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Abstract

Although the annotation paradigm based on Large Language
Models (LLMs) has made significant breakthroughs in recent
years, its actual deployment still has two core bottlenecks:
first, the cost of calling commercial APIs in large-scale an-
notation is very expensive; second, in scenarios that require
fine-grained semantic understanding, such as sentiment clas-
sification and toxicity classification, the annotation accuracy
of LLMs is even lower than that of Small Language Mod-
els (SLMs) dedicated to this field. To address these prob-
lems, we propose a new paradigm of multi-model cooper-
ative annotation and design a fully automatic annotation
framework AutoAnnotator based on this. Specifically, Au-
toAnnotator consists of two layers. The upper-level meta-
controller layer uses the generation and reasoning capabilities
of LLMs to select SLMs for annotation, automatically gener-
ate annotation code and verify difficult samples; the lower-
level task-specialist layer consists of multiple SLMs that per-
form annotation through multi-model voting. In addition, we
use the difficult samples obtained by the secondary review
of the meta-controller layer as the reinforcement learning set
and fine-tune the SLMs in stages through a continual learn-
ing strategy, thereby improving the generalization of SLMs.
Extensive experiments show that AutoAnnotator outperforms
existing open-source/API LLMs in zero-shot, one-shot, CoT,
and majority voting settings. Notably, AutoAnnotator reduces
the annotation cost by 74.15% compared to directly annotat-
ing with GPT-3.5-turbo, while still improving the accuracy by
6.21%.

Code — https://github.com/Zhaiyuan-Ji/AutoAnnotator

Introduction

High-quality annotated data is key to advancing deep learn-
ing (Taori et al. 2023; Ye et al. 2025), yet acquiring such data
requires specialized domain expertise and is costly (Den-
ton et al. 2021), especially when manually annotating a
large number of samples. With the rapid development of
LLMs (Achiam et al. 2023; Guo et al. 2025), their powerful
semantic understanding (Wu et al. 2023), contextual reason-
ing (Sun et al. 2024) and generation capabilities (Mo et al.
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Figure 1: (a) Comparison of classification performance be-
tween Large Language Models (LLMs) and Small Lan-
guage Models (SLMs) on two sentiment classification tasks,
proving that SLMs outperform LLMs on domain-related
tasks. (b) Classification performance of LLMs and SLMs
on 3 sentiment classification datasets (MTEB-Sentiment,
JPP-Sentiment, LY T-Sentiment) and 3 toxicity classification
datasets (KC-Toxicity, JW-Toxicity, HG-Toxicity), illustrat-
ing that SLMs exhibit weaker generalization than LLM:s.

2024) has driven researchers to develop LLM-based anno-
tation methods (Yadav, Choppa, and Schlechtweg 2024; Ba,
Mancenido, and Pan 2024) to reduce the cost of manual an-
notation.

However, our priori experiments show that this “one-size-
fits-all” approach does not work in all areas. In tasks such
as sentiment classification (Brauwers and Frasincar 2022;
Jiang et al. 2011) and toxicity classification (Van Aken et al.
2018; Li et al. 2024a), LLMs without special training per-
form much worse than smaller models that have been specif-
ically fine-tuned (see Figure 1(a)). Besides, the annotation
cost is often prohibitively expensive, especially when scal-
ing to large datasets. For example, annotating 100, 000 short
reviews—each averaging 1024 input tokens and 20 output
tokens—using GPT-ol (at $15 per 1M input tokens and $60
per 1M output tokens) will cost roughly $1, 656. In contrast,
the annotation cost of SLMs is almost negligible.

So can we do the opposite: let SLMs (e.g., BERT (De-
vlin et al. 2019) and Roberta (Liu et al. 2019)) take on the
“main force” of data annotation, and efficiently generate ini-
tial annotations with its low annotation cost and rich do-
main knowledge; and when SLMs have low confidence or
the sample is more difficult, LLMs will provide secondary
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Figure 2: Different data annotation paradigms. (a) represents the traditional manual annotation paradigm. (b) denotes SLM-
based annotation paradigm. (c) is the most popular LLM-based annotation paradigm. (d) denotes the multi-model collaborative
annotation paradigm proposed by us. Our paradigm can not only improve the annotation accuracy, but also significantly reduce

the annotation cost.

