*])} = 15 ) = 108
[2°] = 15(E[z"]) (WBQ ) AT (108)
22(WH\* 16802 (W,)*
E[z%] = 105(E[z*])* =1 =
[<*] = 105(E[*]) 05( W E ) g
0y 15 are [2ZW)N 302402(W,)
E[z"7] =945(E[z7]) —945( ouB | = 5B
For the drift term, we compute each subterm as follows. The first two terms are
AR 22 (Wi)
=2 =2a~2%(W;)B
BTG GO oy VAW (109)
B
and
: 2
bNmAZIoutE[ZQ] 1 — b¢lﬁB . 2,9?(Wt) . 1
B (E[Tr(G(G)T)])32 B> ¢yB? (2%(Wt))3/2
B (110)
gy 2P B VB
QyB2 QAW LW,
while the third approximated term is
NinNout 21\2 Ni“Ngut 4 Ngut 21\2 IIAt”lz:
—(E ———E —(E
g B G D GG eomnn
ARW)? 143y +¢ 22W,) B (111)
B o B QAW
2V2B (W2 1+3y2% + ¢
BS/2 ’ P22
And thus the total drift is
VB IN2R (W2 143y +
E[(Ar, GV ] = 2ax27(W,)B + b re g/zf) IV ED o1y,
\2%(W;) B Y
(112)
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Since G, is normalized, E[Tr(G,G;)] = 1. We further compute higher moments. Substitute in
the z moments (E[z%])? = 4Z(W,)? (¢ B*) 72, E[z*] = 12%(W,)*(¢wB?) ™2, NuN2,, = ¢’ B,
N2 Now = ¢*¢ B3, and N2 N2, = ¢*y*B*, then since Z(W;) = O(¢y B?),

in” 'out
E[Tr((G:G))] = -3 ((E[z2]>2321v N2y + (E[21)2B N3 Now + L2 | BNANZ,
1 4R (W,)? 4% (W,)? 12%(W,)?
( prurgt BT g BB 'B¢2‘”ZB4)
_ 4%(W,)2 B’ AR (W;)? _
=g ‘¢¢B4(1+¢+3¢¢’)—W(1+¢+3¢¢’)—0(3),
(113)
and so this term is subleading in the sense that
E[Tr((G:G)*)]  4ZW))* 1+ ¢ +3¢y _ 0B~
BINGGIN #B (2agu)’ } (114
B
after gradient normalization. Similarly, for g = 3 we have that
E[Tr((G(GN)))] = (3<E[ 1B N NGy + 3E[1E[2*] B2N; Noy + 3E[° 1B <] BN Noy

E[z°]BN] N2y + (E[2%])’B’N Now + (E[2%])* B* Nin Ngut)(1+o(1))

1 ( (Z%’(W,)
=—|(3

B oy B2
2% (W) 12%(W;)?
(]5!,[/32 ¢2¢/234

2AWIN 3 3ps o (2ROVDN s s
+(¢w32)3¢”3+(¢w82)3¢3“

3
_82W) (i.,.g(l+1)+15+(i+i))=0(3),
B \¢y o ¢ Yo ¢

22 (W) 122 (W,)?
¢w32 ¢21//234
1202 (W,)?
¢3w336

(1+0(1))

B2 ¢’ B3y2B?

+3. B2’ B2 B3 + . B¢*B3y B3

(115)
and so after normalization of the gradient, this term is also subleading

E[Tr((G,G])*)] _8RW) 3¢y 19y 4997 + 154y P9 0B
(E[Tr(G,G[)])? B> (2%(W,))3 - ©(116)
B

The contributions from moments ¢ = 4,5 are suppressed by higher powers of B. Thus, in the
high-dimensional limit of batch size, the variance term is dominated by

E[|GenllEF] ~ a*(1 +0(1)). (117)

Then, the risk recursion in the limit is

b 2e\2%(W)) 143 2
E[Z (W) F1] = Z(W,) —n(2av2%’(Wt)B+ \/% . 35/2( +¢sz+¢ (1 +0(1)).
(118)
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Assuming Z(W,) = O(¢yB?), we can scale the a-term as O(VB3) = O(B/?), b-term as O (B'/?),
and c-term as O(B~!/?). The a-term dominates, giving

E[Z(Wi)|Zi] ~ Z(W;) - 277a\/2,@(WtB+— (119)

