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ABSTRACT

Most existing diffusion-based image restoration methods suffer from poor inter-
pretability and inefficient sampling, due to their direct incorporation of degraded
images as conditions within the original diffusion models. Recently, some re-
searches have tried to build a new diffusion model by transferring the discrepan-
cies between degraded and clear images, however, they cannot effectively model
diverse degradation. To address these issues, we propose a universal diffusion
model for image restoration that can cover different types of degradation. Specif-
ically, our method consists of a Markov chain that convert a high-quality im-
age to its low-quality counterpart. The transition kernel of this Markov chain
is constructed through the ratio and residual between the high-quality and low-
quality images, which provides a general expression that can effectively handle
various degradation processes. Moreover, we analyze the characteristics of dif-
ferent degradation, and design an exponential schedule that enables flexible con-
trol over the diffusion speed pertaining to different degradation, which yields bet-
ter restoration performance. Extensive experiments demonstrate that our method
achieves superior or at least comparable performance compared with existing im-
age restoration methods on multiple image restoration tasks, including low-light
image enhancement, deraining, deblurring, denoising, and dehazing.

1 INTRODUCTION

Image restoration aims to recover the high-quality image from its degraded low-quality counterpart,
which is challenging and considered severely ill-posed due to the infinite potential solutions for a
given degraded image. With the development of deep learning, convolution neural network (CNN)-
based methods have dominated the image restoration tasks, including low-light image enhance-
ment (Wu et al., 2022), deraining (Ren et al., 2019), deblurring (Ren et al., 2021), denoising (Chang
et al., 2020), dehazing (Yu et al., 2022), and numerous others. Recently, diffusion models (Ho et al.,
2020; Song et al., 2020a;b) have achieved great progress in image generation (Dhariwal & Nichol,
2021), showcasing promising performance across various downstream tasks, such as image edit-
ing (Hertz et al., 2022) and personalization (Ruiz et al., 2023). Current research is exploring the
potential of powerful diffusion models in addressing the challenging image restoration tasks.

There are two popular applications of diffusion models to image restoration. The first one is directly
training a diffusion model that is conditioned on the degraded images (Saharia et al., 2022; Yi et al.,
2023). These approaches diffuse the high-quality images into a pure Gaussian white noise in the
forward process, and then utilize the degraded image as a condition to recover the clean image during
the reverse process. Such heuristic training procedure lacks interpretability, and typically suffers
from unstable restoration (Jiang et al., 2023). The second one is to use a pre-trained diffusion model
(e.g., DDPM (Ho et al., 2020)) as a prior to constraint the restoration process (Feng et al., 2023;
Mardani et al., 2023; Wang et al., 2023a; Fei et al., 2023). These methods are commonly based on
Bayesian inference, which take the degradation model as the condition to constraint the sampling of
the pre-trained diffusion model in the reverse process. However, most of them require the knowledge
of the degradation model, which limit their applicability in complex real-world scenarios. On the
other hand, the direct inheritance of the fundamental logic from the pre-trained DDPM model may
result in inefficient sampling.
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Figure 1: Illustration of residual-based diffusion when it comes to different degradation. Note that
we ignore the noise term in diffusion model for better observation. (a) For deraining (the degradation
operator A = E), the residual-based diffusion can model the degradation process well. (b) For low-
light image enhancement (A ̸= E), it fails to accurately model the degradation process.

It is imperative to develop a universal and adaptable diffusion model tailored for image restoration.
Recent works (Yue et al., 2023) have attempted to solve this problem, which diffuse a high-quality
image to its degraded version by shifting the residual between them. While promising, these meth-
ods still face a critical issue. The direct residual-based shifting approach exhibits limited adaptabil-
ity when applied to different image restoration tasks. Image degradation is commonly formulated
as y = Ax+ n, where y, x, A, and n denote the degradation observation, the latent clear im-
age, degradation operator, and noise, respectively. The residual-based methods typically model the
difference (y − x) = (A−E)x+ n, where E is the all-ones matrix. When A = E, the degrada-
tion is primary caused by n, which can be represented well by the residuals (y − x), as shown in
Fig. 1(a). However, when the degradation operator A significantly deviates from E, the residual-
based methods struggle to accurately represent the degradation component A, and cannot model
the degradation process effectively, resulting in unsatisfactory restoration performance, as shown in
Fig. 1(b). Therefore, residual-based diffusion is not universally suitable for all types of degradation.

