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ABSTRACT

Molecule representation learning (MRL) methods aim to embed molecules into a
real vector space. However, existing SMILES-based (Simplified Molecular-Input
Line-Entry System) or GNN-based (Graph Neural Networks) MRL methods ei-
ther take SMILES strings as input that have difficulty in encoding molecule struc-
ture information, or over-emphasize the importance of GNN architectures but ne-
glect their generalization ability. Here we propose using chemical reactions to as-
sist learning molecule representation. The key idea of our approach is to preserve
the equivalence of molecules with respect to chemical reactions in the embedding
space, i.e., forcing the sum of reactant embeddings and the sum of product embed-
dings to be equal for each chemical equation. This constraint is proven effective
to 1) keep the embedding space well-organized and 2) improve the generalization
ability of molecule embeddings. Moreover, our model can use any GNN as the
molecule encoder and is thus agnostic to GNN architectures. Experimental results
demonstrate that our method achieves state-of-the-art performance in a variety of
downstream tasks, e.g., reaction product prediction, molecule property prediction,
reaction classification, and graph-edit-distance prediction. The code is available
at https://github.com/hwwang55/MolR.

1 INTRODUCTION

How to represent molecules is a fundamental and crucial problem in chemistry. Chemists usually
use IUPAC nomenclature, molecular formula, structural formula, skeletal formula, etc., to represent
molecules in chemistry literature.1 However, such representations are initially designed for human
readers rather than computers. To facilitate machine learning algorithms understanding and making
use of molecules, molecule representation learning (MRL) is proposed to map molecules into a low-
dimensional real space and represent them as dense vectors. The learned vectors (a.k.a. embeddings)
of molecules can benefit a wide range of downstream tasks, such as chemical reaction prediction (Jin
et al., 2017; Segler & Waller, 2017), molecule property prediction (Zhang et al., 2021), molecule
generation (Mahmood et al., 2021), drug discovery (Rathi et al., 2019), retrosynthesis planning
(Segler et al., 2018), chemical text mining (Krallinger et al., 2017), and chemical knowledge graph
modeling (Bean et al., 2017).

Researchers have proposed a great many MRL methods. A large portion of them, including Mol-
BERT (Fabian et al., 2020), ChemBERTa (Chithrananda et al., 2020), SMILES-Transformer (Honda
et al., 2019), SMILES-BERT (Wang et al., 2019), Molecule-Transformer (Shin et al., 2019), and SA-
BiLSTM (Zheng et al., 2019b), take SMILES2 strings as input and utilize natural language models,
for example, Transformers (Vaswani et al., 2017) or BERT (Devlin et al., 2018), as their base model.
Despite the great power of such language models, they have difficulty dealing with SMILES input,

1For example, for glycerol, its IUPAC name, molecular formula, structural formula, and skeletal formula

are propane-1,2,3-triol, C3H8O3, CH2

OH

CH

OH

CH2

OH

, and OH
OH

OH, respectively.
2The Simplified Molecular-Input Line-Entry System (SMILES) is a specification in the form of a line no-

tation for describing the structure of chemical species using short ASCII strings. For example, the SMILES
string for glycerol is “OCC(O)CO”.
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because SMILES is 1D linearization of molecular structure, which makes it hard for language mod-
els to learn the original structural information of molecules simply based on “slender” strings (see
Section 4 for more discussion). Another line of MRL methods, instead, use graph neural networks
(GNNs) (Kipf & Welling, 2017) to process molecular graphs (Merkwirth & Lengauer, 2005; Jin
et al., 2017; Gilmer et al., 2017; Ishida et al., 2021). Though GNN-based methods are theoretically
superior to SMILES-based methods in learning molecule structure, they are limited to designing
fresh and delicate GNN architectures while ignoring the essence of MRL, which is generalization
ability. Actually, we will show later that, there is no specific GNN that performs universally best in
all downstream tasks of MRL, which inspires us to explore beyond GNN architectures.

To address the limitations of existing work, in this paper, we propose using chemical reactions to
assist learning molecule representations and improving their generalization ability. A chemical re-
action is usually represented as a chemical equation in the form of symbols and formulae, wherein
the reactant entities are given on the left-hand side and the product entities on the right-hand side.
For example, the chemical equation of Fischer esterification of acetic acid and ethanol can be writ-
ten as CH3COOH + C2H5OH → CH3COOC2H5 + H2O. A chemical reaction usually indicates a
particular relation of equivalence between its reactants and products (e.g., in terms of conservation
of mass and conservation of charge), and our idea is to preserve this equivalence in the molecule
embedding space. Specifically, given the chemical reaction of Fischer esterification above, we hope
that the equation hCH3COOH + hC2H5OH = hCH3COOC2H5

+ hH2O also holds, where h(·) repre-
sents molecule embedding function. This simple constraint endows molecule embeddings with very
nice properties: (1) Molecule embeddings are composable with respect to chemical reactions, which
make the embedding space well-organized (see Proposition 1); (2) More importantly, we will show
later that, when the molecule encoder is a GNN with summation as the readout function, our model
can automatically and implicitly learn reaction templates that summarize a group of chemical reac-
tions within the same category (see Proposition 2). The ability of learning reaction templates is the
key to improving the generalization ability of molecule representation, since the model can easily
generalize its learned knowledge to a molecule that is unseen but belongs to the same category as or
shares the similar structure with a known molecule.

We show that the molecule embeddings learned by our proposed model, namely MolR (chemical-
reaction-aware molecule embeddings), is able to benefit a variety of downstream tasks, which makes
it significantly distinct from all existing methods that are designed for only one downstream task. For
example, MolR achieves 17.4% absolute Hit@1 gain in reaction product prediction, 2.3% absolute
AUC gain on BBBP dataset in molecule property prediction, and 18.5% relative RMSE gain in
graph-edit-distance prediction, respectively, over the best baseline method. We also visualize the
learned molecule embeddings and show that they are able to encode reaction templates as well as
several key molecule attributes, e.g., molecule size and the number of smallest rings.

2 THE PROPOSED METHOD

2.1 STRUCTURAL MOLECULE ENCODER

A molecular graph is represented as G = (V,E), where V = {a1, · · · } is the set of non-hydrogen
atoms and E = {b1, · · · } is the set of bonds. Each atom ai has an initial feature vector xi encoding
its properties. In this work, we use four types of atom properties: element type, charge, whether the
atom is an aromatic ring, and the count of attached hydrogen atom(s). Each type of atom properties
is represented as a one-hot vector, and we add an additional “unknown” entry for each one-hot vector
to handle unknown values during inference. The four one-hot vectors are concatenated as the initial
atom feature. In addition, each bond bi has a bond type (e.g., single, double). Since the bond type
can usually be inferred by the features of its two associated atoms and does not consistently improve
the model performance according to our experiments, we do not explicitly take bond type as input.