Human SLMs LLMs AutoAnnotator

No manual labeling required
Low annotation cost
High labeling accuracy
Good generalization
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Table 1: Comparison of efficiency, accuracy and generaliza-
tion ability of different annotation paradigms.

review, so as to balance cost-effectiveness and annotation
quality. The reason for using LLMs to re-verify difficult ex-
amples is that although SLMs outperform LLMs on their
familiar domains, their limited generalization ability is un-
reliable in the case of diverse real data annotations (see
Figure 1(b)). This multi-model collaborative annotation
paradigm can not only reduce overall API overhead, but
also leverage the powerful reasoning capabilities of LLMs
to improve the labeling accuracy of key samples. Table 1
illustrates the difference between our proposed annotation
paradigm and other existing paradigms.

In this paper, we introduce a self-evolving Automated
Data Annotation framework, dubbed as AutoAnnotator, to
improve the existing annotation paradigm. AutoAnnotator
coordinates both the generative generation and reasoning ca-
pabilities of LLMs and the fine-grained task determination
capabilities of SLMs, achieving adaptive model selection,
automatic code generation, multi-model consensus annota-
tion, and model iterative evolution. By leveraging the low-
cost efficiency of SLMs and selectively invoking LLMs only
when necessary, our framework significantly reduces anno-
tation cost while achieving superior or comparable annota-
tion quality. By leveraging the low-cost, domain-specific na-
ture of SLMs and selectively invoking LLMs only when nec-
essary, AutoAnnotator significantly reduces annotation costs
while achieving superior annotation performance.

The entire AutoAnnotator framework can be viewed as
a hybrid expert system and consists of two layers: a meta-
controller layer and a task-specialist layer. Specifically, the
meta-controller layer, powered by LLMs, is responsible for

selecting appropriate SLMs from Hugging Face' based on
the given annotation task and automatically generating the
code required for the entire annotation process. Since SLMs
have limited generalization ability on out-of-domain (diffi-
cult) samples, and LLMs have stronger generalization due
to pre-training on massive and diverse data, meta-controller
will call LLMs to perform a second review of these difficult
samples, thereby significantly improving the generalization
performance of the overall labeling system.

The task-specialist layer comprises the selected SLMs by
the meta-controller layer. Specifically, each input is fed to
all SLMs, and the predictions of these SLMs are aggregated
through a majority voting consensus mechanism to gener-
ate high-confidence labels. Samples that do not reach the
consensus threshold are automatically labeled and returned
to the meta-controller layer for secondary verification using
the LLM. Once the hard-sample pool reaches a predefined
threshold, these expert-verified examples trigger an itera-
tive fine-tuning cycle: each SLM is updated on the collected
hard samples, and the refined models then rejoin the consen-
sus pool for subsequent annotation. This continual enhance-
ment loop ensures that the specialists progressively improve
their generalization. Overall, our contributions can be sum-
marized as follows:

* A new paradigm of data annotation. We propose
the paradigm of LLMs guidance with SLMs execution,
where LLM uses its powerful generation and reason-
ing capabilities to build the annotation environment and
review the annotation results, while SLMs apply their
domain-specific knowledge to carry out the actual label-
ing.

e A fully automatic annotation framework. We intro-
duce a two-layer annotation framework AutoAnnotator,
which fully automates the annotation model selection,
code generation, annotation verification, and annotation
model iterative update process.

* Cost Reduction and Improved Performance. Au-
toAnnotator outperforms existing opened-source LLMs
(7B-70B) and API models (including Minimax,

"https://huggingface.co



Deepseek-V3, Deepseek-R1, GPT-3.5-turbo and GPT-
40), and consistently maintains optimal performance
under multiple labeling strategies such as zero-shot,
one-shot, CoT, and majority-vote. Besides, AutoAnno-
tator reduces the annotation cost by 74.15% compared
to directly annotating with GPT-3.5-turbo, while still
improving the accuracy by 6.21%.

