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Abstract

Zero-shot models like CLIP are often fine-tuned on a target dataset to improve its
accuracy further, but this can compromise out-of-distribution (OOD) robustness.
Robust Fine-Tuning (RFT ) [Wortsman et al., 2022c], which interpolates between
the zero-shot and fine-tuned models, has been proposed to address this issue.
However, understanding when RFT actually improves OOD error remains limited.
In this work, we empirically investigate the robustness of RFT in CLIP models,
with a focus on the sharpness of the CLIP model during interpolation. First,
we demonstrate that while sharpness may not serve as a reliable indicator for
predicting the generalization of modern architectures like CLIP on OOD data,
this challenges the conventional belief in the generalization benefits of flat
minima in foundation models. However, by examining the role of the straggler
layer phenomenon, we show that, unlike overall sharpness, the layer-wise
sharpness of straggler layers can reliably capture the generalization performance
of interpolated CLIP models on OOD data. Our extensive experiments reveal
that layer-wise sharpness correlates with generalization in OOD accuracy for RFT.
Furthermore, we demonstrate that by inducing sparsity in the straggler layers, we
can mitigate the failure mode phenomenon in RFT. To the best of our knowledge,
this is the first work to study the role of sharpness in the success of interpolation
in the weight space of CLIP foundation models. Our code is available at https:
//github.com/alirezaabdollahpour/CLIP_Mode_Connectivity.

1 Introduction

Understanding the behavior of large machine learning models like CLIP [Radford et al., 2021] on
OOD tasks is important for their safe deployment. Analyzing their behavior on a path between the
initial and the final parameters has been proposed as a simple yet insightful approach this. However,
prior works [Vlaar and Frankle, 2022, Lucas et al., 2021, Neyshabur et al., 2020, Draxler et al.,
2018, Entezari et al., 2022, Chatterji et al., 2020] has primarily focused on CNN models for this
analysis and whether such analysis extends to other kinds of architecture has not been thoroughly
explored. On the other hand, several works have shown that while foundation models like CLIP
exhibit outstanding zero-shot OOD performance, this can be further improved if they are fine-tuned
on the relevant target domain. However, this improvement comes at the cost of reduced performance
on domains that it is not trained on. To solve this problem, inspired by the above-mentioned works
on interpolation in CNNs, Wortsman et al. [2022b] showed that on the path connecting the zero-
shot model and the final fine-tuned model, there exists a model with better OOD performance and
proposed an algorithm called Robust Fine Tuning (RFT) to find this parameter. However, RFT does
not always succeed in achieving large improvement in OOD accuracy compared to the zero-shot
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model, and very little understanding exists of when the improvement is large and when it isn’t. In
this work, we aim to address this lack of knowledge. Inspired by earlier work on the interpolation
between two CNN models, we first provide extensive experimental results to examine the correlation
between the weight space geometry and CLIP’s capability to generalize on OOD tasks. We aim to
address the following question:

How does sharpness on OOD samples relate to CLIP generalization?
Second, we investigate the role of the specific layer’s sharpness on CLIP’s OOD generalization. In
particular, we ask the following question:

What occurs within a layer during interpolation that leads to a failure mode? By
measuring the sharpness of that layer during interpolation, can we predict its
impact on generalization?

Robust Fine-Tuning (RFT) method has two steps: first, they fine-tune the zero-shot model on the
target distribution. Second, they combine the original zero-shot and fine-tuned models by linearly in-
terpolating between their weights, coined as weight-space ensembling. Nevertheless, the connection
between linear interpolation and OOD generalization for CLIP has not been thoroughly investigated.
The question of why the linear interpolation between zero-shot and fine-tuned CLIP models succeeds
in OOD tasks, and the conditions under which the linear path between two CLIP models indicates
robust generalization performance on OOD tasks, remains an unresolved problem. The recent ad-
vancements in the understanding of loss landscapes in CNNs and their connection to generalization
through linear paths have prompted Abdolahpourrostam et al. [2024] to revisit these findings within
the context of foundation models like CLIP. Abdolahpourrostam et al. [2024] aims to bridge the gap
between the assumptions made about linear interpolation and loss landscape geometry in CNNs and
the generalization capabilities of CLIP. Their study seeks to identify the conditions under which
linear interpolation can be successfully applied between two CLIP models, with particular attention
to the roles of data augmentation and learning rate magnitude during the fine-tuning process.

