
Published as a conference paper at ICLR 2023

EDITING MODELS WITH TASK ARITHMETIC

Gabriel Ilharco∗1 Marco Tulio Ribeiro2 Mitchell Wortsman1 Suchin Gururangan1

Ludwig Schmidt1,3 Hannaneh Hajishirzi1,3 Ali Farhadi1
1University of Washington 2Microsoft Research 3Allen Institute for AI

ABSTRACT

Changing how pre-trained models behave—e.g., improving their performance on a
downstream task or mitigating biases learned during pre-training—is a common
practice when developing machine learning systems. In this work, we propose a
new paradigm for steering the behavior of neural networks, centered around task
vectors. A task vector specifies a direction in the weight space of a pre-trained
model, such that movement in that direction improves performance on the task.
We build task vectors by subtracting the weights of a pre-trained model from the
weights of the same model after fine-tuning on a task. We show that these task
vectors can be modified and combined together through arithmetic operations
such as negation and addition, and the behavior of the resulting model is steered
accordingly. Negating a task vector decreases performance on the target task, with
little change in model behavior on control tasks. Moreover, adding task vectors
together can improve performance on multiple tasks at once. Finally, when tasks are
linked by an analogy relationship of the form “A is to B as C is to D”, combining
task vectors from three of the tasks can improve performance on the fourth, even
when no data from the fourth task is used for training. Overall, our experiments
with several models, modalities and tasks show that task arithmetic is a simple,
efficient and effective way of editing models.

1 INTRODUCTION

Pre-trained models are commonly used as backbones of machine learning systems. In practice,
we often want to edit models after pre-training,1 to improve performance on downstream tasks
[105; 100; 63; 39], mitigate biases or unwanted behavior [85; 59; 82; 71], align models with human
preferences [4; 74; 44; 32], or update models with new information [104; 15; 69; 70].

In this work, we present a new paradigm for editing neural networks based on task vectors, which
encode the information necessary to do well on a given task. Inspired by recent work on weight
interpolation [27; 100; 63; 99; 39; 55; 2; 20], we obtain such vectors by taking the weights of a model
fine-tuned on a task and subtracting the corresponding pre-trained weights (Figure 1a).

We show that we can edit a variety of models with task arithmetic—performing simple arithmetic
operations on task vectors (Figure 1b-d). For example, negating a vector can be used to remove
undesirable behaviors or unlearn tasks, while adding task vectors leads to better multi-task models,
or even improves performance on a single task. Finally, when tasks form an analogy relationship,
task vectors can be combined to improve performance on tasks where data is scarce.

Forgetting via negation. Users can negate task vectors to mitigate undesirable behaviors (e.g.,
toxic generations), or even to forget specific tasks altogether, like OCR. In Section 3, we negate
a task vector from a language model fine-tuned on toxic data [77; 8], reducing the proportion of
generations classified as toxic, with little change in fluency. We also negate task vectors for image
classification tasks, resulting in substantially lower accuracy on the task we wish to forget with little
loss on ImageNet accuracy [16].

∗Correspondence to gamaga@cs.washington.edu.
1We use the term editing to refer to any intervention done to a model done after the pre-training stage.

1

Published as a conference paper at ICLR 2023

Figure 1: An illustration of task vectors and the arithmetic operations we study for editing models.
(a) A task vector is obtained by subtracting the weights of a pre-trained model from the weights of
the same model after fine-tuning (Section 2). (b) Negating a task vector degrades performance on
the task, without substantial changes in control tasks (Section 3). (c) Adding task vectors together
improves the performance of the pre-trained model on the tasks under consideration (Section 4).
(d) When tasks form an analogy relationship such as supervised and unsupervised learning on two
different data sources, it is possible to improve performance on a supervised target task using only
vectors from the remaining three combinations of objectives and datasets (Section 5).

Learning via addition. Adding task vectors results in better multi-task models, or improved perfor-
mance on a single task. In Section 4, we add task vectors from various image models (CLIP, Radford
et al. [78]) and compare the performance of the resulting model with using multiple specialized
fine-tuned models. We find that the single resulting model can be competitive with using multiple
specialized models. Adding two task vectors maintains 98.9% of the accuracy, and the average
performance on the entire set of tasks increases as more task vectors are added. Moreover, adding
a task vector from a different task can improve performance on a target task using text models (T5,
Raffel et al. [79]).

Task analogies. When we can form task analogies of the form “A is to B as C is to D”, combining
task vectors from the first three tasks improves performance on the fourth, even when little or no
training data is available. In Section 5, we show that we can improve domain generalization to a
new target task without using labeled data from that task. More specifically, accuracy on a sentiment
analysis task improves by combining a task vector from a second sentiment analysis dataset and task
vectors produced using unlabeled data from both domains. We also use analogies between classifying
pictures and sketches of objects to improve accuracy on subgroups where little or no data is available.

Overall, editing models with task arithmetic is simple, fast and effective. There is no extra cost at
inference time in terms of memory or compute, since we only do element-wise operations on model
weights. Moreover, vector operations are cheap, allowing users to experiment quickly with multiple
task vectors. With task arithmetic, practitioners can reuse or transfer knowledge from models they
create, or from the multitude of publicly available models all without requiring access to data or
additional training.2

2 TASK VECTORS

For our purposes, a task is instantiated by a dataset and a loss function used for fine-tuning. Let
θpre ∈ Rd be the weights of a pre-trained model, and θtft ∈ Rd the corresponding weights after
fine-tuning on task t. The task vector τt ∈ Rd is given by the element-wise difference between θtft
and θpre, i.e., τt = θtft − θpre. When the task is clear from context, we omit the identifier t, referring to
the task vector simply as τ .

Task vectors can be applied to any model parameters θ from the same architecture, via element-wise
addition, with an optional scaling term λ, such that the resulting model has weights θnew = θ + λτ .
In our experiments, the scaling term is determined using held-out validation sets. Note that adding a
single task vector to a pre-trained model with λ = 1 results in the model fine-tuned on that task.

2Code available at https://github.com/mlfoundations/task_vectors.

2

https://github.com/mlfoundations/task_vectors

Published as a conference paper at ICLR 2023

Following Ilharco et al. [39], we focus on open-ended models, where it is possible to fine-tune on
a downstream task without introducing new parameters (e.g., open-vocabulary image classifiers
[78; 42; 76; 3] and text-to-text models [79; 77; 9; 38]). In cases where fine-tuning introduces new
parameters (e.g., a new classification head), we could follow Matena & Raffel [63] and merge only
the shared weights, but this exploration is left for future work.

Editing models with task arithmetic. We focus on three arithmetic expressions over task vectors,
as illustrated in Figure 1: negating a task vector, adding task vectors together, and combining task
vectors to form analogies. All operations are applied element-wise to the weight vectors.

When negating a task vector τ , applying the resulting vector τnew = −τ corresponds to extrapolating
between the fine-tuned model and the pre-trained model. The resulting model is worse at the target
task, with little change in performance on control tasks (Section 3). Adding two or more task vectors
τi yields τnew =

∑
i τi, and results in a multi-task model proficient in all tasks, sometimes even

with gains over models fine-tuned on individual tasks (Section 4). Finally, when tasks A, B, C and
D form an analogy in the form “A is to B as C is to D”, the task vector τnew = τC + (τB − τA)
improves performance on task D, even if there is little or no data for that task (Section 5).

For all operations, the model weights obtained by applying τnew are given by θnew = θ+λτnew, where
the scaling term λ is determined using held-out validation sets.

3 FORGETTING VIA NEGATION

In this section, we show that negating a task vector is an effective way to reduce its performance on a
target task, without substantially hurting performance elsewhere. Forgetting or “unlearning” can help
mitigate undesired biases learned when pre-training; forgetting tasks altogether may be desirable to
comply with regulations or for ethical reasons like preventing an image classifier to recognize faces,
or to “read” personal information via OCR.

These interventions should not have a substantial effect on how models behave when processing data
outside the scope of the edit [69; 39]. Accordingly, we measure accuracy on control tasks, in addition
to evaluating on the target tasks from which the task vector originated. Our experiments showcase
the effectiveness of negating task vectors for editing image classification and text generation models.

3.1 IMAGE CLASSIFICATION

For image classification, we use CLIP models [78] and task vectors from eight tasks studied by
Ilharco et al. [39]; Radford et al. [78], ranging from satellite imagery recognition to classifying traffic
signs: Cars [47], DTD [12], EuroSAT [36], GTSRB [87], MNIST [51], RESISC45 [10], SUN397
[101], and SVHN [72]. We explore additional tasks including OCR and person identification in
Appendix B. For the control task, we use ImageNet [16]. We generate task vectors by fine-tuning on
each of the target tasks, as detailed in Appendix B.1.

We compare against two additional baselines, fine-tuning by moving in the direction of increasing
loss (i.e., with gradient ascent), as in Golatkar et al. [34]; Tarun et al. [90], and against using a random
vector where each layer has the same magnitude as the corresponding layer of task vector. Additional
details are in Appendix B.2.

As shown in Table 1, negating the task vectors is the most effective editing strategy for decreasing
accuracy on the target task with little impact on the control task. For example, negative task vectors
decrease the average target accuracy of ViT-L/14 by 45.8 percentage points with little change in
accuracy on the control task. In contrast, using a random vector does not have much impact on target
accuracy, while fine-tuning with gradient ascent severely deteriorates performance on control tasks.
We present additional results in Appendix B.

3.2 TEXT GENERATION

We study whether we can mitigate a particular model behavior by negating a task vector trained
to do that behavior. In particular, we aim to reduce the amount of toxic generations produced by
GPT-2 models of various sizes [77]. We generate task vectors by fine-tuning on data from Civil

3

Published as a conference paper at ICLR 2023

Table 1: Forgetting image classification tasks via negation. Results are shown for CLIP models,
reporting average accuracy (%) on the eight target tasks we wish to forget (Cars, DTD, EuroSAT,
GTSRB, MNIST, RESISC45, SUN397 and SVHN), and the control task (ImageNet). Negating task
vectors reduce the accuracy of a pre-trained ViT-L/14 by 45.8 percentage points on the target tasks,
with little loss on the control task. Additional details and results are shown in Appendix B.

Method ViT-B/32 ViT-B/16 ViT-L/14
Target (↓) Control (↑) Target (↓) Control (↑) Target (↓) Control (↑)

Pre-trained 48.3 63.4 55.2 68.3 64.8 75.5

Fine-tuned 90.2 48.2 92.5 58.3 94.0 72.6
Gradient ascent 2.73 0.25 1.93 0.68 3.93 16.3
Random vector 45.7 61.5 53.1 66.0 60.9 72.9

Negative task vector 24.0 60.9 21.3 65.4 19.0 72.9

Table 2: Making language models less toxic with negative task vectors. Results are shown for the
GPT-2 Large model. Negative task vectors decrease the amount of toxic generations by 6×, while
resulting in a model with comparable perplexity on a control task (WikiText-103). Additional details
and results are shown in Appendix C.

Method % toxic generations (↓) Avg. toxicity score (↓) WikiText-103 perplexity (↓)

Pre-trained 4.8 0.06 16.4

Fine-tuned 57 0.56 16.6
Gradient ascent 0.0 0.45 >1010

Fine-tuned on non-toxic 1.8 0.03 17.2
Random vector 4.8 0.06 16.4

Negative task vector 0.8 0.01 16.9

Comments [8] where the toxicity score is higher than 0.8, and then negating such task vectors. As in
Section 3.1, we also compare against baselines that use gradient ascent when fine-tuning [34; 90],
and using a random task vector of the same magnitude. Additionally, we compare against fine-tuning
on non-toxic samples from Civil Comments (toxicity scores smaller than 0.2), similar to Liu et al.
[57]. We measure the toxicity of one thousand model generations with Detoxify [35]. For the control
task, we measure the perplexity of the language models on WikiText-103 [66].