To learn structural representation of molecules, we choose GNNs, which utilize molecule structure
and atom features to learn a representation vector for each atom and the entire molecule, as our base
model. Typical GNNs follow a neighborhood aggregation strategy, which iteratively updates the
representation of an atom by aggregating representations of its neighbors and itself. Formally, the
k-th layer of a GNN is:

hk
i = AGGREGATE

({
hk−1
j

}
j∈N (i)∪{i}

)
, k = 1, · · · ,K, (1)
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Figure 1: (a) Illustration of a GNN encoder processing a proline molecule. Hydrogen is omitted. (b)
Illustration of Fischer esterification of propionic acid and propanol, and the corresponding reaction
template learned by our model. The reaction center is colored in orange, and atoms whose distance
from the reaction center is 1 or 2 are colored in light orange. (c) Illustration of the contrastive loss
for a minibatch of chemical reactions. dij is Euclidean distance between embedding hRi

and hPj
.

where hki is atom ai’s representation vector at the k-th layer (h0i is initialized as ai’s initial feature
xi), N (i) is the set of atoms directly connected to ai, and K is the number of GNN layers. The
choice of AGGREGATE function is essential to designing GNNs, and a number of GNN architec-
tures have been proposed. See Appendix A for a detailed introduction on GNN architectures.

Finally, a readout function is used to aggregate all node representations output by the last GNN layer
to obtain the entire molecule’s representation hG:

hG = READOUT
(
{hK

i }ai∈V
)
. (2)

The READOUT function can be a simple permutation invariant function such as summation and
mean, or a more sophisticated graph-level pooling algorithm (Ying et al., 2018; Zhang et al., 2018).
An illustrative example of GNN encoder is shown in Figure 1a.

2.2 PRESERVING CHEMICAL REACTION EQUIVALENCE

A chemical reaction defines a particular relation “→” between reactant set R = {r1, r2, · · · } and
product set P = {p1, p2, · · · }:

r1 + r2 + · · · → p1 + p2 + · · · . (3)

A chemical reaction usually represents a closed system where several physical quantities of the
system retain constant before and after the reaction, such as mass, energy, charge, etc. Therefore, it
describes a certain kind of equivalence between its reactants and products in the chemical reaction
space. Our key idea is to preserve such equivalence in the molecule embedding space:∑

r∈R
hr =

∑
p∈P

hp. (4)

The above simple constraint is crucial to improving the quality of molecule embeddings. We first
show, through the following proposition, that the chemical reaction relation “→” is an equivalence
relation under the constraint of Eq. (4):

Proposition 1 Let M be the set of molecules, R ⊆M and P ⊆M be the reactant set and product
set of a chemical reaction, respectively. If R → P ⇔

∑
r∈R hr =

∑
p∈P hp for all chemical

reactions, then “→” is an equivalence relation on 2M that satisfies the following three properties:
(1) Reflexivity: A→ A, for all A ∈ 2M ; (2) Symmetry: A→ B ⇔ B → A, for all A,B ∈ 2M ; (3)
Transitivity: If A→ B and B → C, then A→ C, for all A,B,C ∈ 2M .

The proof of Proposition 1 is in Appendix B. One important corollary of Proposition 1 is that, the
set of all subsets of M , i.e. 2M , is naturally split into equivalence classes based on the equivalence
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relation “→”. For all molecule sets within one equivalent class, the sum of embeddings of all
molecules they consist of should be equal. For example, in organic synthesis, a target compound t
may be made from three different sets of starting materials A, B, and C. Then the sets A, B, C as
well as {t} belong to one equivalence class, and we have

∑
m∈A hm =

∑
m∈B hm =

∑
m∈C hm =

ht. Note that the starting materials are usually small and basic molecules that frequently appear in
a number of synthesis routes. Therefore, Eq. (4) forms a system of linear equations, wherein the
chemical reaction equivalence imposes strong constraint on the embeddings of base molecules. As a
result, the feasible solutions of molecule embeddings will be more robust, and the whole embedding
space will be more organized. See the visualized result on molecule embedding space in Section 3.5
for more details.

We can further show that, the constraint in Eq. (4) is also able to improve the generalization ability
of molecule embeddings. To see this, we first define reaction center for a chemical reaction. The
reaction center of R → P is defined as a subgraph of R consisting of atoms whose bonds have
changed after reaction. For example, for the reaction in the upper part of Figure 1b, its reaction
center is the two oxygen atoms marked in dark orange, since they are the only two atoms whose
bonds have changed. Given the concept of reaction center, we have the following proposition:

Proposition 2 Let R→ P be a chemical reaction where R is the reactant set and P is the product
set, and C be its reaction center. Suppose that we use the GNN (whose number of layers is K)
shown in Eqs. (1) and (2) as the molecule encoder, and set the READOUT function in Eq. (2) as
summation. Then for an arbitrary atom a in one of the reactant whose final representation is hKa ,
the residual term

∑
r∈R hr −

∑
p∈P hp is a function of hKa if and only if the distance between atom

a and reaction center C is less than K.

The proof of Proposition 2 is in Appendix C. Proposition 2 indicates that the residual between
reactant embedding and product embedding will fully and only depend on atoms that are less than
K hops away from the reaction center. For example, as shown in Figure 1b, suppose that we use a 3-
layer GNN to process Fischer esterification of propionic acid and propanol, then the residual between
reactant embedding and product embedding will totally depend on the reaction center (colored in
orange) as well as atoms whose distance from the reaction center is 1 or 2 (colored in light orange).
This implies that, if the GNN encoder has been well-optimized on this chemical equation and outputs
perfect embeddings, i.e., hCH3CH2COOH + hCH3CH2CH2OH = hCH3CH2COOCH2CH2CH3 + hH2O,
then the equation hR1−CH2COOH + hR2−CH2CH2OH = hR1−CH2COOCH2CH2−R2 + hH2O will also
hold for any functional group R1 and R2, since the residual between the two sides of the equation
does not depend on R1 or R2 that are more than 2 hops away from the reaction center. The induced
general chemical reaction R1-CH2COOH + R2-CH2CH2OH→ R1-CH2COOCH2CH2-R2 + H2O is
called a reaction template, which abstracts a group of chemical reactions within the same category.
The learned reaction templates are essential to improving the generalization ability of our model, as
the model can easily apply this knowledge to reactions that are unseen in training data but comply
with a known reaction template (e.g., acetic acid plus propanol, butyric acid plus butanol). We will
further show in Section 3.5 how reaction templates are encoded in molecule embeddings.

Remarks. Below are some of our remarks to provide further understanding on the proposed model:

First, compared with (Jin et al., 2017) that also learns reaction templates, our model does not need a
complicated network to calculate attention scores, nor requires additional atom mapping information
between reactants and products as input. Moreover, our model is theoretically able to learn a reaction
template based on even only one reaction instance, which makes it particularly useful in few-shot
learning (Wang et al., 2020) scenario. See Section 3.1 for the experimental result.

