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Abstract
Recent developments in neural network optimization have brought a renewed interest to non-
diagonal preconditioning methods. Momentum Orthogonalized by Newton-Schulz (Muon) is a
promising algorithm which uses approximate orthogonalization of matrix-valued updates to ef-
ficiently traverse poorly conditioned loss landscapes. However, the theoretical underpinnings of
Muon’s performance, particularly in high-dimensional regimes, remain underexplored. This paper
investigates the isotropic scaling dynamics of Muon compared to SGD in a matrix-valued linear
regression setting. We derive risk recursion equations for both optimizers under isotropic data as-
sumptions, and find the correct scaling rules for increasing batch size with dimension for efficient
training. Our work suggests that in the high dimensional limit, Muon’s default normalization by
the Frobenius norm may not be sufficient to maintain its nonlinear properties.

1. Introduction

The training of modern large-scale neural networks demands optimizers that can efficiently navi-
gate high-dimensional, non-convex loss landscapes. Many settings, including those involving trans-
former based models, require the use of some kind of explicit or implicit preconditioning — the
most commonly used being AdamW [10, 11], which is generally considered robust and hardware
efficient. In recent years researchers have attempted to move beyond diagonal preconditioning meth-
ods like AdamW towards non-diagonal preconditioners which take into account larger structure in
the gradients [8].

One recent optimizer that has garnered significant interests is Muon, a method which takes ad-
vantage of the fact that most parameters are matrix valued [9]. Muon uses Newton-Schulz (NS)
iterations to approximately orthogonalize SGD-momentum updates [3]. Empirical results suggest
that Muon can significantly accelerate convergence, but there is not yet a good quantitative theoret-
ical understanding of the convergence properties of this algorithm.

We analyze Muon’s training dynamics in a setting where we can analytically predict full learning
curves in certain high dimensional limits. We introduce a matrix-valued linear regression problem
motivated by the gradient structure in real neural networks. Under the assumption of isotropic
data, we derive closed-form recursion relations for the risk for SGD and Muon. We leveraged
free probability theory [12] to approximate high-dimensional gradient moments for Muon, allowing
us to account for the nonlinear effects of NS iterations. We found that the normalization scheme in
Muon requires sufficiently large batch size to train well, but at such large batch, the nonlinear nature
of the NS iterations vanishes. Our results suggest that future high-dimensional theoretical analysis
of Muon is indeed tractable, and suggests that alternative normalization strategies may be needed
for Muon for training very large models.

© G. Wang, E. Paquette & A. Agarwala.
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The paper is organized as follows: Section 1 provides background on Muon and its relation to
prior optimizers. Section 2 defines notation and assumptions. Sections 3 and 5 present our theoreti-
cal results, followed by a discussion of their implications. Proofs can be found in Appendix C.

2. Preliminaries

Muon relies on the fact that the neural network parameters in a single layer are matrix-valued, and
tries to exploit this matrix structure to improve optimization. Therefore any theoretical analysis of
Muon is only interesting if the problem has the appropriate structure. Motivated by this, we consider
the problem of minimizing a stochastic risk function with matrix-valued parameters,

min
𝑊∈R𝑁out×𝑁in

{
R (𝑊) := E(𝑥in,𝑥out )L (𝑊 ; (𝑥in, 𝑥out))

}
, (1)

given input and output characteristic vectors (𝑥in, 𝑥out), and L is the mean squared error (MSE)

L (𝑊 ; (𝑥in, 𝑥out)) = 1
2 ( 𝑓 (𝑥in, 𝑥out) − 𝑦(𝑊, 𝑥in, 𝑥out))2 , (2)

where 𝑓 (𝑥in, 𝑥out) is the target value and 𝑦(𝑊, 𝑥in, 𝑥out) is the model prediction.
In this work, we focus on a matrix-valued linear regression model 𝑦(𝑊, 𝑥in, 𝑥out) := 𝑥⊤out𝑊𝑥in,

where 𝑦 ∈ R is a scalar output, 𝑊 ∈ R𝑁out×𝑁in is the parameter matrix. In iteration 𝑡, we minimize
the stochastic risk in (1) by parameterizing the algorithm using

student𝑊𝑡 ∈ R𝑁out×𝑁in with fixed teacher 𝑊★ := argmin𝑊 R (𝑊) ∈ R𝑁out×𝑁in (3)

used to generate noiseless targets 𝑓 (𝑥in, 𝑥out) := 𝑥⊤out𝑊
★𝑥in. Here, 𝑥in ∈ R𝑁in is an input feature

vector, and 𝑥out ∈ R𝑁out is an output feature vector, both are drawn from isotropic distributions
satisfying E𝑥⊗2

in = 𝜎2
1 Id𝑁in and E𝑥⊗2

out = 𝜎
2
2 Id𝑁out . Define 𝑇 := E(𝑥out ⊗ 𝑥in)⊗2. Then, 𝑇𝑖 𝑗𝑘ℓ = 𝛿𝑖𝑘𝛿 𝑗ℓ .

This implies that the risk (i.e., the loss (2) averaged over (𝑥in, 𝑥out)) is

R (𝑊) := E(𝑥in,𝑥out )L (𝑊) = 1
2E

〈
(𝑥out ⊗ 𝑥in)⊗2, (𝑊 −𝑊★)⊗2〉 = 1

2 ∥𝑊 −𝑊
★∥2F. (4)

To analyze optimization algorithms, it is important to first examine the structure of the gradient.
For a batch of 𝐵 samples, the stochastic gradient is calculated analytically in the implementation as

𝐺 =
1
𝐵

𝐵∑︁
𝑖=1
(𝑦 (𝑖)predicted − 𝑦

(𝑖)
target) · 𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in (5)

where ⊗ denotes the tensor product. This can be rewritten in matrix form as 𝐺 = 𝐵−1(𝑍 · 𝑥out)⊤ · 𝑥in
where 𝑥in ∈ R𝐵×𝑁in is a matrix containing the batch of 𝑥in vectors (each row is a sample), 𝑥out ∈
R𝐵×𝑁out is a matrix containing the batch of 𝑥out vectors (each row is a sample), and 𝑍 ∈ R𝐵×𝐵 is
a diagonal matrix with entries 𝑍𝑖𝑖 = (𝑦 (𝑖)predicted − 𝑦

(𝑖)
target), the per-sample residuals. The resulting

gradient 𝐺 ∈ R𝑁out×𝑁in is a matrix with the same shape as the parameter matrix 𝑊 . This structure
is similar to gradients in fully connected layers of neural networks, where (𝑦 (𝑖)predicted − 𝑦

(𝑖)
target)𝑥

(𝑖)
out is

replaced by the derivative 𝜕L /𝜕ℎ for an activation vector ℎ in an intermediate layer.
The key insight is that the distribution and correlation of the inputs directly affect the singular

value spectrum of the gradient. When the batch size 𝐵 is comparable to the dimensions of the
parameter matrix (𝑁in and 𝑁out), higher order moments of the distributions become important. In
this work we will focus on the i.i.d. input case; we expect these effects are even more important for
anisotropic data distributions.

2
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3. Optimization Algorithms

3.1. Standard Stochastic Gradient Descent (SGD)

For each batch of data (𝑥in, 𝑥out) with batch size 𝐵, SGD updates the parameters as

𝑊𝑡+1 = 𝑊𝑡 − 𝜂 · ∇𝑊L (𝑊𝑡 ; (𝑥in, 𝑥out)) = 𝑊𝑡 − 𝜂 ·
1
𝐵

𝐵∑︁
𝑖=1
∇𝑊L (𝑊𝑡 ; (𝑥 (𝑖)in , 𝑥

(𝑖)
out)), (6)

where 𝜂 is the learning rate, 𝑥in = {𝑥 (𝑖)in }
𝐵
𝑖=1, 𝑥out = {𝑥 (𝑖)out}𝐵𝑖=1, and the gradient is averaged over

all samples in the batch. To compare with Muon, we also consider normalized SGD where the
gradient is scaled by its Frobenius norm — that is, the replacement 𝐺𝑡+1 ← 𝐺𝑡+1/∥𝐺𝑡+1∥F, where
∥𝐺𝑡+1∥F =

√︁
⟨𝐺𝑡+1, 𝐺𝑡+1⟩. The parameter update then becomes𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑡𝐺𝑡+1/∥𝐺𝑡+1∥F.

3.2. Momentum Orthogonalized by Newton-Schulz (Muon)

Muon, as defined by [9], applies a Newton-Schulz (NS) iteration to approximately orthogonalize
the gradient matrix. This prevents the network from learning only in a few dominant directions and
ensures isotropic updates. For a batch of data (𝑥in, 𝑥out) of size 𝐵, we compute the batch gradient
𝐺𝑡+1 ∈ R𝑁out×𝑁in at iteration 𝑡 + 1 as

𝐺𝑡+1 =
1
𝐵

𝐵∑︁
𝑖=1
∇𝑊L (𝑊𝑡 ; (𝑥 (𝑖)in , 𝑥

(𝑖)
out)) =

1
𝐵

𝐵∑︁
𝑖=1

𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 −𝑊

★)𝑥 (𝑖)in ⟩. (7)

Then, we form the momentum buffer 𝑀𝑡+1 = 𝜇𝑀𝑡 = (1 − 𝜇)𝐺𝑡+1 with 𝜇 ∈ [0, 1). The
momentum step may be implemented with other averaging conventions; our analysis below uses
this canonical form. Recall that for 𝑝 ∈ R\{0} and bounded linear operator 𝑅 ∈ L (H ), we
define the Schatten 𝑝-norm of 𝑅 as ∥𝑅∥ 𝑝 := Tr ( |𝑅 |𝑝)1/𝑝. This extends to ∥𝑅∥∞ := 𝜆max( |𝑅 |),
where 𝜆max( |𝑅 |) is the largest eigenvalue of |𝑅 |. The gradient is normalized by its Schatten 𝑝-
norm before NS iteration; i.e., 𝑀𝑡 ← 𝑀𝑡/∥𝑀𝑡 ∥ 𝑝 = 𝑀𝑡/Tr ( |𝑀𝑡 |𝑝)1/𝑝. In particular, the standard
implementation of Muon [9] sets 𝑝 = 2, which is equivalent to normalizing the gradient by its
Frobenius norm ∥𝑀𝑡 ∥F. This is the case we analyze in the main text; in Appendix D.3 we present
the scaling analysis for the case 𝑝 = ∞, where ∥𝑀𝑡 ∥∞ is the operator norm of the gradient.

The NS iteration then approximates the orthogonalization operation

Ortho(Ξ) = argmin
𝑂∈R𝑁out×𝑁in :∥𝑂∥2≤1

{
∥𝑂 − Ξ∥F : either 𝑂⊤𝑂 = Id or 𝑂𝑂⊤ = Id

}
. (8)

Along with the momentum step, this is equivalent to replacing 𝑀𝑡 with the nearest semi-orthogonal
matrix 𝑈𝑉⊤ from its singular value decomposition 𝑀𝑡 = 𝑈Σ𝑉⊤. Specifically, we can view the
one-step NS iteration as using a quintic polynomial in Σ to approximate the matrix sign function,

𝑂𝑡+1 = Φ5(Σ; 𝑎, 𝑏, 𝑐)𝑀𝑡+1, where Φ5(Σ; 𝑎, 𝑏, 𝑐) = 𝑎 Id+𝑏ΣΣ⊤ + 𝑐(ΣΣ⊤)2, (9)

with fixed hyperparameters 𝑎, 𝑏, 𝑐. One can apply 𝐾 Newton-Schulz iterations to project the mo-
mentum buffer onto the nearest semi-orthogonal matrix. Denote the 𝐾-step NS iterates by NS𝐾 (·)
and the output after 𝐾 steps by 𝑂𝑡+1 := 𝑂

(𝐾 )
𝑡+1 = NS𝐾 (𝑀𝑡+1). Now, NS𝐾 is an explicit, iterative

map that converges rapidly to the semi-orthogonal factor of its argument. Finally, we update the
parameters with the orthogonalized momentum𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝑂𝑡+1.
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4. Main results

In this section, we present the core theoretical results for the convergence of SGD and Muon in a
matrix-valued optimization setting with isotropic input and output data. We analyze the expected
risk dynamics under large-dimensional regimes, where the batch size 𝐵, input dimension 𝑁in, and
output dimension 𝑁out scale to infinity with ratios to be determined later. Theorem 2 establishes
a risk recursion for SGD with normalized gradients, extending classical analyses to matrix-valued
problems. Theorem 4 derives a similar recursion for the Muon update, leveraging free probability
techniques to approximate gradient moments in high dimensions. These results provide insights
into the interplay between batch size, problem dimensions, and convergence behavior.

We emphasize that prior theoretical analyses rarely address matrix-valued objectives under
isotropic data, despite their relevance to modern architectures. As a consequence, even the be-
havior of SGD in this regime is not fully understood. Establishing a precise baseline for SGD with
normalized gradients is thus a prerequisite for evaluating Muon, enabling a controlled comparison
that isolates the role of Newton-Schulz orthogonalization in shaping the risk dynamics.

In what follows, the filtration F𝑡 = 𝜎(𝑊0, 𝐺1, . . . , 𝐺𝑡 ) captures the history up to step 𝑡. Let the
risk be defined as in (4), where𝑊,𝑊★ ∈ R𝑁out×𝑁in , 𝑥out ∈ R𝑁out , 𝑥in ∈ R𝑁in . Assume 𝐵, 𝑁in, 𝑁out →
∞ with ratios to be determined later. The input and output vectors 𝑥in, 𝑥out are i.i.d. with E[𝑥⊗2

in ] =
𝜎2

1 Id𝑁in and E[𝑥⊗2
out] = 𝜎2

2 Id𝑁out for 𝜎1, 𝜎2 > 0. The stochastic gradient𝐺𝑡 satisfies E[∥𝐺𝑡 ∥2F |F𝑡 ] ≤
𝐶R (𝑊𝑡−1) for some constant 𝐶 > 0. The learning rate 𝜂𝑡 > 0 satisfies 𝜂𝑡 = 𝑂 (1/𝐿).

Theorem 1 (SGD risk recursion with unnormalized gradient) The expected SGD risk given as
in (1) at iteration 𝑡 + 1, conditioned on the filtration F𝑡 , satisfies the finite difference equation

E [R (𝑊𝑡+1) |F𝑡 ] =
(
1 − 2𝜂𝑡 + 𝜂2

𝑡 𝐵
−1 (𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out))

)
R (𝑊𝑡 ). (10)

Theorem 2 (SGD risk recursion with normalized gradient) Denote the constant 𝜅 := 𝐵/(𝐵 +
𝑁in𝑁out). For large batch size 𝐵 and problem dimensions 𝑁in, 𝑁out, the expected risk of streaming
SGD at iteration 𝑡 + 1, conditioned on F𝑡 , satisfies the finite difference equation

E [R (𝑊𝑡+1) |F𝑡 ] = R (𝑊𝑡 ) − 𝜂𝑡
√

2𝜅
√︁

R (𝑊𝑡 ) +
𝜂2
𝑡

2
+𝑂

(
𝜂𝑡

√︁
R (𝑊𝑡 )√
𝐵2𝜅−1

)
. (11)

Remark 3 This result extends the classical SGD convergence analyses [5, 7] to the matrix-valued
setting with isotropic input and output data and the fully connected normalized gradient structure.

One interesting batch size scaling regime for SGD is the large batch regime 𝐵 = 𝛼𝑁in𝑁out
for an 𝑂 (1) constant 𝛼 (does not scale with 𝑁in or 𝑁out). This is the largest regime we can take,
which trains efficiently (in terms of flops or number of data points processed) and shows universal
behavior for training at a reasonable speed with non-scaling step size. In this regime for vanilla
SGD (Theorem 1), the risk recursion shows a linear decay rate modulated by 1 − 𝜂𝑡 + 𝜂2

𝑡 (1 + 𝛼−1),
implying convergence in 𝑂 (1) steps. For normalized SGD (Theorem 2), the optimal learning rate
scales as 𝜂𝑡 = 𝑂 (

√
𝜅); in this regime,

√
𝜅 =

√︁
2𝛼/(𝛼 + 1) = 𝑂 (1) again leading to convergence in a

dimension-independent number of steps. the asymptotic risk 𝑅∞ ∼ 𝜂2
∞

8𝜅 is also well-behaved.
An alternative batch size scaling regime for SGD is the batch-fan proportional regime where

batch is proportional to the matrix widths — 𝑁in/𝐵 = 𝜙 and 𝑁out/𝐵 = 𝜓 for 𝑂 (1) constants 𝜙 and
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𝜓. For unnormalized SGD (Theorem 1), the risk recursion yields a linear decay rate modulated
by the constant 𝜅−1 = 𝐵𝜙𝜓 + 𝑜(1). The optimal learning rate in this case is proportional to 𝜅, so
the learning rate is 𝑂 (𝐵−1). In this regime learning takes 𝑂 (𝐵) steps to reach a target loss value;
this implies that 𝑂 (𝐵2) = 𝑂 (𝑁in𝑁out) samples must be processed. This is in fact just as sample
efficient as the large batch regime, which trains using 𝑂 (1) steps but 𝑂 (𝑁in𝑁out) samples per step.
For normalized SGD, the limiting risk at long times is given by 𝜅−1𝜂2

∞/8. In this setting getting
a dimensionally-independent value for the risk requires 𝜂 ∝ 𝐵−1/2. This once again implies 𝑂 (𝐵)
steps for convergence, again matching the sample efficiency of the large batch regime. Detailed
analysis of both regimes can be found in Appendix C.3.

Similarly, Theorem 4 below develops an analogous recursion for Muon and reveals how the
adaptive preconditioning built into Muon modifies the contraction rates of the expected risk.