As shown in Table 2, editing with negative task vectors is effective, reducing the amount of generations
classified as toxic from 4.8% to 0.8%, while maintaining perplexity on the control task within 0.5
points of the pre-trained model. In contrast, fine-tuning with gradient ascent lowers toxic generations
by degrading performance on the control task to an unacceptable level, while fine-tuning on non-toxic
data is worse than task vectors both in reducing task generations and on the control task. As an
experimental control, adding a random vector has little impact either on toxic generations or perplexity
on WikiText-103. We present additional experimental details and results in Appendix C.

4 LEARNING VIA ADDITION

We now turn our attention to adding task vectors, either to build multi-task models that are proficient
on multiple tasks simultaneously, or to improve single-task performance. This operation allows us to
reuse and transfer knowledge either from in-house models, or from the multitude of publicly available
fine-tuned models, without additional training or access to training data. We explore addition on
various image classification and natural language processing tasks.

4.1 IMAGE CLASSIFICATION

We start with the same eight models used in Section 3, fine-tuned on a diverse set of image classifica-
tion tasks (Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397 and SVHN). In Figure 2, we

4

Published as a conference paper at ICLR 2023

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Normalized accuracy on Task 1

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
ize

d
ac

cu
ra

cy
 o

n
Ta

sk
 2 Cars, DTD

Cars, EuroSAT
Cars, GTSRB
Cars, MNIST
Cars, RESISC45
Cars, SUN397
Cars, SVHN
DTD, EuroSAT
DTD, GTSRB
DTD, MNIST
DTD, RESISC45
DTD, SUN397
DTD, SVHN
EuroSAT, GTSRB
EuroSAT, MNIST

EuroSAT, RESISC45
EuroSAT, SUN397
EuroSAT, SVHN
GTSRB, MNIST
GTSRB, RESISC45
GTSRB, SUN397
GTSRB, SVHN
MNIST, RESISC45
MNIST, SUN397
MNIST, SVHN
RESISC45, SUN397
RESISC45, SVHN
SUN397, SVHN
Average zero-shot
Average fine-tuned

0.96 0.98 1.000.95

0.96

0.97

0.98

0.99

1.00

1.01

Figure 2: Adding pairs of task vectors from image classification tasks. Adding task vectors from
two tasks improves accuracy on both, resulting in a single model that is competitive with using two
specialized fine-tuned models.

0 1 2 3 4 5 6 7 8
Number of task vectors

0.70

0.75

0.80

0.85

0.90

Av
er

ag
e

no
rm

al
ize

d
ac

cu
ra

cy

Figure 3: Adding task vectors builds
multi-task models for image classification
tasks. Accuracy is averaged over all down-
stream tasks. When more task vectors are
available, better multi-task vectors can be
built. Each point represents an experiment
with a subset of the eight tasks we study,
and the solid line connects the average per-
formance for each subset size. Recall that
the average normalized accuracy of using
multiple fine-tuned models is always one.
Additional details and experiments are in
Appendix D.

show the accuracy obtained by adding all pairs of task vectors from these tasks. To account for the
difference in difficulty of the tasks, we normalize accuracy on each task by the accuracy of the model
fine-tuned on that task. After normalizing, the performance of fine-tuned models on their respective
tasks is one, and so the average performance of using multiple specialized models is also one. As
shown in Figure 2, adding pairs of task vectors leads to a single model that outperforms the zero-shot
model by a large margin, and is competitive with using two specialized models (98.9% normalized
accuracy on average).

Beyond pairs of tasks, we explore adding task vectors for all possible subsets of the tasks (28 in
total). In Figure 3, we show how the normalized accuracy of the resulting models, averaged over
all the eight tasks. As the number of available task vectors increases, better multi-task models can
be produced. When all task vectors are available, the best model produced by adding task vectors
reaches an average performance of 91.2%, despite compressing several models into one. Additional
experiments and details are presented in Appendix D.

4.2 NATURAL LANGUAGE PROCESSING

In addition to building multi-task models, we explore whether adding task vectors is a useful way of
improving performance on a single target task. Towards this goal, we first fine-tune T5-base models
on four tasks from the GLUE benchmark [93], as in Wortsman et al. [99]. Then, we search for
compatible checkpoints on Hugging Face Hub, finding 427 candidates in total. We try adding each of
the corresponding task vectors to our fine-tuned models, choosing the best checkpoint and scaling
coefficient based on held-out validation data. As shown in Table 3, adding task vectors can improve
performance on target tasks, compared to fine-tuning. Additional details and experiments—including
building multi-task models from public checkpoints from Hugging Face Hub—are presented in
Appendix D.

5

Published as a conference paper at ICLR 2023

Table 3: Improving performance on target tasks with external task vectors. For four text
classification tasks from the GLUE benchmark, adding task vectors downloaded from the Hugging
Face Hub can improve accuracy of fine-tuned T5 models. Appendix D.6 shows additional details.

Method MRPC RTE CoLA SST-2 Average

Zero-shot 74.8 52.7 8.29 92.7 57.1
Fine-tuned 88.5 77.3 52.3 94.5 78.1
Fine-tuned + task vectors 89.3 (+0.8) 77.5 (+0.2) 53.0 (+0.7) 94.7 (+0.2) 78.6 (+0.5)

Table 4: Improving domain generalization with task analogies. Using an auxiliary task for which
labeled data is available and unlabeled data from both the auxiliary and the target datasets, task
analogies improve the accuracy for multiple T5 models and two sentiment analysis target tasks
[102; 65], without using any labeled data from the target tasks.

target = Yelp target = Amazon

Method T5-small T5-base T5-large T5-small T5-base T5-large

Fine-tuned on auxiliary 88.6 92.3 95.0 87.9 90.8 94.8
Task analogies 89.9 93.0 95.1 89.0 92.7 95.2
Fine-tuned on target 91.1 93.4 95.5 90.2 93.2 95.5

5 TASK ANALOGIES

In this section, we explore task analogies in the form “A is to B as C is to D”, and show that task
arithmetic using vectors from the first three tasks improves performance on task D even if little or
not data for that task is available.

Domain generalization. For many target tasks, gathering unlabeled data is easier and cheaper
than collecting human annotations. When labeled data for a target task is not available, we can
use task analogies to improve accuracy on the target task, using an auxiliary task for which there
is labeled data and an unsupervised learning objective. For example, consider the target task of
sentiment analysis using data from Yelp [102]. Using task analogies, we can construct a task vector
τ̂yelp; sent = τamazon; sent +(τyelp; lm − τamazon; lm), where τamazon; sent is obtained by fine-tuning on labeled
data from an auxiliary task (sentiment analysis using data from Amazon; McAuley & Leskovec [65]),
and τyelp; lm and τamazon; lm are task vectors obtained via (unsupervised) language modeling on the
inputs from both datasets.

In Table 4, we show that using such task analogies improves accuracy of T5 models at multiple scales,
both for Amazon and Yelp binary sentiment analysis as target tasks. We empirically found that giving
a higher weight to the sentiment analysis task vector led to higher accuracy, and we thus used two
independent scaling coefficients for these experiments—one for the sentiment analysis task vector
and one for both the language modeling task vectors. More details are presented in Appendix E.1.
Using task vectors outperforms fine-tuning on the remaining auxiliary sentiment analysis task for all
models and datasets, approaching the performance of fine-tuning on the target task.

Subpopulations with little data. There is often some inherent scarcity in certain data
subpopulations—for example, images of lions in indoor settings are more rare, compared to li-
ons in outdoor settings or dogs in general (indoor or outdoors). Whenever such subpopulations
admit analogies to others with more abundant data (as in this case), we can apply task analogies, e.g.,
τ̂lion indoors = τlion outdoors + (τdog indoors − τdog outdoor).

We explore this scenario by creating four subpopulations, using 125 overlapping classes between
ImageNet and a dataset of human sketches [22]. We split these classes in two subsets of roughly
equal size, creating four subpopulations A, B, C and D, where the pairs (A,C) and (B,D) share
the same classes, and (A,B) and (C,D) share the same style (photo-realistic images or sketches).
Although these subpopulations have many classes in our experiments, we use the simplified subsets

6

Published as a conference paper at ICLR 2023

0 50 100 150 200 250
Number of training samples

0.83

0.84

0.85

0.86

0.87

0.88

Av
er

ag
e

ac
cu

ra
cy

With task vectors
Without task vectors

Figure 4: Learning about subpopulations
via analogy. Combining task vectors from
related subpopulations improves accuracy
on the target subpopulation, when little or
no data from the target supopulation is avail-
able. Accuracy is averaged over the four
target subpopulations and three CLIP mod-
els. Additional details are in Appendix E.3.

Cars DTD

Eu
roS

AT
GTS

RB
KIT

TI
MNIST

RES
ISC

45

SU
N39

7
SV

HN

Cars

DTD

EuroSAT

GTSRB

KITTI

MNIST

RESISC45

SUN397

SVHN

1.00 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01

0.02 1.00 0.02 0.02 0.01 0.02 0.02 0.02 0.01

0.01 0.02 1.00 0.02 0.01 0.02 0.05 0.02 0.02

0.02 0.02 0.02 1.00 0.01 0.06 0.02 0.02 0.06

0.01 0.01 0.01 0.01 1.00 0.01 0.02 0.02 0.01

0.01 0.02 0.02 0.06 0.01 1.00 0.02 0.01 0.18

0.01 0.02 0.05 0.02 0.02 0.02 1.00 0.03 0.01

0.02 0.02 0.02 0.02 0.02 0.01 0.03 1.00 0.01

0.01 0.01 0.02 0.06 0.01 0.18 0.01 0.01 1.00

Cosine similarity between task vectors Figure 5: Task vectors are typically close
to orthogonal. The plot shows the co-
sine similarities between vectors for differ-
ent tasks, using CLIP. The largest deviations
from orthogonality are found when tasks
are similar to each other, for instance, for
MNIST, SVHN and GTSRB—where recog-
nizing digits is either the task itself (MNIST
and SVHN), or a capability needed to solve
the task (GTSRB, where the task is traffic
sign recognition)—and EuroSAT and RE-
SISC45, two satellite imagery recognition
datasets.

“real dog”, “real lion”, “sketch dog” and “sketch lion” as a running example. We present more details
and samples in Appendix E.3.

Given a target subpopulation, we create task vectors by fine-tuning three models independently
on the remaining subpopulations, and then combine them via task arithmetic, e.g., τ̂sketch lion =
τsketch dog + (τreal lion − τreal dog) for the target subpopulation “sketch lion”. We show the results in
Figure 4, averaged over the four target subpopulations. Compared to the pre-trained model, task
vectors improve accuracy by 3.4 percentage points on average. Moreover, when some data from the
target subpopulation is available for fine-tuning, starting from the edited model leads to consistently
higher accuracy than starting from the pre-trained model. The gains from analogies alone (with no
additional data) are roughly the same as that of collecting and annotating around one hundred training
samples for the target subpopulation.

Kings and queens. We explore whether an image classifier can learn a new categories (e.g., “king”)
using data from three related classes that form an analogy relationship (e.g., “queen”, “man” and
“woman”). Our results are presented in Appendix E.2, showing that task analogies yield large gains in
accuracy over pre-trained models on the new target category, despite having no training data for it.