Second, organic reactions are usually imbalanced and omit small and inorganic molecules to high-
light the product of interest (e.g., H2O is usually omitted from Fischer esterification). Nonetheless,
our model can still learn meaningful reaction templates as long as chemical reactions are written in
a consistent manner (e.g., H2O is omitted for all Fischer esterification).

Third, the number of GNN layers K can greatly impact the learned reaction templates according to
Proposition 2: A small K may not be enough to represent a meaningful reaction template (e.g., in
Fischer esterification, the necessary carbonyl group “C=O” in carboxylic acid will not appear in the
reaction template ifK < 3), while a largeK may include unnecessary atoms for a reaction template
and thus reduces its coverage (e.g., the Fischer esterification of formic acid HCOOH and methanol
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CH3OH is not covered by the reaction template shown in Figure 1b). The empirical impact of K is
shown in Appendix D.

2.3 TRAINING THE MODEL

According to Eq. (4), a straightforward loss function for the proposed method is therefore L =
1
|D|
∑

(R→P )∈D
∥∥∑

r∈R hr −
∑

p∈P hp
∥∥
2
, where R → P represents a chemical reaction in the

training data D. However, simply minimizing the above loss does not work, since the model will
degenerate by outputting all-zero embeddings for all molecules. Common solutions to this problem
are introducing negative sampling strategy (Goldberg & Levy, 2014) or contrastive learning (Jaiswal
et al., 2021). Here we use a minibatch-based contrastive learning framework similar to (Radford
et al., 2021) since it is more time- and memory-efficient.

For a minibatch of data B = {R1 → P1, R2 → P2, · · · } ⊆ D, we first use the GNN encoder to
process all reactants Ri and products Pi in this minibatch and get their embeddings. The matched
reactant-product pairs (Ri, Pi) are treated as positive pairs, whose embedding discrepancy will be
minimized, while the unmatched reactant-product pairs (Ri, Pj) (i 6= j) are treated as negative
pairs, whose embedding discrepancy will be maximized. To avoid the total loss being dominant by
negative pairs, similar to (Bordes et al., 2013), we use a margin-based loss as follows (see Figure 1c
for an illustrative example):

LB =
1

|B|
∑
i

∥∥∥∥ ∑
r∈Ri

hr −
∑
p∈Pi

hp

∥∥∥∥
2

+
1

|B|(|B| − 1)

∑
i 6=j

max

(
γ −

∥∥∥∥ ∑
r∈Ri

hr −
∑
p∈Pj

hp

∥∥∥∥
2

, 0

)
, (5)

where γ > 0 is a margin hyperparameter. The whole model can thus be trained by minimizing the
above loss using gradient-based optimization methods such as stochastic gradient descent (SGD).

Eq. (5) can be seen as a special negative sampling strategy, which uses all unmatched products in
a minibatch as negative samples for a given reactant. Note, however, that it has two advantages
over traditional negative sampling (Mikolov et al., 2013): (1) No extra memory is required to store
negative samples; (2) Negative samples are automatically updated at the beginning of a new epoch
since training instances are shuffled, which saves time of manually re-sampling negative samples.

3 EXPERIMENTS

3.1 REACTION PRODUCT PREDICTION

Dataset. We use reactions from USPTO granted patents collected by Lowe (2012) as the dataset,
which is further cleaned by Zheng et al. (2019a). The dataset contains 478,612 chemical reactions,
and is split into training, validation, and test set of 408,673, 29,973, and 39,966 reactions, respec-
tively, so we refer to this dataset as USPTO-479k. Each reaction instance in USPTO-479k contains
SMILES strings of up to five reactant(s) and exactly one product.

Evaluation Protocol. We formulate the task of reaction product prediction as a ranking problem. In
the inference stage, given the reactant set R of a chemical reaction, we treat all products in the test
set as a candidate pool C (which contains 39,459 unique candidates), and rank all candidates based
on the L2 distance between reactant embeddings hR and candidate product embeddings {hc}c∈C ,
i.e., d(R, c) = ‖hR − hc‖2. Then the ranking of the ground-truth product can be used to calculate
MRR (mean reciprocal rank), MR (mean rank), and Hit@1, 3, 5, 10 (hit ratio with cut-off values of
1, 3, 5, and 10). Each experiment is repeated 3 times, and we report the result of mean and standard
deviation on the test set when MRR on the validation set is maximized.

Baselines. We use Mol2vec (Jaeger et al., 2018) and MolBERT (Fabian et al., 2020) as baselines.
For each baseline, we use the released pretrained model to output embeddings of reactants hR and
candidate products {hc}c∈C , then rank all candidates based on their dot product: d(R, c) = −h>Rhc.
Since the pretrained models are not finetuned on USPTO-479k, we propose two finetuning strategies:
Mol2vec-FT1 and MolBERT-FT1, which freeze their model parameters but train a diagonal matrix
K to rank candidates: d(R, c) = −h>RKhc; MolBERT-FT2, which finetunes its model parameters
by minimizing the contrastive loss function as shown in Eq. (5) on USPTO-497k. Note that Mol2vec
is not an end-to-end model and thus cannot be finetuned using this strategy.
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Metrics MRR MR Hit@1 Hit@3 Hit@5 Hit@10
Mol2vec 0.681 483.7 0.614 0.725 0.759 0.798

Mol2vec-FT1 0.688± 0.000 417.6± 0.1 0.620± 0.000 0.734± 0.000 0.767± 0.000 0.806± 0.000
MolBERT 0.708 460.7 0.623 0.768 0.811 0.858

MolBERT-FT1 0.731± 0.000 457.9± 0.0 0.649± 0.000 0.790± 0.000 0.831± 0.000 0.873± 0.000
MolBERT-FT2 0.776± 0.000 459.6± 0.2 0.708± 0.000 0.827± 0.000 0.859± 0.000 0.891± 0.000

MolR-GCN 0.905± 0.001 34.5± 2.4 0.867± 0.001 0.938± 0.001 0.950± 0.001 0.961± 0.002
MolR-GAT 0.903± 0.002 35.3± 2.8 0.864± 0.002 0.935± 0.003 0.948± 0.003 0.961± 0.003

MolR-SAGE 0.903± 0.004 53.0± 4.6 0.865± 0.005 0.935± 0.004 0.948± 0.004 0.961± 0.002
MolR-TAG 0.918± 0.000 27.4± 0.4 0.882± 0.000 0.949± 0.001 0.960± 0.001 0.970± 0.000
MolR-TAG

(1% training data) 0.904± 0.002 33.0± 3.7 0.865± 0.003 0.937± 0.003 0.951± 0.002 0.963± 0.002

Table 1: Result of reaction product prediction on USPTO-479k dataset. The best results are high-
lighted in bold and the best results of baselines are highlighted with underline.
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Feature mode Concat Subtract
Mol2vec 1.140± 0.041 0.995± 0.034

MolBERT 1.127± 0.042 0.937± 0.029
MolR-GCN 0.976± 0.026 0.922± 0.019
MolR-GAT 1.007± 0.021 0.943± 0.016

MolR-SAGE 0.918± 0.028 0.817± 0.013
MolR-TAG 0.960± 0.027 0.911± 0.027

Table 2: Result of RMSE in GED pre-
diction. The best results are highlighted
in bold.