Theorem 4 (Muon risk recursion on isotropic data) Let the one-step Muon update be given by

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝐺𝑡+1, 𝐺𝑡+1 =
(
𝑎 Id+𝑏(𝐺𝑡𝐺⊤𝑡 ) + 𝑐(𝐺𝑡𝐺⊤𝑡 )2

)
𝐺𝑡 , (12)

where the quintic polynomial Φ5(Σ; 𝑎, 𝑏, 𝑐) = 𝑎Σ + 𝑏Σ3 + 𝑐Σ5 approximates the matrix sign func-
tion in the limit. Assume that the dimensions 𝐵, 𝑁in, 𝑁out → ∞ with fixed ratios 𝐵/𝑁in → 𝜙,
𝐵/𝑁out → 𝜓, and the gradient moments E[⟨Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺𝑡⟩|F𝑡 ] can be approximated by their
free probability limits, dominated by non-crossing partitions, as described in Proposition 9. For
each sample 𝑖, let the quadratic 𝑧 (𝑖)𝑡 := ⟨𝑥 (𝑖)out,Δ𝑡𝑥

(𝑖)
in ⟩ be the per-sample residual inner product. Un-

der isotropic assumptions, these are approximately i.i.d. Gaussian with variance 𝜎2
Δ𝑡

. Then, in the
joint large-dimensional limit, the expected risk at iteration 𝑡 + 1, conditioned on F𝑡 , is

E[R (𝑊𝑡+1) |F𝑡 ] = 1
2

(
∥Δ𝑡 ∥2F − 2𝜂E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ] + 𝜂2E

[
∥𝐺𝑡+1∥2F |F𝑡

] )
(13)

= R (𝑊𝑡 ) − 𝜂D (R (𝑊𝑡 )) + 1
2𝜂

2V (R (𝑊𝑡 )). (14)

The drift and variance terms are given by, respectively,

D (R (𝑊𝑡 )) := E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ]

=
4𝑎R (𝑊𝑡 )

(ETr(𝐺𝑡𝐺⊤𝑡 ))1/2
+ 𝑏𝑁in𝑁out

𝐵2
E𝑧2

(ETr(𝐺𝑡𝐺⊤𝑡 ))3/2

+
(
𝑁in𝑁out

𝐵3 (E𝑧2)2 +
𝑁in𝑁

2
out

𝐵4 (E𝑧4) +
𝑁2

out
𝐵3 (E𝑧

2)2
)

2𝑐R (𝑊𝑡 )
(ETr(𝐺𝑡𝐺⊤𝑡 ))5/2

(1 + 𝑜(1)),

and

V (R (𝑊𝑡 )) := E
[
∥𝐺𝑡+1∥2F |F𝑡

]
=

(
𝑎2 +

2𝑎𝑏ETr((𝐺𝑡𝐺⊤𝑡 )2)
(ETr(𝐺𝑡𝐺⊤𝑡 ))2

+
(𝑏2 + 2𝑎𝑐)ETr((𝐺𝑡𝐺⊤𝑡 )3)

(ETr(𝐺𝑡𝐺⊤𝑡 ))3

+
2𝑏𝑐ETr((𝐺𝑡𝐺⊤𝑡 )4)
(ETr(𝐺𝑡𝐺⊤𝑡 ))4

+
𝑐2ETr((𝐺𝑡𝐺⊤𝑡 )5)
(ETr(𝐺𝑡𝐺⊤𝑡 ))5

)
(1 + 𝑜(1)),

(15)

where the higher order gradient moments ETr((𝐺𝑡𝐺⊤𝑡 )𝑞), 1 ≤ 𝑞 ≤ 5, are given by (102).

A detailed analysis of the dynamics under the different batch size scaling regimes can be found
in Appendix D.2; we summarize the key points here.
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In the isotropic setting, the large batch regime 𝐵 = 𝛼𝑁in𝑁out quickly leads to uninteresting
dynamics for Muon due to the fact that the spectrum of 𝐺𝐺⊤ degenerates to a point, and all the mo-
ments E[Tr((𝐺𝑡𝐺⊤𝑡 ) 𝑝)] are proportional to E[Tr(𝐺𝑡𝐺⊤𝑡 )]. This may not be true in the anisotropic
case; see discussion.

The batch-fan regime avoids issues with the spectrum of 𝐺𝐺⊤, but another issue arises: the
quintic polynomial Φ5 degenerates to its first-order approximation as dimension becomes large.
This means that at very large model size, the dynamics of Muon degenerates to normalized SGD.
The effects of the non-linear terms can be rescued with alternative normalization schemes; for ex-
ample using the operator norm 𝑝 = ∞, the third order term contributes even at infinite width (Ap-
pendix D.3). We hypothesize that this normalization issue may still be present in many anisotropic
settings as well.

The cost of the NS iterations are manageable in both scaling regimes. The per-sample gradi-
ent computational cost often will scale at least as 𝑂 (𝐵𝑁in𝑁out) (particularly when examining real
models, e.g. transformer blocks on long sequences). The NS iterations scale closer to 𝑂 (𝑁in𝑁

2
out +

𝑁out𝑁
2
in), which is the same order as the per-sample gradients for the batch-fan proportional regime,

and subleading in the large batch regime. Correctly identifying computational bottlenecks in prac-
tice can be more difficult and relies on careful analysis of parallelization strategies and hardware
utilization. Regardless, our work suggests that in the isotropic regime the batch-fan scaling is more
promising but requires rethinking of the normalization in Muon to scale to very large matrix sizes.

Finally, we note that in transformer architectures the Muon update enjoys an additional structural
advantage: the NS orthogonalization acts only on the parameter matrix itself and is independent of
the sequence length. As a result, the computational overhead of NS does not grow with context size.
This makes the method particularly appealing in large-sequence transformer regimes.

5. Discussion

Our analysis provides theoretical insights into the convergence behavior of SGD and the Muon opti-
mizer in the matrix-valued setting with isotropic data and highlights the role of orthogonalization in
balancing gradient singular values. One key finding is that for SGD, the large batch (𝐵 = 𝛼𝑁in𝑁out)
and batch fan proportional (𝑁in/𝐵 = 𝜙, 𝑁out/𝐵 = 𝜓) regimes both have similar dynamics and com-
putational efficiency; however, for Muon, in the isotropic case the large batch regime degenerates
quickly. It is not clear under what conditions this degeneracy occurs for the anisotropic case; this is
a topic for future study.

We also found that even the batch fan proportional regime loses the non-linear information from
NS at large enough 𝑁 due to the normalization scheme, and eventually degenerates to (normalized)
SGD. This suggests that at very large model sizes alternative normalization schemes may indeed
be necessary to maintain good, predictable performance. We conjecture that this issue is more
fundamental and persists over a large variety of data distributions.

Our results highlight the importance of our matrix flavored linear regression model; the standard
high-dimensional linear regression does not have the structure to probe these behaviors. Our work
suggests that theoretical analysis of Muon is indeed tractable using methods from random matrix
theory. The next step is to repeat this study in anisotropic settings, where Muon is expected to
actually outperform SGD. Studies in these more realistic settings may uncover actionable insights
about Muon and suggest potential improvements to the algorithm.
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Appendix A. Algorithms pseudocode

Algorithm 1: Isotropic Muon
Data: 𝜂 > 0, 𝜇 ∈ [0, 1), (𝑥in, 𝑥out), 𝑎, 𝑏, 𝑐
Result: Optimized parameters𝑊𝑇
𝑀−1 ← 0,𝑊−1,𝑊

★ ∼ 𝑁 (0, Id𝑁out×𝑁in)
for 𝑡 = 0 to 𝑇 − 1 do

𝐺𝑡 ← ∇𝑊L (𝑊𝑡 + 𝜇𝑀𝑡−1; (𝑥in, 𝑥out))
𝑀𝑡 ← 𝜇𝑀𝑡−1 + (1 − 𝜇)𝐺𝑡
𝑀𝑡 ← 𝑀𝑡/∥𝑀𝑡 ∥ 𝑝
𝑂𝑡 ← NEWTONSCHULZ(𝑀𝑡 ; 𝑎, 𝑏, 𝑐)
𝑊𝑡+1 ← 𝑊𝑡 − 𝜂𝑂𝑡

end
return𝑊𝑇

Algorithm 2: Isotropic streaming SGD
Data: 𝜂 > 0, 𝜇 ∈ [0, 1), (𝑥in, 𝑥out)
Result: Optimized parameters𝑊𝑇
𝑀−1 ← 0,𝑊−1,𝑊

★ ∼ 𝑁 (0, Id𝑁out×𝑁in)
for 𝑡 = 0 to 𝑇 − 1 do

𝐺𝑡 ← ∇𝑊L (𝑊𝑡−1; (𝑥in, 𝑥out))
𝑀𝑇 ← 𝜇𝑀𝑡−1 + (1 − 𝜇)𝐺𝑡
𝑊𝑡+1 ← 𝑊𝑡 − 𝜂𝑀𝑇 ;

end
return𝑊𝑇

Appendix B. Plots and experimental analysis

To investigate the scaling behavior of SGD and Muon, we perform a sweep over different batch
sizes 𝐵 and learning rates 𝜂𝑡 such that the ratio 𝜂𝑡/𝐵 remains constant. This allows us to isolate the
effect of scaling 𝑁 , the system size, or model dimensionality, while holding the effective learning
rate per sample fixed.

Experiments are conducted for 𝑁 = 200, 300, 500, and the performance of both algorithms is
evaluated in terms of convergence speed and final loss reached. The results indicate that as 𝑁 in-
creases, Muon maintains a relatively consistent convergence while SGD degrades more. Notably,
maintaining a fixed 𝜂𝑡/𝐵 exposes differences in how each algorithm handles gradient noise and
curvature scaling with model size. For larger 𝑁 , Muon exhibits better robustness to batch-size-
induced variance, suggesting that Muon’s adaptive components scale more favorably under fixed
effective learning rate conditions. These findings highlight the importance of considering algorith-
mic stability and noise sensitivity when scaling model size, even under normalized optimization
hyperparameters like fixed 𝜂𝑡/𝐵.
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Figure 1: Muon scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 200)
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Figure 2: Muon scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 300)
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Figure 3: Muon scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 500)
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Figure 4: Normalized SGD scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 200)
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Figure 5: Normalized SGD scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 300)
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Figure 6: Normalized SGD scaling, sweeping over fixed 𝜂𝑡/𝐵 ratio (𝑁 = 500)
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Figure 7: Muon scaling, sweeping logarithmically over batch sizes with optimal learning rates
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Figure 8: SGD scaling, sweeping logarithmically over batch sizes with optimal learning rates
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Figure 9: Scaling of optimal learning rates as a function of batch sizes for all three algorithms.

We optimize the learning rate for each fixed 𝑁 and each algorithm via grid search, and pick the
learning rate that gives the lowest loss after some fixed number of samples processed. This gives
good early time learning properties for SGD and for Muon. We sweep logarithmically over 20.25.
Then, for each algorithm, we plot the set of learning curves across 𝐵 for these optimal learning rates
with 𝑛𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 𝐵 × 𝑠𝑡𝑒𝑝𝑠 on the 𝑥-axis. Both 𝑥- and 𝑦-axes scales are held fixed in each
column of Figure 7 and Figure 8.

Figure 7 and Figure 8 show that, near the crossover region 𝐵 ∼ 𝑁 , SGD behaves more stably
and is better collapsed, while Muon diverges more easily while only slightly varying batch sizes
inside the crossover region. Overall, Muon shows greater variability in the final convergent loss
values than SGD, when the batch size 𝐵 is large (e.g., when reaching 16 × 𝑁). Initially, both
algorithms are exponentially decaying with the steepest descent possible. However, Muon and SGD
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converge differently even when tuned optimally, where SGD plateaus earlier while Muon continues
decreasing longer, indicating different asymptotic behaviors. It is also interesting that we observe
different optimal ratios between Muon and SGD: with a fixed 𝜂/

√
𝐵 ratio, SGD handles larger

effective step sizes without diverging or incurring high risk. They achieve different optimal risk
values at the same 𝐵 and 𝑁 values. In general, Muon almost always reaches optimal performance
at larger 𝐵 compared to SGD, which indicates that the position of optimal batch size with respect to
a fixed 𝑁 differs between SGD and Muon.

Moreover, Figure 9 shows the optimal learning rate versus batch size for Muon and normalized
SGD. The Muon curves vary much more in final loss reached as a function of 𝐵/𝑁 , while SGD
curves show fairly linear scaling trend even at larger batch sizes compared to muon, which already
starts to level off.

The above phenomena clearly indicate that there are behaviors of Muon that cannot be approxi-
mated by SGD at any learning rate or batch size. Muon deviates from the small batch size universal
regime in a way different from SGD, in addition to having different learning curves. In particular,
the effects around 𝐵 = 𝑁 , as we transition from 𝐵 < 𝑁 to 𝐵 > 𝑁 , is much stronger for muon as
compared to SGD.
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Figure 10: Muon scaling with different 𝑊0,𝑊
★ setup while preserving ∥𝑊𝑡 − 𝑊★∥F, swept over

optimal learning rates for each batch size.

In Figure 11, we test two different initializations for Muon with the same starting risk and plot
loss curves, where we initialize𝑊1 as an i.i.d. random matrix,𝑊2 as a random matrix with singular
values that are all 1. We scale 𝑊2 by some factor 𝛼 so that ∥𝑊1 −𝑊★∥ = ∥𝛼𝑊2 −𝑊★∥. Note that
we use the same𝑊★ for both simulations. We average over 5 seeds for the sampling randomness of
the trajectory while keeping𝑊1, 𝛼𝑊2,𝑊

★ the same for all runs. This indicates that matrix statistics
do not matter much in the isotropic case, as long as the initial expected loss is kept equal.
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Figure 11: Muon risk update ratio R (𝑊𝑡+1)/R (𝑊𝑡 ), swept over various optimal learning rates for
each batch size. It can be seen that the Muon risk recurrence does not follow the same
affine linear pattern in the SGD risk update as in (10).
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Figure 12: Normalized SGD co-scaling with fixed 𝐵/𝑁in𝑁out.
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Figure 13: Muon co-scaling (rule 1) with 𝑁in/𝐵 = 𝜙, 𝑁out/𝐵 = 𝜓.
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Figure 14: Muon co-scaling (rule 2) with 𝑁in/
√
𝐵 = 𝜙, 𝑁out/

√
𝐵 = 𝜓.

17



HIGH-DIMENSIONAL ISOTROPIC SCALING DYNAMICS OF MUON AND SGD

Appendix C. SGD risk, isotropic case

C.1. Basic SGD risk recursion on isotropic data, Theorem 1

Proof Let the SGD risk be R (𝑊𝑡 ) := 1
2E⟨𝑥out, (𝑊𝑡 − 𝑊★)𝑥in⟩. If Ξ := E(𝑥out ⊗ 𝑥in)⊗2, then

Ξ𝑖, 𝑗 ,𝑘,ℓ = 𝛿𝑖𝑘𝛿 𝑗ℓ , and

R (𝑊𝑡 ) = 1
2E

〈
(𝑥out ⊗ 𝑥in)⊗2, (𝑊𝑡 −𝑊★)⊗2〉 = 1

2
〈
Υ, (𝑊𝑡 −𝑊★)⊗2〉

= 1
2

∑︁
𝑖, 𝑗

(𝑊𝑡 −𝑊★)𝑖 𝑗 (𝑊𝑡 −𝑊★)𝑘,ℓ𝛿𝑖𝑘𝛿 𝑗ℓ = 1
2 ∥𝑊𝑡 −𝑊

★∥2F. (16)

where the first equality follows from ⟨𝑣, 𝐴𝑤⟩ = ⟨𝑣 ⊗ 𝑤, 𝐴⟩ and ⟨𝑎, 𝑏⟩ ⊗ ⟨𝑐, 𝑑⟩ = ⟨𝑎 ⊗ 𝑐, 𝑏 ⊗ 𝑑⟩.
Denote by F𝑡 := 𝜎

(
𝑊𝑠, ((𝑥in) (𝑖)𝑠 , (𝑥out) (𝑖)𝑠 )𝐵𝑖=1 : 𝑠 ≤ 𝑡

)
the natural filtration up to time 𝑡 in the

SGD process, where ((𝑥in) (𝑖)𝑠 , (𝑥out) (𝑖)𝑠 )𝐵𝑖=1 is a batch of i.i.d. input-output pairs sampled at each
iteration to compute the stochastic gradient, and 𝑊𝑡 is the weight matrix at iteration 𝑡 which is
F𝑡 -measurable. The expected risk is then

E(R (𝑊𝑡+1 |F𝑡 )) = 1
2E(∥𝑊𝑡+1 −𝑊

★∥2F |F𝑡 )

= 1
2E

[


𝑊𝑡 −𝑊★ − 𝜂𝑡𝐵−1
𝐵∑︁
𝑖=1

𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 −𝑊

★)𝑥 (𝑖)in ⟩



2

F

�����F𝑡

]
= 1

2

(
∥𝑊𝑡 −𝑊★∥2F − 2𝜂𝑡 ⟨𝑊𝑡 −𝑊★,E [𝐺𝑡+1 |F𝑡 ]⟩ + 𝜂2

𝑡E [⟨𝐺𝑡+1, 𝐺𝑡+1⟩|F𝑡 ]
)
.

(17)
In the third equality, we use the definition of the gradient 𝐺𝑡+1 := 𝐵−1 ∑𝐵

𝑖=1 𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 −

𝑊★)𝑥 (𝑖)in ⟩. Expanding the inner product of 𝐺𝑡+1 gives two cases, where we have squared terms with
the same index 𝑖 and cross-product terms with different indices 𝑖 ≠ 𝑗 , i.e.,

E (⟨𝐺𝑡+1, 𝐺𝑡+1⟩ |F𝑡 ) = 𝐵−2 (1𝑖= 𝑗 ∑︁
𝑖∈[𝐵]

E
[
∥𝐺𝑡+1∥2F

���F𝑡

]
+ 1𝑖≠ 𝑗

∑︁
𝑖, 𝑗∈[𝐵]

E
[
∥𝐺𝑡+1∥2F

���F𝑡

] )
. (18)

To evaluate the second sum in (18), note that

E⟨𝑥 (𝑖)out, 𝑥
( 𝑗 )
out ⟩⟨𝑥

(𝑖)
in , 𝑥

( 𝑗 )
in ⟩⟨𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in ,𝑊𝑡 −𝑊

★⟩⟨𝑥 ( 𝑗 )out ⊗ 𝑥
( 𝑗 )
in ,𝑊𝑡 −𝑊★⟩

= E
〈
𝑥
(𝑖)
out ⊗ 𝑥

( 𝑗 )
out ⊗ 𝑥

(𝑖)
in ⊗ 𝑥

( 𝑗 )
in ⊗ 𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in ⊗ 𝑥

( 𝑗 )
out ⊗ 𝑥

( 𝑗 )
in , Id ⊗ Id ⊗(𝑊𝑡 −𝑊★)⊗2

〉
=

〈
𝛿15𝛿27𝛿36𝛿48, 𝛿12𝛿34(𝑊𝑡 −𝑊★)⊗2〉

=
∑︁
𝑖, 𝑗 ,𝑘,ℓ

(𝑊𝑡 −𝑊★)𝑖 𝑗 (𝑊𝑡 −𝑊★)𝑘,ℓ .