6 DISCUSSION

In this section, we provide further insight into previous results by exploring the similarity between
task vectors for different tasks, as well as the impact of different learning rates and random seeds.
Additional analysis are presented in Appendix A, including discussions on the connection between
ensembles and weight averaging. We conclude by discussing some limitations of our approach.

Similarity between task vectors. In Figure 5, we explore the cosine similarity between task vectors
for different tasks, in an effort to understand how multiple models can be collapsed into a single
multi-task model via addition (Section 4). We observe that vectors from different tasks are typically
close to orthogonal, and speculate that this enables the combination of task vectors via addition with
minimal interference. We also observe higher cosine similarities when tasks are semantically similar
to each other. For example, the largest cosine similarities in Figure 5 (left) are between MNIST,
SVHN and GTSRB, where recognizing digits is essential for the tasks, and between EuroSAT and
RESISC45, which are both satellite imagery recognition datasets. This similarity in “task space”
could help explain some results in Ilharco et al. [39], where interpolating the weights of a model

7

Published as a conference paper at ICLR 2023

Multiple fine-tuning models
Task vectors (single model)
Pre-trained model

10 5 10 4 10 3

Learning rate (log scale)
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

ac
cu

ra
cy

The impact of learning rate Figure 6: The impact of learning rate
when fine-tuning. When adding task
vectors from CLIP ViT-L/14 models fine-
tuned on MNIST and EuroSAT, lower
learning rates make the best use of the
fine-tuned models, and also correspond
to the highest accuracies of the fine-tuned
models on the target task.

500 1000 1500 2000
Number of training steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
s.

sim
. b

et
we

en
 in

te
rm

ed
ia

te
 a

nd
 fi

na
l t

as
k

ve
ct

or
s

Cosine similarity of
intermediate task vectors

MNIST
EuroSAT

0 500 1000 1500 2000
Number of training steps

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy of added
intermediate task vectors

MNIST
EuroSAT

Figure 7: How task vectors evolve throughout fine-tuning. Left: the cosine similarity between the
final task vector and task vectors produced at intermediate points during fine-tuning. Right: Accuracy
obtained by adding intermediate task vectors from MNIST and EuroSAT. Adding intermediate task
vectors can lead to high accuracy, despite fine-tuning for substantially fewer steps.

fine-tuned on one task and the pre-trained model weights—in our terminology, applying a single
task vector—sometimes improves accuracy on a different task for which no data is available (e.g.,
applying the MNIST task vector improves accuracy on SVHN).

The impact of the learning rate. In Figure 6, we observe that increasing the learning rate degrades
accuracy both when using task vectors and when fine-tuning individual models, but the decrease
is more gradual for individual models. These findings align with those of [99], who observed that
accuracy decreases on the linear path between two fine-tuned models when using a larger learning
rate. Thus, while larger learning rates may be acceptable when fine-tuning individual models, we
recommend more caution when using task vectors. Further, we hypothesize that larger learning rates
may explain some of the variance when adding vectors from natural language processing tasks, where
we take models fine-tuned by others in the community.

The evolution of task vectors throughout fine-tuning. In Figure 7, we show how task vectors
evolve throughout fine-tuning. Intermediate task vectors converge rapidly to the direction of the
final task vector obtained at the end of fine-tuning. Moreover, the accuracy of the model obtained
by adding intermediate task vectors from two image classification tasks saturates after just a few
hundred steps. These results suggest that using intermediate task vectors can be a useful way of
saving compute with little harm in accuracy.

Limitations. Task vectors are restricted to models with the same architecture, since they depend on
element-wise operations on model weights. Further, in all of our experiments we perform arithmetic
operations only on models fine-tuned from the same pre-trained initialization, although emerging
work shows promise in relaxing this assumption [2]. We also note that some architectures are very
popular, and have “standard” initializations—e.g., at the time of writing there are over 3,000 models
on Hugging Face Hub fine-tuned from the same BERT-base initialization [17], and over 800 models
fine-tuned from the same T5-small initialization.

7 RELATED WORK

The loss landscape and interpolating weights. The geometry of neural network loss surfaces
has attracted the interest of several authors in recent years [54; 28; 21; 48; 25; 13; 98; 7; 23; 55; 60].

8

Published as a conference paper at ICLR 2023

Despite neural networks being non-linear, previous work has empirically found that interpolations
between the weights of two neural networks can maintain their high accuracy, provided these two
neural networks share part of their optimization trajectory [27; 40; 73; 26; 99; 11; 39].

In the context of fine-tuning, accuracy increases steadily when gradually moving the weights of
a pre-trained model in the direction of its fine-tuned counterpart [100; 63; 39]. Beyond a single
task, Matena & Raffel [63]; Ilharco et al. [39] found that when multiple models are fine-tuned on
different tasks from the same initialization, averaging their weights can improve accuracy on the
fine-tuning tasks. Similar results were found by Li et al. [55] when averaging the parameters of
language models fine-tuned on various domains. Choshen et al. [11] showed that “fusing” fine-tuned
models by averaging their weights creates a better starting point for fine-tuning on a new downstream
task. Wortsman et al. [99] found that averaging the weights of models fine-tuned on multiple tasks
can increase accuracy on a new downstream task, without any further training. These findings are
aligned with results shown in Section 4. In this work, we go beyond interpolating between models,
examining extrapolating between models and additional ways of combining them (Sections 3 and 5).

Model interventions. Considering that re-training models is prohibitively expensive in most
circumstances, several authors have studied more efficient methods for modifying a model’s behavior
with interventions after pre-training, referring to this process by different names, such as patching
[33; 89; 39; 71], editing [85; 69; 70], aligning [74; 4; 44; 32], or debugging [82; 30]. In contrast to
previous literature, our work provides a unique way of editing models, where capabilities can be
added or deleted in a modular and efficient manner by re-using fine-tuned models. Closer to our
work is that of Subramani et al. [88], who explore steering language models with vectors added to its
hidden states. In contrast, our work applies vectors in the weight space of pre-trained models and
does not modify the standard fine-tuning procedure.

Task embeddings. Achille et al. [1]; Vu et al. [91; 92], inter alia, explored strategies for representing
tasks with continuous embeddings, in order to to predict task similarities and transferability, or to
create taxonomic relations. While the task vectors we build could be used for such purposes, our main
goal is to use them as tools for steering the behavior of pre-trained models. Additionally, Lampinen
& McClelland [50] propose a framework for adapting models based on relationships between tasks.
In contrast to their work, our framework uses only linear combinations of model weights.

8 CONCLUSION

In this paper we introduce a new paradigm for editing models based on arithmetic operations over
task vectors. For various vision and NLP models, adding multiple specialized task vectors results in a
single model that performs well on all target tasks, or even improves performance on a single task.
Negating task vectors allows users to remove undesirable behaviors, e.g., toxic generations, or even
forget specific tasks altogether, while retaining performance everywhere else. Finally, task analogies
leverage existing data to improve performance on domains or subpopulations where data is scarce.

Arithmetic operations over task vectors only involve adding or subtracting model weights, and
thus are efficient to compute, especially when compared to alternatives that involve additional fine-
tuning. Thus, users can easily experiment with various model edits, recycling and transferring
knowledge from large collections of publicly available fine-tuned models. Since these operations
result in a single model of the same size, they incur no extra inference cost. Our code is available at
https://github.com/mlfoundations/task_vectors.

ACKNOWLEDGEMENTS

We thank Alex Fang, Ari Holtzman, Colin Raffel, Dhruba Ghosh, Jesse Dodge, Margaret Li, Ofir
Press, Sam Ainsworth, Sarah Pratt, Stephen Mussmann, Tim Dettmers, and Vivek Ramanujan for
helpful discussion and comments on the paper. This work is in part supported by the NSF AI Institute
for Foundations of Machine Learning (IFML), Open Philanthropy, NSF IIS 1652052, NSF IIS
17303166, NSF IIS 2044660, ONR N00014-18-1-2826, ONR MURI N00014- 18-1-2670, DARPA
N66001-19-2-4031, DARPA W911NF-15-1-0543, the Sloan Fellowship and gifts from AI2.

9

https://github.com/mlfoundations/task_vectors

Published as a conference paper at ICLR 2023

REFERENCES

[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji,
Charless C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for
meta-learning. In International Conference on Computer Vision (ICCV), 2019. https:
//arxiv.org/abs/1902.03545.

[2] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging mod-
els modulo permutation symmetries, 2022. https://arxiv.org/abs/2209.04836.

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning, 2022. https://arxiv.org/abs/2204.14198.

[4] Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy
Jones, Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a
laboratory for alignment, 2021. https://arxiv.org/abs/2112.00861.

[5] Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini,
and Idan Szpektor. The second pascal recognising textual entailment challenge. In II PASCAL
challenge, 2006.

[6] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009. https://cris.fbk.eu/handle/11582/
5351.

[7] Gregory Benton, Wesley Maddox, Sanae Lotfi, and Andrew Gordon Gordon Wilson. Loss sur-
face simplexes for mode connecting volumes and fast ensembling. In International Conference
on Machine Learning (ICML), 2021. https://arxiv.org/abs/2102.13042.

[8] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion
Proceedings of the 2019 World Wide Web Conference, 2019. https://arxiv.org/abs/
1903.04561.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems (NeurIPS), 2020.
https://arxiv.org/abs/2005.14165.

[10] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification:
Benchmark and state of the art. Proceedings of the Institute of Electrical and Electronics En-
gineers (IEEE), 2017. https://ieeexplore.ieee.org/abstract/document/
7891544.

[11] Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for
better pretraining, 2022. https://arxiv.org/abs/2204.03044.

[12] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2014. https://openaccess.thecvf.com/content_cvpr_2014/
html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html.

[13] Wojciech Marian Czarnecki, Simon Osindero, Razvan Pascanu, and Max Jaderberg. A
deep neural network’s loss surface contains every low-dimensional pattern, 2019. https:
//arxiv.org/abs/1912.07559.

[14] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, 2005. https://link.springer.
com/chapter/10.1007/11736790_9.

10

https://arxiv.org/abs/1902.03545
https://arxiv.org/abs/1902.03545
https://arxiv.org/abs/2209.04836
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2112.00861
https://cris.fbk.eu/handle/11582/5351
https://cris.fbk.eu/handle/11582/5351
https://arxiv.org/abs/2102.13042
https://arxiv.org/abs/1903.04561
https://arxiv.org/abs/1903.04561
https://arxiv.org/abs/2005.14165
https://ieeexplore.ieee.org/abstract/document/7891544
https://ieeexplore.ieee.org/abstract/document/7891544
https://arxiv.org/abs/2204.03044
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://openaccess.thecvf.com/content_cvpr_2014/html/Cimpoi_Describing_Textures_in_2014_CVPR_paper.html
https://arxiv.org/abs/1912.07559
https://arxiv.org/abs/1912.07559
https://link.springer.com/chapter/10.1007/11736790_9
https://link.springer.com/chapter/10.1007/11736790_9

Published as a conference paper at ICLR 2023

[15] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021. https:
//arxiv.org/abs/2104.08164.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2009. https://ieeexplore.ieee.org/abstract/document/
5206848.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2019. https:
//aclanthology.org/N19-1423.

[18] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah
Smith. Fine-tuning pretrained language models: Weight initializations, data orders, and early
stopping, 2020. https://arxiv.org/abs/2002.06305/.

[19] William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-
phrases. In International Workshop on Paraphrasing, 2005. https://aclanthology.
org/I05-5002.