In the continuous limit, let R(¢) = E[Z(W;)], with t — nt, setting Z(W;.1) — Z(W;) = 0, we see

that at equilibrium,
2B _ a? an _ an _ 2 _ a2n2
a Ve — dus’ Uoo = 4\2B’ Roo =g = 32B (120)

The convergence rate near equilibrium can be obtained by linearizing around u.,. If we let u =

U + v, then
dv 2B a’n [2B v a’ny
=~ g ~ g2
dt Uoo +V 4(uoo +v) Uoo 2Ueo  4du’

__(a\/_ agz)v:—4mv=0(\/§/n).
OB 4. 90 n

328
which grows with B, indicating faster convergence for larger batch sizes, while the asymptotic
risk R, = 323 decreases with B. The scaling Nj, = ¢B, Noyw = ¥ B implies B? o« NijpNoy.
This is computationally expensive. The nonlinear descent term —2an~/2%(W,)B suggests Muon
benefits from larger B, but the computational cost of NS iteration (matrix operations scaling with

(121)

NoutNin) makes smaller B desirable. The risk Ro, ~ 32 5 depends on B, indicating non-universal

behavior unless 7 o« VB, which may destabilize training. It is thus crucial to carefully find the best
intermediate B size provided dimension parameters Ni,, Noyt and learning rate 7 in this regime.

Regime 2: Nin/VB = ¢, Nout/ VB = Y. Under this scaling, Niy = ¢VB, Nou = ¥ VB, 50 NinNou =
¢y B. The moments of z are

B[] = 22(W) - pray  122(W)? B[] = 120%(W,)?
¢lﬁB ’ ¢2¢,232 ’ ¢3’703BS ’ (122)
g, 168022(W,)* B[L10 30240% (W, )3
For the unnormalized gradient,
B B_z%(w,).ng
$UB 2% (W,)
ETr(G,G,) = Z 2 NinNow = = == (123)

i=1

Then, the unnormalized second moment expands into

1
ETr(G/G))’ = ((BL1?B2NuN2, + (BI2)* BN Nou + BI2 | BNEN, |

in* ' out

1 ([22W)\ 22W)\* 1 AW oy o
B (( ouB )B‘W&”\/h( ouB )B VBB + =g BB

4%(Wt (w\/_+¢\/_+—):0(3‘1/2).

(124)
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similarly for the unnormalized third moment,

out out out

ETr(GtGJ)3:i6(3(E[ 1)’ B*N2 N2, + 3E[Z*]E[z*] B*N; N2, + 3E[Z*]E[z*] B*NZ N

E[z°]BN2 N3, + (E[22])’ B3N3 Now + (E[22])* B> Nin Ngut)(1+o(1))

in” 'out
L (2ZWDY s 0 o 28(W) 12ZW)? 5 3300 0
=z (3(—¢¢B ) B°¢°By“B+3 ouB PENEYE B“¢"B’“y°B
2Z2(Wh) 12%(Wt)2 32 120%(Wt)3_ 3p3/2,3 p3/2
S TE gt PO g BT
28W)\ s 30302 22(W1)\" 32
8%(Wt)3 9 (1 1\ 15 (1 1 o
B (w \/_(¢ w) §+(E+P))(I+O(m_0(3 )'(125)
After normalization,
4J(Wt (‘/"/_+¢\/_+ )
ETH(G,G])* ~ =0(B™'?), (126)
(2,@(BW,))
d
" SBIP (34 2 (Lal)+B+(L+ 1))
BTG/ G ~ ——— e 0. 2)
(=5*)
Higher moments (g = 4, 5) are suppressed by O(B~>/?) and higher. Now, the total drift is
VB 227 WHY2 [ 1 3wVB 1
E[{As, Gie1)|F1] = 2a2%(W:)B + b + — +—+— ] (1+0(1])).
[(As, Gri1)|F] a (W) \/W ¢ B2 o & o ((12;( )

Assuming Z(W;) = O(¢yB), the a-term is O(B>/*), the b-term is O(B'/*), while the c-term is
O(B'*). Since the a-term dominates, the Muon risk simplifies to

BLR#(Wis1)|.7:] ~ R(W,) = 21a\27 (W) B + % (129)
Finally, by taking + — oo, we have the limiting risk R, = % with convergence rate % =