Related Work

LLM-Based Data Annotation. Thanks to the remarkable
capabilities of LLMs across a wide range of tasks, recent
research has gained increased interest in using LLMs for
data annotation. For instance, Jadhav et al (Jadhav et al.
2024) utilize both closed-source and open-source LLMs to
annotate a low-resource language Marathi. Chen et al. (Chen
et al. 2024) utilize LLMs to generate samples that are consis-
tent with the data distribution of the benchmark dataset for
event extraction, thereby alleviating the challenges of data
imbalance and scarcity. Similarly, Li et al (Li et al. 2024b)
use LLMs for high-quality code retrieval query annotation.
Choi et al. (Choi et al. 2024) extend cost-effective LLM-
based annotation beyond traditional data annotation tasks to
filter out noisy documents from a multi-document summa-
rization dataset. Liu et al (Liu et al. 2025) leverage LLMs
in combination with historically annotated data and expert-
constructed codebooks to extrapolate and extend longitudi-
nal network datasets into future periods. Besides, some stud-
ies use LLMs to improve the original annotations made by
human annotators (Laskar et al. 2023; Flamholz, Biller, and
Kelly 2024). Although LLM-based data annotation methods
have made significant progress, their application still faces
two major challenges: on the one hand, the high cost of API
calls makes it difficult to achieve large-scale economy; on
the other hand, in tasks that require fine-grained semantic
understanding (such as sentiment classification (Brauwers
and Frasincar 2022; Jiang et al. 2011) and toxicity classifica-
tion (Van Aken et al. 2018; He et al. 2024; Li et al. 2024a)),
the annotation performance of LLMs is often inferior to that
of specially fine-tuned SLMs.

Collaboration between LLMs and SLMs. Collaboration
between LLMs and SLMs combines the former’s gen-
eralization and reasoning strengths with the latter’s effi-
cient, domain-specific expertise, yielding superior perfor-
mance and cost-efficiency across various tasks, especially
on resource-constrained edge devices. For example, Xu et
al. (Xu et al. 2023) use predictions from SLMs to improve
LLM in-context learning. CoGenesis (Zhang et al. 2024) in-
tegrates LLMs (hosted on cloud infrastructure) and SLMs
(deployed on local devices) to address privacy concerns log-
ically. CITER (Zheng et al. 2025) adopts a token-level rout-
ing strategy, routing non-critical tokens to the SLM to im-
prove effciency, while routing critical tokens to the LLM to
ensure generation quality. Collab-RAG (Xu et al. 2025) em-
ploys an SLM to decompose complex queries and improves
the SLM’s decomposition ability through feedback signals
provided by a black-box LLM. Glocker et al. (Glocker et al.
2025) use a task-specific LLM as the “brain” to drive mul-
tiple field-specialized SLMs to perform sub-tasks such as
routing and task planning. Inspired by existing studies on

LLMs and SLMs collaboration, we innovate the existing
LLM-based annotation framework and propose a two-layer
automated annotation system, with LLMs as guidance and
SLMs as execution.

Method

In this section, we delve into the AutoAnnotator, a hierar-
chical system that synergizes LLMs with SLMs for auto-
mated data annotation. As illustrated in Figure 3, the sys-
tem operates through two interdependent layers: the Meta-
Controller Layer and the Task-Specialist Layer. This de-
sign complements the powerful generation and reasoning ca-
pabilities of the LLMs with the efficient domain expertise
of the SLMs, not only achieving better annotation perfor-
mance, but also significantly reducing annotation costs.

Meta-Controller Layer

The Meta-Controller Layer serves as the decision-making
unit that orchestrates the entire annotation process. It mainly
implements three core functions: adaptive model selection,
automatic code generation and difficult sample verification.
Next, we will introduce these functions in detail.

Adaptive Model Selection. Assuming there is a dataset
D = {x1,22,...,2,} to be annotated, AutoAnnotator first
needs to determine SLMs for annotation. However, faced
with millions of open-source models? on platforms such as
HuggingFace?, non-professionals often find it difficult to fil-
ter out models that are suitable for the current task from the
complex model descriptions. To address this challenge, we
built an adaptive model selection engine using LLMs, elim-
inating human intervention in model selection. Specifically,
given an annotation task 7', we utilize the LLM to give a list
of task-related model recommendations by querying about
1.69M HuggingFace models, and take the Top-k models for
annotation. This process can be formulated as follows:

M; = Top-k (sim (from (T) , fuim(d))) (1)

where d denotes the description of the corresponding model.
Automatic Code Generation. After obtaining the recom-
mendation list, an intuitive method is to download and de-
ploy these models locally. Then, we can start the data an-
notation and subsequent processing steps. However, in this
workflow, many processes usually require manual program-
ming, such as SLMs deployment, data annotation, and SLMs
fine-tuning, which makes the entire process labor-intensive.
To address this limitation and maximize automation, we
equip the meta-controller layer with an automatic code gen-
eration capability. Given the powerful code generation ca-
pabilities of LLMs (Wang and Chen 2023), we directly
prompt it to generate all the scripts required for the anno-
tation pipeline.