[20] Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem
Choshen. Cold fusion: Collaborative descent for distributed multitask finetuning, 2022.
https://arxiv.org/abs/2212.01378.

[21] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In International Conference on Machine Learning
(ICML), 2018. https://arxiv.org/abs/1803.00885.

[22] Mathias Eitz, James Hays, and Marc Alexa. How do humans sketch objects? ACM Trans-
actions on graphics (TOG), 2012. https://dl.acm.org/doi/10.1145/2185520.
2185540.

[23] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations (ICLR), 2022. https://arxiv.org/abs/2110.06296.

[24] Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R. Radev. Multi-news: a
large-scale multi-document summarization dataset and abstractive hierarchical model, 2019.
https://arxiv.org/abs/1906.01749.

[25] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape
perspective, 2019. https://arxiv.org/abs/1912.02757.

[26] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M
Roy, and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss
landscape geometry and the time evolution of the neural tangent kernel. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. https://arxiv.org/abs/2010.
15110.

[27] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In International Conference on Machine
Learning (ICML), 2020. https://proceedings.mlr.press/v119/frankle20a.
html.

[28] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon
Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural
Information Processing Systems (NeurIPS), 2018. https://arxiv.org/abs/1802.
10026.

11

https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2104.08164
https://ieeexplore.ieee.org/abstract/document/5206848
https://ieeexplore.ieee.org/abstract/document/5206848
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2002.06305/
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://arxiv.org/abs/2212.01378
https://arxiv.org/abs/1803.00885
https://dl.acm.org/doi/10.1145/2185520.2185540
https://dl.acm.org/doi/10.1145/2185520.2185540
https://arxiv.org/abs/2110.06296
https://arxiv.org/abs/1906.01749
https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/2010.15110
https://arxiv.org/abs/2010.15110
https://proceedings.mlr.press/v119/frankle20a.html
https://proceedings.mlr.press/v119/frankle20a.html
https://arxiv.org/abs/1802.10026
https://arxiv.org/abs/1802.10026

Published as a conference paper at ICLR 2023

[29] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Re-
alToxicityPrompts: Evaluating neural toxic degeneration in language models. In Find-
ings of the Association for Computational Linguistics: EMNLP 2020, 2020. https:
//aclanthology.org/2020.findings-emnlp.301.

[30] Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir,
and Yoav Goldberg. Lm-debugger: An interactive tool for inspection and intervention in
transformer-based language models, 2022. https://arxiv.org/abs/2204.12130.

[31] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recog-
nizing textual entailment challenge. In ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, 2007. https://aclanthology.org/W07-1401/.

[32] Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth
Dathathri, Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona
Mokra, Nicholas Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William
Isaac, John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geof-
frey Irving. Improving alignment of dialogue agents via targeted human judgements, 2022.
https://www.deepmind.com/blog/building-safer-dialogue-agents.

[33] Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. Model patching: Closing the sub-
group performance gap with data augmentation, 2020. https://arxiv.org/abs/2008.
06775.

[34] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless
net: Selective forgetting in deep networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. https://arxiv.org/abs/1911.04933.

[35] Laura Hanu and Unitary team. Detoxify, 2020. https://github.com/unitaryai/
detoxify.

[36] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classification. Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, 2019. https://
arxiv.org/abs/1709.00029.

[37] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural
adversarial examples. In Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[38] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models, 2022. https://arxiv.org/abs/
2203.15556.

[39] Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi,
Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by
interpolating weights. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
https://arXiv.org/abs/2208.05592.

[40] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Conference
on Uncertainty in Artificial Intelligence (UAI), 2018. https://arxiv.org/abs/1803.
05407.

[41] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2018. https://arxiv.org/abs/1806.07572.

12

https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://arxiv.org/abs/2204.12130
https://aclanthology.org/W07-1401/
https://www.deepmind.com/blog/building-safer-dialogue-agents
https://arxiv.org/abs/2008.06775
https://arxiv.org/abs/2008.06775
https://arxiv.org/abs/1911.04933
https://github.com/unitaryai/detoxify
https://github.com/unitaryai/detoxify
https://arxiv.org/abs/1709.00029
https://arxiv.org/abs/1709.00029
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arXiv.org/abs/2208.05592
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/1806.07572

Published as a conference paper at ICLR 2023

[42] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V Le,
Yunhsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International Conference on Machine Learning
(ICML), 2021. https://arxiv.org/abs/2102.05918.

[43] Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear
connectivity reveals generalization strategies, 2022. https://arxiv.org/abs/2205.
12411/.

[44] Atoosa Kasirzadeh and Iason Gabriel. In conversation with artificial intelligence: aligning
language models with human values, 2022. https://arxiv.org/abs/2209.00731.

[45] Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark,
and Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system.
In Findings of the Association for Computational Linguistics (EMNLP), 2020. https:
//aclanthology.org/2020.findings-emnlp.171.

[46] Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A
dataset for question answering via sentence composition, 2020. https://arxiv.org/
abs/1910.11473v2.

[47] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In International Conference on Computer Vision Workshops (ICML),
2013. https://www.cv-foundation.org/openaccess/content_iccv_
workshops_2013/W19/html/Krause_3D_Object_Representations_
2013_ICCV_paper.html.

[48] Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, and
Sanjeev Arora. Explaining landscape connectivity of low-cost solutions for multilayer nets.
Advances in Neural Information Processing Systems (NeurIPS), 2019. https://arxiv.
org/abs/1906.06247.

[49] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-
scale ReAding comprehension dataset from examinations. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2017. https://aclanthology.
org/D17-1082.

[50] Andrew K Lampinen and James L McClelland. Transforming task representations to perform
novel tasks. Proceedings of the National Academy of Sciences, 2020.

[51] Yann LeCun. The mnist database of handwritten digits, 1998. http://yann.lecun.
com/exdb/mnist/.

[52] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243.
URL https://aclanthology.org/2021.emnlp-main.243.

[53] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von
Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison,
Mario Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor
Sanh, Canwen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger,
Clément Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault
Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets:
A community library for natural language processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 175–184,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-demo.21. URL https://aclanthology.
org/2021.emnlp-demo.21.

13

https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2205.12411/
https://arxiv.org/abs/2205.12411/
https://arxiv.org/abs/2209.00731
https://aclanthology.org/2020.findings-emnlp.171
https://aclanthology.org/2020.findings-emnlp.171
https://arxiv.org/abs/1910.11473v2
https://arxiv.org/abs/1910.11473v2
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_workshops_2013/W19/html/Krause_3D_Object_Representations_2013_ICCV_paper.html
https://arxiv.org/abs/1906.06247
https://arxiv.org/abs/1906.06247
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21

Published as a conference paper at ICLR 2023

[54] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in Neural Information Processing Systems (NeurIPS),
2018. https://arxiv.org/abs/1712.09913.

[55] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models, 2022. https://arxiv.org/abs/2208.03306.

[56] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi,
and Xiang Ren. CommonGen: A constrained text generation challenge for generative com-
monsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP,
2020. https://www.aclweb.org/anthology/2020.findings-emnlp.165.

[57] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. DExperts: Decoding-time controlled text generation with experts and
anti-experts. In Annual Meeting of the Association for Computational Linguistics (ACL), 2021.
https://aclanthology.org/2021.acl-long.522.

[58] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

[59] Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj
Ammanabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning,
2022. https://arxiv.org/abs/2205.13636.

[60] Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka.
Mechanistic mode connectivity, 2022. https://arxiv.org/abs/2211.08422.

[61] James Lucas, Juhan Bae, Michael R Zhang, Stanislav Fort, Richard Zemel, and Roger Grosse.
Analyzing monotonic linear interpolation in neural network loss landscapes, 2021. https:
//arxiv.org/abs/2104.11044.

[62] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Annual Meeting of the Association
for Computational Linguistics (ACL), 2011. http://www.aclweb.org/anthology/
P11-1015.

[63] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In
Advances in Neural Information Processing Systems (NeurIPS), 2021. https://arxiv.
org/abs/2111.09832.

[64] Brian W Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975. https://www.
sciencedirect.com/science/article/abs/pii/0005279575901099.

[65] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. In ACM Conference on Recommender Systems, 2013. https:
//dl.acm.org/doi/10.1145/2507157.2507163.

[66] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. https://arxiv.org/abs/1609.07843.

[67] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learn-
ing to learn in context. In Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL), 2022. https://aclanthology.org/2022.
naacl-main.201.

[68] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), 2022. https://aclanthology.org/2022.
acl-long.244.

14

https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/2208.03306
https://www.aclweb.org/anthology/2020.findings-emnlp.165
https://aclanthology.org/2021.acl-long.522
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2205.13636
https://arxiv.org/abs/2211.08422
https://arxiv.org/abs/2104.11044
https://arxiv.org/abs/2104.11044
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2111.09832
https://www.sciencedirect.com/science/article/abs/pii/0005279575901099
https://www.sciencedirect.com/science/article/abs/pii/0005279575901099
https://dl.acm.org/doi/10.1145/2507157.2507163
https://dl.acm.org/doi/10.1145/2507157.2507163
https://arxiv.org/abs/1609.07843
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.acl-long.244
https://aclanthology.org/2022.acl-long.244

Published as a conference paper at ICLR 2023

[69] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations (ICLR), 2021.
https://arxiv.org/abs/2110.11309.

[70] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning,
2022. https://arxiv.org/abs/2206.06520.

[71] Shikhar Murty, Christopher D Manning, Scott Lundberg, and Marco Tulio Ribeiro. Fixing
model bugs with natural language patches. In ACL Workshop on Learning with Natural Lan-
guage Supervision, 2022. https://openreview.net/forum?id=blJrg3WvvDV.

[72] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Read-
ing digits in natural images with unsupervised feature learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS) Workshops, 2011. https://storage.googleapis.
com/pub-tools-public-publication-data/pdf/37648.pdf.

[73] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? In Advances in Neural Information Processing Systems (NeurIPS), 2020. https:
//arxiv.org/abs/2008.11687.

[74] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback, 2022. https://arxiv.org/abs/2203.
02155.

[75] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems (NeurIPS), 2019. https://arxiv.org/abs/1912.01703.

[76] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Hanxiao Liu, Adams Wei Yu, Minh-Thang Luong,
Mingxing Tan, and Quoc V Le. Combined scaling for zero-shot transfer learning, 2021.
https://arxiv.org/abs/2111.10050.

[77] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners, 2019. https://openai.com/
blog/better-language-models/.

[78] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning (ICML), 2021. https://arxiv.org/
abs/2103.00020.

[79] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research (JMLR), 2020. http:
//jmlr.org/papers/v21/20-074.html.

[80] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Conference on Empirical Methods in Natural
Language Processing, 2016. https://aclanthology.org/D16-1264.

[81] Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations
(ICLR), 2021. https://openreview.net/forum?id=GhVS8_yPeEa.

[82] Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of nlp models.
In Annual Meeting of the Association for Computational Linguistics (ACL), 2022. https:
//aclanthology.org/2022.acl-long.230/.

[83] Fereshteh Sadeghi, C Lawrence Zitnick, and Ali Farhadi. Visalogy: Answering visual analogy
questions. In Advances in Neural Information Processing Systems (NeurIPS), 2015.

15

https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2206.06520
https://openreview.net/forum?id=blJrg3WvvDV
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37648.pdf
https://arxiv.org/abs/2008.11687
https://arxiv.org/abs/2008.11687
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2111.10050
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://openreview.net/forum?id=GhVS8_yPeEa
https://aclanthology.org/2022.acl-long.230/
https://aclanthology.org/2022.acl-long.230/

Published as a conference paper at ICLR 2023

[84] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted
training enables zero-shot task generalization. In International Conference on Learning
Representations (ICLR), 2021. https://arxiv.org/abs/2110.08207.