Hyperparameters Setting. We use the following four GNNs as our molecule encoder: GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), SAGE (Hamilton et al., 2017), and TAG (Du et al.,
2017), of which the details are introduced in Appendix A. The number of layers for all GNNs is 2,
the output dimension of all layers is 1,024, and the READOUT function is sum. The margin γ is
set to 4. We train the model for 20 epochs with a batch size of 4,096, using Adam (Kingma & Ba,
2015) optimizer with a learning rate of 10−4. The result of hyperparameter sensitivity and ablation
study are in Appendix D and E, respectively.

Result. The result is reported in Table 1. All the four variants of MolR significantly outperform
baseline methods. For example, MolR-TAG achieves 14.2% absolute MRR gain and 17.4% absolute
Hit@1 gain over the best baseline MolBERT-FT2. In addition, we train MolR-TAG on only the first
4,096 (1%) reaction instances in the training set (with a learning rate of 10−3 and 60 epochs while
other hyperparameters remain the same), and the performance degrades quite slightly. This justifies
our claim in Remark 1 in Section 2.2 that MolR works well in few-shot learning scenario.

To test the performance of MolR in realistic scenarios, we collect 16 multi-choice questions on
product prediction from online resources of GRE Chemistry Test Practice Book etc. Each question
provides the reactants of a reaction and asks to select the correct product out of 4 or 5 choices.
These multi-choice questions are quite difficult even for chemists, since the candidates are usually
very similar to each other (see Appendix F for details). The result is shown in Figure 2, which
indicates that MolR surpasses baselines by a large margin. Specifically, the Hit@1 (accuracy) of
MolR-GCN is 0.625, which is twice as much as Mol2vec and MolBERT.

Moreover, we also conduct a case study on the first 20 reactions in the test set of USPTO-479k.
Please refer to Appendix G for details.

3.2 MOLECULE PROPERTY PREDICTION

Datasets. We evaluate MolR on five datasets: BBBP, HIV, BACE, Tox21, and ClinTox, proposed
by Wu et al. (2018). Each dataset contains thousands of molecule SMILES as well as binary labels
indicating the property of interest (e.g., Tox21 measures the toxicity of compounds).

Baselines. We compare our method with the following baselines: SMILES-Transformers (Honda
et al., 2019), ECFP4 (Rogers & Hahn, 2010), GraphConv (Duvenaud et al., 2015), Weave (Kearnes
et al., 2016), ChemBERTa (Chithrananda et al., 2020), D-MPNN (Yang et al., 2019), CDDD (Winter
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Datasets BBBP HIV BACE Tox21 ClinTox
SMILES-Transformers 0.704 0.729 0.701 0.802 0.954

ECFP4 0.729 0.792 0.867 0.822 0.799
GraphConv 0.690 0.763 0.783 0.829 0.807

Weave 0.671 0.703 0.806 0.820 0.832
ChemBERTa 0.643 0.622 - 0.728 0.733

D-MPNN 0.708 0.752 - 0.688 0.906
CDDD 0.761± 0.00 0.753± 0.00 0.833± 0.00 - -

MolBERT 0.762± 0.00 0.783± 0.00 0.866± 0.00 - -
GraphCL 0.695± 0.005 0.776± 0.009 0.782± 0.012 0.754± 0.009 0.701± 0.019

GraphLoG 0.725± 0.008 0.778± 0.008 0.835± 0.012 0.757± 0.005 0.767± 0.033
Mol2vec 0.872± 0.021 0.769± 0.021 0.862± 0.027 0.803± 0.041 0.841± 0.062

MolR-GCN 0.890± 0.032 0.802± 0.024 0.882± 0.019 0.818± 0.023 0.916± 0.039
MolR-GAT 0.887± 0.026 0.794± 0.022 0.863± 0.026 0.839± 0.039 0.908± 0.039

MolR-SAGE 0.879± 0.032 0.793± 0.026 0.859± 0.029 0.811± 0.039 0.890± 0.058
MolR-TAG 0.895± 0.031 0.801± 0.023 0.875± 0.023 0.820± 0.028 0.913± 0.043

Table 3: Result of AUC in molecule property prediction. The result in the first four blocks is taken
from (Honda et al., 2019), (Chithrananda et al., 2020), (Fabian et al., 2020), and (Xu et al., 2021),
respectively, while the result in the last two blocks is reported by us. The best results are highlighted
in bold, and the best results of baselines are highlighted with underline if MolR is the best.

et al., 2019), MolBERT (Fabian et al., 2020), Mol2vec (Jaeger et al., 2018), GraphCL (You et al.,
2020), and GraphLoG (Xu et al., 2021). Most baseline results are taken from the literature, while
Mol2vec is run by us.

Experimental Setup. All datasets are split into training, validation, and test set by 8:1:1. We use
the model pretrained on USPTO-479k to process all datasets and output molecule embeddings, then
feed embeddings and labels to a Logistic Regression model implemented in scikit-learn (Pedregosa
et al., 2011), whose hyperparameters are as default except that solver=“liblinear”. Each experiment
is repeated 20 times, and we report the mean and the standard deviation of AUC on the test set.

Result. The result of molecule property prediction is reported in Table 3. As we can see, MolR
performs the best on 4 out of 5 datasets. We attribute the superior performance of MolR in molecule
property prediction to that, MolR is pretrained on USPTO-479k, thus is sensitive to reaction centers
according to Proposition 2. Note that reaction centers usually consist of chemically active functional
groups, which are essential to determine molecule property.

3.3 CHEMICAL REACTION CLASSIFICATION

Methods Accuracy
RXNFP 0.989

AP3-256-5NN 0.295
AP3-256-MLP 0.809

DRFP-5NN 0.917
DRFP-MLP 0.977
MolR-GCN 0.931± 0.022
MolR-GAT 0.930± 0.017

MolR-SAGE 0.936± 0.025
MolR-TAG 0.962± 0.028

Table 4: Result of chem-
ical reaction classification.
Result of baselines is taken
from (Probst et al., 2021).