Difficult Sample Verification. While SLMs exhibit supe-
rior performance on domain-specific annotation tasks, they
often struggle with out-of-domain samples. In other words,
SLMs have limited generalization ability, making them less

2As of May 12, 2025, there are 1, 685, 478 open source models
on HuggingFace.
*https://huggingface.co/
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Figure 3: Visualization of the pipeline of AutoAnnotator. AutoAnnotator consists of two layers: a meta-controller layer and a
task-specialist layer. The meta-controller layer, powered by LLMs, is responsible for selecting appropriate SLMs from Hugging
Face, automatically generating the code required for the entire annotation process and performing secondary review on samples
that are difficult for SLMs. The task-specialist layer comprises the selected SLMs by the meta-controller layer. SLMs use a
majority voting mechanism to annotate samples and periodically use difficult samples from LLMs for secondary review to

continuously update themselves.

reliable when performing complex annotation tasks. In con-
trast, LLMs, especially those like GPTs and DeepSeek,
trained on diverse data, show stronger generalization capa-
bilities (Li et al. 2025) and can better handle more com-
plex situations (see Figure 1(a)). To this end, AutoAnnotator
leverages LLMs in the meta-controller layer to perform sec-
ondary validation on complex or uncertain samples, achiev-
ing both high accuracy and strong generalization across var-
ious data conditions.

Task-Specialist Layer

The Task-Specialist Layer is responsible for the actual an-
notation, using a set of lightweight, domain-specific pre-
trained SLMs to efficiently label the data. It consists of two
components: the Multi-Model Consensus Annotation mod-
ule and the Expert-Guided Iterative Refinement module.
Multi-Model Consensus Annotation. As mentioned ear-
lier, SLMs exhibit poor generalization ability. To address
this, we aggregate predictions from a diverse pool of SLMs
and only accept labels on which they reach high agree-
ment. Formally, let D = {z;}; be the unlabeled dataset
and M = {my,ma,--- ,my} be the pool of SLMs rec-
ommended from the Meta-Controller Layer. For each data
sample z; € D, run all £ models in parallel to obtain their
annotation results:

o= {u" @

The final label g; is determined by majority voting of these
k models:

= Majority Voting (};) . 3)

In order to evaluate the degree of consensus among models,

the uncertainty metric {/ is introduced, which is defined as:

maxy # {ygj) = y}

“4)

where # {yfj ) = y} represents the number of models that

predict y. If U (z;) is greater than the predefined value e,

the sample is considered to have a large disagreement and is
automatically stored in the secondary review pool Dyyq:

Direct Labeling U(x) < e

Secondary Review U(z) > e. )

Route(z) = {
The Task-Specialist Layer dynamically selects between two
verification modes (automatic LLM annotation or manual
human annotation) based on user needs and cost-accuracy
trade-off analysis.
Expert-Guided Iterative Refinement. To explicitly en-
hance the generalization of specialist SLMs on diffi-
cult (out-of-domain) samples, we introduce a continual
fine-tuning procedure guided by expert labels (from either
LLMs or human annotators). Specifically, once the number
of samples in the hard sample pool Dyaq reaches a prede-
fined size 3, we pause the consensus annotation and start
the continual fine-tuning cycle. For each SLM m; € M, we
fine-tune it on Dy,q for up to a budgeted number of epochs,
producing updated specialists m/. Taking the model m; as
an example, we define the loss function as follows:

0) = Z CE(m;(x;0),y), (2,Y) € Dhaa  (6)

where CE(-) represents the cross-entropy loss. Then gradi-
ent descent is used to update the parameters:

6+ 0—aVeLl(9), (7



Task Type | Model ID | Parameters | HF Downloads | Nick name
cardiffnlp/twitter-roberta-base-sentiment-latest 125M 2.43M SLM1
Sentiment | cardiffnlp/twitter-xlm-roberta-base-sentiment 125M 2.06M SLM2
finiteautomata/bertweet-base-sentiment-analysis 110M 1.06M SLM3
s-nlp/roberta_toxicity _classifier 110M 160K SLM1
Toxicity JungleLee/bert-toxic-comment-classification 110M 46.3K SLM?2
garak-llm/toxic-comment-model 67M 9.67K SLM3

Table 2: The appropriate Hugging Face models selected by LLMs based on the type of annotation task.

where « denotes the learning rate. Subsequently, the refined
model m; replaces m; for annotation. After that, we resume
annotation on remaining unlabeled data until Dy,q exceeds
[ again, triggering a further cycle of continuous fine-tuning.