[85] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David Bau, Antonio Torralba, and
Aleksander Madry. Editing a classifier by rewriting its prediction rules. In Advances in Neural
Information Processing Systems (NeurIPS), 2021. https://arxiv.org/abs/2112.
01008.

[86] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2013. https://aclanthology.org/D13-1170/.

[87] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic
sign recognition benchmark: a multi-class classification competition. In International Joint
Conference on Neural Networks (IJCNN), 2011. https://ieeexplore.ieee.org/
document/6033395.

[88] Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors
from pretrained language models. In Findings of the Association for Computational Linguistics
(ACL), 2022. https://aclanthology.org/2022.findings-acl.48.

[89] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse
masks. In Advances in Neural Information Processing Systems (NeurIPS), 2021. https:
//arxiv.org/abs/2111.09839.

[90] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet
effective machine unlearning, 2021. https://arxiv.org/abs/2111.08947.

[91] Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessandro Sordoni, Adam Trischler, Andrew
Mattarella-Micke, Subhransu Maji, and Mohit Iyyer. Exploring and predicting transferability
across NLP tasks. In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020. https://aclanthology.org/2020.emnlp-main.635.

[92] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and Daniel Cer. SPoT: Better frozen
model adaptation through soft prompt transfer. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2022. https://aclanthology.org/2022.acl-long.
346.

[93] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations (ICLR), 2018. https://arxiv.
org/abs/1804.07461.

[94] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap,
et al. Benchmarking generalization via in-context instructions on 1,600+ language tasks, 2022.
https://arxiv.org/abs/2204.07705.

[95] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics (TACL), 2019.
https://aclanthology.org/Q19-1040/.

[96] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations (ICLR), 2021. https://arxiv.
org/abs/2109.01652/.

[97] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing, 2019. https://arxiv.org/abs/
1910.03771.

16

https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2112.01008
https://arxiv.org/abs/2112.01008
https://aclanthology.org/D13-1170/
https://ieeexplore.ieee.org/document/6033395
https://ieeexplore.ieee.org/document/6033395
https://aclanthology.org/2022.findings-acl.48
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2111.08947
https://aclanthology.org/2020.emnlp-main.635
https://aclanthology.org/2022.acl-long.346
https://aclanthology.org/2022.acl-long.346
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2204.07705
https://aclanthology.org/Q19-1040/
https://arxiv.org/abs/2109.01652/
https://arxiv.org/abs/2109.01652/
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

Published as a conference paper at ICLR 2023

[98] Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Raste-
gari. Learning neural network subspaces. In International Conference on Machine Learning
(ICML), 2021. http://proceedings.mlr.press/v139/wortsman21a.html.

[99] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without
increasing inference time. In International Conference on Machine Learning (ICML), 2022.
https://arxiv.org/abs/2203.05482.

[100] Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali
Farhadi, Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2022. https://
arxiv.org/abs/2109.01903.

[101] Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun
database: Exploring a large collection of scene categories. International Journal of Com-
puter Vision (IJCV), 2016. https://link.springer.com/article/10.1007/
s11263-014-0748-y.

[102] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2015. https://proceedings.neurips.cc/paper/2015/file/
250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

[103] Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein. Adapting language models for zero-
shot learning by meta-tuning on dataset and prompt collections. In Findings of the Association
for Computational Linguistics (EMNLP), 2021. https://aclanthology.org/2021.
findings-emnlp.244.

[104] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu,
and Sanjiv Kumar. Modifying memories in transformer models, 2020. https://arxiv.
org/abs/2012.00363.

[105] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui
Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE,
2020. https://arxiv.org/abs/1911.02685.

17

http://proceedings.mlr.press/v139/wortsman21a.html
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2109.01903
https://arxiv.org/abs/2109.01903
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://link.springer.com/article/10.1007/s11263-014-0748-y
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://aclanthology.org/2021.findings-emnlp.244
https://aclanthology.org/2021.findings-emnlp.244
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/1911.02685

Published as a conference paper at ICLR 2023

0.80 0.85 0.90 0.95 1.00
Average accuracy with

added task vectors

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

ac
cu

ra
cy

 o
f e

ns
em

bl
es

Figure 8: When adding two task vectors, the performance of the resulting model approximates the
performing of ensembling the corresponding fine-tuned models.

A THE LOSS LANDSCAPE, WEIGHT AVERAGING AND ENSEMBLES

When two neural networks share part of their optimization trajectory—such as when fine-tuning
from the same pre-trained initialization—previous work found that performance does not decrease
substantially when linearly interpolating between their weights [27; 40; 73; 26; 99; 11; 39]. Applying
a task vector—and any vectors produced via the arithmetic expressions we study in this work—
is equivalent to a linear combination of the pre-trained model and the fine-tuned models used to
generate the task vectors, since only linear operations are used. Interpolating between the weights
of a fine-tuned model and its pre-trained counterpart as in Wortsman et al. [100]; Ilharco et al. [39]
is equivalent to applying a single task vector, and adding different task vectors is equivalent to a
weighted average of all models, similar to experiments from Wortsman et al. [99]; Ilharco et al.
[39]; Li et al. [55]. Overall, previous work has empirically observed that averaging weights of neural
networks can produce models with strong performance when compared to the best individual network,
for several architectures, domains and datasets.

Our motivation for studying task vectors is also well aligned with findings of Lucas et al. [61]; Ilharco
et al. [39], who observed that performance steadily increases on the linear path between a model
before and after training.3 This indicates that the direction from the pre-trained to the fine-tuned model
is such that movement in that direction directly translates to performance gains on the fine-tuning
task. Moreover, Ilharco et al. [39] found that linear interpolations between a pre-trained model and
a fine-tuned model are able to preserve accuracy on tasks that are unrelated to fine-tuning, while
greatly improving accuracy on the fine-tuning task compared to the pre-trained model. That accuracy
on the fine-tuning task and on unrelated tasks are independent of each other along the linear path
between pre-trained and fine-tuned models is well aligned with our results on from Section 3, where
we find that extrapolating from the pre-trained model away from the fine-tuned model leads to worse
performance on the fine-tuning task with little change in behavior on control tasks.

Finally, we highlight the connection between linear combinations of neural network weights and
the well-established practice of ensembling their predictions.4 This connection is discussed in depth
by Wortsman et al. [100; 99], and we briefly revisit it in the context of adding task vectors. First,
recall that the arithmetic operations we study result in linear combinations of model weights. As
shown by Wortsman et al. [100], in certain regimes, the result from linearly combining the weights
of neural network approximate ensembling their outputs. This approximation holds whenever the

3This property of neural networks is sometimes referred to as Monotonic Linear Interpolation (MLI) [61].
4For the sake of completion, the ensemble of two models f with weights θ1 and θ2 for an input x is given by

(1− α)fθ1(x) + αfθ2(x), for some mixing coefficient α. Ensembling two classification models is typically
done by averaging the logits produced by the models.

18

Published as a conference paper at ICLR 2023

loss can be locally approximated by a linear expansion, which is referred to as the NTK regime [41].
Moreover, as shown by Fort et al. [26], this linear expansion becomes more accuracy in the later
phase of training neural networks, which closely resembles fine-tuning. When the approximation
holds exactly, weight averaging and ensembles are exactly equivalent [100]. This connection is
further studied analytically and empirically by Wortsman et al. [99].

We empirically validate the connection between ensembles and linear weight combinations in the
context of adding two task vectors. Note that the model resulting from adding two task vectors with
a scaling coefficient λ = 0.5 is equivalent to a uniform average of the weights of the fine-tuned
models.5 We then investigate whether accuracy of the model obtained using the task vectors correlates
with the accuracy of ensembling the fine-tuned models, as predicted by theory. As shown in Figure 8,
we indeed observe that the accuracy of the model produced by adding two task vectors closely follows
the accuracy of the corresponding ensemble. We observe a slight bias towards higher accuracy for
the ensembles on average, and that the two quantities are also strongly correlated, with a Pearson
correlation of 0.99.

B FORGETTING IMAGE CLASSIFICATION TASKS

This section presents additional experimental details and results complementing the findings presented
in Section 3.1, showcasing the effect of negating task vectors from image classification tasks.

B.1 EXPERIMENTAL DETAILS

We follow the same procedure from [39] when fine-tune CLIP models [78]. Namely, we fine-tune
for 2000 iterations with a batch size of 128, learning rate 1e-5 and a cosine annealing learning
rate schedule with 200 warm-up steps and the AdamW optimizer [58; 75], with weight decay 0.1.
When fine-tuning, we freeze the weights of the classification layer output by CLIP’s text encoder,
so that we do not introduce additional learnable parameters, as in [39]. As shown by [39], freezing
the classification layer does not harm accuracy. After fine-tuning, we evaluate scaling coefficients
λ ∈ {0.0, 0.05, 0.1, · · · , 1.0}, choosing the highest value such that the resulting model still retains at
least 95% of the accuracy of the pre-trained model on the control task.

B.2 BASELINES

We contrast our results with two baselines, fine-tuning with gradient ascent as in Golatkar et al.
[34]; Tarun et al. [90], and against using a random vector of the same magnitude as the task vector on
a layer-by-layer basis.

In practice, for fine-tuning with gradient ascent, we use the same hyper-parameters as for standard fine-
tuning. However, instead of optimizing to minimize the cross-entropy loss ℓ = Ex,y∈D[− log f(x)y],
we optimize to minimize its negative value, ℓneg = −ℓ = Ex,y∈D[log f(x)y], where x, y are samples
in the dataset D and f(x)y is the probability assigned by the model f that the inputs x belong to label
y. This is equivalent to performing gradient ascent on ℓ.

For the random vector baseline, we first compute the different between the parameters of the pre-
trained and fine-tuned models for each layer L, τ (L) = θ

(L)
ft − θ

(L)
pre . Then, we draw a new vector

τ
(L)
rand ∼ N (0, I) where each element is drawn from a normal distribution with mean 0 and variance

1. We then scale this vector so it has the same magnitude as τ (L), resulting in τ
(L)
scaled = τ

(L)
rand

||τ(L)||
||τ(L)

rand ||
.

Finally, we concatenate all the vectors τ
(L)
scaled for all layers to form a new vector withe the same

dimensionality as the model parameters θ, which is used in the same way as task vectors.

B.3 BREAKDOWN PER TASK

Tables 5, 6 and 7 show a breakdown of accuracy for the eight tasks and the three CLIP models we
examine.

5θpre + 0.5(τ1 + τ2) = θpre + 0.5((θ1 − θpre) + (θ2 − θpre)) = 0.5(θ1 + θ2).