(19)

Definition 5 (Non-crossing pairings [12]) Let 𝜋 be a partition of [𝑛]. If there exists 𝑖 < 𝑗 < 𝑘 < ℓ

such that 𝑖, 𝑘 are in one block 𝑉 of 𝜋 and 𝑗 , ℓ are in another block 𝑊 of 𝜋, we say that 𝑉 and 𝑊
cross. If no pair of blocks of 𝜋 cross, then we say that 𝜋 is non-crossing. The set of non-crossing
partitions of [𝑛] is denoted N C (𝑛). The set of non-crossing pairings of [𝑛] is denoted N C 2(𝑛).

Example 1
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(i) If we set 𝑖 = 5, 𝑗 = 6, 𝑘 = 7, ℓ = 8, then with paired partitions in the form 𝜋 = {(1, 5), (2, 7),
(3, 6), (4, 8)} ∈ N C 2(8) = P2(8), the above sum immediately simplifies to∑︁

𝑖, 𝑗 ,𝑘,ℓ

(𝑊𝑡 −𝑊★)𝑖 𝑗 (𝑊𝑡 −𝑊★)𝑘,ℓ𝛿𝑖𝑘𝛿 𝑗ℓ =
∑︁
𝑖, 𝑗

(𝑊𝑡 −𝑊★)2𝑖 𝑗 = ∥𝑊𝑡 −𝑊★∥2F. (20)

(ii) We form non-crossing partition 𝜋 = {(5, 7), (1, 2), (6, 3, 4, 8)} ∈ N C (8) with the same index
assignments

𝛿12𝛿57𝛿34𝛿68𝛿12𝛿34(𝑊𝑡 −𝑊★)⊗2 = 𝑁out∥𝑊𝑡 −𝑊★∥2F, (21)

where the 𝑁out factor is due to the fact that indices 1, 2 are isolated and none of 𝑖, 𝑗 , 𝑘, ℓ
equals them. Similarly, the isolation of (3, 4) will contribute a factor of 𝑁in.

Theorem 6 (Wick) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a Gaussian family. Then we have for any 𝑘 ∈ N and
1 ≤ 𝑖(1), 𝑖(2), . . . , 𝑖(𝑘) ≤ 𝑛 that

E

[
𝑘∏
𝑖=1

𝑋𝑖 ( 𝑗 )

]
=

∑︁
𝜋∈P2 (𝑘 )

∏
{𝑟 ,𝑠}∈𝜋

E
[
𝑋𝑖 (𝑟 )𝑋𝑖 (𝑠)

]
. (22)

Here, P2(𝑘) denotes the set of all pairings of the set {1, . . . , 𝑘}.

Definition 7 (Tensor contractions [6]) Let A ,O be finite-dimensional real vector spaces, which
we equip with inner products and so are finite-dimensional Hilbert spaces. Recall that as a vector
space A ⊗O is all (finite) linear combinations of simple tensors, i.e., those of the form 𝑎 ⊗ 𝑏 where
𝑎 ∈ A and 𝑏 ∈ O . This becomes an algebra, allowing scalars to commute, i.e., for 𝑐 ∈ R,

𝑐(𝑎 ⊗ 𝑏) = (𝑐𝑎) ⊗ 𝑏 = 𝑎 ⊗ (𝑐𝑏) (23)

and by allowing ⊗ to distribute over addition,

(𝑎 + 𝑏) ⊗ 𝑐 = (𝑎 ⊗ 𝑐) + (𝑏 ⊗ 𝑐) and 𝑎 ⊗ (𝑏 + 𝑐) = (𝑎 ⊗ 𝑏) + (𝑎 ⊗ 𝑐). (24)

General tensor contractions generalize matrix multiplication and dot products. We will use the
inner product ⟨·, ·⟩ operator in various ways to describe this contraction. Each A and O carries
with it an inner product, and so A ⊗ O has a natural inner product which for simple tensors is
defined by

⟨𝑎 ⊗ 𝑏, 𝑐 ⊗ 𝑑⟩A ⊗O = ⟨𝑎, 𝑐⟩A ⟨𝑏, 𝑑⟩O . (25)

This is extended to the full space A ⊗ O by bilinearity. This, for example, can be connected to
the Frobenius inner product. If we represent an element 𝐴 ∈ R𝑑 ⊗ Rℓ in the orthonormal basis{
𝑒𝑖 ⊗ 𝑒 𝑗

}
as 𝐴 =

∑
𝑖, 𝑗 𝐴𝑖 𝑗𝑒𝑖 ⊗ 𝑒 𝑗 , then we have the identification

⟨𝐴, 𝐵⟩A ⊗O =
∑︁
𝑖, 𝑗

𝐴𝑖 𝑗𝐵𝑖 𝑗 = Tr
(
𝐴𝐵⊤

)
. (26)

In particular, the dot products written above extend naturally to

(A ⊗ O)⊗2 := (A ⊗ O) ⊗ (A ⊗ O) � A ⊗2 ⊗ O⊗2 (27)
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where the last isomorphism corresponds to reshaping the tensor to have its ambient directions listed
first, and its observable directions second. Furthermore, tensor computations naturally give rise to
an inner product on higher tensor products, which we define first for simple tensors, 𝑡𝑖 := (𝑎𝑖 ⊗ 𝑜𝑖)
for 𝑖 = 1, 2, 3, 4,

⟨𝑡1 ⊗ 𝑡2, 𝑡3 ⊗ 𝑡4⟩ (A ⊗O )⊗2 = ⟨𝑡1, 𝑡3⟩A ⊗O ⟨𝑡2, 𝑡4⟩A ⊗O

= ⟨𝑎1, 𝑎3⟩A ⟨𝑎2, 𝑎4⟩A ⟨𝑜1, 𝑜3⟩O ⟨𝑜2, 𝑜4⟩O .
(28)

This is once more extended by multi-linearity.

From Theorem 6, we know that

E(𝑋⊗2𝑛) =
∑︁

pairings

∏
{𝑢,𝑣}∈pairing

E(𝑋𝑢 ⊗ 𝑋𝑣), (29)

we have that And thus in the case 𝑖 = 𝑗 , the first sum in (18) evaluates to

E⟨𝑥 (𝑖)out, 𝑥
(𝑖)
out⟩⟨𝑥

(𝑖)
in , 𝑥

(𝑖)
in ⟩⟨𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in ,𝑊𝑡 −𝑊

★⟩⟨𝑥 (𝑖)out ⊗ 𝑥
(𝑖)
in ,𝑊𝑡 −𝑊

★⟩

= E
〈
(𝑥 (𝑖)out)

⊗4 ⊗ (𝑥 (𝑖)in )
⊗4, Id⊗2 ⊗(𝑊𝑡 −𝑊★)⊗2

〉
=

〈
(𝛿12𝛿57 + 𝛿15𝛿27 + 𝛿17𝛿25) (𝛿34𝛿68 + 𝛿36𝛿48 + 𝛿38𝛿46), 𝛿12𝛿34(𝑊𝑡 −𝑊★)⊗2〉

=
(
𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4

)
∥𝑊𝑡 −𝑊★∥2F.

(30)

In summary,

𝜂2
𝑡E(⟨𝐺𝑡+1, 𝐺𝑡+1⟩|F𝑡 )

=
𝜂2
𝑡

𝐵2

(
𝐵(𝐵 − 1)∥𝑊𝑡 −𝑊★∥2F + 𝐵

(
𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4

)
∥𝑊𝑡 −𝑊★∥2F

)
=
𝜂2
𝑡

𝐵
(𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out))∥𝑊𝑡 −𝑊★∥2F.

(31)

Similarly, we can expand the second term in (17):〈
𝑊𝑡 −𝑊★,E

[
(𝑥 (𝑖)out ⊗ 𝑥

(𝑖)
in )⟨𝑥

(𝑖)
out, (𝑊𝑡 −𝑊

★)𝑥 (𝑖)in ⟩
���F𝑡

]〉
=

〈
𝑊𝑡 −𝑊★,E

[
(𝑥 (𝑖)out ⊗ 𝑥

(𝑖)
in )⟨𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in ,𝑊𝑡 −𝑊

★⟩
���F𝑡

]〉
= E

[〈
𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ,𝑊𝑡 −𝑊

★
〉2

����F𝑡

]
=

〈
E

[
(𝑥 (𝑖)out ⊗ 𝑥

(𝑖)
in )
⊗2

���F𝑡

]
, Id⊗2 ⊗(𝑊𝑡 −𝑊★)⊗2

〉
=

〈
𝛿13𝛿24, 𝛿12𝛿34(𝑊𝑡 −𝑊★)⊗2〉

=
∑︁
𝑖, 𝑗 ,𝑘,ℓ

(𝑊𝑡 −𝑊★)𝑖 𝑗 (𝑊𝑡 −𝑊★)𝑘,ℓ𝛿𝑖𝑘𝛿 𝑗ℓ𝛿𝑖 𝑗𝛿𝑘,ℓ

= ∥𝑊𝑡 −𝑊★∥2F,

(32)
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and therefore

2𝜂𝑡 ⟨𝑊𝑡 −𝑊★,E(𝐺𝑡+1 |F𝑡 )⟩

=
2𝜂𝑡
𝐵

𝐵∑︁
𝑖=1

E
[〈
𝑊𝑡 −𝑊★, 𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in

〈
𝑥
(𝑖)
out, (𝑊𝑡 −𝑊

★)𝑥 (𝑖)in

〉〉���F𝑡

]
= 2𝜂𝑡 ∥𝑊𝑡 −𝑊★∥2F.

(33)

Combining everything yields

E(R (𝑊𝑡+1 |F𝑡 ))

= 1
2

(
∥𝑊𝑡 −𝑊★∥2F − 2𝜂𝑡 ∥𝑊𝑡 −𝑊★∥2F

+𝜂2
𝑡 𝐵
−1 (𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out)) ∥𝑊𝑡 −𝑊★∥2F

)
= 1

2

(
1 − 2𝜂𝑡 + 𝜂2

𝑡 𝐵
−1 (𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out))

)
∥𝑊𝑡 −𝑊★∥2F

= E(R (𝑊𝑡 ) |F𝑡 )
(
1 − 2𝜂𝑡 + 𝜂2

𝑡 𝐵
−1 (𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out))

)
,

(34)

where 1
2 ∥𝑊𝑡 −𝑊

★∥2F = R (𝑊𝑡 ) = E(R (𝑊𝑡 ) |F𝑡 ) as R (𝑊𝑡 ) is F𝑡 -measurable.
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C.2. SGD risk updates with normalized gradient, Theorem 2

Proof To derive the SGD risk equation with a normalized gradient, we start with the given SGD
risk and modify the gradient update to account for normalization by the Frobenius norm. The
risk is defined as R (𝑊𝑡 ) = 1

2E⟨𝑥out, (𝑊𝑡 −𝑊★)𝑥in⟩ = 1
2 ∥𝑊𝑡 −𝑊

★∥2F, and the natural filtration is
F𝑡 = 𝜎(𝑊𝑠, ((𝑥in) (𝑖)𝑠 , (𝑥out) (𝑖)𝑠 )𝐵𝑖=1 : 𝑠 ≤ 𝑡). The unnormalized gradient is 𝐺𝑡+1 = 𝐵−1 ∑𝐵

𝑖=1 𝑥
(𝑖)
out ⊗

𝑥
(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 − 𝑊★)𝑥 (𝑖)in ⟩. For the normalized case, the gradient is scaled by its Frobenius norm

via 𝐺𝑡+1 ← 𝐺𝑡+1
∥𝐺𝑡+1 ∥F , where ∥𝐺𝑡+1∥F =

√︁
⟨𝐺𝑡+1, 𝐺𝑡+1⟩. The parameter update becomes 𝑊𝑡+1 =

𝑊𝑡 − 𝜂𝑡 𝐺𝑡+1
∥𝐺𝑡+1 ∥F . We need to compute the expected risk at the next iteration, E(R (𝑊𝑡+1) |F𝑡 ) =

1
2E(∥𝑊𝑡+1 −𝑊

★∥2F |F𝑡 ). Substituting the update rule

𝑊𝑡+1 −𝑊★ = 𝑊𝑡 −𝑊★ − 𝜂𝑡
𝐺𝑡+1
∥𝐺𝑡+1∥F

. (35)

Taking the Frobenius norm squared and the conditional expectation,

E(∥𝑊𝑡+1 −𝑊★∥2F |F𝑡 )

= E

[



𝑊𝑡 −𝑊★ − 𝜂𝑡
𝐺𝑡+1
∥𝐺𝑡+1∥F





2

F

�����F𝑡

]
= E

[
∥𝑊𝑡 −𝑊★∥2F − 2𝜂𝑡

〈
𝑊𝑡 −𝑊★,

𝐺𝑡+1
∥𝐺𝑡+1∥F

〉
+ 𝜂2

𝑡





 𝐺𝑡+1
∥𝐺𝑡+1∥F





2

F

�����F𝑡

]
= ∥𝑊𝑡 −𝑊★∥2F − 2𝜂𝑡E

[〈
𝑊𝑡 −𝑊★,

𝐺𝑡+1
∥𝐺𝑡+1∥F

〉����F𝑡

]
+ 𝜂2

𝑡 .

(36)

Thus, the expected risk is

E(R (𝑊𝑡+1) |F𝑡 ) = 1
2

(
∥𝑊𝑡 −𝑊★∥2F − 2𝜂𝑡E

[〈
𝑊𝑡 −𝑊★,

𝐺𝑡+1
∥𝐺𝑡+1∥F

〉����F𝑡

]
+ 𝜂2

𝑡

)
. (37)

Since R (𝑊𝑡 ) = 1
2 ∥𝑊𝑡 −𝑊

★∥2F is F𝑡 -measurable, we have

E(R (𝑊𝑡+1) |F𝑡 ) = R (𝑊𝑡 ) − 𝜂𝑡E
[〈
𝑊𝑡 −𝑊★,

𝐺𝑡+1
∥𝐺𝑡+1∥F

〉����F𝑡

]
+
𝜂2
𝑡

2
. (38)

To proceed, we approximate by assuming that for large batch sizes 𝐵, the gradient 𝐺𝑡+1 behaves
like a Gaussian random variable due to the central limit theorem, and we use properties of Gaus-
sian distributions to handle the normalization. Assume 𝐺𝑡+1 is approximately Gaussian with mean
E[𝐺𝑡+1 |F𝑡 ] = 𝐵−1 ∑𝐵

𝑖=1 E[𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 −𝑊★)𝑥 (𝑖)in ⟩|F𝑡 ] = 𝑊𝑡 −𝑊★ (from the unnormalized

derivation), and covariance determined by 𝜎2. For a Gaussian vector 𝑍 ∼ 𝑁 (𝜇, Σ) in a Hilbert
space, the expectation E

[
⟨𝑎,𝑍 ⟩
∥𝑍 ∥

]
can be approximated as

E
[
⟨𝑎, 𝑍⟩
∥𝑍 ∥

]
∼ ⟨𝑎, 𝜇⟩√︁

E[∥𝑍 ∥2]
. (39)

Here, 𝜇 = 𝑊𝑡 −𝑊★, and ⟨𝑊𝑡 −𝑊★, 𝜇⟩ = ∥𝑊𝑡 −𝑊★∥2F. We would need to evaluate

E
[
⟨𝑊𝑡 −𝑊★, 𝐺𝑡+1⟩
∥𝐺𝑡+1∥F

����F𝑡

]
, (40)
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where 𝑊𝑡 is F𝑡 -measurable, and F𝑡 = 𝜎(𝑊𝑠, ((𝑥in) (𝑖)𝑠 , (𝑥out) (𝑖)𝑠 )𝐵𝑖=1 : 𝑠 ≤ 𝑡). From the unnormal-
ized derivation, we know that E[𝐺𝑡+1 |F𝑡 ] = 𝑊𝑡 −𝑊★ and that

E[⟨𝐺𝑡+1, 𝐺𝑡+1⟩|F𝑡 ] = 1
𝐵
(𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out))∥𝑊𝑡 −𝑊★∥2F. (41)

Define 𝜅 = 𝐵 + 3 + 𝑁in𝑁out + 2(𝑁in + 𝑁out) and denote Δ𝑡 = 𝑊𝑡 −𝑊★ and 𝜎2 = E[∥𝐺𝑡+1∥2F |F𝑡 ] =
𝜅
𝐵
∥Δ𝑡 ∥2F. Since 𝐺𝑡+1 = 𝐵−1 ∑𝐵

𝑖=1 𝑍𝑖 , where 𝑍𝑖 = 𝑥
(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 −𝑊★)𝑥 (𝑖)in ⟩, and the 𝑍𝑖 are

i.i.d. given F𝑡 , we apply the central limit theorem for large 𝐵. Each 𝑍𝑖 ∈ R𝑁out×𝑁in � R𝑁out𝑁in , and
we treat 𝐺𝑡+1 as approximately Gaussian in the tensor space with mean 𝜇 = E[𝐺𝑡+1 |F𝑡 ] = Δ𝑡 and
variance Var(𝐺𝑡+1 |F𝑡 ) = 𝐵−1 Var(𝑍𝑖 |F𝑡 ). For large 𝐵, the central limit theorem suggests

√
𝐵(𝐺𝑡+1 − 𝜇)