Experiments
Experimental Settings

Datasets. To evaluate the effectiveness of AuroAn-
notator, we conduct extensive experiments on two
representative annotation tasks, sentiment classifica-
tion and toxicity classification, using a total of six
real-world datasets. Specifically, in this study, we
select mteb/tweet_sentiment_extraction, jppgks/twitter-

financial-news-sentiment and LYTinn/sentiment-
analysis-tweet  for  the  sentiment  classification
task and karthikarunr/Cyberbullying-Toxicity-

Tweets,  jiaxin-wen/Implicit-Toxicity and  heegyu/-
toxic_conversations_balanced for the toxicity classification
task. We provide a detailed introduction to these dataset
in the Appendix ??. To simplify the description, we use
the following aliases for these datasets: MTEB-Sentiment,
JPP-Sentiment, LYT-Sentiment, KC-Toxicity, JW-Toxicity,
and HG-Toxicity, respectively.

Models. In AutoAnnotator, all SLMs involved in annotation
are automatically selected by the LLM in the meta-controller
layer based on task characteristics. In this paper, we select 3
SLMs for each annotation task by default. We provide de-
tails of the model selected by the LLM in Table 2.
Implementation Details. By default, we use 3 (k = 3)
SLMs for each annotation task. Once the hard-sample pool
Dhara reaches a predefined threshold 5 = 2,000, we will
pause to fine-tune all 3 specialists on Dy, ensuring they
can continually learn new things throughout the annotation
process.

We provide detailed ablation experiments later in this pa-
per. As for fine-tuning the SLMs, we set the initial learning
rate, weight decay and epoch to 2e — 5, 0.01 and 3, respec-
tively. All experiments are conducted on 2 NVIDIA A100.
Methods for Comparison. To evaluate the effectiveness of
AutoAnnotator, we compare it with three types of baselines:
(1) SLMs selected by the LLM in the meta-controller layer
(2) Open-source LLMs, range from Mistral-7B, Baichuan2-
7B (Yang et al. 2023), Qwen2.5-7B-Instruct (Yang et al.
2024), Llama3.1-8B-Instruct (Grattafiori et al. 2024),
Llama2-13B (Touvron et al. 2023), QwQ-32B and Llama3-
70B (Grattafiori et al. 2024). (3) API models, such as Min-

iMax, DeepSeek V3 (Liu et al. 2024), DeepSeek R1 (Guo
et al. 2025) and GPT-3.5-Turbo. We provide all prompts
used by baselines and AutoAnnotator in Appendix.

Main Experiment Results

Comparison with SLMs. As shown in Table 3, under the
“SLMs Only” setting, the strongest SLM achieves 72.74%
average accuracy on sentiment tasks and 63.83% on toxicity.
By integrating these SLMs into our AutoAnnotator frame-
work, we boost sentiment accuracy to 74.59% (+1.85%)
and toxicity to 77.56% (+13.73%). These experimental re-
sults demonstrate that AutoAnnotator can significantly im-
prove the performance of SLMs on sentiment classification
and toxicity classification annotation tasks.

Comparison with Open-sourced LLMs. To benchmark
AutoAnnotator against open-source LLMs, we evaluate the
latter in three widely used annotation settings, zero-shot,
one-shot, and chain-of-thought (Wei et al. 2022) (CoT)
prompting, on both sentiment and toxicity classification
tasks. As for the one-shot setting, each model is given
a single in-context example before annotation. As for the
CoT setting, we add a CoT prompt “Let’s think step by
step like an operations research expert.” behind the zero-
shot prompt. Among these settings, we find that one-shot
prompting consistently outperforms zero-shot, as the sin-
gle in-context example helps the model calibrate its label
distributions and reduces misunderstanding of the task. By
contrast, chain-of-thought prompting hints only marginally
improve annotation accuracy, which we believe is because
the generated step-by-step reasoning shifts the model’s fo-
cus away from the classification task. Overall, AutoAn-
notator consistently outperforms zero-shot, one-shot, and
chain-of-thought prompting strategies, demonstrating its su-
perior annotation accuracy and validating the effectiveness
of our multi-model collaborative paradigm.