19

Published as a conference paper at ICLR 2023

Table 5: Forgetting via negation on image classification tasks. Results are shown for a CLIP ViT-L/14
model [78], reporting accuracy on both the target (T) and control (C) tasks.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑

Pre-trained 77.8 75.5 55.4 75.5 60.2 75.5 50.6 75.5 76.4 75.5 71.0 75.5 68.3 75.5 58.6 75.5
Fine-tuned 92.8 73.1 83.7 72.3 99.2 70.5 99.3 73.1 99.8 72.9 96.9 73.8 82.4 72.7 98.0 72.6
Neg. gradients 0.00 4.82 2.13 0.10 9.26 1.07 1.19 0.07 9.80 67.0 2.14 0.07 0.25 0.00 6.70 57.2
Random vector 72.0 73.3 52.1 72.2 59.7 73.5 43.4 72.5 74.8 72.8 70.8 73.0 66.9 72.7 47.1 72.9

Neg. task vector 32.0 72.4 26.7 72.2 7.33 73.3 6.45 72.2 2.69 74.9 19.7 72.9 50.8 72.6 6.71 72.7

Table 6: Forgetting via negation on image classification tasks. Results are shown for a CLIP ViT-B/16
model [78], reporting accuracy on both the target (T) and control (C) tasks.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑

Pre-trained 64.6 68.3 44.9 68.3 53.9 68.3 43.4 68.3 51.6 68.3 65.8 68.3 65.5 68.3 52.0 68.3
Fine-tuned 87.0 61.9 82.3 57.5 99.1 56.0 99.0 54.7 99.7 55.2 96.4 62.2 79.0 61.7 97.7 56.8
Neg. gradients 0.36 0.11 2.13 0.09 9.26 0.14 0.71 0.10 0.04 1.20 2.60 0.10 0.25 0.00 0.08 3.69
Rand. task vector 61.0 65.6 43.9 66.3 51.7 66.2 43.1 65.0 51.6 68.3 63.6 65.6 63.7 65.2 46.2 65.5

Neg. task vector 30.8 65.4 26.5 65.6 12.3 65.8 9.53 65.8 9.55 65.4 26.5 65.1 48.6 65.1 6.43 65.4

We observe qualitatively similar results in all cases. Similarly to what is observed in [39], we also see
that results improve with scale: on average, the largest model, ViT-L/14, achieves lower accuracy on
the target tasks, compared to the smaller models.

B.4 ADDITIONAL VISUALIZATIONS

In Figure 9, we show how accuracy on the target and control tasks vary as we change the scaling
coefficients λ, both for the task vector obtained by fine-tuning on the target task and for a random
vector of the same magnitude.

As the scaling coefficient increases, the curves traced by the task vector and a random vector behave
differently. For task vectors, performance on the target tasks (y-axis) initially decreases faster than
performance on the control task (x-axis), so there exists models with high accuracy on the control
task but low accuracy on the target task. In contrast, such points do not exist in the curves traced by
random vectors, which move more linearly towards the origin. In practice, this means forgetting is
effective for task vectors obtained by fine-tuning, but not for random vectors.

Table 7: Forgetting via negation on image classification tasks. Results are shown for a CLIP ViT-B/32
model [78], reporting accuracy on both the target (T) and control (C) tasks.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑ T↓ C↑

Pre-trained 59.6 63.4 44.1 63.4 45.9 63.4 32.5 63.4 48.7 63.4 60.7 63.4 63.2 63.4 31.5 63.4
Fine-tuned 79.2 55.2 78.7 49.3 98.6 47.2 98.5 39.1 99.6 42.5 95.0 53.2 75.1 54.6 97.2 44.7
Neg. gradients 0.01 0.11 2.13 0.10 9.26 0.10 1.19 0.07 0.00 1.22 2.60 0.10 0.25 0.01 6.38 0.29
Rand. task vector 54.1 60.9 39.9 61.5 45.8 63.4 27.9 60.7 48.3 63.4 57.1 60.9 61.3 60.5 31.2 60.7

Neg. task vector 36.0 61.1 27.8 60.2 13.6 61.3 8.13 61.4 16.7 60.7 31.7 61.0 50.7 60.5 7.65 61.0

20

Published as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Imagenet accuracy

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-B/32

Task vector
Random vector
Random accuracy

0.0 0.2 0.4 0.6
Imagenet accuracy

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-B/16

Task vector
Random vector
Random accuracy

0.2 0.3 0.4 0.5 0.6 0.7
Imagenet accuracy

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-L/14

Task vector
Random vector
Random accuracy

Figure 9: Comparison between task vectors and random vectors for forgetting image classification
tasks.

Table 8: The effect of semantic overlap with the control task in forgetting experiments on image
classification tasks. Results are shown for a CLIP ViT-L/14 model, reporting accuracy both on the
target task and control task (Ctrl, ImageNet).

Method Without filtering With filtering
Cars (↓) Ctrl (↑) SUN397 (↓) Ctrl (↑) Cars (↓) Ctrl (↑) SUN397 (↓) Ctrl (↑)

Pre-trained 77.8 75.5 68.3 75.5 77.8 75.5 68.3 76.1
Fine-tuned 92.8 73.1 82.4 72.7 92.8 73.3 82.4 73.1

Neg. task vector 32.0 72.4 50.8 72.6 32.0 72.5 48.1 72.4

B.5 THE EFFECT OF CLASS OVERLAP

In Tables 5, 7, 6, we observe that the tasks where forgetting via task vectors is least effective are
tasks where the distribution of images is closer to ImageNet, SUN397 [101], a scene understanding
dataset with classes such as “church” and “tower”, and Stanford Cars [47], a dataset with with many
car categories such as “2012 Tesla Model S” or “2012 BMW M3 coupe”. One reasonable hypothesis
is that forgetting is less effective for those tasks due to the overlap with the images from the control
tasks.

To better understand this effect, we measure accuracy on a subset of classes from ImageNet, such
that the overlap is minimized. Concretely, we exclude nodes from the WordNet hierarchy from which
the ImageNet classes are based.6 For the Cars dataset, we exclude the all subnodes under the node
“wheeled vehicle” (e.g., “minivan”, “jeep”, “limousine”). For SUN397, we exclude all subnodes
under the nodes “structure” and “geological formation”. As shown in Table 8, we do not observe
large differences after filtering.

B.6 INTERPOLATING WITH A MODEL FINE-TUNED WITH GRADIENT ASCENT

One baseline explored in the experiments is fine-tuning with gradient ascent, as explored in Golatkar
et al. [34]; Tarun et al. [90]. Our results show that this strategy is effective at reducing the accuracy on
treatment tasks, but also substantially deteriorates accuracy on the control task, which is undesirable.

We further examine whether interpolations between the pre-trained model and the model fine-tuned
with gradient ascent help with forgetting. Our results, shown in Figure 10, indicate that interpolations
greatly mitigate the low accuracy on the control task of the fine-tuned model, leading to even better
accuracy trade-offs than the solutions obtained by extrapolation with standard fine-tuning.

6A visualization is available at https://observablehq.com/@mbostock/
imagenet-hierarchy

21

https://observablehq.com/@mbostock/imagenet-hierarchy
https://observablehq.com/@mbostock/imagenet-hierarchy

Published as a conference paper at ICLR 2023

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Imagenet accuracy

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-B/32

Standard fine-tuning + extrap.
Neg. gradients + interp.
Random accuracy

0.0 0.2 0.4 0.6
Imagenet accuracy

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-B/16

Standard fine-tuning + extrap.
Neg. gradients + interp.
Random accuracy

0.2 0.3 0.4 0.5 0.6 0.7
Imagenet accuracy

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ac
cu

ra
cy

 o
n

fo
rg

et
tin

g
ta

sk
s ViT-L/14

Standard fine-tuning + extrap.
Neg. gradients + interp.
Random accuracy

Figure 10: Comparison with interpolations between the pre-trained model and models fine-tuned
with gradient ascent.

10 20 30 40 50 60
Accuracy gain when fine-tuning

15

20

25

30

35

Ac
cu

ra
cy

 d
ro

p
wh

en
 fo

rg
et

tin
g ViT-B/32

20 30 40 50
Accuracy gain when fine-tuning

20

30

40

50

Ac
cu

ra
cy

 d
ro

p
wh

en
 fo

rg
et

tin
g ViT-B/16

20 30 40 50
Accuracy gain when fine-tuning

20

30

40

50

60

70

Ac
cu

ra
cy

 d
ro

p
wh

en
 fo

rg
et

tin
g ViT-L/14

Figure 11: Correlation between the gain in accuracy from fine-tuning and the drop in accuracy when
subtracting the corresponding task vector for image classification tasks.

B.7 WHEN NEGATING TASK VECTORS WORKS BEST

We observe a positive correlation between the gain in accuracy from fine-tuning and the drop in
accuracy when subtracting the corresponding task vector, both in comparison with the pre-trained
model (Figure 11). We speculate that the reason for this correlation is that when the gains from
fine-tuning are small, the task vector provides a less clear direction of improvement, and the opposite
direction thus provides a less clear direction of performance deterioration. In the extreme case where
fine-tuning does not improve accuracy, it would be surprising if the corresponding task vector is
useful.

We note that this is a limitation of editing models by negating task vectors. When models already
strongly exhibit the behavior we wish to remove, it is harder to do so with this technique. In those
circumstances, a more promising approach is to add the task vector obtained with gradient ascent, as
described in Appendix B.6.

B.8 ADDITIONAL TASKS

In addition to the tasks explored in Section 4.1, we study two other tasks, OCR and person identifica-
tion.

For OCR, we use the synthetic dataset from Ilharco et al. [39], built using images from SUN-397 as
backgrounds and mismatched class names as texts. The task vector is produced by fine-tuning on
those images, with the objective of predicting the written text (and not the background). As shown in
Figure 12 (left), especially for the larger CLIP models, negating the task vectors leads to large drops
in performance with little change in accuracy on ImageNet.

22

Published as a conference paper at ICLR 2023

Figure 12: Forgetting by negating task vectors on additional vision tasks, OCR and person identifica-
tion.

For person identification, we use the Celebrity Face Recognition dataset, containing close to a million
pictures of around one thousand celebrities.7 We split the data into a training, validation and test set
with proportions 0.8, 0.1 and 0.1. Results are shown in Figure 12 (right). While negating the task
vectors leads to performance deterioration, we find that forgetting is less effective compared to other
tasks like OCR. We hypothesize that one explanation for this could be the fact that fine-tuning on this
dataset does provides only small gains in accuracy, as discussed in Appendix B.7.

C FORGETTING WITH TEXT GENERATION

This section presents additional experimental details and results complementing the findings presented
in Section 3.2, showcasing the effect of negating task vectors from text generation.

C.1 EXPERIMENTAL DETAILS

To obtain task vectors, we fine-tune on data Civil Comments [8] where the toxicity score is larger
than 0.8. We then fine-tune GPT-2 models [77] from Hugging Face transformers library [97]. We use
a learning rate of 1e-5, and fine-tune with a causal language modeling objective with the AdamW
optimizer for 5 epochs using a global batch size of 32. After fine-tuning, we evaluate models obtained
by adding task vectors with scaling coefficients λ ∈ {0.0, 0.1, · · · , 1.0}. In Table 2, we report results
for the largest scaling coefficient such that perplexity is still within 0.5 points of the perplexity of the
pre-trained model. To evaluate toxicity, we generate 1000 samples from the models. To encourage a
higher chance of toxic generations, we condition the generations using the prefix “I don’t care if this
is controversial”. In early experiments, we also tried other prompts, which lead to similar qualitative
results. We evaluate other prompts in Appendix C.3. To evaluate fluency, we measure the perplexity
of the models on WikiText-103 with a striding window of size 1024 and a stride of 512 tokens.

C.2 ADDITIONAL MODELS

In addition to the GPT-2 Large models showed in Table 2, we present results for GPT-2 Medium and
GPT-2 Small models in Tables 9 and 10. We observe the same qualitative trends for the additional
models. As in image classification, we also find that applying task vectors is more effective for larger
models.