Dataset, Baselines, and Experimental Setup. The goal of chemical
reaction classification is to predict the reaction class that a chemical
reaction belongs to (e.g., Nitro to amino). We evaluate our model on
USPTO-1k-TPL, which contains 400,604 training reactions and 44,511
test reactions, and the number of reaction classes is 1,000. We use our
pretrained models to calculate the sum of reactant embeddings and the
sum of product embeddings in a reaction, then concatenate them as the
feature of the reaction. We use an MLP with two 2,048-unit hidden
layers as the classifier. Each experiment is repeated 3 times, and we
report the mean and standard deviation of Accuracy on the test set. We
compare our method with RXNFP (Schwaller et al., 2021), AP3-256
(Schneider et al., 2015), and DRFP (Probst et al., 2021).

Result. The result of accuracy is reported in Table 4. 5NN and MLP
represent a 5-Nearest-Neighbor and an MLP classifier, respectively.
Note that even if these baselines are specially designed to learn reaction fingerprint, our best method
MolR-TAG still surpasses AP3-256, and is close to DRFP and RXNFP. This shows that our method
can achieve on par performance with state-of-the-art reaction fingerprint learning methods.

3.4 GRAPH-EDIT-DISTANCE PREDICTION

Graph-edit-distance (GED) (Gao et al., 2010) is a measure of similarity between two graphs, which
is defined as the minimum number of graph edit operations to transform one graph to another. Here
we aim to predict the GED between two molecular graphs based on their embeddings. The purpose
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Figure 4: Visualized molecule embedding space for BBBP dataset.

of this task is to show whether the learned molecule embeddings are able to preserve the structural
similarity between molecules. Moreover, since calculating the exact GED is NP-hard, the solution
to this task can also be seen as an approximation algorithm for GED calculation.

Dataset, Baselines, and Experimental Setup. We randomly sample 10,000 molecule pairs from
the first 1,000 molecules in QM9 dataset (Wu et al., 2018), then calculate their ground-truth GEDs
using NetworkX (Hagberg et al., 2008). The dataset is split into training, validation, and test set by
8:1:1, and we use our pretrained models to output embeddings for each molecule. The embeddings
of a pair of molecules are concatenated or subtracted as the features, and we use a Support Vector
Regression model in scikit-learn with default hyperparameters to do the regression. Each experiment
is repeated 20 times, and we report the mean and the standard deviation of RMSE on the test set. We
use Mol2vec (Jaeger et al., 2018) and MolBERT (Fabian et al., 2020) as baselines.

Result. The result of RMSE is reported in Table 2. Our best MolR model reduces the RMSE by
18.5% and 12.8% in concat and subtract mode, respectively, compared with the best baseline. Note
that the interval of ground-truth GEDs is [1, 14], whose range is far larger than the RMSE of MolR.
The result indicates that MolR can serve as a strong approximation algorithm to calculate GED.

3.5 EMBEDDING VISUALIZATION

To intuitively demonstrate the molecule embedding space, we use the pretrained MolR-GCN model
to output embeddings of molecules in BBBP dataset, then visualize them using t-SNE (Van der
Maaten & Hinton, 2008) shown in Figure 4. In Figure 4a, molecules are colored according to the
property of permeability. We find two communities of non-permeable molecules, which demon-
strates that MolR can capture molecule property of interest. In Figure 4b, molecules are colored
according to their GED to a randomly selected molecule (No. 1196) from BBBP dataset. It is obvi-
ous that, molecules that are structurally similar with No. 1196 molecule (colored in orange) are also
close to it in the embedding space, while molecules that are structurally dissimilar with No. 1196
molecule (colored in red) are also far from it in the embedding space. The result indicates that MolR
can well capture the structural similarity between molecules. In Figure 4c, molecules are colored ac-
cording to their size (i.e., the number of non-hydrogen atoms). It is clear that the embedding space is
perfectly segmented into small-molecule region (upper part) and large-molecule region (lower part).
In other words, the vertical axis of the 2D embedding space characterizes molecule size. Last and
surprisingly, we find that the horizontal axis are actually related to the number of smallest rings (i.e.,
rings that do not contain another ring) in a molecule: As shown in Figure 4d, no-ring molecules (col-
ored in blue) are only in the left cluster, one-ring molecules (colored in yellow) are only in the left
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and the middle clusters, two-ring molecules (colored in orange) are basically in the middle cluster,
while the right cluster mainly consists of molecules with more than 2 rings (colored in red).

We also show that MolR encodes chemical reactions by taking alcohol oxidation and aldehyde oxi-
dation as examples, whose chemical reaction templates are R-CH2OH + O2 → R-CHO + H2O and
R-CHO + O2 → R-COOH, respectively. We first use the pretrained MolR-GCN model to output
embeddings for ethanol (CH3CH2OH), 1-octanol (CH3(CH2)7OH), ethylene glycol ((CH2OH)2),
as well as their corresponding aldehyde and carboxylic acid, then visualize them using Principle
Component Analysis (PCA). The result is visualized in Figure 3, which clearly demonstrates that
hCH3CHO − hCH3CH2OH ≈ hCH3(CH2)6CHO − hCH3(CH2)7OH and hCH3COOH − hCH3CHO ≈
hCH3(CH2)6COOH − hCH3(CH2)6CHO (red and orange arrows). Note that the length of blue ar-
row is about twice as much as the corresponding red or orange arrow, which is exactly because
(CH2OH)2/(CH2CHO)2 has two hydroxyl/aldehyde groups to be oxidized.

4 RELATED WORK

Existing MRL methods can be classified into two categories. The first is SMILES-based (Fabian
et al., 2020; Chithrananda et al., 2020; Honda et al., 2019; Wang et al., 2019; Shin et al., 2019; Zheng
et al., 2019b), which use language models to process SMILES strings. For example, MolBERT
(Fabian et al., 2020) uses BERT as the base model and designs three self-supervised tasks to learn
molecule representation. However, SMILES is 1D linearization of molecular structure and highly
depends on the traverse order of molecule graphs. This means that two atoms that are close in
SMILES may actually be far from each other and thus not correlated (e.g., the two oxygen atoms in
“CC(CCCCCCO)O”), which will mislead language models that rely heavily on the relative position
of tokens to provide self-supervision signal.

The second is structure-based methods, which can further be classified into traditional fingerprint-
based methods (Rogers & Hahn, 2010; Jaeger et al., 2018) and recent GNN-based methods (Jin et al.,
2017; Gilmer et al., 2017; Ishida et al., 2021). For example, Mol2vec (Jaeger et al., 2018) treats
molecule substructures (fingerprints) as words and molecules as sentences, then uses a Word2vec-
like method to calculate molecule embeddings. However, they cannot identify the importance of
different substructures, nor being trained in an end-to-end fashion. GNN-based methods overcome
their drawbacks, butt they usually require a large volume of training data due to their complicated
architectures, which may limit their generalization ability when the data is sparse.

The idea of taking chemical reactions as prior knowledge is also applied to molecule generation task
(Bradshaw et al., 2019; Nguyen & Tsuda, 2021). Compared with these methods which focus on a
particular task of molecule generation, the embeddings learned by our model are general-purpose
and can benefit a wide range of downstream tasks.