D−→ 𝑁 (0, Σ), (42)

where Σ = Cov(𝑍𝑖 |F𝑡 ) is the covariance tensor of 𝑍𝑖 . The variance of the Frobenius norm is

𝜎2 = E[∥𝐺𝑡+1∥2F |F𝑡 ] − ∥E[𝐺𝑡+1 |F𝑡 ] ∥2F =
𝜅

𝐵
∥Δ𝑡 ∥2F − ∥Δ𝑡 ∥

2
F =

𝜅 − 𝐵
𝐵
∥Δ𝑡 ∥2F. (43)

As 𝐵→∞, assuming 𝑁in, 𝑁out are fixed or grow slower than 𝐵, we have that

lim
𝐵→∞

𝜅/𝐵 = 1 + 𝐵−1 (𝑁in𝑁out + 2(𝑁in + 𝑁out) + 3) = 1 +𝑂
(
𝐵−1𝑁in𝑁out

)
. (44)

Thus 𝜎2 = ∥Δ𝑡 ∥2F · 𝑂
(
𝐵−1𝑁in𝑁out

)
. To approximate

E
[
⟨Δ𝑡 , 𝐺𝑡+1⟩
∥𝐺𝑡+1∥F

����F𝑡

]
, (45)

we first let 𝑋 = ⟨Δ𝑡 , 𝐺𝑡+1⟩ and 𝑌 = ∥𝐺𝑡+1∥F. Then,

𝑋 =

〈
Δ𝑡 ,

1
𝐵

𝐵∑︁
𝑖=1

𝑍𝑖

〉
, 𝑌 =

√√√〈
1
𝐵

𝐵∑︁
𝑖=1

𝑍𝑖 ,
1
𝐵

𝐵∑︁
𝑗=1

𝑍 𝑗

〉
. (46)

From the unnormalized case, E[𝑋 |F𝑡 ] = ∥Δ𝑡 ∥2F and E[𝑌2 |F𝑡 ] = 𝜅
𝐵
∥Δ𝑡 ∥2F. Thus, we can approxi-

mate 𝐺𝑡+1
D−→ 𝑁 (Δ𝑡 , Σ𝐵 ). Consider furthermore the projection

𝑋 = ⟨Δ𝑡 , 𝐺𝑡+1⟩
D−→ 𝑁

(
∥Δ𝑡 ∥2F, 𝐵

−1⟨Δ𝑡 , ΣΔ𝑡⟩
)
. (47)

The variance of 𝑋 is

Var(𝑋 |F𝑡 ) = 𝐵−1E[⟨𝑍𝑖 ,Δ𝑡⟩2 |F𝑡 ] − 𝐵−1E[⟨𝑍𝑖 ,Δ𝑡⟩|F𝑡 ]2. (48)

Since E[⟨𝑍𝑖 ,Δ𝑡⟩|F𝑡 ] = ∥Δ𝑡 ∥2F, and E[⟨𝑍𝑖 ,Δ𝑡⟩2 |F𝑡 ] = E[⟨𝑥 (𝑖)out ⊗ 𝑥
(𝑖)
in ,Δ𝑡⟩

2⟨𝑥 (𝑖)out, (Δ𝑡 )𝑥
(𝑖)
in ⟩

2 |F𝑡 ], we
can reuse the unnormalized result for the case 𝑖 = 𝑗 ,

E[⟨𝑍𝑖 ,Δ𝑡⟩2 |F𝑡 ] = (𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)∥Δ𝑡 ∥2F. (49)

Thus
Var(𝑋 |F𝑡 ) = 𝐵−1 [(𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)∥Δ𝑡 ∥2F − ∥Δ𝑡 ∥

4
F] . (50)
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For large 𝐵, the norm ∥𝐺𝑡+1∥F =
√︁
E[𝑌2 |F𝑡 ] =

√︁
𝜅
𝐵
∥Δ𝑡 ∥F. We apply the approximation

E
[
𝑋
𝑌
|F𝑡

]
=

E[𝑋 |F𝑡 ]√︁
E[𝑌2 |F𝑡 ]

+𝑂
(

Var(𝑌 )
E[𝑌 |F𝑡 ]3

)
. (51)

This is justified by the central limit theorem and the fact that𝑌 concentrates around its mean for large
𝐵. And since E[𝑌2] = 𝜅

𝐵
∥Δ𝑡 ∥2F, for an approximately Gaussian 𝐺𝑡+1, the variance of 𝑌2 = ∥𝐺𝑡+1∥2F

is
Var(𝑌2 |F𝑡 ) = E[∥𝐺𝑡+1∥4F |F𝑡 ] − (E[∥𝐺𝑡+1∥2F |F𝑡 ])2

= E[∥𝐺𝑡+1∥4F |F𝑡 ] −
(
𝜅
𝐵
∥Δ𝑡 ∥2F

)2
.

(52)

We expand the first term,

∥𝐺𝑡+1∥4F =

(∑︁
𝑖, 𝑗

(𝐺𝑡+1)2𝑖 𝑗

)2

=
∑︁
𝑖, 𝑗 ,𝑘,ℓ

(𝐺𝑡+1)𝑖 𝑗 (𝐺𝑡+1)𝑘ℓ (𝐺𝑡+1)𝑖 𝑗 (𝐺𝑡+1)𝑘ℓ . (53)

Since 𝐺𝑡+1 = 𝐵−1 ∑𝐵
𝑖=1 𝑍𝑖 , we have

(𝐺𝑡+1)𝑖 𝑗 =
1
𝐵

𝐵∑︁
𝑚=1
(𝑍𝑚)𝑖 𝑗 , ∥𝐺𝑡+1∥4F =

1
𝐵4

∑︁
𝑖, 𝑗 ,𝑘,ℓ

𝐵∑︁
𝑚,𝑛,𝑝,𝑞=1

(𝑍𝑚)𝑖 𝑗 (𝑍𝑛)𝑘ℓ (𝑍𝑝)𝑖 𝑗 (𝑍𝑞)𝑘ℓ . (54)

Taking the expectation,

E[∥𝐺𝑡+1∥4F |F𝑡 ] =
1
𝐵4

∑︁
𝑖, 𝑗 ,𝑘,ℓ

𝐵∑︁
𝑚,𝑛,𝑝,𝑞=1

E[(𝑍𝑚)𝑖 𝑗 (𝑍𝑛)𝑘ℓ (𝑍𝑝)𝑖 𝑗 (𝑍𝑞)𝑘ℓ |F𝑡 ] . (55)

Since the 𝑍𝑖 are i.i.d., the expectation is non-zero only when the indices pair appropriately. We use
the Wick theorem (as in the unnormalized case) for the Gaussian approximation,

E[(𝑍𝑚)𝑖 𝑗 (𝑍𝑛)𝑘𝑙 (𝑍𝑝)𝑖 𝑗 (𝑍𝑞)𝑘𝑙 |F𝑡 ] =
∑︁

𝜋∈P2 (4)

∏
{𝑟 ,𝑠}∈𝜋

E[(𝑍𝑟 )𝑎𝑏 (𝑍𝑠)𝑐𝑑 |F𝑡 ], (56)

where indices (𝑎, 𝑏), (𝑐, 𝑑) correspond to the paired terms. The pairings are:

• {(𝑚, 𝑛), (𝑝, 𝑞)}: E[(𝑍𝑚)𝑖 𝑗 (𝑍𝑛)𝑘𝑙]E[(𝑍𝑝)𝑖 𝑗 (𝑍𝑞)𝑘𝑙].

• {(𝑚, 𝑝), (𝑛, 𝑞)}: E[(𝑍𝑚)𝑖 𝑗 (𝑍𝑝)𝑖 𝑗]E[(𝑍𝑛)𝑘𝑙 (𝑍𝑞)𝑘𝑙].

• {(𝑚, 𝑞), (𝑛, 𝑝)}: E[(𝑍𝑚)𝑖 𝑗 (𝑍𝑞)𝑘𝑙]E[(𝑍𝑛)𝑘𝑙 (𝑍𝑝)𝑖 𝑗].

Summing over indices and considering contributions,

E[(𝑍𝑖)𝑖 𝑗 (𝑍𝑖)𝑘𝑙 |F𝑡 ] = (𝛿𝑖𝑘𝛿 𝑗𝑙) (𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)∥Δ𝑡 ∥2F, (57)

For large 𝐵, the dominant terms come from pairings where indices align. The second moments are

E[(𝑍𝑖)𝑎𝑏 (𝑍 𝑗)𝑐𝑑 |F𝑡 ] =
{
E[(𝑍𝑖)𝑎𝑏 (𝑍𝑖)𝑐𝑑 |F𝑡 ] if 𝑖 = 𝑗 ,

(Δ𝑡 )𝑎𝑏 (Δ𝑡 )𝑐𝑑 if 𝑖 ≠ 𝑗 ,
(58)
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where
(𝑍𝑖)𝑎𝑏 = (𝑥 (𝑖)out)𝑎 (𝑥

(𝑖)
in )𝑏⟨𝑥

(𝑖)
out,Δ𝑡𝑥

(𝑖)
in ⟩. (59)

From the unnormalized derivation (case 𝑖 = 𝑗):

E[⟨𝑍𝑖 ,Δ𝑡⟩2 |F𝑡 ] = (𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)∥Δ𝑡 ∥2F. (60)

For the pairing {(𝑖, 𝑗), (𝑘, 𝑙)}, we compute:

E[(𝑍𝑖)𝑎𝑏 (𝑍 𝑗)𝑎𝑏 (𝑍𝑘)𝑐𝑑 (𝑍𝑙)𝑐𝑑 |F𝑡 ] =



E[(𝑍𝑖)2𝑎𝑏 (𝑍𝑖)
2
𝑐𝑑
|F𝑡 ] if 𝑖 = 𝑗 = 𝑘 = 𝑙,

E[(𝑍𝑖)2𝑎𝑏 |F𝑡 ]E[(𝑍𝑘)2𝑐𝑑 |F𝑡 ] if 𝑖 = 𝑗 , 𝑘 = 𝑙, 𝑖 ≠ 𝑘,

(Δ𝑡 )2𝑎𝑏 (Δ𝑡 )
2
𝑐𝑑

if 𝑖 = 𝑘, 𝑗 = 𝑙, 𝑖 ≠ 𝑗 ,

(Δ𝑡 )2𝑎𝑏 (Δ𝑡 )
2
𝑐𝑑

if 𝑖 = 𝑙, 𝑗 = 𝑘, 𝑖 ≠ 𝑗 ,

(Δ𝑡 )𝑎𝑏 (Δ𝑡 )𝑎𝑏 (Δ𝑡 )𝑐𝑑 (Δ𝑡 )𝑐𝑑 if all distinct.

(61)

Summing over indices, we can case into the following scenarios.

(i) 𝑖 = 𝑗 = 𝑘 = 𝑙 (contributes 𝐵 terms):∑︁
𝑎,𝑏,𝑐,𝑑

E[(𝑍𝑖)2𝑎𝑏 (𝑍𝑖)
2
𝑐𝑑 |F𝑡 ] . (62)

Using the Gaussian moment for 𝑍𝑖:

E[(𝑍𝑖)2𝑎𝑏 (𝑍𝑖)
2
𝑐𝑑 |F𝑡 ] = E[(𝑍𝑖)2𝑎𝑏 |F𝑡 ]E[(𝑍𝑖)2𝑐𝑑 |F𝑡 ] + 2E[(𝑍𝑖)𝑎𝑏 (𝑍𝑖)𝑐𝑑 |F𝑡 ]2. (63)

Since
E[(𝑍𝑖)𝑎𝑏 (𝑍𝑖)𝑐𝑑 |F𝑡 ] = (𝛿𝑎𝑐𝛿𝑏𝑑) (𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)∥Δ𝑡 ∥2F, (64)

summing over all indices gives a factor proportional to 𝑁out𝑁in,∑︁
𝑎,𝑏,𝑐,𝑑

E[(𝑍𝑖)𝑎𝑏 (𝑍𝑖)𝑐𝑑 |F𝑡 ]2 =
∑︁
𝑎,𝑏

(𝑁in𝑁out + 2(𝑁in + 𝑁out) + 4)2∥Δ𝑡 ∥4F ∼ (𝑁in𝑁out)2∥Δ𝑡 ∥4F.

(65)

(ii) 𝑖 = 𝑗 , 𝑘 = 𝑙, 𝑖 ≠ 𝑘 (contributes 𝐵(𝐵 − 1)):∑︁
𝑎,𝑏,𝑐,𝑑

E[(𝑍𝑖)2𝑎𝑏 |F𝑡 ]E[(𝑍𝑘)2𝑐𝑑 |F𝑡 ] ∼ (𝑁in𝑁out)2∥Δ𝑡 ∥4F. (66)

(iii) 𝑖 = 𝑘, 𝑗 = 𝑙 or 𝑖 = 𝑙, 𝑗 = 𝑘 (contributes 2𝐵(𝐵 − 1)):∑︁
𝑎,𝑏,𝑐,𝑑

(Δ𝑡 )2𝑎𝑏 (Δ𝑡 )
2
𝑐𝑑 = ∥Δ𝑡 ∥4F. (67)

(iv) 𝑖, 𝑗 , 𝑘, ℓ all distinct (contributes 𝐵(𝐵 − 1) (𝐵 − 2) (𝐵 − 3)):∑︁
𝑎,𝑏,𝑐,𝑑

(Δ𝑡 )2𝑎𝑏 (Δ𝑡 )
2
𝑐𝑑 = ∥Δ𝑡 ∥4F. (68)
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Combining all four cases, after summing, the fourth moment scales as the square of the second
moment E[∥𝐺𝑡+1∥4F |F𝑡 ] ∼ 3

(
𝜅
𝐵
∥Δ𝑡 ∥2F

)2. Thus, Var(𝑌2 |F𝑡 ) ∼ 2
(
𝜅
𝐵
∥Δ𝑡 ∥2F

)2. Then it immediately

follows that Var(𝑌 ) ∼ Var(𝑌2 )
2E[𝑌2 ] ∼

𝜅
𝐵
∥Δ𝑡 ∥2F. Since E[𝑌 ] ∼

√︁
𝜅
𝐵
∥Δ𝑡 ∥F, the error term is

Var(𝑌 )
E[𝑌 ]3

= 𝑂

(
𝜎2/(𝑁out𝑁in)
(𝜎

√︁
𝜅/𝐵)3

)
= 𝑂

(
𝐵3/2

𝜎𝜅3/2𝑁out𝑁in

)
. (69)

For large 𝐵, 𝜅 ∼ 𝐵. Hence,

E
[
⟨Δ𝑡 , 𝐺𝑡+1⟩
∥𝐺𝑡+1∥F

����F𝑡

]
=
∥Δ𝑡 ∥2F√︁
𝜅
𝐵
∥Δ𝑡 ∥F

+𝑂
(
∥Δ𝑡 ∥F√
𝐵𝜅

)
=

√︂
𝐵

𝜅
∥Δ𝑡 ∥F +𝑂

(
∥Δ𝑡 ∥F√
𝐵𝜅

)
. (70)

Now, the expected risk is

E(R (𝑊𝑡+1) |F𝑡 ) = R (𝑊𝑡 ) − 𝜂𝑡E
[
⟨Δ𝑡 , 𝐺𝑡+1⟩
∥𝐺𝑡+1∥F

����F𝑡

]
+
𝜂2
𝑡

2

= R (𝑊𝑡 ) − 𝜂𝑡

(√︂
𝐵

𝜅
∥Δ𝑡 ∥F +𝑂

(
∥Δ𝑡 ∥F√
𝐵𝜅

))
+
𝜂2
𝑡

2

= R (𝑊𝑡 ) − 𝜂𝑡
√︂
𝐵

𝜅

√︁
2R (𝑊𝑡 ) +𝑂

(
𝜂𝑡

√︁
R (𝑊𝑡 )√
𝐵𝜅

)
+
𝜂2
𝑡

2

(71)

where the last equality follows from the fact that R (𝑊𝑡 ) = 1
2 ∥Δ𝑡 ∥

2
F and ∥Δ𝑡 ∥F =

√︁
2R (𝑊𝑡 ). As

𝐵, 𝑁out, 𝑁in → ∞, the error term is 𝑜(𝜂𝑡
√︁

R (𝑊𝑡 )), assuming 𝑁out𝑁in ≫ 𝐵−1/2. Thus, the leading-
order approximation is

E(R (𝑊𝑡+1) |F𝑡 ) = R (𝑊𝑡 ) − 𝜂𝑡
√︂

2𝐵
𝜅

√︁
R (𝑊𝑡 ) +

𝜂2
𝑡

2
+ 𝑜(𝜂𝑡

√︁
R (𝑊𝑡 )). (72)

This shows the nonlinear dependence on the risk due to normalization.
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C.3. Asymptotic behavior of the SGD risk

Next, we show that 𝐵 ∝ 𝑁in𝑁out is the appropriate scaling limit with universal behavior for training
at a reasonable speed in SGD with a normalized gradient, and compute the final loss as 𝑡 → ∞. In
other words, we want to ensure that the training dynamics achieve a balance between convergence
speed and stability, and to determine the asymptotic risk in terms of 𝐵, 𝑁in, 𝑁out, and 𝜂𝑡 . For large
𝐵, we approximate 𝜅 ∼ 𝐵/(𝐵 + 𝑁in𝑁out). The leading-order recursion is

E[R (𝑊𝑡+1) |F𝑡 ] ∼ R (𝑊𝑡 ) − 𝜂𝑡
√︂

2𝐵
𝐵 + 𝑁in𝑁out

√︁
R (𝑊𝑡 ) +

𝜂2
𝑡

2
. (73)

To analyze training speed, we need the risk to decrease at a reasonable rate, meaning the descent
term dominates the noise term and leads to convergence in a practical number of iterations. The
nonlinear term

√︁
R (𝑊𝑡 ) suggests a different convergence behavior compared to unnormalized SGD,

where the risk decreases linearly. The coefficient of the nonlinear term should be neither too small
(which slows convergence) nor too large (which could destabilize the update due to large steps). Let
𝐵 = 𝛼𝑁in𝑁out, where 𝛼 is a constant, and analyze the coefficient√︂

2𝐵
𝐵 + 𝑁in𝑁out

=

√︂
2𝛼𝑁in𝑁out

𝛼𝑁in𝑁out + 𝑁in𝑁out
=

√︂
2𝛼
𝛼 + 1

= 𝑂 (1). (74)

for the recursion to yield effective descent and ensure that the step size 𝜂𝑡
√︃

2𝛼
𝛼+1

√︁
R (𝑊𝑡 ) is signifi-

cant relative to R (𝑊𝑡 ). We examine different scaling regimes:

• 𝑩 ≪ 𝑵in𝑵out: The descent term becomes −𝜂𝑡
√︁

2𝐵/(𝑁in𝑁out)R (𝑊𝑡 ). If 𝐵 is small in the
sense that 𝐵 = 𝑜(𝑁in𝑁out), this makes the descent term negligible unless 𝜂𝑡 ≫ 1, which leads
to slow convergence and risks instability since the noise term 𝜂2

𝑡 /2 grows quadratically.