C.3 REALTOXICITYPROMPTS

We present additional experiments using RealToxicityPrompts [29], a dataset of natural language
prompts used for measuring toxicity in language models. As in Gehman et al. [29], we evaluate
language models using 25 generations per prompt, using the Perspective API.8

7https://github.com/prateekmehta59/Celebrity-Face-Recognition-Dataset.
8https://github.com/conversationai/perspectiveapi

23

https://github.com/prateekmehta59/Celebrity-Face-Recognition-Dataset
https://github.com/conversationai/perspectiveapi

Published as a conference paper at ICLR 2023

Table 9: Making language models less toxic with negative task vectors. Results are shown for the
GPT-2 Medium model.

Method % toxic generations (↓) Avg. toxicity score (↓) WikiText-103 perplexity (↓)

Pre-trained 4.3 0.06 18.5
Fine-tuned 54.5 0.54 20.2
Gradient ascent 0.0 0.00 >1010

Random task vector 4.2 0.05 18.5

Negative task vector 1.8 0.02 18.9

Table 10: Making language models less toxic with negative task vectors. Results are shown for the
GPT-2 Small model.

Method % toxic generations (↓) Avg. toxicity score (↓) WikiText-103 perplexity (↓)

Pre-trained 3.7 0.04 25.2
Fine-tuned 62.9 0.61 28.1
Gradient ascent 0.0 0.00 >1010

Random task vector 3.2 0.04 25.3

Negative task vector 2.5 0.03 25.3

In Figure 13, we present results showing the expected maximum toxicity across the 25 generations
and the perplexity on WikiText-103 as we vary the scaling coefficients. We show results both for
the challenging subset of the dataset, containing 1.2k prompts, and for a random subset of the full
dataset with one thousand prompts. In both cases, we see qualitatively similar trends: negating task
vectors produced by fine-tuning on toxic data reduces the amount toxicity of the generations. For
GPT-2 large, we see close to vertical movement as the scaling coefficient increases, showing large
decreases in accuracy with little change in perplexity on WikiText-103. However, especially for the
challenging set of the benchmark, there is still significant headroom for improvement.

D LEARNING VIA ADDITION

In all experiments, we add task vectors together and use a single scaling coefficient for the sum of
the vectors, λ ∈ {0, 0.05, 0.1, · · · , 1.0}. While using scaling each task vector by its own coefficient
could improve performance, exploring all combinations of scaling coefficients when the number of
tasks is not small, due to the curse of dimensionality. While we focus on a single scaling coefficient
for simplicity, more sophisticated strategies could be explored in future work, such as using black
box optimization to search the space of scaling coefficients.

15 20 25 30 35 40 45 50
Wikitext-103 perplexity

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Ex
pe

ct
ed

 m
ax

im
um

 to
xi

cit
y

RealToxicityPrompts - random subset
GPT-2 small
GPT-2 medium
GPT-2 large

15 20 25 30 35 40 45 50
Wikitext-103 perplexity

0.70

0.75

0.80

0.85

0.90

Ex
pe

ct
ed

 m
ax

im
um

 to
xi

cit
y

RealToxicityPrompts - challenging subset
GPT-2 small
GPT-2 medium
GPT-2 large

Figure 13: Toxicity results using RealToxicityPrompts [29], for various GPT-2 models.

24

Published as a conference paper at ICLR 2023

0.80 0.85 0.90 0.95 1.00
MNIST accuracy

0.6

0.7

0.8

0.9

1.0

Eu
ro

SA
T

ac
cu

ra
cy

The impact of random seeds
Task vectors
Pre-trained model

0.996 0.998

0.984

0.986

0.988

Figure 14: The impact of random seeds when fine-tuning. Using different random seeds when
fine-tuning on image classification tasks has little impact on the accuracy of edited models.

Furthermore, we note that the best multi-task model given a set of task vectors is not often obtained
by using all of the task vectors, as shown in Figure 3. Since adding task vectors is computationally
efficient and evaluations are usually substantially less expensive than training, practitioners could try
out many subsets of task vectors and choose the ones that maximizes performance on the tasks of
interest. Moreover, faster techniques such as the greedy algorithm proposed by Wortsman et al. [99]
could allow users to efficiently discard task vectors that do not improve accuracy.

D.1 THE IMPACT OF RANDOM SEEDS

We fine-tune five CLIP models on MNIST and five models EuroSAT, varying only the random seed.
We then edit models by adding all possible combinations of the corresponding task vectors (25 in
total). The results in Figure 14 indicate that different random seeds have little impact in the resulting
accuracy of the edited models for this set up. It is possible that we would observe larger variance
in other settings such as natural language processing [18; 43], but we again observe that users can
simply discard task vectors that yield no improvement in validation data.

D.2 MULTI-TASK TRAINING

In addition to using multiple-specialized models, we compare against a single multi-task model
obtained via jointly fine-tuning on the eight image classification tasks we study. We fine-tune with
the same hyper-parameters described in Appendix B.1, also freezing the classification heads.

Multi-task fine-tuning on the eight tasks achieves an average normalized performance of 0.994,
compared to the best result obtained with task vectors, 0.912 (recall that 1.0 is obtained with multiple
specialized models). Despite the headroom for improvement, multi-task training is less modular than
using task vectors, requiring a new fine-tuning round every time a new task is added. In contrast, task
vectors can be combined without any additional training and without the need to store or transfer the
data used to create them, and can draw from the large pool of existing fine-tuned models such as the
ones available on model hubs.

D.3 SCALING COEFFICIENTS

In Figure 15 (left), we show the optimal scaling coefficients for the experiments where task vectors
are added together. Recall that a single scaling coefficient is used for each experiment, regardless of
the number of task vectors in the experiment. The variance in the optimal scaling coefficients can
be large, highlighting the need for tuning on a case-by-case basis. However, compared to tuning
traditional hyper-parameters, tuning the scaling coefficient is less computationally expensive since,
unlike most hyper-parameters, the scaling coefficient can be changed without any additional training.

In Figure 15 (right), we show the average normalized performance across experiments as we vary
the scaling coefficient and the number of task vectors. Scaling coefficients in the range 0.3 to 0.5

25

Published as a conference paper at ICLR 2023

2 3 4 5 6 7 8
Number of tasks

0.3

0.4

0.5

0.6
Op

tim
al

 sc
al

in
g

co
ef

fic
ie

nt Optimal scaling coefficient

0.0 0.2 0.4 0.6 0.8 1.0
Scaling coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

no
rm

al
ize

d�
cc

ur
ac

y Accuracy as a function of
the scaling coefficient

2 tasks
3 tasks
4 tasks

5 tasks
6 tasks

7 tasks
8 tasks

Figure 15: The effect of scaling coefficients when adding task vectors. Left: Optimal scaling
coefficients when adding task vectors. Right: average normalized performance as a function of the
scaling coefficient and the number of task vectors.

2 3 4 5 6 7 8
Number of tasks

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

no
rm

al
ize

d
pe

rfo
rm

an
ce

Task vectors
Multiple fine-tuned models
Pre-trained model

Figure 16: Building multi-task models by adding task vectors. Unlike results shown in Figure 3,
here performance is averaged only over the tasks used to build the task vectors in each experiment.

produce close to optimal results in many cases, although we recommend tuning this parameter when
possible for best results.

D.4 ACCURACY ON SUBSETS OF TASKS

Complementing our results in the main paper, we show in Figure 16 the average performance for all
subsets task vectors, averaged only over the tasks that originated the task vectors (recall that in Figure
3 we presented the normalized accuracy averaged over all tasks). We find that for smaller subsets,
the single model obtained by adding task vectors matches more closely the performance of multiple
specialized models, although that gap increases as the size of the subsets grow.

D.5 IMAGENET EXPERIMENTS

In addition to results presented in Section 4.1, we explore whether addition performs well when
fine-tuning on a larger-scale dataset, ImageNet. We fine-tune with the same hyper-parameters as
described in Appendix B.1, except for using a larger number of steps (4 epochs, around 40 thousand
steps), to account for the larger size of ImageNet.

We then add the ImageNet task vector with each of the eight task vectors from Section 4.1, measuring
accuracy both on ImageNet and on the task from the second task vector. For example, for MNIST,
we add the MNIST task vector and the ImageNet task vector, and measure accuracy both on MNIST
and on ImageNet. As shown in Figure 17, adding the task vectors produces a single model with high
accuracy on both tasks, which in most experiments is competitive with the fine-tuned models on their
respective datasets.

26

Published as a conference paper at ICLR 2023

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

75.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5
85.0 85.0 84.8 85.3 85.3 85.1 84.9 85.185.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5

Accuracy on ImageNet

Pre-trained
Task vectors
Fine-tuned

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) 77.8

55.4
60.3

50.6

76.4
71.0 68.3

58.6

88.6
79.9

98.7 98.7 99.7 96.2

78.8

97.6
92.8

83.7

99.2 99.3 99.8 96.9

82.4

98.0

Accuracy on the other target task

Pre-trained
Task vectors
Fine-tuned

Figure 17: Adding pairs of task vectors containing a task vector from ImageNet. For all eight
other target tasks from Section 4.1, adding their task vector with an ImageNet produces a model with
high accuracy both on that task and on ImageNet.

D.6 ADDING PAIRS OF TASK VECTORS FROM NLP TASKS

In this section, we present results for building multi-task models using checkpoints that were not fine-
tuned by the authors, and were instead downloaded directly from a hub that hosts model checkpoints
publicly (the Hugging Face Hub).9

Our motivation is aligned that from with previous work on building multi-task models [79; 45; 103;
68; 96; 84; 67; 94].

More specifically, we explore six fine-tuned T5 models [79] downloaded from the Hugging Face
Hub using popularity and diversity as criteria. The models were fine-tuned on a diverse set of natural
language processing tasks, including sentiment analysis using movie reviews from IMDB [62],
question answering (RACE, Lai et al. [49]; QASC, Khot et al. [46]), summarization (MultiNews,
Fabbri et al. [24]), question generation (SQuAD, Rajpurkar et al. [80]); and constrained text generation
(CommonGen, Lin et al. [56]). The checkpoints and tasks were chosen based on the availability of
models that were fine-tuned from the same initialization (a T5-Base model), were fine-tuned without
introducing new parameters, and based on diversity of the tasks and popularity of the checkpoints on
the hub. The specific checkpoints we use are:

• IMDB: mrm8488/t5-base-finetuned-imdb-sentiment
• RACE: mrm8488/t5-base-finetuned-race
• QASC: mrm8488/t5-base-finetuned-qasc
• MultiNews: mrm8488/t5-base-finetuned-summarize-news
• SQuAD: mrm8488/t5-base-finetuned-question-generation-ap
• CommonGen: mrm8488/t5-base-finetuned-common gen

For evaluation, we use accuracy for the text classification task (IMDB), exact match for question
answering tasks (RACE and QASC) and ROUGE-210 for text generation tasks (MultiNews, SQuAD
question generation, and CommonGen). As in Section 4.1, we normalize the performance on each
task by the performance of the fine-tuned model on that task, to account for differences in task
difficulty and evaluation metric.

As in image classification, we find that we can compress pairs of models into a single multi-task
model with little performance loss (Figure 18). These results are somewhat surprising, since the

9https://huggingface.co/models
10https://huggingface.co/spaces/evaluate-metric/rouge

27

https://huggingface.co/models
https://huggingface.co/spaces/evaluate-metric/rouge

Published as a conference paper at ICLR 2023

0.4 0.6 0.8 1.0 1.2
Normalized accuracy on Task 1

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
ac

cu
ra

cy
 o

n
Ta

sk
 2

Average zero-shot
Average fine-tuned
CommonGen, IMDB
CommonGen, MultiNews
CommonGen, QASC
CommonGen, RACE
CommonGen, SquadQG
IMDB, MultiNews
IMDB, QASC

IMDB, RACE
IMDB, SquadQG
MultiNews, QASC
MultiNews, RACE
MultiNews, SquadQG
QASC, RACE
QASC, SquadQG
RACE, SquadQG

Figure 18: Adding pairs of task vectors from natural language processing tasks.

gap between the pre-trained model and fine-tuned models is much larger, and tasks vary widely
in terms of input domain, length, and output type. Moreover, while there is more variance across
different subsets of tasks when compared to image classification, in various cases we observe higher
performance than that of specialized models. On average, the normalized average performance of the
model obtained by adding task vectors is 96.7%.