On the role of sharpness: There is a body of literature suggesting that flatter minima may have
better generalization properties [Xing et al., 2018, Zhou et al., 2021, Cha et al., 2021, Park and
Kim, 2022, Lyu et al., 2023, Andriushchenko et al., 2023] for standard or OOD data. However,
the definitions of sharpness commonly used in the field do not align effectively with the concept
of generalization, as discussed [Kaur et al., 2023] this can be primarily due to the model’s lack of
invariance under reparametrizations that not change the model [Dinh et al., 2017, Granziol, 2020,
Zhang et al., 2021, Andriushchenko et al., 2023]. The utilization of adaptive sharpness seems to hold
more potential as it effectively resolves the reparametrization problem and has been demonstrated
to exhibit a stronger empirical correlation with generalization. [Kwon et al., 2021, Andriushchenko
et al., 2023]. Furthermore, SAM demonstrates notable utility in emerging architectures such as
vision transformers [Chen et al., 2022, Andriushchenko et al., 2023]. In addition, although transfer
learning has become the prevailing method for vision problems, the consequences of sharpness in
this context have not been thoroughly investigated. Furthermore, the correlation between sharpness
and OOD generalization has not been extensively examined. These rising innovations highlight the
necessity to reevaluate the significance of sharpness in these new environments.

1.1 Background on Interpolation and Notations

Loss barrier. For loss landscapes, barriers refer to regions of increased loss encountered along the
interpolation path between two sets of model parameters.

We examine a CLIP architecture that is parametrized by θ and is fine-tuned on a task represented
by a training set Strain and a test set Stest. In the following, as we are interested in the general-
ization of CLIP on OOD tasks, we consider OOD loss and accuracy and write L(θ),A(θ) for
L(θ, SOOD),A(θ, SOOD). Assume that we have fixed two different different sets of weights θ0 and
θ1. Let Lα(θ0,θ1) = L(αθ0+(1−α)θ1) andAα(θ0,θ1) = A(αθ0+(1−α)θ1) for α ∈ [0, 1] be
the loss and accuracy, respectively, of the CLIP network created by linearly interpolating between
θ0 and θ1. Then, building upon the Frankle et al. [2020] definition for linear interpolation instability,
we define it for CLIP on OOD as the following notion.

Definition 1. The difference between the supremum of the loss for any interpolation supα Lα(θ0,θ1)
and the average loss of the endpoints 1

2 (L(θ0)+L(θ1)) is called the linear interpolation instability
for the CLIP on OOD.
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Recall that zero-shot CLIP performs better on OOD tasks compared to the fine-tuned version of
CLIP. Within the same settings of [Wortsman et al., 2022b,a], we are interested in exploring the
linear path between zero-shot CLIP and fine-tuned CLIP. Therefore, we set θ0 as zero-shot model.

Two parametrizations θ0 and θ1 have a barrier between them if the linear interpolation instability
for sufficiently large δ, there exists an α ∈ [0, 1] such that:

sup
α
Lα(θ0,θ1;SOOD)− L(θ0;SOOD) ≥ δ > 0 (1)

The value of δ can be empirically determined for each OOD task. Similarly, we state that linear
interpolation or the RFT algorithm can achieve high gain accuracy if there exists an α ∈ [0, 1] such
that:

sup
α
Aα(θ0,θ1;SOOD)−A(θ0;SOOD) ≥ ξ > 0 (2)

where ξ is sufficiently large.

Also, we define a linear path as having a gain if the supremum in Eq. 2 exists with (ξ > 0). It is
important to mention that a path is considered a failure mode if the supremum in Eq. 2 does not
exist. Figure 1 illustrates scenarios in which several distinct fine-tuned CLIP models experience
either failure mode or high gain accuracy outcomes during the interpolation (RFT).
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Figure 1: For 9 distinct fine-tuned CLIP models (each color shows different CLIP models) on Ima-
geNet [Deng et al., 2009], this plot demonstrates the accuracy and loss on ImageNet-A [Hendrycks
et al., 2021] as an OOD task. For each model, we show the maximum accuracy gain achieved along
a corresponding interpolation path. In the loss plot, we show depth as the largest barrier on the
interpolation path starting from the zero-shot model.