To address the aforementioned issue, in this paper, we propose a universal diffusion model that can
be effectively adapted to various image restoration tasks, named R2Diff. Specifically, we design a
novel Markov process that encompasses the transition from the initial state, representing the distri-
bution of clear images, to the final state, representing the distribution of the corresponding degraded
images. We represent degradation process through the ratio and residual between the clean image
x and the degraded image y, and design a new Markov transition kernel based on this. Compared
with residual-based diffusion, our method allows for a more accurate modeling of a wider range of
degradation processes. Moreover, we revisit the properties of different degradation, and develop an
exponential schedule that allows flexible control over the diffusion speed for different degradation.
It can further enhance the adaptability of our diffusion model to diverse degradation.

We summarize our main contributions as follows:

• We propose a universal diffusion model tailored for image restoration tasks. It consists
of a Markov chain that transfers the clear image to its degraded version, whose transition
kernel is based on the ratio and residual between them. We further develop an exponential
schedule to flexibly control the diffusion speed for different degradation.

• Extensive experiments on multiple image restoration tasks demonstrate the effectiveness of
the proposed diffusion model, including low-light image enhancement, deraining, deblur-
ring, denoising, and dehazing.

2 BACKGROUND

We follow the work Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020), and briefly
introduce the key concepts underlying it. It consists of two processes: a T -steps forward process
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that gradually adds noise to the input image, and a reverse process that learns to generate images by
iterative denoising over the same T steps. For any time t ∈ [0, T ], we can get the current state xt

through the forward process formulated by:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where xt is the noisy image at t, βt is the coefficient that determines the variance added in each
iteration, and I is the identity matrix. So, we can get the xt with the forward process:

xt =
√
1− βtxt−1 + βtϵ, ϵ ∼ N (0, I) (2)

Through the reparameterization, we can get the xt given the starting state x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), ᾱt = 1− βt, ᾱt =

t∏
s=1

αt (3)

The reverse process aims to estimate the previous state xt−1 given the current state xt. We can
obtain the posterior distribution p(xt−1|xt,x0) through the Bayes’ theorem:

p(xt−1|xt,x0) = N (xt−1;µt(xt,x0), σ
2
t I), (4)

where µt(xt,x0) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵ), σ2
t =

1− ᾱt−1

1− ᾱt
βt, (5)

DDPM leverages a neural network ϵθ to estimate the noise term ϵ in Eq. 5. For any time-step
t ∈ [0, T ], we can get the loss function defined in (Ho et al., 2020):

L(θ) = Ex0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ

)
∥22
]
. (6)

In the reverse process, through the iterative sampling of xt−1 from the posterior distribution, DDPM
can generate a sample x0 ∼ q(x0) from a pure Gaussian noise xT ∼ N (0, I). Here, q(x0) denotes
the data distribution of the training dataset.

3 METHOD

In this section, we will give a detailed introduction to the proposed R2Diff, a diffusion model tailored
for various image restoration tasks. It consists of a Markov chain that transfers the clear image to
its degraded counterpart by using the ratio and residual between them, which will be detailed in
Sec. 3.1. Moreover, an exponential schedule is designed to flexibly control the diffusion speed for
different types of degradation, which will be described in Sec. 3.2.

3.1 DIFFUSION PROCESS OF THE R2DIFF

Many works have proven the effectiveness of the iterative paradigm of diffusion on specific im-
age restoration tasks, which inspire us to explore a universal diffusion model capable of effectively
adapting to diverse image restoration tasks. In this section, we present the new Markov chain de-
signed for various image restoration tasks, and introduce the forward and reverse process in details.