• 𝑩 ≫ 𝑵in𝑵out: The recursion becomes E[R (𝑊𝑡+1) |F𝑡 ] ∼ R (𝑊𝑡 ) −𝜂𝑡
√︁

2R (𝑊𝑡 ) + 𝜂
2
𝑡

2 . While
this maximizes the descent term, a very large 𝐵 is computationally expensive, as it requires
processing many samples per iteration, which may not be practical for large-scale problems.
Even though the error term 𝑂

(
𝜂𝑡

√︁
R (𝑊𝑡 )/

√
𝐵𝜅

)
is small, the computational cost outweighs

the marginal gain in descent rate.

• 𝑩 ∝ 𝑵in𝑵out: Assume that 𝐵 = 𝛼𝑁in𝑁out, the descent term coefficient
√︃

2𝛼
𝛼+1 ∈ (0,

√
2).

This scaling ensures the descent term is 𝑂 (𝜂𝑡
√︁

R (𝑊𝑡 )), providing significant progress per
iteration without excessive computational cost. We can approximate 𝜅 ∼ 𝐵 + 𝑁in𝑁out =

(𝛼 + 1)𝑁in𝑁out,
√
𝐵𝜅 ∼

√︁
𝛼(𝛼 + 1)𝑁in𝑁out. The error term scales as 𝑂

(
𝜂𝑡

√︁
R (𝑊𝑡 )/

√
𝐵𝜅

)
∼

𝑂

(
𝜂𝑡

√︁
R (𝑊𝑡 )/(

√︁
𝛼(𝛼 + 1)𝑁in𝑁out)

)
, which is 𝑜(

√︁
R (𝑊𝑡 )) for large 𝑁in𝑁out. Thus, the ap-

proximation is tight, and 𝐵 ∝ 𝑁in𝑁out balances computational efficiency and convergence
speed as batch size co-scales with problem size.

To find the final loss as 𝑡 → ∞ in the 𝐵 ∝ 𝑁in𝑁out regime, we assume a constant learning rate
𝜂𝑡 = 𝜂 = 𝑂 (1/𝐿) for simplicity. Let 𝑅𝑡 = R (𝑊𝑡 ). We take the expectation over all iterations while
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assuming the risk converges to a steady state 𝑅∞ = lim𝑡→∞ E[𝑅𝑡 |F𝑡 ], i.e., E[𝑅𝑡+1] = E[𝑅𝑡 ] = 𝑅∞.
Then, the SGD risk recursion in the iteration limit is

𝑅∞ ∼ 𝑅∞ − 𝜂
√︂

2𝐵
𝐵 + 𝑁in𝑁out

E
[√︁
𝑅∞

]
+ 𝜂

2

2
. (75)

Since
√
𝑅𝑡 concentrates around its mean for large 𝐵, we approximate E[

√
𝑅∞] ∼

√
𝑅∞ to get

0 ∼ −𝜂
√︂

2𝐵
𝐵 + 𝑁in𝑁out

√︁
𝑅∞ +

𝜂2

2
. (76)

Solving with 𝐵 = 𝛼𝑁in𝑁out gives

𝑅∞ =
©­­«

𝜂

2
√︃

2𝐵
𝐵+𝑁in𝑁out

ª®®¬
2

=
𝜂2(𝐵 + 𝑁in𝑁out)

8𝐵
=
𝜂2(𝛼 + 1)

8𝛼
. (77)
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Appendix D. Muon risk updates

D.1. Proof of Theorem 4

Proof Define Δ𝑡 := 𝑊𝑡 −𝑊★. Recall the one-step Muon update

𝐺𝑡+1 := 𝑎𝐺𝑡 + 𝑏(𝐺𝑡𝐺⊤𝑡 )𝐺𝑡 + 𝑐(𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡
=

(
𝑎 Id+𝑏(𝐺𝑡𝐺⊤𝑡 + 𝑐(𝐺𝑡𝐺⊤𝑡 )2

)
𝐺𝑡

= 𝑈Φ5(Σ; 𝑎, 𝑏, 𝑐)𝑉⊤
(78)

where Φ5(Σ; 𝑎, 𝑏, 𝑐) := 𝑎Σ + 𝑏Σ3 + 𝑐Σ5 is some quintic polynomial with fixed hyperparameters
𝑎, 𝑏, 𝑐 such that lim𝑁→∞Φ𝑁

5 = 1. The expected risk in the isotropic case is

E(R (𝑊𝑡+1) |F𝑡 ) = 1
2E(∥𝑊𝑡+1 −𝑊

★∥2F |F𝑡 )

= 1
2E

(
∥𝑊𝑡 −𝑊★ − 𝜂𝐺𝑡+1∥2F |F𝑡

)
= 1

2

(
∥Δ𝑡 ∥2F − 2𝜂E(⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ) + 𝜂2E(⟨𝐺𝑡+1, 𝐺𝑡+1⟩|F𝑡 )

)
.

(79)

We further expand the expected risk in terms of (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺𝑡 and Δ𝑡 . Note that

E(⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ) = 𝑎E (⟨Δ𝑡 , 𝐺⟩ |F𝑡 )
+ 𝑏E

[〈
Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝐺

〉��F𝑡

]
+ 𝑐E

[〈
Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡

〉��F𝑡

] (80)

and

E⟨Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺𝑡⟩ = ETr
[
Δ⊤𝑡 (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺

]
=

1
𝐵2𝑞+1E

∑︁
𝑖1, 𝑗1,...,𝑖𝑞 , 𝑗𝑞 ,𝑘∈[𝐵]

Tr
[
Δ⊤𝑡

( ∏
𝑚∈[𝑞 ]

𝐺𝑖𝑚𝐺
⊤
𝑗𝑚

)
𝐺𝑘

]
=

1
𝐵2𝑞+1E

∑︁
𝑖1, 𝑗1,...,𝑖𝑞 , 𝑗𝑞 ,𝑘∈[𝐵]

Tr
[
Δ⊤𝑡

∏
𝑚∈[𝑞 ]

(
𝑥
𝑖𝑚
in ⊗ 𝑥

𝑖𝑚
out

) (
𝑥
𝑗𝑚
out ⊗ 𝑥

𝑗𝑚
in

) (
𝑥𝑘in ⊗ 𝑥

𝑘
out

)
×

×
∏
𝑛∈[𝑞 ]

〈
𝑥
𝑖𝑛
in ,Δ𝑡𝑥

𝑖𝑛
out

〉 〈
𝑥
𝑗𝑛
out,Δ𝑡𝑥

𝑗𝑛
in

〉 〈
𝑥𝑘in,Δ𝑡𝑥

𝑘
out

〉 ]
=

1
𝐵2𝑞+1E

∑︁
𝑖1,𝑖2,...,𝑖𝑞 ,
𝑗1, 𝑗2,..., 𝑗𝑞≥1

∑︁
𝑘≥1

𝑞∏
ℓ=1
𝑖𝑞+1=𝑘

〈
𝑥
𝑖ℓ
in ,Δ

⊤
𝑡 𝑥
𝑖ℓ
out

〉 〈
𝑥
𝑗ℓ
in ,Δ

⊤
𝑡 𝑥

𝑗ℓ
out

〉
×

×
〈
𝑥
𝑖ℓ
out, 𝑥

𝑗ℓ
out

〉 〈
𝑥
𝑗ℓ
in , 𝑥

𝑖ℓ+1
in

〉 〈
𝑥𝑘in,Δ

⊤
𝑡 𝑥
𝑘
out

〉 〈
𝑥
𝑖1
in,Δ

⊤
𝑡 𝑥
𝑘
out

〉
=

1
𝐵2𝑞+1

∑︁
𝑖1,...,𝑖𝑞 ,
𝑗1,..., 𝑗𝑞≥1

∑︁
𝑘≥1

∑︁
𝑎1,𝑐1, 𝑓1,...,

𝑎𝑞 ,𝑐𝑞 , 𝑓𝑞∈[𝑁in ]
𝑎𝑞+1,𝑎𝑞+2=1

∑︁
𝑏1,𝑑1,𝑒1...,

𝑏𝑞 ,𝑑𝑞 ,𝑒𝑞∈[𝑁out ]
𝑏𝑞+1,𝑏𝑞+2=1

( 𝑞∏
ℓ=1
[Δ𝑡 ]𝑏ℓ𝑎ℓ [Δ𝑡 ]𝑑ℓ𝑐ℓ

)
(Δ𝑡 )𝑏𝑞+1𝑎𝑞+1 (Δ𝑡 )𝑏𝑞+2𝑎𝑞+2×

× E
[
(𝑥in)𝑘𝑎𝑞+1 (𝑥out)𝑘𝑏𝑞+1 (𝑥in)𝑖1𝑎𝑞+2 (𝑥out)𝑘𝑏𝑞+2×

×
∏
ℓ∈[𝑞 ]
(𝑥in)𝑖ℓ𝑎ℓ (𝑥out)𝑖ℓ𝑏ℓ (𝑥in) 𝑗ℓ𝑐ℓ (𝑥out) 𝑗ℓ𝑑ℓ (𝑥out)𝑖ℓ𝑒ℓ (𝑥out) 𝑗ℓ𝑒ℓ (𝑥in) 𝑗ℓ𝑓ℓ (𝑥in)𝑖ℓ+1𝑓ℓ

]
,

(81)

29



HIGH-DIMENSIONAL ISOTROPIC SCALING DYNAMICS OF MUON AND SGD

where we employed tensor simplification rules such as

1
𝐵

𝐵∑︁
𝑖=1

𝑒𝑖 ⊗ 𝑥𝑖in =

(
1
𝐵

)2𝑘 ∑︁
𝑖1, 𝑗1,...,𝑖𝑘 , 𝑗𝑘≥1

⟨𝑥𝑖1in, 𝑥
𝑗1
in ⟩⟨𝑥

𝑖2
in, 𝑥

𝑗2
in ⟩ · · · ⟨𝑥

𝑖𝑘
in , 𝑥

𝑗𝑘
in ⟩𝛿 𝑗1𝑖2𝛿 𝑗2𝑖3 · · · 𝛿 𝑗𝑘 𝑖1

=

(
1
𝐵

)2𝑘 ∑︁
𝑖1,...,𝑖𝑘≥1

⟨𝑥𝑖1in, 𝑥
𝑖2
in⟩⟨𝑥

𝑖2
in, 𝑥

𝑖3
in⟩ · · · ⟨𝑥

𝑖𝑘
in , 𝑥

𝑖1
in⟩,

(82)

given either of 𝑥in or 𝑥out is orthonormal, and for contractions with cyclic indices, E⟨𝑥1
in, 𝑥

2
in⟩ ⟨𝑥

2
in, 𝑥

1
in⟩ =

𝑁in contributes one factor of 𝑁in, and the same holds for more contractions with cyclic indices
like E⟨𝑥1

in, 𝑥
2
in⟩⟨𝑥

2
in, 𝑥

3
in⟩⟨𝑥

3
in, 𝑥

1
in⟩ = 𝑁in. On the other hand, contractions with paired indices satisfy

E⟨𝑥1
in, 𝑥

1
in⟩⟨𝑥

2
in, 𝑥

2
in⟩ = 𝑁

2
in. To approximate the higher-order mixed gradient moments, we introduce

the notion of freeness as a non-commutative analogue of the classical notion of independence in
probability theory—free independence.

Definition 8 (𝐶★-probability space and non-commutative random variables [12]) In general we
refer to a pair (A , 𝜑), consisting of a unital algebra A and a unital linear functional 𝜑 : A → C
with 𝜑(1) = 1, as a non-commutative probability space. If A is a★-algebra and 𝜑 is a state, i.e., in
addition to 𝜑(1) = 1 also positive (which means 𝜑 (𝑎★𝑎) ≥ 0 for all 𝑎 ∈ A ), then we call (A , 𝜑) a
★-probability space. If A is a𝐶★-algebra and 𝜑 a state, (A , 𝜑) is a𝐶★-probability space. Elements
of A are called non-commutative random variables.

Proposition 9 In the large-dimensional limit where 𝐵, 𝑁in, 𝑁out → ∞ with fixed ratios 𝐵/𝑁in = 𝜙

and 𝐵/𝑁out = 𝜓, the normalized trace E
[
𝐵−1 Tr(Δ⊤𝑡 (𝐺𝐺⊤)𝑞𝐺)

]
converges in probability to the

free probability moment

𝜏
[
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

]
= lim
𝐵→∞

𝐵−1ETr
[
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

]
, (83)

where 𝜏 is the normalized trace in a 𝐶★-probability space, and 𝐺 is treated as a free random
variable with a distribution determined by the isotropic covariance E𝑥⊗2

in = E𝑥⊗2
out = Id. The ex-

pectation of the trace is approximated by the contribution of non-crossing pairings of the indices
𝑖1, . . . , 𝑖𝑞, 𝑗1, . . . , 𝑗𝑞, 𝑘 given by the free cumulant expansion of the moment, where

𝐵 × 𝜏
[
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

]
= ETr

[
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

]
=

1 + 𝑜(1)
𝐵2𝑞+1 E

𝐵∑︁
𝑖1,𝑖2,...,𝑖𝑞 ,
𝑗1, 𝑗2,..., 𝑗𝑞=1

𝐵∑︁
𝑘=1
𝑘≠𝑖, 𝑗

𝜈(𝑖𝑞, 𝑗𝑞, 𝑖1)
𝑞−1∏
ℓ=1

𝜇(𝑖ℓ , 𝑗ℓ , 𝑖ℓ+1), (84)

where
𝜇(𝛼, 𝛽, 𝛾) := ⟨𝑥𝛼in,Δ

⊤
𝑡 𝑥

𝛼
out⟩⟨𝑥

𝛽

in,Δ
⊤
𝑡 𝑥
𝛽

out⟩⟨𝑥
𝛼
out, 𝑥

𝛽

out⟩⟨𝑥
𝛽

in, 𝑥
𝛾

in⟩
𝜈(𝛼, 𝛽, 𝛾) := 𝜇(𝛼, 𝛽, 𝛾)⟨Δ𝑡𝑥𝛾in,Δ𝑡𝑥

𝛽

in⟩/⟨𝑥
𝛽

in, 𝑥
𝛾

in⟩.
(85)

This reflects the dominance of non-crossing partitions in the free limit, weighted by the ratios 𝜙, 𝜓.
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Proof In the 𝐶★-probability space (A , 𝜑), let 𝜑(𝐴) = 1
𝑁out

Tr(𝐴) and define 𝑏ℓ = 𝑥ℓout ⊗ 𝑥ℓin,
𝑏★
ℓ
= 𝑥ℓin ⊗ 𝑥

ℓ
out, so the trace satisfies

𝜑
(
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

)
= 𝜑

(
Δ⊤𝑡

(
1
𝐵2

𝐵∑︁
ℓ,𝑚=1

𝑏ℓ𝑏
★
𝑚𝜑(𝑏★ℓΔ𝑡 )𝜑(𝑏𝑚Δ

⊤
𝑡 )

)𝑞
1
𝐵

𝐵∑︁
𝑛=1

𝑏𝑛𝜑(𝑏★𝑛Δ𝑡 )
)

=
1

𝐵2𝑞+1

𝐵∑︁
𝑖1, 𝑗1,...,𝑖𝑞 , 𝑗𝑞 ,𝑘=1

𝜑

(
Δ⊤𝑡

𝑞∏
ℓ=1
(𝑏𝑖ℓ 𝑏★𝑗ℓ )𝑏𝑘

)
𝑞∏
ℓ=1

𝜑(𝑏★𝑖ℓΔ𝑡 )𝜑(𝑏 𝑗ℓΔ
⊤
𝑡 )𝜑(𝑏★𝑘Δ𝑡 ).