Comparison with API Models. We further benchmark
against API models, including Minimax, Deepseek-V3,
Deepseek-R1 and GPT-3.5-turbo. We report our main re-
sults in Table 3. The strongest Minimax achieves 71.06%
average accuracy on sentiment tasks, while Deepseek-V3
leads toxicity at 74.44%. By integrating these API mod-
els into AutoAnnotator, we boost sentiment accuracy to
74.59% (+3.53%) and toxicity to 76.61% (4+2.17%). Simi-
larly, when GPT-3.5-turbo is used alone, the sentiment ac-
curacy reaches 69.10% and the toxicity accuracy reaches
71.35%; when integrated into AutoAnnotator, the sentiment
accuracy rises to 73.12% (+4.02%) and the toxicity accu-



Sentiment Classification

Toxicity Classification

Model MTEB-Sentiment  JPP-Sentiment ~ LYT-Sentiment Avg #LLM Calls KC-Toxicity JW-Toxicity HG-Toxicity Avg #LLM Calls
SLMs Only

SLM1 70.43% 70.31% 75.54% 72.09% 0 66.88% 40.56% 84.06% 63.83% 0

SLM2 69.55% 59.76% 72.52% 67.28% 0 59.27% 44.07% 80.87% 61.40% 0

SLM3 70.17% 69.22% 78.83% 72.74% 0 68.13% 39.30% 67.07% 58.17% 0

Open-source LLMs, Zero-shot
Mistral-7B-V0.2 3591% 23.24% 28.37% 29.17% 38396 68.43% 56.32% 55.14% 59.96% 48475
Baichuan2-7B-Base 38.66% 24.96% 30.38% 31.33% 38396 20.99% 61.22% 67.68% 49.96% 48475
Qwen?2.5-7B-Instruct 65.62% 74.62% 67.66% 69.30% 38396 63.92% 76.25% 77.20% 72.46% 48475
Llama3.1-8B-Instruct 51.90% 57.37% 53.15% 54.14% 38396 72.08% 63.14% 60.03% 65.08% 48475
Llama2-13B 48.85% 38.90% 51.02% 46.26% 38396 55.29% 75.71% 67.08% 66.03% 48475
QwQ-32B 54.28% 69.01% 53.72% 59.00% 38396 70.81% 77.87% 72.61% 73.76% 48475
Llama3-70B 46.82% 39.87% 44.33% 43.67% 38396 49.62% 70.60% 69.56% 63.26% 48475
Open-source LLMs, One-shot
Mistral-7B-V0.2 45.24% 40.58% 44.57% 43.46% 38396 78.73% 69.86% 55.70% 68.10% 48475
Baichuan2-7B-Base 40.30% 66.46% 33.37% 46.71% 38396 77.60% 87.40% 58.88% 74.63% 48475
Qwen2.5-7B-Instruct 67.03% 73.62% 65.32% 68.66% 38396 58.13% 79.18% 71.06% 69.46% 48475
Llama3.1-8B-Instruct 59.30% 63.36% 58.37% 60.34% 38396 58.65% 73.83% 64.25% 65.58% 48475
Llama2-13B 58.50% 68.17% 63.04% 63.24% 38396 66.98% 88.79% 74.11% 76.63% 48475
QwQ-32B 55.59% 68.47% 37.16% 53.74% 38396 62.50% 87.80% 76.19% 75.50% 48475
Llama3-70B 49.58% 58.08% 50.93% 52.86% 38396 65.05% 71.02% 64.58% 66.88% 48475
Open-source LLMs, CoT
Mistral-7B-V0.2 40.46% 23.91% 34.20% 32.86% 38396 49.74% 74.90% 69.29% 64.64% 48475
Baichuan2-7B-Base 36.53% 23.74% 29.49% 29.92% 38396 47.55% 80.47% 66.70% 64.91% 48475
Qwen?2.5-7B-Instruct 55.44% 68.72% 63.52% 62.56% 38396 60.27% 68.12% 76.19% 68.19% 48475
Llama3.1-8B-Instruct 51.74% 58.17% 53.75% 54.55% 38396 47.93% 62.54% 64.56% 58.34% 48475
Llama2-13B 51.24% 36.22% 45.93% 44.46% 38396 57.74% 71.31% 69.99% 66.35% 48475
QwQ-32B 50.15% 68.43% 55.20% 57.93% 38396 67.79% 80.53% 75.68% 74.67% 48475
Llama3-70B 46.81% 42.71% 46.94% 45.49% 38396 50.61% 69.66% 71.07% 63.78% 48475
API Models
Deepseek-V3 64.82% 76.38% 69.68% 70.29% 38396 62.74% 81.30% 79.27% 74.44% 48475
Deepseek-R1 66.57% 74.25% 67.90% 69.57% 38396 75.31% 74.26% 77.10% 75.56% 48475
Minimax-abab6.5s-chat 67.37% 77.22% 68.58% 71.06% 38396 72.37% 68.18% 76.14% 72.23% 48475
GPT-3.5-turbo 65.14% 72.91% 69.26% 69.10% 38396 61.20% 74.63% 78.21% 71.35% 48475
LLMs, Majority Vote
7 Open-source LLMs Voting (zero-shot) 54.69% 55.86% 57.65% 56.07% 268772 65.20% 76.63% 77.09% 72.97% 339325
7 Open-source LLMs Voting (one-shot) 63.20% 71.23% 59.58% 64.67% 268772 69.72% 86.73% 72.99% 76.48% 339325
4 API Models Voting 67.78% 77.85% 70.80% 72.14% 153584 72.07% 72.09% 79.47% 74.54% 193900
AutoAnnotator (Ours)