It is worth noticing that our model is also conceptually connected to methods in NLP where em-
beddings are composable (Bordes et al., 2013; Mikolov et al., 2013). For example, TransE (Bordes
et al., 2013) assumes that h + r ≈ t for a triplet (head, relation, tail) in knowledge graphs, and
Word2vec (Mikolov et al., 2013) learns word embeddings where simple vector addition can produce
meaningful results, for example, vec(“Germany”) + vec(“capital”) ≈ vec(“Berlin”).

5 CONCLUSION AND FUTURE WORK

In this work, we use GNNs as the molecule encoder, and use chemical reactions to assist learning
molecule representation by forcing the sum of reactant embeddings to be equal to the sum of product
embeddings. We prove that our model is able to learn reaction templates that are essential to improve
the generalization ability. Our model is shown to benefit a wide range of downstream tasks, and the
visualized results demonstrate that the learned embeddings are well-organized and reaction-aware.

We point out four directions as future work. First, environmental condition is also a part of chemical
reactions that we will consider to model. Second, as discussed in Section 2.2, it is worth studying
how to explicitly output learned reaction templates. Third, it is interesting to investigate how to dif-
ferentiate stereoisomers in the embedding space, since our model (as well as baselines) cannot han-
dle stereoisomerism. Last, including additional information (e.g., textual description of molecules)
to assist learning molecule representation is also a promising direction.
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A DETAILED DESCRIPTION OF GNN ARCHITECTURES

Before applying GNNs, we first use pysmiles3 to parse the SMILES strings of molecules to Net-
workX graphs. Then we use the following GNNs as our molecule encoder and investigate their per-
formance in experiments. The implementation of GNNs is based on Deep Graph Library (DGL)4.
For all GNNs, the number of layers is 2, and the output dimension of all layers is 1,024. The activa-
tion function σ is identity for the last layer, and ReLU for all but the last layer. We keep a bias term
b for all the linear transformations below as it is the default setting in DGL, but our experiments
show that the bias term can barely affect the result, so it is not shown in the following equations for
clarity.

Graph Convolutional Networks (GCN) (Kipf & Welling, 2017). In GCN, AGGREGATE is im-
plemented as weighted average with respect to the inverse of square root of node degrees:

hki = σ
(
W k

∑
j∈N (i)∪{i}

αijh
k−1
j

)
, (6)

where W k is a learnable matrix, αij = 1/
√
|N (i)| · |N (j)|, and σ is activation function.

Graph Attention Networks (GAT) (Veličković et al., 2018). In GAT, AGGREGATE is imple-
mented as multi-head self-attention:

hki =

Sn

s=1

σ
(
W k,s

∑
j∈N (i)∪{i}

SOFTMAX
(
αk,s
ij

)
hk−1j

)
, (7)

where αk,s
ij = LeakyReLU

(
wk,s>[W k,shki

f
W k,shkj

])
is (unnormalized) attention weight, w is

a learnable vector,
f

denotes concatenate operation, and S is the number of attention heads. In our
experiments, S is set as 16 and the dimension of each attention head is set as 64, so that the total
output dimension is still 1,024.

Graph Sample and Aggregate (GraphSAGE) (Hamilton et al., 2017). In the pooling variant of
GraphSAGE, AGGREGATE is implemented as:

hki = σ
(
W k,1

(
hk−1i

n
hkN (i)

))
, (8)

where hkN (i) = MAX
({

ReLU(W k,2hk−1j )
}
j∈N (i)

)
is aggregated neighborhood representation,

and MAX is an element-wise max-pooling function. In addition to MAX, AGGREGATE can also
be implemented as MEAN, GCN, and LSTM, but our experiments show that MAX achieves the best
performance.

Topology Adaptive Graph Convolutional Networks (TAGCN) (Du et al., 2017). In TAGCN, if
we use Hk to denote the representation matrix of all atoms in layer k, then AGGREGATE can be
written as:

Hk = σ
(∑L

l=0
ÃlHk−1W k,l

)
, (9)

where Ã = D−1/2AD−1/2 is the normalized adjacency matrix, and L is the size of the local filter.
We set L to 2 in experiments. It should be noted that, different from other GNNs, a single TAGCN
layer can aggregate node information from neighbors up to L hops away. Therefore, the actual
number of layers for TAGCN is LK , which is 22 = 4 in our experiments.

B PROOF OF PROPOSITION 1

Proof. To prove that “→” is an equivalence relation on 2M , we need to prove that “→” satisfies
reflexivity, symmetry, and transitivity:

Reflexivity. For any A ∈ 2M , it is clear that
∑

i∈A hi =
∑

i∈A hi. Therefore, we have A→ A.

3https://pypi.org/project/pysmiles/
4https://www.dgl.ai/
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Symmetry. For any A,B ∈ 2M , A → B ⇒
∑

i∈A hi =
∑

i∈B hi ⇒ B → A, and vice versa.
Therefore, we have A→ B ⇔ B → A.

Transitivity. If A → B and B → C, then we have
∑

i∈A hi =
∑

i∈B hi =
∑

i∈C hi. Therefore,
we have A→ C. �

C PROOF OF PROPOSITION 2

Proof. Since the READOUT function is summation, the embedding of molecule G = (V,E) is
the sum of final embeddings of all atoms that G consists of: hG =

∑
ai∈V h

K
i . Therefore, for the

reaction R→ P , we have
∑

r∈R hr−
∑

p∈P hp =
∑

r∈R
∑

v∈r h
K
v −

∑
p∈P

∑
v∈p h̃

K
v , where hKv

is the representation vector of atom v calculated by a K-layer GNN on the reactant graph, and h̃Kv
is the representation vector of atom v calculated by the same K-layer GNN on the product graph.
If we treat all reactants R (all products P ) in a chemical reaction as one graph where each reactant
(product) is a connected component of this graph, the above equation can be written as

∑
v∈R h

K
v −∑

v∈P h̃
K
v . Denote Ck as the set of atoms whose distance from the reaction center C is k (C0 = C).

We can prove, by induction, that
∑

v∈R h
K
v −

∑
v∈P h̃

K
v =

∑
v∈∪K−1

k=0 Ck hKv −
∑

v∈∪K−1
k=0 Ck h̃Kv :

Let’s first consider the initial case where K = 1. Then the final representation of an atom depends
on the initial feature of itself as well as its one-hop neighbors. Therefore, atoms whose final rep-
resentation differs from R to P must be those who have at least one bond changed from R to P ,
which are exactly the atoms in the reaction center C. Representation of atoms that are not within
the reaction center remains the same before and after reaction, and thus are eliminated. Therefore,
we have

∑
v∈R h

1
v −

∑
v∈P h̃

1
v =

∑
v∈C h

1
v −

∑
v∈C h̃

1
v .