(86)

The free cumulant expansion for the moment is

𝜑

(
Δ⊤𝑡 𝑏𝑖1𝑏

★
𝑗1
· · · 𝑏𝑖𝑞𝑏★𝑗𝑞𝑏𝑘

)
=

∑︁
𝜋∈N C (2𝑞+2)

𝜅𝜋 (Δ⊤𝑡 , 𝑏𝑖1 , 𝑏★𝑗1 , . . . , 𝑏𝑖𝑞 , 𝑏
★
𝑗𝑞
, 𝑏𝑘). (87)

The dominant non-crossing partition pairs indices to maximize cycles. Consider the partition 𝜋 =

{(1, 2𝑞 + 2), (2, 3), (4, 5), . . . , (2𝑞, 2𝑞 + 1)}. For (1, 2𝑞 + 2), we pair Δ⊤𝑡 with 𝑏𝑘 , which contributes
𝜅2(Δ⊤𝑡 , 𝑏𝑘). For (2ℓ, 2ℓ + 1), we pair 𝑏𝑖ℓ , 𝑏

★
𝑗ℓ

, contributing 𝜅2(𝑏𝑖ℓ , 𝑏★𝑗ℓ ). Thus

𝜅2(𝑏𝑖ℓ , 𝑏★𝑗ℓ ) = 𝜑(𝑏𝑖ℓ 𝑏
★
𝑗ℓ
) − 𝜑(𝑏𝑖ℓ )𝜑(𝑏★𝑗ℓ ) =

1
𝑁out

E[⟨𝑥𝑖ℓin , 𝑥
𝑗ℓ
in ⟩⟨𝑥

𝑖ℓ
out, 𝑥

𝑗ℓ
out⟩] = 𝛿𝑖ℓ 𝑗ℓ𝑁in, (88)

and for Δ⊤𝑡 , 𝑏𝑘 ,

𝜑(Δ⊤𝑡 𝑏𝑘) =
1
𝑁out

Tr(Δ⊤𝑡 (𝑥𝑘out ⊗ 𝑥𝑘in)) =
1
𝑁out
⟨𝑥𝑘in,Δ

⊤
𝑡 𝑥
𝑘
out⟩, E[𝜑(Δ⊤𝑡 𝑏𝑘)] = 0. (89)

Thus 𝜅2(Δ⊤𝑡 , 𝑏𝑘) ≈ 𝜑(Δ⊤𝑡 𝑏𝑘), and the scalar terms are 𝜑(𝑏★
𝑖ℓ
Δ𝑡 ) = 1

𝑁out
⟨𝑥𝑖ℓout,Δ𝑡𝑥

𝑖ℓ
in⟩, 𝜑(𝑏 𝑗ℓΔ

⊤
𝑡 ) =

1
𝑁out
⟨𝑥 𝑗ℓin ,Δ

⊤
𝑡 𝑥

𝑗ℓ
out⟩. The expectation becomes

E

[
𝑞∏
ℓ=1

𝛿𝑖ℓ 𝑗ℓ𝑁in · ⟨𝑥𝑘in,Δ
⊤
𝑡 𝑥
𝑖1
out⟩

𝑞∏
ℓ=1
⟨𝑥𝑖ℓout,Δ𝑡𝑥

𝑖ℓ
in⟩⟨𝑥

𝑗ℓ
in ,Δ

⊤
𝑡 𝑥

𝑗ℓ
out⟩⟨𝑥

𝑘
out,Δ𝑡𝑥

𝑘
in⟩

]
. (90)

Summing over 𝑖ℓ = 𝑗ℓ , (84) becomes

𝜑
(
Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺

)
=

1
𝐵2𝑞+1

𝐵∑︁
𝑖1,...,𝑖𝑞 ,𝑘=1

𝑁
𝑞

inE

[
⟨𝑥𝑘in,Δ

⊤
𝑡 𝑥
𝑖1
out⟩

𝑞∏
ℓ=1
⟨𝑥𝑖ℓout,Δ𝑡𝑥

𝑖ℓ
in⟩

2⟨𝑥𝑘out,Δ𝑡𝑥
𝑘
in⟩

]
.

(91)

The expectation involves 2𝑞 +1 terms of the form ⟨𝑥ℓout,Δ𝑡𝑥
ℓ
in⟩ and one ⟨𝑥𝑘in,Δ

⊤
𝑡 𝑥
𝑖1
out⟩. Using Isserlis’

theorem for Gaussian variables, we know E[⟨𝑥𝑖ℓout,Δ𝑡𝑥
𝑖ℓ
in⟩

2] = Tr(Δ𝑡 Id𝑁inΔ
⊤
𝑡 Id𝑁out) = Tr(Δ𝑡Δ⊤𝑡 ).

For the cross terms, E[⟨𝑥𝑘in,Δ
⊤
𝑡 𝑥
𝑖1
out⟩⟨𝑥𝑘out,Δ𝑡𝑥

𝑘
in⟩] = E[⟨𝑥𝑖1out,Δ𝑡𝑥

𝑘
in⟩⟨𝑥

𝑘
out,Δ𝑡𝑥

𝑘
in⟩] = ⟨Δ𝑡𝑥

𝑘
in,Δ𝑡𝑥

𝑘
in⟩ =

⟨𝑥𝑘in,Δ
⊤
𝑡 Δ𝑡𝑥

𝑘
in⟩ and E[⟨𝑥𝑘in,Δ

⊤
𝑡 Δ𝑡𝑥

𝑘
in⟩] = Tr(Δ⊤𝑡 Δ𝑡 Id𝑁in) = Tr(Δ⊤𝑡 Δ𝑡 ). Thus summing (84) gives

𝑁
𝑞

in
𝐵2𝑞+1

𝐵∑︁
𝑖1,...,𝑖𝑞 ,𝑘=1

𝛿𝑖1𝑘 [Tr(Δ𝑡Δ⊤𝑡 )]𝑞 Tr(Δ⊤𝑡 Δ𝑡 )

=
𝑁
𝑞

in
𝐵2𝑞+1 𝐵

𝑞 [Tr(Δ𝑡Δ⊤𝑡 )]𝑞+1 =
1

𝐵𝑞+1
𝑁
𝑞

in [Tr(Δ𝑡Δ⊤𝑡 )]𝑞+1.

(92)
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Since 𝑁in ∼ 𝜙𝐵, the normalized trace is scales as

1
𝐵
ETr[Δ⊤𝑡

(
𝐺𝐺⊤

)𝑞
𝐺] = 𝑂

(
𝜙𝑞

𝐵𝑞+2
[Tr(Δ𝑡Δ⊤𝑡 )]𝑞+1

)
. (93)

The subleading terms come from matched 𝑘 indices. WLOG assume 𝑘 = 𝑖1, then (84) turns into

𝐵∑︁
𝑖1,...,𝑖𝑞 ,𝑘=1

𝛿𝑘,𝑖1E

[
⟨𝑥𝑖1out,Δ𝑡𝑥

𝑖1
in⟩

𝑞∏
ℓ=1
⟨𝑥𝑖ℓout,Δ𝑡𝑥

𝑖ℓ
in⟩

2⟨𝑥𝑖1in, 𝑥
𝑗1
in ⟩ · · · ⟨𝑥

𝑗𝑞
out, 𝑥

𝑖1
out⟩

]
. (94)

This introduces a cycle 𝑥𝑖1in → 𝑥
𝑗1
in → · · · → 𝑥

𝑗𝑞
out → 𝑥

𝑖1
out, which mandates 𝑖1 = 𝑗1 = · · · = 𝑗𝑞. The

expectation then becomes

𝑁inE
[
⟨𝑥𝑖1out,Δ𝑡𝑥

𝑖1
in⟩

2𝑞+1] = 𝑂 (
(2𝑞 + 1)!![Tr(Δ𝑡Δ⊤𝑡 )] (2𝑞+1)/2

)
. (95)

Summing over 𝑖1 and normalizing gives

𝑁in

𝐵2𝑞+1 𝐵(2𝑞 + 1)!![Tr(Δ𝑡Δ⊤𝑡 )] (2𝑞+1)/2 = 𝑂

(
𝜙(2𝑞 + 1)!!

𝐵2𝑞 [Tr(Δ𝑡Δ⊤𝑡 )]
2𝑞+1

2

)
. (96)

This is subleading by a factor of 𝐵−1, as the unmatched case scales as 𝐵−(𝑞+2) .
The proof is then completed by noting that if the index 𝑘 is not matched with any 𝑖𝑢 or 𝑗𝑣 for

1 ≤ 𝑢, 𝑣 ≤ 𝑞, then following Theorem 9, the last three factors ⟨𝑥 𝑗𝑞in , 𝑥
𝑘
in⟩⟨𝑥

𝑘
in,Δ

⊤
𝑡 𝑥
𝑘
out⟩⟨𝑥

𝑖1
in,Δ

⊤
𝑡 𝑥
𝑘
out⟩

can be contracted twice via the leading Wick pairings in the Gaussian expectation: first, pairing
the two 𝑥𝑘in terms across the inner products yields an identity operator expectation E[𝑥𝑘in(𝑥

𝑘
in)
⊤] =

Id, reducing to ⟨𝑥 𝑗𝑞in ,Δ
⊤𝑥𝑘out⟩⟨𝑥

𝑖1
in,Δ

⊤𝑥𝑘out⟩; second, pairing the two remaining Δ⊤𝑥𝑘out terms yields
E[(Δ⊤𝑥𝑘out) (Δ⊤𝑥𝑘out)⊤] = Δ⊤Δ, resulting in ⟨𝑥 𝑗𝑞in ,Δ

⊤Δ𝑥𝑖1in⟩ = ⟨Δ𝑡𝑥
𝑖1
in,Δ𝑡𝑥

𝑗𝑞

in ⟩ + 𝑜(1). This closes the
chain in a non-crossing manner.

We make use of the cases where 𝑞 = 1, 2 in Theorem 9 to arrive at

E(⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 )

= 𝑎E (⟨Δ𝑡 , 𝐺⟩ |F𝑡 ) + 𝑏E
(〈
Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝐺

〉��F𝑡

)
+ 𝑐E

(〈
Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡

〉��F𝑡

)
= 2𝑎∥Δ𝑡 ∥2F + 𝑏E𝑧

2

𝐵3 (𝐵𝑁in𝑁out)

+ 𝑐

𝐵5

(
(E𝑧2)2𝐵2 Tr(Δ⊤𝑡 Δ)𝑁in𝑁out + (E𝑧4)𝐵 Tr(Δ⊤𝑡 Δ)𝑁in𝑁

2
out + (E𝑧2)2𝐵2 Tr(Δ⊤𝑡 Δ)𝑁2

out

)
.

(97)

Lemma 10 (Gradient re-normalization) Let 𝔊𝑞 := Tr(𝐺𝐺⊤𝑡 )𝑞 and 𝔊̄𝑞 := Tr(𝐺𝐺⊤𝑡 )𝑞𝐺𝑡 . Then,
in the limits of 𝐵→∞, 𝐵/𝑁in → 𝜙, 𝐵/𝑁out → 𝜓, we have that E

[
𝔊𝑞𝔊

−𝑞
1

]
∼ E𝔊𝑞 (E𝔊1)−𝑞 and

that E
[
𝔊̄𝑞𝔊

−𝑞−1/2] ∼ E𝔊̄𝑞 (E𝔊1)−𝑞−1/2.

After gradient normalization, high-dimensional concentration from the lemma implies

E [⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ] = 2𝑎
∥Δ𝑡 ∥2F

(ETr(𝐺𝑡𝐺⊤𝑡 ))1/2
+ 𝑏E𝑧

2

𝐵3
𝐵𝑁in𝑁out

(ETr(𝐺𝑡𝐺⊤𝑡 ))3/2

+ 𝑐

𝐵5

(
(E𝑧2)2𝐵2 Tr(Δ⊤𝑡 Δ)𝑁in𝑁out + (E𝑧4)𝐵 Tr(Δ⊤𝑡 Δ)𝑁in𝑁

2
out + (E𝑧2)2𝐵2 Tr(Δ⊤𝑡 Δ)𝑁2

out
(ETr(𝐺𝑡𝐺⊤𝑡 ))5/2

)
.

(98)
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On the other hand, the last term expands into

E⟨𝐺𝑡+1, 𝐺𝑡+1⟩
= 𝑎2E⟨𝐺𝑡 , 𝐺𝑡⟩ + 𝑏2E⟨(𝐺𝑡𝐺⊤𝑡 )𝐺𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝐺𝑡⟩ + 𝑐2E⟨(𝐺𝑡𝐺⊤𝑡 )2𝐺, (𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡⟩
+ 2𝑎𝑏E⟨𝐺𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝐺𝑡⟩ + 2𝑎𝑐E⟨𝐺𝑡 , (𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡⟩ + 2𝑏𝑐E⟨(𝐺𝑡𝐺⊤𝑡 )𝐺𝑡 , (𝐺𝑡𝐺⊤𝑡 )2𝐺𝑡⟩

= 𝑎2ETr(𝐺𝑡𝐺⊤𝑡 ) + 2𝑎𝑏ETr(𝐺𝑡𝐺⊤𝑡 )2 + (𝑏2 + 2𝑎𝑐)ETr(𝐺𝑡𝐺⊤𝑡 )3 + 2𝑏𝑐ETr(𝐺𝑡𝐺⊤𝑡 )4 + 𝑐2ETr(𝐺𝑡𝐺⊤𝑡 )5.
(99)

To compute the expected traces in these equations, we adapt the combinatorial counting ap-
proach in [1, 2, 12], which we describe in detail below.

𝑖1

𝑗1

𝑖2𝑗2

𝑖3

𝑗3

𝑖4

𝑗4 𝑖5

𝑗5

𝑖1, 𝑗1 𝑖2, 𝑗5 𝑗2, 𝑖4, 𝑗4, 𝑖5 𝑖3, 𝑗3

Figure 15: An admissible vertex partitioning (left) and its associated cactus graph (right). We iden-
tify vertices with the same color and join them with black and blue edges representing
contributions of 𝑁in and 𝑁out, respectively. On the right, we count that there are four
𝑖, 𝑗 identifications with four black and three blue edges. Thus, the unnormalized tracial
moment reads 𝐵4𝑁4

in𝑁
3
out in that order. By topological symmetry, there are ten ways

of obtaining the same contribution up to relabeling the 𝑖, 𝑗 indices. If we flip the edge
colors, we get another ten contributions of 𝐵4𝑁3

in𝑁
4
out. We additionally weigh these

contributions with the 𝑧 moments, which can be exactly described by the number of
outgoing edges for each identification. Thus, the total contribution of this configuration
is 10(E𝑧2)3(E𝑧4) (𝐵4𝑁4

in𝑁
3
out + 𝐵4𝑁3

in𝑁
4
out).

Our goal is to write down the formulation for any moment 𝑞 ≥ 1 in terms of the statistics of these
diagrams. To this end, we decouple the Gaussian factors in (81) and (84) using the above incident
graph representations. As a first step, we represent the indices 𝑖1, 𝑗1, . . . , 𝑖𝑞, 𝑗𝑞 (and 𝑘 for the second
trace) as vertices in a cycle graph with 2𝑞 vertices for Tr(𝐺𝑡𝐺⊤𝑡 )𝑞, alternating between 𝑖ℓ and 𝑗ℓ ,
connected by edges representing inner products, e.g., ⟨𝑥𝑖ℓout, 𝑥

𝑗ℓ
out⟩ or ⟨𝑥 𝑗ℓin , 𝑥

𝑖ℓ+1
in ⟩. For the second trace,

an additional vertex 𝑘 and edges involving Δ𝑡 are included, as shown in Figure 17. The cactus graph
is formed by partitioning the indices into blocks (identifications), where each block corresponds
to a vertex in the cactus graph, with edges representing inner products, weighted by 𝑁in, 𝑁out, or
Tr(Δ⊤𝑡 Δ𝑡 ), corresponding to inner products or Δ𝑡 -related terms. We focus on non-crossing partitions
with even-sized blocks denoted by

N C even(1, . . . , 𝑛) := {𝜋 ∈ N C (1, . . . , 𝑛) |every block of 𝜋 has even size},

as these yield the leading-order terms due to maximal index summations. Let 𝐶ℓ𝑖1 (𝜋) denote the

number of black cycles of length ℓ𝑖 and 𝐶ℓ 𝑗2 (𝜋) denote the number of blue cycles of length ℓ 𝑗
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𝑖1

𝑗1

𝑖2𝑗2

𝑖3

𝑗3

𝑖4

𝑗4 𝑖5

𝑗5

𝑖1, 𝑗1 𝑖2, 𝑖4, 𝑗5 𝑗4, 𝑖5 𝑗2, 𝑖3, 𝑗3

Figure 16: A non-admissible matching and its corresponding cactus graph. We see that there is a
cycle {𝑖2, 𝑖4, 𝑗5} ↔ { 𝑗2, 𝑖3, 𝑗3} with heterogeneously decorated edge colors. In addi-
tion, we observe that these two groups are odd-sized partitions. This breaks the perfect
matching condition and introduces moments of lower order.

𝑖1

𝑗1

𝑖2

𝑗2

𝑖1, 𝑗2 𝑗1, 𝑖2

Figure 17: To compute terms like ⟨Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺𝑡⟩ (for 𝑞 ≤ 2) in Theorem 9, we just need one
extra modification to the admissible matching and its cactus graph. By contracting the
chain of inner products ⟨𝑥 𝑗𝑞in , 𝑥

𝑘
in⟩⟨𝑥

𝑘
in,Δ

⊤
𝑡 𝑥
𝑘
out⟩⟨𝑥

𝑖1
in,Δ

⊤
𝑡 𝑥
𝑘
out⟩ in (84), we can replace one

of the 𝑁in-edges (colored in orange) with Tr(Δ𝑡Δ⊤𝑡 ) in the cactus graph. The moment
contribution in this case is thus 𝐵2 Tr(Δ⊤𝑡 Δ𝑡 )𝑁in𝑁out.

in the corresponding cactus graph representation of partitioning 𝜋. Define 𝑁 as the number of
identifications we partitioned 𝑖1, 𝑗1, . . . , 𝑖𝑞, 𝑗𝑞 into. Let the number of outgoing edges at the 𝑘-th
cactus graph vertex be 𝐸𝑘 . Then, by Figure 15, we have that for 𝑞 ≥ 1,

ETr(𝐺𝑡𝐺⊤𝑡 )𝑞 =
1 + 𝑜(1)
𝐵2𝑞

∑︁
𝜋∈N C even (1,...,2𝑞)

𝑁∏
𝑘=1

E𝑧𝐸𝑘𝐵𝑁𝑁

∑
𝑖 𝐶

ℓ𝑖
1 (𝜋 )

in 𝑁

∑
𝑗 𝐶

ℓ𝑗

2 (𝜋 )
out , (100)

and following Figure 17, we can write (after replacing one copy of 𝑁in by Tr(Δ⊤𝑡 Δ𝑡 ))

E
〈
Δ𝑡 , (𝐺𝑡𝐺⊤𝑡 )𝑞𝐺𝑡

〉
=

1 + 𝑜(1)
𝐵2𝑞+1

∑︁
𝜋∈N C even (1,...,2𝑞)

𝑁∏
𝑘=1

E𝑧𝐸𝑘𝐵𝑁 ∥Δ𝑡 ∥2F𝑁
∑

𝑖 𝐶
ℓ𝑖
1 (𝜋 )−1

in 𝑁

∑
𝑗 𝐶

ℓ𝑗

2 (𝜋 )
out .