AutoAnnotator+Minimax 67.78% 81.20% 74.80% 74.59% 10643 73.73% 73.75% 83.55% 77.01% 18210
AutoAnnotator+Deepseek-V3 66.77% 77.96% 73.61% 72.78% 10537 61.29% 85.29% 83.25% 76.61% 17886
AutoAnnotator+GPT-3.5-turbo 67.89% 78.56% 72.90% 73.12% 10065 67.69% 82.02% 82.97% 77.56% 18942

AutoAnnotator+Human 78.33% 82.83% 84.13% 81.76% 8 83.50% 89.66% 91.78% 88.31% 8

Table 3: Comparison of the proposed AutoAnnotator with existing methods on different toxicity and sentiment annotation tasks.
It is worth noting that the SLM1 for sentiment classification and the SLM1 for toxicity classification are not the same model.

The specific models of each model are shown in Table 2.

racy rises to 77.56% (4+6.21%). Besides, compared with di-
rect LLM annotation, AutoAnnotator significantly reduces
the number of LLM calls (60%+ for sentiment tasks and
70%+ for toxicity tasks). It is worth noting that AutoAn-
notator not only outperforms existing API models in terms
of performance, but also far exceeds them in terms of an-
notation cost and efficiency (see below). We provide some
samples that AutoAnnotator can annotate correctly, but API
models annotate incorrectly in Figure 4.

Comparison with LLM Majority-Vote. We additionally
evaluate majority voting across multiple LLMs. As shown
in Table 3, AutoAnnotator+Minimax needs only 10, 643 API
calls to achieve 74.59% sentiment accuracy, outperforming
both open-source and API-voting baselines while reducing
LLM calls by over 93%. Regardless of whether we ensemble
multiple open-source or API LLMs—even with zero-shot or
one-shot voting—AutoAnnotator consistently outperforms
all voting schemes while using far fewer LLM calls.

The efficiency and cost of AutoAnnotator. To evaluate the
annotation cost and efficiency of API models and AutoAn-
notator, we conduct a quantitative analysis from three di-

mensions: computing resource consumption (the number of
tokens and GPU memory usage), annotation time cost, and
economic cost. All experiments are performed on NVIDIA
A100 GPUs, and the annotation task scale is uniformly set
to 1000 samples. We conduct experiments on Deepseek-V3,
Deepseek-R1, Minimax, GPT-3.5-turbo, GPT-4 and GPT-
40, respectively. As shown in Table 4, AutoAnnotator re-
duces the annotation time by 34.44% (GPT-40) to 81.50%
(Deepseek-R1), with an average reduction of 55.85%. Be-
sides, the annotation cost is reduced by 75.54% (Minimax)
at the highest and 67.47% (Deepseek-R1) at the lowest, with
an average saving of 72.32%. In general, AutoAnnotator has
achieved a significant improvement in annotation efficiency
and a significant reduction in annotation costs while main-
taining annotation quality through the LLMs and SLMs col-
laborative annotation paradigm.