(4‘/273) v = O(VB/n). The NS iteration scales as O (¢ B), significantly reducing computational

cost and making Rule 2 more efficient than Rule 1.
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D.3. Gradient normalization by the Schatten p-norm when p =

Regime Nin/B = é, Nout/B = Y. With Ny = @B, Now = ¥B, NinNow = ¢¢Bz and %(Wt) =

O(¢yB?). The operator norm |G, || is the largest smgular Val)ue of the unnormahzed gradient
(i (@)

G,. For a random matrix of the form G, = 5 Zl | Out o Zis with xout, X isotropic and
zi ~ N(O, 25{%’3)), we approximate opax in the h1gh-d1men51ona1 limit. Assuming ¢,¥ = O(1),

and Nj,, Nouwt & B, the matrix behaves like a random matrix with i.i.d. entries scaled by z;. The
operator norm of a random Ny X Nj, matrix with entries ~ N (0, o2 /Nip) is

Omax ~ 0 (VNin + VNows). (130)

Here, the entries of G, have variance

2% (W,
((xout)k(xl(n))lzl) ] =oio3 W/(th), (131)
and so
~ ,/20’120'22%’(W,) \/—+\/—
E[l|G¢lleo] ~ ————=——(N¢B + W B) = \[20202%(W;) . (132)
1G] ~ S e (VOB +JUB) = 20 (W)

For simplicity, we WLOG assume that 012 = 022 =1,s0

BIIGylle] ~ V25 (V8 + V). (133)

Then,

BI(Ar, Gr)| 7]
e U (e Gyl BB GHGNTGAIF] | CBIA (G (GG
E[Gl||-#] E[IIG/[217] E[IIG/ 14171

~2a\/%(W,) 2bRW,)
VoI BB+ e

The third term involves higher moments but scales as O(B~?), so it is subdominant. Thus, the total

drift is
2a+ % (W;)B . 2b% (W) N
VBT BNGVD)?

E[{Ar, Gra)| 1] ~ 0(B7%). (135)
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Next, we compute the variance contributions:

E[Gnllgl#]

1
" EBlIG 1]
_ @E[lIG,|IlF| 7] s 2abE[Tr((G,(G)T)?)] .\ (b +2ac)E[Tr((G(G,)T)3)]

(PEUG 17 +2abB[(G1, G (G)TGOIF ] + (b + 200G, (G (GO TGN

TS E[l|G:I%]7:] E[lIG:1I%]-7:]
g R (Wy)?
a2 - 220 2ab-4¢%2 (1+¢+3¢%)

2% W) 4
== (Vo +V)? ( Z%E;Wt)(\/a+\/@)

2 C8EW) (3 gL, 1 1,1
+(b +2ac) 5 (¢w+9(w+¢)+15+w2+¢2)

6
s o)

2 3 1 1 1 1
2 8ab(1+¢+3¢$) +8(b +20C)(W+9(Z+$)+15+W+?)

a
T NEND s (NE D) BNAW,) R

Higher-order terms (g = 4, 5) are suppressed by higher powers of B. With Z(W,) = O(¢yB?), the
variance terms scale as O (1), O(B~'/?), and O(B~?), respectively:

a® .\ 8ab(1 + ¢ +3¢y)
(Ve +VE)* gy (N + Vo) B Z(W,)

Unlike the Frobenius norm case shown in Appendix D.2, the variance retains higher-order contri-
butions, as desired. The final risk recursion is therefore

2aEW)B  2bZ(W,) )

E[||G 137 ~ +0(B™). (137)

VB+NT | B(G+ D)

+n_2( @, Sab(1+¢+3¢y)
2\(Ne+ V) gy (NG + Vi) BAZ(W,)

With Z(W,) = O(¢y B?), the drift terms scale as O (B>/?) for the a-term and O (B) for the b-term.
The variance terms scale as O (n?) for the first term and O (p?B~"/2) for the second term. The a-term
in the drift dominates, and the first variance term dominates for fixed 5. At equilibrium and in the
limit of z,

E[ZWie)|F:) ~ Z(W1) - n(
(138)

) (I+o0(1)).

n’a’oy
Reo ~ "33 (139)
with convergence rate near equilibrium
d 4v2B
& TN (140)

indicating a rate of O(VB/n).
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