(101)
Calculating E𝑧𝑝 for arbitrary powers 𝑝 is also straightforward: Theorem 6 gives us the even mo-
ments of one Gaussian random variable 𝑋 in the form E[𝑋2𝑚] = #P2(2𝑚) ·𝜎2𝑚 = (2𝑚−1)!!E[𝑋2],
where #P2(2𝑚) denotes the number of pairings of 2𝑚 elements. Denote 𝜎Δ𝑡

:= Var 𝑧, then
𝑧 := ⟨𝑥 (𝑖)out,Δ𝑡𝑥

(𝑖)
in ⟩ is a Gaussian scalar random variable, and we have the first few even moments
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E𝑧2 = 𝜎2
Δ𝑡

, E𝑧4 = 3(𝜎2
Δ𝑡
)2, E𝑧6 = 15(𝜎2

Δ𝑡
)3, E𝑧8 = 105(𝜎2

Δ𝑡
)4, and E𝑧10 = 945(𝜎2

Δ𝑡
)5. The first to

fifth-order tracial moments are listed below for reference:

ETr(𝐺𝑡𝐺⊤𝑡 ) = 𝐵−2E𝑧2(𝐵𝑁in𝑁out), (102)

ETr((𝐺𝑡𝐺⊤𝑡 )2) = 𝐵−4
(
(E𝑧2)2𝐵2𝑁in𝑁

2
out + (E𝑧2)2𝐵2𝑁2

in𝑁out + E𝑧4𝐵𝑁2
in𝑁

2
out

)
, (103)

ETr((𝐺𝑡𝐺⊤𝑡 )3) = 𝐵−6
(
E𝑧2)33𝐵3𝑁2

in𝑁
2
out + E𝑧2E𝑧43𝐵2𝑁3

in𝑁
2
out + E𝑧2E𝑧43𝐵2𝑁2

in𝑁
3
out

+E𝑧6𝐵𝑁3
in𝑁

3
out + (E𝑧2)3𝐵3𝑁3

in𝑁out + (E𝑧2)3𝐵3𝑁in𝑁
3
out

)
(1 + 𝑜(1)),

(104)

ETr((𝐺𝑡𝐺⊤𝑡 )4)

= 𝐵−8
(
E𝑧2E𝑧64𝐵2𝑁4

in𝑁
3
out + E𝑧2E𝑧64𝐵2𝑁3

in𝑁
4
out + (E𝑧2)4𝐵4𝑁4

in𝑁out + (E𝑧2)4𝐵4𝑁in𝑁
4
out

+ (E𝑧2)42𝐵4𝑁3
in𝑁

2
out + (E𝑧2)42𝐵4𝑁2

in𝑁
3
out + (E𝑧2)44𝐵4𝑁2

in𝑁
3
out + (E𝑧2)44𝐵4𝑁3

in𝑁
2
out

+ (E𝑧2)2E𝑧42𝐵3𝑁4
in𝑁

2
out + (E𝑧2)2E𝑧42𝐵3𝑁2

in𝑁
4
out + (E𝑧2)2E𝑧44𝐵3𝑁4

in𝑁
2
out

+ (E𝑧2)2E𝑧44𝐵3𝑁2
in𝑁

4
out + (E𝑧2)2E𝑧48𝐵3𝑁3

in𝑁
3
out + (E𝑧4)22𝐵2𝑁3

in𝑁
4
out

+(E𝑧4)22𝐵2𝑁4
in𝑁

3
out + E𝑧8𝐵𝑁4

in𝑁
4
out + (E𝑧2)2E𝑧48𝐵3𝑁3

in𝑁
3
out

)
(1 + 𝑜(1)),

(105)

ETr((𝐺𝑡𝐺⊤𝑡 )5)

= 𝐵−10
(
𝐵5𝑁5

in𝑁out(E𝑧2)5 + 𝐵5𝑁in𝑁
5
out(E𝑧2)5 + 20𝐵5𝑁3

in𝑁
3
out(E𝑧2)5

+ 10𝐵5𝑁4
in𝑁

2
out(E𝑧2)5 + 10𝐵5𝑁2

in𝑁
4
out(E𝑧2)5 + 10𝐵4𝑁2

in𝑁
5
out(E𝑧2)3E𝑧4

+ 10𝐵4𝑁5
in𝑁

2
out(E𝑧2)3E𝑧4 + 20𝐵4𝑁3

in𝑁
4
out(E𝑧2)3E𝑧4 + 20𝐵4𝑁4

in𝑁
3
out(E𝑧2)3E𝑧4

+ 10𝐵3𝑁5
in𝑁

3
outE𝑧

2(E𝑧4)2 + 5𝐵3𝑁5
in𝑁

3
out(E𝑧2)2E𝑧6 + 10𝐵3𝑁3

in𝑁
5
outE𝑧

2(E𝑧4)2

+ 5𝐵3𝑁3
in𝑁

5
out(E𝑧2)2E𝑧6 + 25𝐵3𝑁4

in𝑁
4
outE𝑧

2(E𝑧4)2 + 25𝐵3𝑁4
in𝑁

4
out(E𝑧2)2E𝑧6

+ 5𝐵2𝑁4
in𝑁

5
outE𝑧

4E𝑧6 + 5𝐵2𝑁4
in𝑁

5
outE𝑧

2E𝑧8 + 5𝐵2𝑁5
in𝑁

4
outE𝑧

4E𝑧6

+ 5𝐵2𝑁5
in𝑁

4
outE𝑧

2E𝑧8 + 𝐵𝑁5
in𝑁

5
outE𝑧

10 + 10𝐵4𝑁4
in𝑁

3
out(E𝑧2)3E𝑧4

+ 10𝐵4𝑁3
in𝑁

4
out(E𝑧2)3E𝑧4 + 5𝐵4𝑁4

in𝑁
3
out(E𝑧2)3E𝑧4 + 5𝐵4𝑁3

in𝑁
4
out(E𝑧2)3E𝑧4

+ 5𝐵4𝑁4
in𝑁

3
out(E𝑧2)3E𝑧4 + 5𝐵4𝑁3

in𝑁
4
out(E𝑧2)3E𝑧4 + 10𝐵4𝑁3

in𝑁
4
out(E𝑧2)3E𝑧4

+10𝐵4𝑁4
in𝑁

3
out(E𝑧2)3E𝑧4 + 5𝐵3𝑁3

in𝑁
5
out(E𝑧2)2E𝑧6 + 5𝐵3𝑁5

in𝑁
3
out(E𝑧2)2E𝑧6

)
(1 + 𝑜(1)).

(106)

An interesting observation is that, for moments 𝑞 ≥ 1, the number of terms in the moment formula
progresses following the sequence

(3𝑞
𝑞

)
/(2𝑞 +1) which, according to [13], enumerates non-crossing

trees and colored partitions of a convex polygon by non-crossing diagonals [4]. Finally, normalizing
the gradient square term by the Frobenius norm of 𝐺𝑡 yields

E⟨𝐺𝑡+1, 𝐺𝑡+1⟩ =
𝑎2ETr(𝐺𝑡𝐺⊤𝑡 )
ETr(𝐺𝑡𝐺⊤𝑡 )

+
2𝑎𝑏ETr((𝐺𝑡𝐺⊤𝑡 )2)
(ETr(𝐺𝑡𝐺⊤𝑡 ))2

+
(𝑏2 + 2𝑎𝑐)ETr((𝐺𝑡𝐺⊤𝑡 )3)

(ETr(𝐺𝑡𝐺⊤𝑡 ))3

+
2𝑏𝑐ETr((𝐺𝑡𝐺⊤𝑡 )4)
(ETr(𝐺𝑡𝐺⊤𝑡 ))4

+
𝑐2ETr((𝐺𝑡𝐺⊤𝑡 )5)
(ETr(𝐺𝑡𝐺⊤𝑡 ))5

.

(107)

We thus finished simplifying (81).
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D.2. Asymptotic behavior of the Muon risk: Gradient normalization by the Frobenius norm

Regime 1: 𝑵in/𝑩 = 𝝓, 𝑵out/𝑩 = 𝝍. Recall that Muon updates the parameters as 𝑊𝑡+1 = 𝑊𝑡 −
𝜂𝐺𝑡+1, where the transformed gradient is 𝐺𝑡+1 =

(
𝑎 Id+𝑏(𝐺𝑡𝐺⊤𝑡 ) + 𝑐(𝐺𝑡𝐺⊤𝑡 )2

)
𝐺𝑡 , and 𝐺𝑡 =

1
𝐵

∑𝐵
𝑖=1 𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in ⟨𝑥

(𝑖)
out, (𝑊𝑡 − 𝑊★)𝑥 (𝑖)in ⟩/∥𝐺𝑡 ∥F. The risk is R (𝑊𝑡 ) = 1

2E⟨𝑥out, (𝑊𝑡 − 𝑊★)𝑥in⟩ =
1
2 ∥Δ𝑡 ∥

2
F. The scaling rule implies that 𝑁in = 𝜙𝐵, 𝑁out = 𝜓𝐵, 𝑁in𝑁out = 𝜙𝜓𝐵2. The variable

𝑧 = ⟨𝑥 (𝑖)out,Δ𝑡𝑥
(𝑖)
in ⟩ is Gaussian with variance and higher even moments

𝜎2
Δ𝑡

= E[𝑧2] =
∥Δ𝑡 ∥2F
𝑁in𝑁out

=
2R (𝑊𝑡 )
𝑁in𝑁out

,

E[𝑧4] = 3(𝜎2
Δ𝑡
)2 = 3

(
2R (𝑊𝑡 )
𝑁in𝑁out

)2
=

12R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 ,

E[𝑧6] = 15(E[𝑧2])3 = 15
(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)3
=

120R (𝑊𝑡 )3

𝜙3𝜓3𝐵6 ,

E[𝑧8] = 105(E[𝑧2])4 = 105
(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)4
=

1680R (𝑊𝑡 )4
𝜙4𝜓4𝐵8 ,

E[𝑧10] = 945(E[𝑧2])5 = 945
(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)5
=

30240R (𝑊𝑡 )5

𝜙5𝜓5𝐵10 .

(108)

For the drift term, we compute each subterm as follows. The first two terms are

2𝑎
∥Δ𝑡 ∥2F

(E[Tr(𝐺𝑡 (𝐺𝑡 )⊤)])1/2
= 2𝑎

2R (𝑊𝑡 )√︃
2R (𝑊𝑡 )
𝐵

= 2𝑎
√︁

2R (𝑊𝑡 )𝐵 (109)

and

𝑏
𝑁in𝑁out

𝐵2 E[𝑧2] 1
(E[Tr(𝐺𝑡 (𝐺𝑡 )⊤)])3/2

= 𝑏
𝜙𝜓𝐵2

𝐵2 · 2R (𝑊𝑡 )
𝜙𝜓𝐵2 ·

1(
2R (𝑊𝑡 )
𝐵

)3/2

= 𝑏𝜙𝜓 · 2R (𝑊𝑡 )
𝜙𝜓𝐵2 ·

𝐵3/2

(2R (𝑊𝑡 ))3/2
= 𝑏

√
𝐵√︁

2R (𝑊𝑡 )
,

(110)

while the third approximated term is

𝑐

(
𝑁in𝑁out

𝐵3 (E[𝑧2])2 +
𝑁in𝑁

2
out

𝐵4 E[𝑧4] +
𝑁2

out
𝐵3 (E[𝑧

2])2
)

∥Δ𝑡 ∥2F
(E[Tr(𝐺𝑡 (𝐺𝑡 )⊤)])5/2

= 𝑐 · 4R (𝑊𝑡 )2

𝐵5 · 1 + 3𝜓2 + 𝜙
𝜙2𝜓2 · 2R (𝑊𝑡 )

𝐵5/2 · 𝐵5/2

(2R (𝑊𝑡 ))5/2

= 𝑐
2
√

2R (𝑊𝑡 )1/2

𝐵5/2 · 1 + 3𝜓2 + 𝜙
𝜙2𝜓2

(111)

And thus the total drift is

E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ] = 2𝑎
√︁

2R (𝑊𝑡 )𝐵 + 𝑏
√
𝐵√︁

2R (𝑊𝑡 )
+ 𝑐2
√

2R (𝑊𝑡 )1/2

𝐵5/2 · 1 + 3𝜓2 + 𝜙
𝜙2𝜓2 (1 + 𝑜(1)).

(112)
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Since 𝐺𝑡 is normalized, E[Tr(𝐺𝑡𝐺⊤𝑡 )] = 1. We further compute higher moments. Substitute in
the 𝑧 moments (E[𝑧2])2 = 4R (𝑊𝑡 )2(𝜙𝜓𝐵2)−2, E[𝑧4] = 12R (𝑊𝑡 )2(𝜙𝜓𝐵2)−2, 𝑁in𝑁

2
out = 𝜙𝜓2𝐵3,

𝑁2
in𝑁out = 𝜙

2𝜓𝐵3, and 𝑁2
in𝑁

2
out = 𝜙

2𝜓2𝐵4, then since R (𝑊𝑡 ) = 𝑂 (𝜙𝜓𝐵2),

E[Tr((𝐺𝑡𝐺⊤𝑡 )2)] =
1
𝐵4

(
(E[𝑧2])2𝐵2𝑁in𝑁

2
out + (E[𝑧2])2𝐵2𝑁2

in𝑁out + E[𝑧4]𝐵𝑁2
in𝑁

2
out

)
=

1
𝐵4

(
4R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 · 𝐵

2𝜙𝜓2𝐵3 + 4R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 · 𝐵

2𝜙2𝜓𝐵3 + 12R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 · 𝐵𝜙

2𝜓2𝐵4
)

=
4R (𝑊𝑡 )2

𝐵4 · 𝐵5

𝜙𝜓𝐵4 (1 + 𝜙 + 3𝜙𝜓) = 4R (𝑊𝑡 )2
𝜙𝜓𝐵3 (1 + 𝜙 + 3𝜙𝜓) = 𝑂 (𝐵),

(113)
and so this term is subleading in the sense that

E[Tr((𝐺𝑡𝐺⊤𝑡 )2)]
(E[Tr(𝐺𝑡𝐺⊤𝑡 )])2

∼ 4R (𝑊𝑡 )2
𝜙𝜓𝐵3

1 + 𝜙 + 3𝜙𝜓(
2R (𝑊𝑡 )
𝐵

)2 = 𝑂 (𝐵−1) (114)

after gradient normalization. Similarly, for 𝑞 = 3 we have that

E[Tr((𝐺𝑡 (𝐺𝑡 )⊤)3)] =
1
𝐵6

(
3(E[𝑧2])3𝐵3𝑁2

in𝑁
2
out + 3E[𝑧2]E[𝑧4]𝐵2𝑁3

in𝑁
2
out + 3E[𝑧2]E[𝑧4]𝐵2𝑁2

in𝑁
3
out

+ E[𝑧6]𝐵𝑁3
in𝑁

3
out + (E[𝑧2])3𝐵3𝑁3

in𝑁out + (E[𝑧2])3𝐵3𝑁in𝑁
3
out

)
(1 + 𝑜(1))

=
1
𝐵6

(
3
(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)3
𝐵3𝜙2𝐵2𝜓2𝐵2 + 3 · 2R (𝑊𝑡 )

𝜙𝜓𝐵2 ·
12R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 · 𝐵

2𝜙3𝐵3𝜓2𝐵2

+ 3 · 2R (𝑊𝑡 )
𝜙𝜓𝐵2 ·

12R (𝑊𝑡 )2
𝜙2𝜓2𝐵4 · 𝐵

2𝜙2𝐵2𝜓3𝐵3 + 120R (𝑊𝑡 )3

𝜙3𝜓3𝐵6 · 𝐵𝜙3𝐵3𝜓3𝐵3

+
(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)3
𝐵3𝜙3𝐵3𝜓𝐵 +

(
2R (𝑊𝑡 )
𝜙𝜓𝐵2

)3
𝐵3𝜙𝐵𝜓3𝐵3

)
(1 + 𝑜(1))

=
8R (𝑊𝑡 )3

𝐵5

(
3
𝜙𝜓
+ 9

(
1
𝜓
+ 1
𝜙

)
+ 15 +

(
1
𝜓2 +

1
𝜙2

))
= 𝑂 (𝐵),

(115)
and so after normalization of the gradient, this term is also subleading

E[Tr((𝐺𝑡𝐺⊤𝑡 )3)]
(E[Tr(𝐺𝑡𝐺⊤𝑡 )])3

∼ 8R (𝑊𝑡 )3

𝐵5
3𝜙−1𝜓−1 + 9𝜓−1 + 9𝜙−1 + 15 + 𝜓−2 + 𝜙−2(

2R (𝑊𝑡 )
𝐵

)3 = 𝑂 (𝐵−2). (116)

The contributions from moments 𝑞 = 4, 5 are suppressed by higher powers of 𝐵. Thus, in the
high-dimensional limit of batch size, the variance term is dominated by

E[∥𝐺𝑡+1∥2F |F𝑡 ] ∼ 𝑎2(1 + 𝑜(1)). (117)

Then, the risk recursion in the limit is

E[R (𝑊𝑡+1) |F𝑡 ] = R (𝑊𝑡 ) − 𝜂
(
2𝑎

√︁
2R (𝑊𝑡 )𝐵 +

𝑏
√
𝐵√︁

2R (𝑊𝑡 )
+

2𝑐
√︁

2R (𝑊𝑡 )
𝐵5/2 · 1 + 3𝜓2 + 𝜙

𝜙2𝜓2

)
+ 𝜂

2𝑎2

2
(1 + 𝑜(1)).