D.7 GLUE EXPERIMENTS

In this section, we describe the experimental setup used for investigations presented in Section 4.2,
studying whether performance on specific target tasks can be improved by adding external task
vectors.

Our experiments use T5-base models, fine-tuned on four tasks from the GLUE benchmark:

• Microsoft Research Paraphrase Corpus (MRPC; Dolan & Brockett [19]) is a paraphrase
task containing pairs of sentences labeled as either nearly semantically equivalent or not.
The dataset is evaluated using the average of F1 and accuracy.

• Recognizing Textual Entailment (RTE; Wang et al. [93]) is a dataset where models are
tasked to predict whether a sentence entails or contradicts another sentence. The data is
originally from a series of datasets [14; 5; 31; 6]. Accuracy is used as the evaluation metric.

• Corpus of Linguistic Acceptability (CoLA; Warstadt et al. [95]) is a dataset with sen-
tences labeled as either grammatical or ungrammatical. Models are evaluated on Matthews
correlation (MCC; [64]), which ranges between −1 and 1.

• Stanford Sentiment Treebank (SST-2; Socher et al. [86]) is a sentiment analysis task,
containing sentences labelled as containing positive or negative sentiment. Accuracy is used
as the evaluation metric.

For all tasks, we split the training set into two subsets, one used for fine-tuning and one used for
determining the best external task vector, with the same size as the original validation sets. For
fine-tuning, we use a batch size of 32, learning rate 1e-5 and fine-tune for 5 epochs using AdamW and
a linear learning rate schedule. All results are averaged over 3 random seeds. When evaluating, we
perform two forward passes for each sample, one for each label, and chose the label that minimizes
the perplexity of the decoder.

E TASK ANALOGIES

Similarly in the experiments where multiple models are added together, we use a single scaling
coefficient for the vector resulting from the task arithmetic, λ ∈ {0, 0.1, · · · , 1.0}. While using
scaling each task vector by its own coefficient could improve performance, we avoid this strategy
since it complicates the search space and makes explorations more expensive. We note that visual
analogies has been explored in previous literature, albeit not at the task level [83].

28

Published as a conference paper at ICLR 2023

Table 11: Learning via analogy. By leveraging vectors from related tasks, we can improve accuracy
on four new target tasks without any training data, and with little change on control settings. Results
are shown for the CLIP models [77], additional details are provided in Appendix E.2.

Method Queens Kings Woman Men
Target Control Target Control Target Control Target Control

ViT-B/32 0.00 63.4 0.00 63.4 0.00 63.4 0.00 63.4
+ task vectors 42.0 62.4 30.0 62.4 69.4 62.5 58.0 62.6

ViT-B/16 0.00 68.3 0.00 68.3 0.00 68.3 0.00 68.3
+ task vectors 66.0 67.5 94.0 67.4 87.8 67.5 62.0 67.6

ViT-L/14 0.00 75.5 0.00 75.5 0.00 75.5 0.00 75.5
+ task vectors 100 74.7 100 74.5 100 74.6 96.0 74.6

E.1 DOMAIN GENERALIZATION

Here, we use task analogies to improve performance on tasks where no labeled data is available.
We consider both Yelp [102] and Amazon [65] binary-sentiment analysis as target tasks, using
the amazon polarity and yelp polarity datasets from Huggingface datasets [53]. As
detailed in 5, given target and auxiliary tasks, we construct task vectors using the relationship
τ̂target; sent = τtarget; lm + (τauxiliary; sent − τauxiliary; lm). We apply an two scaling coefficients: one on the
auxilary sentiment task vector, and another to the language modeling task vectors.

We compare our task analogy approach to two other baselines: fine-tuning on the auxiliary task, and
fine-tuning on the target task. The latter represents an performance upper-bound, assuming we have
labeled data for the target task.

To produce language model task vectors, we use consecutive 128-token chunks of text in each task as
input-output pairs, following Lester et al. [52]. To make predictions under the classification task, we
follow the evaluation technique described in D.7.

For all models, we perform a single epoch of fine-tuning, setting a batch size of 2 and accumulating
gradients across 8 steps. We use AdamW and a linear learning rate schedule. We set the maximum
input and output sequence length to be 128. For each model scale, we perform a grid search over
learning rates in {1e-5, 3e-5, 5e-5, 8e-4}, choosing the fastest learning rate that avoids divergence.

To construct a task vector using the task analogy, we perform a grid over the values λ ∈
{0.0, 0.1, ..., 1.0} for each scaling coefficient. Regardless of scale, we found that giving higher
weight to the auxiliary sentiment task vector produced higher accuracy. For the smallest model, we
saw better performance when applying a lower-valued coefficient to the language modeling task
vectors. For the largest model, applying larger coefficients to the language modeling task vectors
produced better performance. This trend may be reflective of the finding in 3.2 that task forgetting is
more effective with larger models.

E.2 KINGS AND QUEENS

As a warm-up, we consider the task of classifying images as “queen”, “king”, “woman” or “man”.
We collect 200 images from the web (50 for each category), by manually searching for the terms
“queen”, “king”, “man” and “woman” using Google Images searches. We present samples in Figure
19.

Our experiments explore whether we can improve accuracy on each target category using only data
from the other three categories. For each category, we fine-tune CLIP models on the remaining
three categories, and combine the task vectors according to the analogy relationship, e.g., τ̂king =
τqueen + (τman − τwoman). In addition to evaluating on our collected set of images, we also evaluate on
the ImageNet dataset as a control task.

As shown in Table 11, task analogies yield large gains in accuracy over pre-trained models with very
little change in the control task, despite having no training data for the target task. Similar to Ilharco
et al. [39]; Ramasesh et al. [81], we find that results improve with model scale.

29

Published as a conference paper at ICLR 2023

Figure 19: Samples from the dataset we collect for classifying queens, kings, women and men, as
described in Section E.2.

Fine-tuning CLIP models is done as described in Section B.1, with the exception of using 40
optimization steps because of the small size of the datasets. When fine-tuning, we use only the
images from one category (e.g., “king”), and a set of 1001 classes from which to choose, composed
by the 1000 classes in ImageNet, and a new class. Since CLIP has already seen many images of
queens, kings, men and women in its pre-training, we use a new category name for the new class
when fine-tuning, in order to simulate learning a new concept. More concretely, we use the class
name “something”, which makes the accuracy of zero-shot models close or equal to zero. When
evaluating, we also contrast between all 1001 options, including all ImageNet classes. This is done
both for our target task, and for ImageNet, where we add an additional option. Note that we do not
need to introduce any new task-specific weights to do all of these operations, since CLIP can perform
classification with any set of classes by using its text encoder (which is frozen as in Section B.1).

E.3 SUBPOPULATIONS

We fine-tune CLIP models on each of the subpopulations with the same hyper-parameters as described
in Section B.1, using 500 optimization steps regardless of the number of samples. For the few-shot
experiments, we sample the same number of samples for every class in the task. For convenience, let
ImageNet-A11 and ImageNet-B represent the two subpopulations from ImageNet, and Sketches-A
and Sketches-B represent the two subpopulations from the sketches dataset from Eitz et al. [22]. Note
that ImageNet-A and Sketches-A share the same classes, and the same is true for ImageNet-B and
Sketches-B. We present samples in Figure 20.

Complementing Figure 4, we show a breakdown per model and for every subpopulation as a target in
Table 12.

Independent scaling coefficients. In addition to our standard procedure of using a single scaling
coefficient for the vector resulting from the arithmetic operations, we explore having independent
scaling coefficients for each task vector in the expression. In other words, we explore the models
θnew = θ + λCτC + λBτB − λAτA for various scaling coefficients λA, λB , λC ∈ {0, 0.1, · · · , 1.0}.
On average, the optimal scaling coefficients were λ⋆

B = λ⋆
C = 0.32 and λ⋆

A = 0.28. Using
independent scaling coefficients improved performance over using a single scaling coefficient by
0.7 percentage points on average, but also required substantially more evaluations to be made (103
instead of 10).

11Not to be confused with the adversarial dataset from Hendrycks et al. [37].

30

Published as a conference paper at ICLR 2023

Figure 20: Samples from the datasets used for the analogies with subpopulations experiments, as
described in Section E.3.

Table 12: Learning by analogy on subpopulations. Results are shown for multiple CLIP models, as
detailed in Section E.3.

Model Samples Task vectors Accuracy
per class Sketches-A Sketches-B ImageNet-A ImageNet-B Average

ViT-B/32

0 ✗ 0.712 0.677 0.861 0.923 0.793
0 ✓ 0.782 0.758 0.861 0.926 0.832
1 ✗ 0.754 0.758 0.868 0.919 0.825
1 ✓ 0.782 0.766 0.866 0.922 0.834
2 ✗ 0.768 0.778 0.868 0.919 0.833
2 ✓ 0.786 0.800 0.867 0.922 0.844
4 ✗ 0.810 0.780 0.871 0.926 0.847
4 ✓ 0.802 0.796 0.871 0.927 0.849

ViT-B/16

0 ✗ 0.716 0.732 0.885 0.946 0.820
0 ✓ 0.794 0.794 0.889 0.953 0.858
1 ✗ 0.758 0.812 0.894 0.948 0.853
1 ✓ 0.796 0.804 0.897 0.957 0.863
2 ✗ 0.792 0.817 0.897 0.951 0.865
2 ✓ 0.804 0.829 0.899 0.956 0.872
4 ✗ 0.815 0.812 0.904 0.952 0.871
4 ✓ 0.831 0.825 0.904 0.953 0.878

ViT-L/14

0 ✗ 0.823 0.831 0.913 0.962 0.882
0 ✓ 0.879 0.861 0.922 0.968 0.908
1 ✗ 0.845 0.863 0.923 0.971 0.900
1 ✓ 0.879 0.863 0.930 0.973 0.911
2 ✗ 0.865 0.881 0.925 0.973 0.911
2 ✓ 0.875 0.881 0.932 0.975 0.916
4 ✗ 0.875 0.883 0.934 0.973 0.916
4 ✓ 0.903 0.887 0.941 0.975 0.927

31

	Introduction
	Task Vectors
	Forgetting via Negation
	Image classification
	Text generation

	Learning via Addition
	Image classification
	Natural language processing

	Task Analogies
	Discussion
	Related work
	Conclusion
	The loss landscape, weight averaging and ensembles
	Forgetting image classification tasks
	Experimental details
	Baselines
	Breakdown per task
	Additional visualizations
	The effect of class overlap
	Interpolating with a model fine-tuned with gradient ascent
	When negating task vectors works best
	Additional tasks

	Forgetting with text generation
	Experimental details
	Additional models
	RealToxicityPrompts

	Learning via addition
	The impact of random seeds
	Multi-task training
	Scaling coefficients
	Accuracy on subsets of tasks
	ImageNet experiments
	Adding pairs of task vectors from NLP tasks
	GLUE experiments

	Task analogies
	Domain generalization
	Kings and Queens
	Subpopulations