Layer-wise interpolation. In the following, we analogously define a layer-wise notion of instability.
LetM be structured in L layers {W (1), . . . ,W (L)}. In our experiments, we consider both weights
and bias as one set of parameters describing a layer. Let us fix a layer W (i). Consider a parametriza-
tion that is defined by α, W1 and W2 as {W (1)

j ,W
(2)
j , . . . , αW

(i)
1 + (1 − α)W

(i)
2 , . . . ,W

(L)
j }

where j can be selected to be 1 or 2.
Definition 1.1. (Layer-wise linear interpolation instability) The difference between supremum of
the loss on the line supαLα,i(W1,W2) corresponding to layer W (i) and average loss of the original
models 1

2 (L(W1) +L(W2)) is the layer-wise linear interpolation instability for the given architec-
ture M and selected layer (A similar approach can be employed to analyze this phenomenon by
evaluating the accuracy on OOD data.).
Definition 1.2. (Straggler layer) If a layer demonstrates layer-wise interpolation instability, it is
referred to as a straggler layer.

We are particularly interested in layers where linear interpolation leads to a failure mode in terms
of accuracy on OOD data. In other words, if a layer exhibits layer-wise interpolation instability, it
manifests this failure mode phenomenon.

Note: Since we utilize the weights of the zero-shot CLIP model, denoted asW1 (θ0), and the weights
W2 from the fine-tuned CLIP model (θ1 or θFT), we assign the zero-shot CLIP weights to all layers
except the target layer i. This approach allows us to specifically analyze the performance of layer i
in the fine-tuned CLIP model.
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Figure 2: Layer-wise interpolation on ImageNet-A as OOD. For two distinct fine-tuned CLIP
models one exhibiting failure mode and the other high gain accuracy in regular interpolation (RFT),
we conduct a layer-wise interpolation alongside each layer with the zero-shot CLIP model.

2 Adaptive Sharpness and its Invariances

In this section, we begin by providing background on adaptive sharpness and then discuss its invari-
ance properties in modern architectures. We categorize the sharpness of a model into two distinct
categories. First, we establish a connection between general sharpness and the generalization perfor-
mance of the interpolated CLIP model. Second, we introduce the concept of layer-wise sharpness
and, by utilizing the relationship between straggler layers and layer-wise sharpness, we experimen-
tally demonstrate how the layer-wise sharpness of straggler layers can capture the generalization
performance of interpolated CLIP models.

2.1 Background on Sharpness

Sharpness definitions. Similar to [Andriushchenko et al., 2023], we denote the loss on a set of OOD
points S as LS(w) = 1

|S|
∑

(x,y)∈S ℓxy(w), where ℓxy(w) ∈ R+ represents some loss function
(e.g., cross-entropy) on the pair (x,y) ∈ S computed with the network weights w. For arbitrary
w ∈ Rp (i.e., not necessarily a minimum), we define the average-case and adaptive average-case
sharpness with radius ρ and with respect to a vector c ∈ Rp as:

Sρ
avg(w, c) ≜ E S∼Pm

δ∼N (0,ρ2diag(c2))

LS(w + δ)− LS(w) (3)

where ⊙/−1 denotes elementwise multiplication/inversion and Pm is the data distribution that re-
turns m pairs (x,y). Using c = |w| leads to elementwise adaptive sharpness [Kwon et al., 2021,
Andriushchenko et al., 2023] and makes the sharpness invariant under multiplicative reparametriza-
tions. For a thrice differentiable loss L(w), the average-case elementwise adaptive sharpness can be
computed as (see Andriushchenko et al. [2023] or App. A for proof):

Sρ
avg(w, |w|) =ES∼Pm

ρ2

2
tr(∇2LS(w)⊙ |w||w|⊤) +O(ρ3)

We should also mention that the first-order term cancels out completely. In order for better clarity,
we will use the term general sharpness. In the upcoming sections, we will examine the connection
between the sharpness of interpolated CLIP models and their generalization performance on OOD
data. Next, we present our concept of layer-wise sharpness, which entails quantifying the sharpness
of one specific layer within the CLIP model during interpolation.