(118)
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Assuming R (𝑊𝑡 ) = 𝑂 (𝜙𝜓𝐵2), we can scale the 𝑎-term as 𝑂 (
√
𝐵3) = 𝑂 (𝐵3/2), 𝑏-term as 𝑂 (𝐵1/2),

and 𝑐-term as 𝑂 (𝐵−1/2). The 𝑎-term dominates, giving

E[R (𝑊𝑡+1) |F𝑡 ] ∼ R (𝑊𝑡 ) − 2𝜂𝑎
√︁

2R (𝑊𝑡 )𝐵 +
𝜂2𝑎2

2
. (119)

In the continuous limit, let 𝑅(𝑡) = E[R (𝑊𝑡 )], with 𝑡 → 𝜂𝑡, setting R (𝑊𝑡+1) −R (𝑊𝑡 ) = 0, we see
that at equilibrium,

𝑎

√︃
2𝐵
𝑢∞

=
𝑎2𝜂
4𝑢∞ , 𝑢∞ =

𝑎𝜂

4
√

2𝐵
, 𝑅∞ = 𝑢2

∞ =
𝑎2𝜂2

32𝐵 . (120)

The convergence rate near equilibrium can be obtained by linearizing around 𝑢∞. If we let 𝑢 =

𝑢∞ + 𝑣, then
d𝑣
d𝑡
∼ −𝑎

√︂
2𝐵

𝑢∞ + 𝑣
+ 𝑎2𝜂

4(𝑢∞ + 𝑣)
∼ −𝑎

√︂
2𝐵
𝑢∞
· 𝑣

2𝑢∞
− 𝑎

2𝜂𝑣

4𝑢2
∞

= −
(
𝑎
√

2𝐵
2 · 𝑎𝜂

4
√

2𝐵

+ 𝑎2𝜂

4 · 𝑎2𝜂2

32𝐵

)
𝑣 = −4

√
2𝐵
𝜂

𝑣 = 𝑂 (
√
𝐵/𝜂).

(121)

which grows with 𝐵, indicating faster convergence for larger batch sizes, while the asymptotic
risk 𝑅∞ =

𝑎2𝜂2

32𝐵 decreases with 𝐵. The scaling 𝑁in = 𝜙𝐵, 𝑁out = 𝜓𝐵 implies 𝐵2 ∝ 𝑁in𝑁out.
This is computationally expensive. The nonlinear descent term −2𝑎𝜂

√︁
2R (𝑊𝑡 )𝐵 suggests Muon

benefits from larger 𝐵, but the computational cost of NS iteration (matrix operations scaling with
𝑁out𝑁in) makes smaller 𝐵 desirable. The risk 𝑅∞ ∼ 𝑎2𝜂2

32𝐵 depends on 𝐵, indicating non-universal
behavior unless 𝜂 ∝

√
𝐵, which may destabilize training. It is thus crucial to carefully find the best

intermediate 𝐵 size provided dimension parameters 𝑁in, 𝑁out and learning rate 𝜂 in this regime.

Regime 2: 𝑵in/
√
𝑩 = 𝝓, 𝑵out/

√
𝑩 = 𝝍. Under this scaling, 𝑁in = 𝜙

√
𝐵, 𝑁out = 𝜓

√
𝐵, so 𝑁in𝑁out =

𝜙𝜓𝐵. The moments of 𝑧 are

E[𝑧2] = 2R (𝑊𝑡 )
𝜙𝜓𝐵

, E[𝑧4] = 12R (𝑊𝑡 )2
𝜙2𝜓2𝐵2 , E[𝑧6] = 120R (𝑊𝑡 )3

𝜙3𝜓3𝐵3 ,

E[𝑧8] = 1680R (𝑊𝑡 )4
𝜙4𝜓4𝐵4 , E[𝑧10] = 30240R (𝑊𝑡 )5

𝜙5𝜓5𝐵5 .

(122)

For the unnormalized gradient,

ETr(𝐺𝑡𝐺⊤𝑡 ) =
1
𝐵2

𝐵∑︁
𝑖=1

E[𝑧2
𝑖 ]𝑁in𝑁out =

𝐵 · 2R (𝑊𝑡 )
𝜙𝜓𝐵

· 𝜙𝜓𝐵
𝐵2 =

2R (𝑊𝑡 )
𝐵

, (123)

Then, the unnormalized second moment expands into

ETr(𝐺𝑡𝐺⊤𝑡 )2 =
1
𝐵4

(
(E[𝑧2])2𝐵2𝑁in𝑁

2
out + (E[𝑧2])2𝐵2𝑁2

in𝑁out + E[𝑧4]𝐵𝑁2
in𝑁

2
out

)
=

1
𝐵4

((
2R (𝑊𝑡 )
𝜙𝜓𝐵

)2
𝐵2𝜙𝜓𝐵𝜓

√
𝐵 +

(
2R (𝑊𝑡 )
𝜙𝜓𝐵

)2
𝐵2𝜙2√𝐵𝜓

√
𝐵 + 12R (𝑊𝑡 )2

𝜙2𝜓2𝐵2 · 𝐵𝜙
2𝐵𝜓2𝐵

)
=

4R (𝑊𝑡 )2
𝐵3

(
𝜓
√
𝐵 + 𝜙

√
𝐵 + 3

𝜙𝜓

)
= 𝑂 (𝐵−1/2).

(124)
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similarly for the unnormalized third moment,

ETr(𝐺𝑡𝐺⊤𝑡 )3 =
1
𝐵6

(
3(E[𝑧2])3𝐵3𝑁2

in𝑁
2
out + 3E[𝑧2]E[𝑧4]𝐵2𝑁3

in𝑁
2
out + 3E[𝑧2]E[𝑧4]𝐵2𝑁2

in𝑁
3
out

+ E[𝑧6]𝐵𝑁3
in𝑁

3
out + (E[𝑧2])3𝐵3𝑁3

in𝑁out + (E[𝑧2])3𝐵3𝑁in𝑁
3
out

)
(1 + 𝑜(1))

=
1
𝐵6

(
3
(
2R (𝑊𝑡 )
𝜙𝜓𝐵

)3
𝐵3𝜙2𝐵𝜓2𝐵 + 3 · 2R (𝑊𝑡 )

𝜙𝜓𝐵
· 12R (𝑊𝑡 )2
𝜙2𝜓2𝐵2 · 𝐵

2𝜙3𝐵3/2𝜓2𝐵

+ 3 · 2R (𝑊𝑡 )
𝜙𝜓𝐵

· 12R (𝑊𝑡 )2
𝜙2𝜓2𝐵2 · 𝐵

2𝜙2𝐵𝜓3𝐵3/2 + 120R (𝑊𝑡 )3
𝜙3𝜓3𝐵3 · 𝐵𝜙3𝐵3/2𝜓3𝐵3/2

+
(
2R (𝑊𝑡 )
𝜙𝜓𝐵

)3
𝐵3𝜙3𝐵3/2𝜓

√
𝐵 +

(
2R (𝑊𝑡 )
𝜙𝜓𝐵

)3
𝐵3𝜙
√
𝐵𝜓3𝐵3/2

)
(1 + 𝑜(1))

=
8R (𝑊𝑡 )3

𝐵4

(
3
𝜙𝜓
+ 9
√
𝐵

(
1
𝜙
+ 1
𝜓

)
+ 15
𝐵
+

(
1
𝜙2 +

1
𝜓2

))
(1 + 𝑜(1)) = 𝑂 (𝐵−1).

(125)
After normalization,

ETr(𝐺𝑡𝐺⊤𝑡 )2 ∼
4R (𝑊𝑡 )2
𝐵3

(
𝜓
√
𝐵 + 𝜙

√
𝐵 + 3

𝜙𝜓

)
(

2R (𝑊𝑡 )
𝐵

)2 = 𝑂 (𝐵−1/2), (126)

and

ETr(𝐺𝑡𝐺⊤𝑡 )3 ∼
8R (𝑊𝑡 )3
𝐵4

(
3
𝜙𝜓
+ 9√

𝐵

(
1
𝜙
+ 1
𝜓

)
+ 15
𝐵
+

(
1
𝜙2 + 1

𝜓2

))
(

2R (𝑊𝑡 )
𝐵

)3 = 𝑂 (𝐵−1). (127)

Higher moments (𝑞 = 4, 5) are suppressed by 𝑂 (𝐵−3/2) and higher. Now, the total drift is

E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ] = 2𝑎
√︁

2R (𝑊𝑡 )𝐵 + 𝑏
√
𝐵√︁

2R (𝑊𝑡 )
+ 𝑐2
√

2R (𝑊𝑡 )1/2

𝐵3/2

(
1
𝜙𝜓
+ 3𝜓

√
𝐵

𝜙
+ 1
𝜙2𝜓

)
(1 + 𝑜(1)).

(128)
Assuming R (𝑊𝑡 ) = 𝑂 (𝜙𝜓𝐵), the 𝑎-term is 𝑂 (𝐵3/4), the 𝑏-term is 𝑂 (𝐵1/4), while the 𝑐-term is
𝑂 (𝐵1/4). Since the 𝑎-term dominates, the Muon risk simplifies to

E[R (𝑊𝑡+1) |F𝑡 ] ∼ R (𝑊𝑡 ) − 2𝜂𝑎
√︁

2R (𝑊𝑡 )𝐵 +
𝜂2𝑎2

2
. (129)

Finally, by taking 𝑡 → ∞, we have the limiting risk 𝑅∞ =
𝑎2𝜂2

32𝐵 with convergence rate d𝑣
d𝑡 =

−
(

4
√

2𝐵
𝜂

)
𝑣 = 𝑂 (

√
𝐵/𝜂). The NS iteration scales as 𝑂 (𝜙𝜓𝐵), significantly reducing computational

cost and making Rule 2 more efficient than Rule 1.
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D.3. Gradient normalization by the Schatten 𝑝-norm when 𝑝 = ∞

Regime 𝑵in/𝑩 = 𝝓, 𝑵out/𝑩 = 𝝍. With 𝑁in = 𝜙𝐵, 𝑁out = 𝜓𝐵, 𝑁in𝑁out = 𝜙𝜓𝐵2, and R (𝑊𝑡 ) =
𝑂 (𝜙𝜓𝐵2). The operator norm ∥𝐺̄𝑡 ∥∞ is the largest singular value of the unnormalized gradient
𝐺̄𝑡 . For a random matrix of the form 𝐺̄𝑡 = 1

𝐵

∑𝐵
𝑖=1 𝑥

(𝑖)
out ⊗ 𝑥

(𝑖)
in 𝑧𝑖 , with 𝑥

(𝑖)
out, 𝑥

(𝑖)
in isotropic and

𝑧𝑖 ∼ 𝑁 (0, 2R (𝑊𝑡 )
𝜙𝜓𝐵2 ), we approximate 𝜎max in the high-dimensional limit. Assuming 𝜙, 𝜓 = 𝑂 (1),

and 𝑁in, 𝑁out ∝ 𝐵, the matrix behaves like a random matrix with i.i.d. entries scaled by 𝑧𝑖 . The
operator norm of a random 𝑁out × 𝑁in matrix with entries ∼ 𝑁 (0, 𝜎2/𝑁in) is

𝜎max ∼ 𝜎(
√︁
𝑁in +

√︁
𝑁out). (130)

Here, the entries of 𝐺̄𝑡 have variance

𝜎2 := E
[(
(𝑥 (𝑖)out)𝑘 (𝑥

(𝑖)
in )𝑙𝑧𝑖

)2
]
= 𝜎2

1𝜎
2
2 ·

2R (𝑊𝑡 )
𝜙𝜓𝐵2 , (131)

and so

E[∥𝐺̄𝑡 ∥∞] ∼

√︃
2𝜎2

1𝜎
2
2 R (𝑊𝑡 )√︁
𝜙𝜓𝐵2

(
√︁
𝜙𝐵 +

√︁
𝜓𝐵) =

√︃
2𝜎2

1𝜎
2
2 R (𝑊𝑡 )

√
𝜙 +
√
𝜓

√
𝜙𝜓𝐵

. (132)

For simplicity, we WLOG assume that 𝜎2
1 = 𝜎2

2 = 1, so

E[∥𝐺̄𝑡 ∥∞] ∼
√︃

2R (𝑊𝑡 )
𝐵
(
√︁
𝜙 +

√︁
𝜓). (133)

Then,

E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ]

∼ 1
E[∥𝐺̄𝑡 ∥∞ |F𝑡 ]

(
𝑎E[⟨Δ𝑡 , 𝐺̄𝑡⟩|F𝑡 ] +

𝑏E[⟨Δ𝑡 , 𝐺̄𝑡 (𝐺̄𝑡 )⊤𝐺̄𝑡⟩|F𝑡 ]
E[∥𝐺̄𝑡 ∥2∞ |F𝑡 ]

+ 𝑐E[⟨Δ𝑡 , (𝐺̄𝑡 (𝐺̄𝑡 )
⊤)2𝐺̄𝑡⟩|F𝑡 ]

E[∥𝐺̄𝑡 ∥4∞ |F𝑡 ]

)
∼

2𝑎
√︁

R (𝑊𝑡 )𝐵√
𝜙 +
√
𝜓
+ 2𝑏R (𝑊𝑡 )
𝐵(
√
𝜙 +
√
𝜓)2
+ · · ·

(134)
The third term involves higher moments but scales as 𝑂 (𝐵−3), so it is subdominant. Thus, the total
drift is

E[⟨Δ𝑡 , 𝐺𝑡+1⟩|F𝑡 ] ∼
2𝑎

√︁
R (𝑊𝑡 )𝐵√
𝜙 +
√
𝜓
+ 2𝑏R (𝑊𝑡 )
𝐵(
√
𝜙 +
√
𝜓)2
+𝑂 (𝐵−3). (135)
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Next, we compute the variance contributions:

E[∥𝐺𝑡+1∥2F |F𝑡 ]

∼ 1
E[∥𝐺̄𝑡 ∥2∞ |F𝑡 ]

(
𝑎2E[∥𝐺̄𝑡 ∥2F |F𝑡 ] + 2𝑎𝑏E[⟨𝐺̄𝑡 , 𝐺̄𝑡 (𝐺̄𝑡 )⊤𝐺̄𝑡⟩|F𝑡 ] + (𝑏2 + 2𝑎𝑐)E[⟨𝐺̄𝑡 , (𝐺̄𝑡 (𝐺̄𝑡 )⊤)2𝐺̄𝑡⟩|F𝑡 ]

)
=
𝑎2E[∥𝐺̄𝑡 ∥2F |F𝑡 ]
E[∥𝐺̄𝑡 ∥2∞ |F𝑡 ]

+ 2𝑎𝑏E[Tr((𝐺̄𝑡 (𝐺̄𝑡 )⊤)2)]
E[∥𝐺̄𝑡 ∥4∞ |F𝑡 ]

+ (𝑏
2 + 2𝑎𝑐)E[Tr((𝐺̄𝑡 (𝐺̄𝑡 )⊤)3)]

E[∥𝐺̄𝑡 ∥6∞ |F𝑡 ]

∼
𝑎2 · 2R (𝑊𝑡 )

𝐵

2R (𝑊𝑡 )
𝐵
(
√
𝜙 +
√
𝜓)2
+

2𝑎𝑏 · 4R (𝑊𝑡 )2
𝜙𝜓𝐵3 (1 + 𝜙 + 3𝜙𝜓)(√︃

2R (𝑊𝑡 )
𝐵
(
√
𝜙 +
√
𝜓)

)4

+
(𝑏2 + 2𝑎𝑐) · 8R (𝑊𝑡 )3

𝐵5

(
3
𝜙𝜓
+ 9

(
1
𝜓
+ 1
𝜙

)
+ 15 + 1

𝜓2 + 1
𝜙2

)
(√︃

2R (𝑊𝑡 )
𝐵
(
√
𝜙 +
√
𝜓)

)6

=
𝑎2

(
√
𝜙 +
√
𝜓)2
+ 8𝑎𝑏(1 + 𝜙 + 3𝜙𝜓)
𝜙𝜓(
√
𝜙 +
√
𝜓)4𝐵2

√︁
R (𝑊𝑡 )

+
8(𝑏2 + 2𝑎𝑐)

(
3
𝜙𝜓
+ 9

(
1
𝜓
+ 1
𝜙

)
+ 15 + 1

𝜓2 + 1
𝜙2

)
√

2(
√
𝜙 +
√
𝜓)6R (𝑊𝑡 )3/2𝐵2

(136)
Higher-order terms (𝑞 = 4, 5) are suppressed by higher powers of 𝐵. With R (𝑊𝑡 ) = 𝑂 (𝜙𝜓𝐵2), the
variance terms scale as 𝑂 (1), 𝑂 (𝐵−1/2), and 𝑂 (𝐵−2), respectively:

E[∥𝐺𝑡+1∥2F |F𝑡 ] ∼
𝑎2

(
√
𝜙 +
√
𝜓)2
+ 8𝑎𝑏(1 + 𝜙 + 3𝜙𝜓)
𝜙𝜓(
√
𝜙 +
√
𝜓)4𝐵2

√︁
R (𝑊𝑡 )

+𝑂 (𝐵−2). (137)

Unlike the Frobenius norm case shown in Appendix D.2, the variance retains higher-order contri-
butions, as desired. The final risk recursion is therefore

E[R (𝑊𝑡+1) |F𝑡 ] ∼ R (𝑊𝑡 ) − 𝜂
(

2𝑎
√︁

R (𝑊𝑡 )𝐵√
𝜙 +
√
𝜓
+ 2𝑏R (𝑊𝑡 )
𝐵(
√
𝜙 +
√
𝜓)2

)
+ 𝜂

2

2

(
𝑎2

(
√
𝜙 +
√
𝜓)2
+ 8𝑎𝑏(1 + 𝜙 + 3𝜙𝜓)
𝜙𝜓(
√
𝜙 +
√
𝜓)4𝐵2

√︁
R (𝑊𝑡 )

)
(1 + 𝑜(1)).

(138)

With R (𝑊𝑡 ) = 𝑂 (𝜙𝜓𝐵2), the drift terms scale as 𝑂 (𝐵3/2) for the 𝑎-term and 𝑂 (𝐵) for the 𝑏-term.
The variance terms scale as𝑂 (𝜂2) for the first term and𝑂 (𝜂2𝐵−1/2) for the second term. The 𝑎-term
in the drift dominates, and the first variance term dominates for fixed 𝜂. At equilibrium and in the
limit of 𝑡,

𝑅∞ ∼ 𝜂2𝑎2𝜙𝜓
32𝐵 . (139)

with convergence rate near equilibrium

d𝑣
d𝑡 ∼ −

4
√

2𝐵
𝜂 (
√
𝜙+
√
𝜓)2 𝑣, (140)

indicating a rate of 𝑂 (
√
𝐵/𝜂).
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