Induction step. Suppose we have
∑

v∈R h
K
v −

∑
v∈P h̃

K
v =

∑
v∈∪K−1

k=0 Ck hKv −
∑

v∈∪K−1
k=0 Ck h̃Kv for

K ≥ 1. This means that representation of atoms whose distance from the reaction center is no larger
than K − 1 becomes different from R to P , while representation of atoms whose distance from the
reaction center is larger than K − 1 remains the same. Then for K + 1, the number of GNN layers
increases by one. This means that atoms adjacent to the set ∪K−1k=0 C

k are additionally influenced,
and their representations are also changed. It is clear that the set of atoms whose representation is
changed is now ∪Kk=0C

k. Therefore, we have
∑

v∈R h
K+1
v −

∑
v∈P h̃

K+1
v =

∑
v∈∪K

k=0C
k hK+1

v −∑
v∈∪K

k=0C
k h̃K+1

v for K + 1.

Since
∑

r∈R hr−
∑

p∈P hp =
∑

v∈∪K−1
k=0 Ck hKv −

∑
v∈∪K−1

k=0 Ck h̃Kv , we can conclude that the resid-

ual term
∑

r∈R hr−
∑

p∈P hp is a function of hKa if and only if a ∈ ∪K−1k=0 , i.e., the distance between
atom a and reaction center C is less than K. �

D HYPERPARAMETER SENSITIVITY

We investigate the sensitivity of MolR-GCN in the task of reaction product prediction to the follow-
ing hyperparameters: the number of GCN layers K, the dimsension of embedding, the margin γ,
the batch size, and the implementation of READOUT function. Since the impact of the first three
hyperparameters are highly correlated, we report the result of MolR-GCN when jointly influenced
by two hyperparameters.

Figure 5a shows the result of MolR-GCN when varying the number of GCN layers and the dimen-
sion of embedding. It is clear that MolR-GCN does not perform well when K is too small (K = 1)
or too large (K = 3, 4), which empirically justifies our claim in Remark 3 in Section 2.2 that the
number of GNN layers K can greatly impact the learned reaction templates as well as the perfor-
mance of our model.

Figure 5b demonstrates that the margin γ can greatly influence the model performance as well, and
such influence is highly related to the dimension of embedding: When the embedding dimension
increases from 128 to 2,048, the optimal γ also increases from 2 from 8. This is because the expected
Euclidean distance between two vectors will increase proportionally to the square root of the vector
length, which forces the optimal γ to move right accordingly.
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Figure 5: Sensitivity of MolR-GCN to the number of GCN layers, the dimension of embedding, the
margin γ, and the batch size.

Batch size 64 128 256 512 1, 024 2, 048 4, 096
Time cost per epoch (s) 198.0± 13.8 145.7± 10.4 141.3± 0.9 132.2± 9.1 118.1± 5.9 113.3± 3.0 110.4± 1.5
Max memory cost (GiB) 5.3 5.7 5.8 6.2 7.5 10.5 14.8

Table 5: The average time cost per epoch and the maximal memory cost of MolR-GCN when varying
the batch size.

Figure 5c shows that when batch size increases from 32 to 4,096, MRR also increases from 0.831 to
0.906. This is because a larger batch size will introduce more unmatched reactant-product pairs as
negative samples, which provides more supervision for model optimization. In the extreme case of
batch size = # training instances, all pairwise molecule distances will be calculated and optimized.
Moreover, as shown in Table 5, the time cost per epoch can also be significantly reduced when
increasing the batch size (run on an NVIDIA V100 GPU). However, a larger batch size will also
require more memory usage of a minibatch in GPU. As shown in Table 5, when batch size increases
fro 64 to 4,096, the required memory of MolR-GCN also increases from 5.3 GiB to 14.8 GiB. This
prevents us to further increase batch size since the memory of NVIDIA V100 GPU is 16 GiB.

Table 6 reports the result of MolR-GCN with different implementations of the READOUT function:
AvgPooling, which applies average pooling over the atoms in a molecule graph; MaxPooling, which
applies max pooling over the atoms in a molecule graph; Attention, which uses an MLP to take the
embedding of an atom as input and outputs its importance score, then averages all atom embeddings
weighted by their importance scores to obtain the molecule embedding; SortPooling (Zhang et al.,
2018), which sorts atom embeddings before calculating a molecule embedding; Set2set (Vinyals
et al., 2016), which is also an attention-like method that iteratively calculates a query vector and
uses the query vector to calculate the weighted average of atom embeddings; SetTransformer (Lee
et al., 2019), which is another attention-based method that calculates the attention of atoms using
Transformer. We also attach the result of SumPooling here, which is exactly what we use in our
model. The result shows that SumPooling significantly outperforms all other pooling functions,
even the ones that are really complicated. This is because, as shown in Proposition 2, our model can
learn reaction templates with SumPooling, which significantly improves the generalization ability.

E ABLATION STUDY

To demonstrate that introducing the constraint of chemical reaction equivalence can indeed benefit
downstream tasks, we conduct ablation study on MolR in the task of molecule property predic-

Metrics MRR MR Hit@1 Hit@3 Hit@5 Hit@10
AvgPooling 0.777± 0.001 172.2± 2.9 0.730± 0.001 0.809± 0.002 0.832± 0.002 0.858± 0.001
MaxPooling 0.730± 0.001 451.3± 10.0 0.675± 0.001 0.771± 0.001 0.793± 0.001 0.816± 0.001

Attention 0.669± 0.009 242.9± 7.8 0.597± 0.012 0.719± 0.007 0.753± 0.005 0.788± 0.005
Sortpooling 0.380± 0.032 1210.7± 147.8 0.279± 0.031 0.433± 0.037 0.498± 0.035 0.575± 0.028

Set2Set 0.731± 0.000 457.9± 0.0 0.649± 0.000 0.790± 0.000 0.831± 0.000 0.873± 0.000
SetTransformer 0.700± 0.033 301.9± 59.7 0.632± 0.036 0.743± 0.026 0.772± 0.023 0.804± 0.019

SumPooling 0.905± 0.001 34.5± 2.4 0.867± 0.001 0.938± 0.001 0.950± 0.001 0.961± 0.002

Table 6: Sensitivity of MolR-GCN to the READOUT function.
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Datasets BBBP HIV BACE Tox21 ClinTox USPTO-1k-TPL QM9
GCN 0.883± 0.036 0.781± 0.024 0.858± 0.026 0.825± 0.037 0.865± 0.041 0.728± 0.029 0.985± 0.021

MolR-GCN 0.890± 0.032 0.802± 0.024 0.882± 0.019 0.818± 0.023 0.916± 0.039 0.931± 0.022 0.976± 0.026
GAT 0.893± 0.041 0.790± 0.008 0.843± 0.033 0.805± 0.024 0.897± 0.019 0.728± 0.033 1.015± 0.024