Ablation Study

The number of SLMs used in the task-specialist layer. To
explore the impact of the number of SLMs on the annotation
performance, we perform ablations on the JPP-Sentiment



Model Token (Input+Output) GPU Memory Time Cost Time Reduction Cost Cost Reduction
Deepseek-V3 88023 - 71.19 minutes - 0.027202 $ -
AutoAnnotator+Deepseek-V3 25629 4458 MB 26.06 minutes 63.40% 0.008085 $ 70.28%
Deepseek-R1 356532 - 212.93 minutes - 0.650334 $ -
AutoAnnotator+Deepseek-R1 109666 4458 MB 39.40 minutes 81.50% 0211581 $ 67.47%
Minimax 91724 - 93.70 minutes - 0.012723 $ -
AutoAnnotator+Minimax 19357 4458 MB 30.67 minutes 67.27% 0.003112 $ 75.54%
GPT-3.5-turbo 88514 - 34.17 minutes - 0.048423 $ -
AutoAnnotator+GPT-3.5-turbo 22235 4458 MB 17.75 minutes 48.05% 0.012519 $ 74.15%
GPT-4 88027 - 30.56 minutes - 27751180 $ -
AutoAnnotator+GPT-4 23843 4458 MB 18.34 minutes 40.00% 0.754470 $ 72.58%
GPT-40 87915 - 23.20 minutes - 0.246540 $ -
AutoAnnotator+GPT-40 22087 4458 MB 15.21 minutes 34.44% 0.064300 $ 73.92%

Table 4: Comparison of annotation cost and efficiency between API models and AutoAnnotator.

[Sentiment Classification] Warren Buffett Just Became More Heavily Invested In Rat Poison Cryptocurrency.

@ Negative & Negative J]J] Negative AutoAnnotator Neutral
X X X v

[Toxicity Classification] Just keep your head up...you kick so much ass...

@ Non-toxic & Non-toxic Jl“
X X

Non-toxic

AutoAnnotator Toxic

X v

Figure 4: Visualization of representative samples correctly annotated by AutoAnnotator but misclassified by APIs.

k 2 3 4 5
Acc 7332% 78.56% T76.26% 76.26%

Table 5: The impact of the number of SLMs used for anno-
tation on the annotation performance.

B 500 1000 2000 3000
Acc 76.17% 7391% T78.56% 73.12%

Table 6: The impact of the number of hard samples used
for continuous fine-tuning at each stage on the annotation
performance.

dataset using GPT-3.5-turbo as the meta-controller LLM.
We vary the number of SLMs k participating in the multi-
model consensus annotation from 2 to 5 and report the final
annotation accuracy in Table 5. We find that the annotation
performance is best when k£ = 3. Therefore, considering the
computational cost and annotation accuracy, we use k = 3
as the default in this paper.

The number of samples in the hard sample pool Dyaq.
To explore the impact of the number of hard samples used
for continuous fine-tuning at each stage on the annotation
performance, we perform ablations on the JPP-Sentiment
dataset using GPT-3.5-turbo. We set the sample size 5 to
{500, 1000, 2000, 3000}. As shown in Table 6, we find that
the annotation performance peaks at 5 = 2000, therefore,
we adopt 8 = 2000 as the default hard-sample batch size in
this paper.

Conclusion

In this paper, we propose a new paradigm for multi-model
collaborative annotation and designs a fully automatic an-
notation framework AutoAnnotator based on it. Specifi-
cally, AutoAnnotator consists of a meta-controller layer
and a task-specialist layer. Specifically, the meta-controller
layer is responsible for recommending appropriate anno-
tation SLMs, generating the code required for annotation,
and rechecking difficult samples that cannot be determined
by SLMs. while the task-specialist layer is responsible for
the actual annotation. To enhance the generalization of the
SLMs, we use the difficult samples obtained from the sec-
ond verification of the LLM as a reinforcement learning set,
and periodically send it to the SLMs for continuous fine-
tuning. Extensive experiments demonstrate the effectiveness
of AutoAnnotator on six datasets.
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