3 Sharpness vs. Generalization

The current understanding of the relationship between sharpness and generalization is primarily
based on experiments with non-residual convolutional networks and small datasets such as CIFAR-
10 and SVHN [Jiang et al., 2019]. Andriushchenko et al. [2023] were the first to study the correla-
tion between general sharpness and generalization in transformer-based modern architectures, such
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Figure 4: We present an analysis of the layer-wise sharpness across four distinct CLIP models, com-
prising two failure mode models and two high gain accuracy models, demonstrating the sharpness
characteristics of each individual layer.

as fine-tuned CLIP models. Their findings revealed that there is no strong correlation between gen-
eral sharpness and generalization on OOD data. Building on their observations, we investigate the
correlation between general sharpness and interpolation. Additionally, we introduce the concept of
layer-wise sharpness and demonstrate how, unlike general sharpness, it can effectively capture the
generalization performance during interpolation in weight space between zero-shot and fine-tuned
CLIP models.
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Figure 3: For 9 distinct fine-tuned CLIP mod-
els (each color shows different CLIP models)
on ImageNet, this plot demonstrates the general
adaptive average sharpness with ρ = 1.0 and 20
iterations on ImageNet-A as an OOD task.

In Fig. 3, we demonstrate that general sharp-
ness fails to directly capture the generaliza-
tion of interpolated CLIP models on OOD data.
Contrary to our expectations, CLIP models fine-
tuned on ImageNet indicate that flatter solu-
tions consistently generalize worse on OOD
data. This evidence suggests that the com-
monly held belief in the generalization benefits
of flat minima does not hold true in modern set-
tings. This result corroborates the findings of
Andriushchenko et al. [2023], specifically for
fine-tuned CLIP models on OOD data.

3.1 Layer-wise Sharpness

In this part, we introduce the concept of layer-
wise sharpness, where we perturb the weight
space of the target layer in the fine-tuned CLIP
model during interpolation. Subsequently, we
perform interpolation between this newly per-
turbed fine-tuned CLIP model and the zero-shot
CLIP model. Notably, we do not conduct layer-wise interpolation; instead, we apply the previously
described RFT algorithm. Informally speaking, we want answer to this question:

Question: What occurs within a layer during interpolation that leads to layer-wise interpolation
instability or a failure mode? By measuring the sharpness of that layer during interpolation, can
we predict its impact on generalization?

Furthermore, we empirically investigate what occurs immediately after α⋆ in high gain accuracy
models. As shown in Fig. 1, for these models, we consistently observe a point along the interpolation
path where the interpolated model reaches maximum accuracy. Beyond this point, a decline in
performance begins. Figure 4 demonstrates that in models with high gain accuracy (second row), the
optimal α⋆ corresponds to a point where the interpolated model achieves maximum generalization
performance. However, within this model, there is at least one layer where the layer-wise sharpness
is nearly zero. On the other hand, for failure mode models, it is already known that there is no point
along the interpolated path where the OOD accuracy surpasses that of the starting and ending points.
Consequently, α⋆ is exactly at the starting point (the zero-shot point). For failure mode models, it
can be observed that there is at least one layer where the layer-wise sharpness is nearly zero. In
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Figure 5: Straggler layer pruning. For two distinct fine-tuned CLIP models that exhibit failure
mode during interpolation using the RFT algorithm, we demonstrate that pruning the straggler layers
of the fine-tuned model prevents a collapse in performance.

fact, fine-tuned failure mode models inherently possess a straggler layer. In the following section,
we evaluate our layer-wise sharpness and straggler layer in a different direction. We introduce a
straightforward algorithm based on the layer-wise sharpness of the straggler layers.