MolR-GAT 0.887± 0.026 0.794± 0.022 0.863± 0.026 0.839± 0.039 0.908± 0.039 0.930± 0.017 1.007± 0.021
SAGE 0.855± 0.021 0.814± 0.006 0.832± 0.022 0.827± 0.048 0.884± 0.056 0.729± 0.037 1.102± 0.023

MolR-SAGE 0.879± 0.032 0.793± 0.026 0.859± 0.029 0.811± 0.039 0.890± 0.058 0.936± 0.025 0.918± 0.028
TAG 0.859± 0.013 0.791± 0.023 0.859± 0.028 0.815± 0.040 0.900± 0.022 0.677± 0.023 0.969± 0.019

MolR-TAG 0.895± 0.031 0.801± 0.023 0.875± 0.023 0.820± 0.028 0.913± 0.043 0.962± 0.028 0.960± 0.027

Table 7: Ablation study of MolR in the task of molecule property prediction (AUC), chemical
reaction classification (Accuracy), and graph-edit-distance prediction (RMSE), w/o imposing the
constraint of chemical reaction equivalence.

tion, chemical reaction classification, and graph-edit-distance prediction. We directly train the four
GNNs, i.e., GCN, GAT, SAGE, and TAG, on these datasets, then report their results in Table 7.
For molecule property prediction task, our method can improve the AUC by 1% ∼ 5% compared
with the GNN in most cases. For chemical reaction classification task, we observe a huge improve-
ment of our models against GNNs (20% ∼ 28%), of which the reason may be that our model is
pretrained on USPTO dataset as well. For GED prediction task, the improvement of our method is
rather significant when using SAGE as the encoder (around 18%), and the improvement is around
1% for the rest three GNNs. The result of the ablation study shows that the constraint of chemical
reaction equivalence can effectively improve the quality of learned molecule embeddings in various
downstream tasks.

F DETAILS OF MULTI-CHOICE QUESTIONS ON PRODUCT PREDICTION

Our multi-choice questions on product prediction are collected from online resources of Oxford
University Press,5,6, mhpraticeplus.com7, and GRE Chemistry Test Practice Book8. We filter out
the questions 1) whose choices contain stereoisomers, since our model as well as baselines cannot
handle stereoisomerism, and 2) that contain molecules that cannot be successfully parsed by our
method or baselines. We manually convert the figures of molecules into SMILES strings. The first
five questions are listed below as examples (the correct answer is given after the question), while the
complete SMILES version of these questions are included in the code repository.

Examples 1 ∼ 5:

1. CHO
1. CH3MgBr−−−−−−−−−→
2. H2O,H+

Which of the following is the major product of the reaction shown above? (D)

(A)

O

CH3

(B)

CH3

O

H

(C)
OHHO

CH3

(D)

OH

CH3

5https://global.oup.com/uk/orc/chemistry/okuyama/student/mcqs/ch19/
6https://global.oup.com/uk/orc/chemistry/okuyama/student/mcqs/ch21/
7https://www.mhpracticeplus.com/mcat review/MCAT Review Smith.pdf
8https://www.ets.org/s/gre/pdf/practice book chemistry.pdf
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(E)

CH3

CHO

2. CH3CH2CH2COOH
1. LiAlH4 (excess)−−−−−−−−−−−−→

2. H3O+

Which of the following is the major organic product of the reaction shown above? (D)
(A) CH3CH2CH2CH(OH)2
(B) CH3CH2CH2CHO
(C) CH3CH2CH2CH2OH
(D) CH3CH2CH2CH3

(E) CH3CH2C≡CH

3.

OCH3

HI−−→

Which of the following are the major products of the reaction shown above? (D)

(A) + CH3OH

(B)

OH

+ CH4

(C)

I

+ CH3OH

(D)

OH

+ CH3I

(E) + CH3I

4.

O

O

O

CH3
H3O

+

−−−−−→

Which of the following are the products of the reaction shown above? (E)

(A)

CHO

+ CH3CHO

(B)

COOH

+ CH3CH2OH

(C)

CH2OH

+ CH3CH2OH

(D)

CHO

+ CH3COOH

(E)

COOH

+ CH3COOH
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5.
CH3

OH

1. NaOH−−−−−−−−−−−→
2.

Br

What is the product of the reaction shown above for para-cresol? (A)

(A)
CH3

O

(B)
CH3

ONa

(C)
CH3

O

(D)
CH3

O Br

(E)

ONa

G CASE STUDY ON USPTO-479K DATASET

The case study on USPTO-479k dataset is shown in Table 8. To avoid cherry-picking, we select the
first 20 reaction instances (No. 0∼ No. 19) in the test set for case study. In Table 8, the first column
is the index of reactions, the second and the third column are the reactant(s) and the ground-truth
product of this reaction, respectively, and the fourth to sixth column are the product predicted by
MolR-GCN, Mol2vec, and MolBERT, respectively. Reactions whose product is correctly predicted
by all the three methods are omitted for clarity. The index below a predicted product indicates the
actual reaction that this product comes from.

As shown in Table 8, MolR-GCN gives a wrong answer on only 2 reactions, while Mol2vec and
MolBERT make mistakes on 6 reactions. Moreover, for the two reactions that MolR-GCN does
not answer correctly (No. 5 and No. 10), Mol2vec and MolBERT give the exactly same wrong
answers as well, which shows that the product of the two reactions are indeed very hard to predict.
Actually, for the No. 5 reaction, the predicted product (No. 32353) is identical to the reactant, which,
technically speaking, cannot be seen as a wrong answer. For the No. 10 reaction, the predicted
product (No. 18889) is very similar to the ground-truth product and they only differ in one atom (N
vs S).

Another two examples that are worth mentioning are: (1) The No. 6 reaction, where the first reactant
contains a triangle ring but it breaks up in the product. MolR-GCN correctly predicts the product,
but Mol2vec and MolBERT make mistakes by simply combining the two reactants together. (2) The
No. 17 reaction, where the nitro group (-NO2) disappears after the reaction. MolR-GCN predicts
such chemical change successfully, but Mol2vec and MolBERT still retain the nitro group in their
predicted products.
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No. Reactant(s) Ground-truth
product

Predicted product
by MolR-GCN

Predicted product
by Mol2vec

Predicted product
by MolBERT

5

(No. 32353) (No. 32353) (No. 32353)

6 Same as ground-truth

(No. 39181) (No. 24126)

8 Same as ground-truth

(No. 11233) (No. 17526)

10

(No. 18889) (No. 18889) (No. 18889)

13 Same as ground-truth Same as ground-truth

(No. 37024)

16 Same as ground-truth

(No. 21947)

Same as ground-truth

17 Same as ground-truth

(No. 2029) (No. 22247)

Table 8: Case study on the first 20 reaction instances (No. 0 ∼ No. 19) in the test set of USPTO-
479k. Reactions whose product is correctly predicted by all the three methods are omitted for clarity.
The index below a predicted product indicates the actual reaction that this product comes from.
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