On the role of Sparsity for Generalization and RFT.
Algorithm 1 Pytorch Pseudocode for Straggler Layer Pruning

Require: ModelM structured in L layers {W (1), . . . ,W (L)}, zero-shot model θzero-shot.
1: for i = 1 to L do
2: if Adaptive Average Sharpness(W (i), ρ) ≃ 0 then
3: mask← torch.bernoulli(torch.full_like(M[W (i)], 0.5)).bool()
4: M[W (i)][mask]← 0
5: end if
6: end for
7: θα = interpolation(θzero-shot,M)
8: return θα

Our objective is to establish a connection between the layer-wise sharpness of straggler layers and
the generalization performance of the interpolated model. While the primary aim of this work is
not to introduce a new algorithm that surpasses conventional interpolation methods, we focus on
elucidating the importance of the layer-wise sharpness phenomenon. First, through five iterations,
we identify the straggler layers of the fine-tuned CLIP model. Subsequently, we randomly adjust
the weights of the identified layers. Specifically, before initiating the interpolation, we make the
straggler layers sparse. In Algorithm 1, we summarize our algorithm.

4 Conclusion and Future works

In conclusion, our study underscores the critical role of interpolation (RFT) in enhancing the gener-
alization capabilities of CLIP models for OOD tasks. We demonstrate that by putting specific layers
in CLIP models under the microscope, referred to as straggler layers, and employing the concept of
layer-wise sharpness as opposed to the traditional notion of general sharpness, we can effectively
assess the generalization performance of these interpolated models on OOD data. Our findings in-
dicate that if a fine-tuned CLIP model contains at least one layer where the layer-wise sharpness
is nearly zero, it triggers a failure mode phenomenon. Furthermore, for interpolated CLIP models
that achieve high gain accuracy along the interpolation path, a decline in OOD performance begins
when, at the point of maximum OOD accuracy (α⋆), there exists a layer with nearly zero layer-wise
sharpness. This specific layer is identified as the straggler layer. Importantly, this study is the first
to explore the generalization and interpretability of CLIP models, through the lenses of mode con-
nectivity, interpolation and sharpness. Our findings provide novel insights into the behavior of these
models and their potential for robust application across diverse tasks.

6



References
Alireza Abdolahpourrostam, Amartya Sanyal, and Seyed-Mohsen Moosavi-Dezfooli. Unveiling

CLIP dynamics: Linear mode connectivity and generalization. In ICML 2024 Workshop on Foun-
dation Models in the Wild, 2024. URL https://openreview.net/forum?id=DFRAmfsuow.
2

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization, 2023. URL
https://arxiv.org/abs/2302.07011. 2, 4, 5, 9

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima, 2021. URL https://
arxiv.org/abs/2102.08604. 2

N. S. Chatterji, B. Neyshabur, and H. Sedghi. The intriguing role of module criticality in the gener-
alization of deep networks. ICLR, 2020. 1

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations, 2022. URL https://arxiv.org/abs/2106.
01548. 2

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009. https://ieeexplore.ieee.org/abstract/document/5206848. 3

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets, 2017. URL https://arxiv.org/abs/1703.04933. 2

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International Conference on Machine Learning (ICML),
2018. https://arxiv.org/abs/1803.00885. 1

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invari-
ance in linear mode connectivity of neural networks. In International Conference on Learning
Representations (ICLR), 2022. https://arxiv.org/abs/2110.06296. 1

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning
(ICML), 2020. https://proceedings.mlr.press/v119/frankle20a.html. 2

Diego Granziol. Flatness is a false friend, 2020. URL https://arxiv.org/abs/2006.09091. 2

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples, 2021. 3

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them, 2019. URL https://arxiv.org/abs/1912.
02178. 4

Simran Kaur, Jeremy Cohen, and Zachary C. Lipton. On the maximum hessian eigenvalue and
generalization, 2023. URL https://arxiv.org/abs/2206.10654. 2

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks, 2021. URL https:
//arxiv.org/abs/2102.11600. 2, 4

James Lucas, Juhan Bae, Michael R Zhang, Stanislav Fort, Richard Zemel, and Roger Grosse.
Analyzing monotonic linear interpolation in neural network loss landscapes, 2021. https:
//arxiv.org/abs/2104.11044. 1

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction, 2023. URL https://arxiv.org/abs/2206.07085. 2

7

https://openreview.net/forum?id=DFRAmfsuow
https://arxiv.org/abs/2302.07011
https://arxiv.org/abs/2102.08604
https://arxiv.org/abs/2102.08604
https://arxiv.org/abs/2106.01548
https://arxiv.org/abs/2106.01548
https://ieeexplore.ieee.org/abstract/document/5206848
https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/1803.00885
https://arxiv.org/abs/2110.06296
https://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/2006.09091
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2206.10654
https://arxiv.org/abs/2102.11600
https://arxiv.org/abs/2102.11600
https://arxiv.org/abs/2104.11044
https://arxiv.org/abs/2104.11044
https://arxiv.org/abs/2206.07085


Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? In Advances in Neural Information Processing Systems (NeurIPS), 2020. https:
//arxiv.org/abs/2008.11687. 1

Namuk Park and Songkuk Kim. How do vision transformers work?, 2022. URL https://arxiv.
org/abs/2202.06709. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. 1

Tiffany J Vlaar and Jonathan Frankle. What can linear interpolation of neural network loss land-
scapes tell us? In International Conference on Machine Learning, pages 22325–22341. PMLR,
2022. 1

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without in-
creasing inference time. In International Conference on Machine Learning (ICML), 2022a.
https://arxiv.org/abs/2203.05482. 3

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
Schmidt. Robust fine-tuning of zero-shot models, 2022b. 1, 3

Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2022c. https://arxiv.org/
abs/2109.01903. 1

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd, 2018. URL
https://arxiv.org/abs/1802.08770. 2

Shuofeng Zhang, Isaac Reid, Guillermo Valle Pérez, and Ard Louis. Why flatness does and does not
correlate with generalization for deep neural networks, 2021. URL https://arxiv.org/abs/
2103.06219. 2

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically
understanding why sgd generalizes better than adam in deep learning, 2021. URL https://
arxiv.org/abs/2010.05627. 2

8

https://arxiv.org/abs/2008.11687
https://arxiv.org/abs/2008.11687
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/1802.08770
https://arxiv.org/abs/2103.06219
https://arxiv.org/abs/2103.06219
https://arxiv.org/abs/2010.05627
https://arxiv.org/abs/2010.05627


A Appendix

Following to [Andriushchenko et al., 2023], let LS(w) = 1
|S|

∑
(x,y)∈S ℓxy(w) be the loss on a

set of points S . For arbitrary weights w (i.e., not necessarily a minimum), then the average-case
sharpness is defined as:

Sρ
avg,p(w, c) ≜ E S∼Pm

δ∼N (0,ρ2diag(c2))

LS(w + δ)− LS(w)

where⊙/−1 denotes elementwise multiplication/inversion and Pm is the data distribution that returns
m pairs (x,y).

If c = |w| then the perturbation set is
∥∥δ ⊙ |w|−1

∥∥
p
≤ ρ. Assume a new variable γ = δ ⊙ |w|−1

and perform a Taylor expansion around w:

LS(w + δ) = LS(w + γ ⊙ |w|) = LS(w) + ⟨∇LS(w), |w| ⊙ γ⟩+ 1

2

〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉
+O(∥γ∥3p),

where ∇2LS(w) denotes the Hessian of LS at w.
Proposition A.1. (Andriushchenko et al. [2023]), Let LS ∈ C3(Rs), S be a finite sample of points
(xi, yi)

n
i=1 and let Pm denote the uniform distribution over subsamples of size m ≤ n from S. Then

lim
ρ→0

2

ρ2
Sρ
avg(w, |w|) = ES∼Pm

[
tr(∇2LS(w)⊙ |w||w|⊤)

]
+O(ρ)

Proof. Let us consider the loss without the subcript for clarity. Then we consider

Eδ∼N (0,ρ2diag(c2)) LS(w + δ)− LS(w)

When plugging in the Taylor expansion of the loss, we see that

Eδ∼N (0,ρ2diag(c2))LS(w + δ)− LS(w)

=Eγ∈N (0,ρ2I)

[
⟨∇LS(w), |w| ⊙ γ⟩+ 1

2

〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉
+O(∥γ∥32)

]
=
1

2
Eγ∈N (0,ρ2I)

[ 〈
γ ⊙ |w|,∇2LS(w)γ ⊙ |w|

〉 ]
+O(ρ3)

=
1

2
Eγ∈N (0,ρ2I)

[ 〈
γ,

(
∇2LS(w)⊙ |w||w|T

)
γ
〉 ]

+O(ρ3)

=
ρ2

2
tr(∇2LS(w)⊙ |w||w|⊤) +O(ρ3)
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