Forward Process. Existing works (Luo et al., 2023; Yue et al., 2023) have attempted to model
the degradation process between clear image and degraded image through directly shifting their
residuals, which we have proven ineffective for some degradation (see Fig. 1). Let us revisit the
general degradation process:

y = Ax0 + n (7)
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Figure 2: Framework of the proposed R2Diff. (a) The forward and reverse process of the R2Diff.
During the forward process, the clear image x0 gradually diffuses into its degraded counterpart with
noise, i.e., xT ∈ N (xT;y, β̄tI), through transferring the ratio and residual between x0 and y. In the
reverse process, the degradation is progressively removed from xT , accompanied by the elimination
of noise, restoring the degraded image to its clear state. (b) Exponential schedule: the value of ᾱt

with time-step t under different settings of p.

where x0 is the clear image, y denotes the corresponding degraded image. It contains two key
components, the noise term n and the degradation operator A. The former can be captured by
residuals between y and x0 (Yue et al., 2023), while the latter cannot be represented effectively
through the same approach. Inspired by the works (Wang et al., 2022; Fu et al., 2021), we represent
A through the ratio, i.e., A = y/x0.

However, the direct ratio form, i.e., A = y/x0, is difficult to model into the transition kernel of the
Markov process. To remedy this issue, we adopt the logarithmic function and get the transfers:

r0 = a [ln(y +E)− ln(x0 +E)]︸ ︷︷ ︸
representA

+b (y − x0)︸ ︷︷ ︸
representn

, (8)

where r0 denotes the transition between x0 and y, E represents the all-ones matrix, a and b are
the weighting coefficients, where a + b = 1. We leverage the logarithm of the ratio between y
and x0 to represent A, and use the residual between y and x0 to represent n. Beyond the residual-
based modeling, our method takes both degradation operator A and noise term n into consideration,
which can cover a wide range of degradation process. More importantly, Eq. 8 also satisfies that
y = x0 + r0 when t = T . The proof is provided in Appendix A.1. Note that a in Eq. 8 determines
the influence of ratio and residual on r0. Therefore, it is necessary to adjust the value of a flexibly
for different degradation. The choice of a for different degradation will be discussed in Sec. 5.

After that, we construct a Markov chain that transfers from x0 to y through shifting r0. The forward
process can be formulated as:

q(x1:T |x0,y) =

T∏
t=1

q(xt|xt−1,y), q(xt|xt−1,y) = N (xt;xt−1 + αtr0, βtI), (9)

where I is the identity matrix, the two sets of hyper-parameters αt and βt control the diffusion speed
of r0 and noise, respectively. αt > 0, βt > 0, and t = 1, 2, ..., T . The selection of αt and βt will be
detailed in Sec. 3.2. Then, we can get the marginal probability distributions:

q(xt|x0,y) = N (xt;x0 + ᾱtr0, β̄tI) (10)

where ᾱt =
∑t

i=1 αi, β̄t =
∑t

i=1 βi. The ᾱt increases monotonically as time t increases. If t = 0,
ᾱt → 0, and if t = T , ᾱt → 1.

Reverse Process. In the reverse process, we try to yield the clear image x0 from the final state
through iterative sampling step by step, which is formulated by:

pθ(x0|y) =
∫

pθ(x0:T |y)dx1:T , pθ(x0:T |y) = p(xT |y)
T∏

t=1

pθ(xt−1|xt, y), (11)
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where p(xT |y) = N (xT ;y, β̄tI) denotes the final state when t = T , and the pθ(xt−1|xt, y) =
N (xt−1;µθ(xt,y, t),Σθ(xt,y, t)) represents the reverse transfer from current state xt to previous
state xt−1 with learnable parameters θ. Following (Ho et al., 2020), we train the parameter θ by
optimizing the usual variational bound on negative log likelihood, which is:

L(θ) =
∑
t>0

DKL [q(xt−1|xt,x0,y)||pθ(xt−1|xt,y)] , (12)

where DKL is the KL divergence. The reverse transfer probability q(xt−1|xt,x0,y) can be repre-
sented through the Bayes’ rule:

q(xt−1|xt,x0,y) = N (xt−1; µ̃t(xt,x0,y), β̃tI), (13)

where µ̃t(xt,x0,y) and β̃tI are formulated by:

µ̃t(xt,x0,y) =
β̄t−1

β̄t
xt +

Kt

β̄t
[a ln(y+E) + by] +

1

β̄t
(βtx0 −Kt [a ln(x0 +E) + bx0]) ,

β̃t =
βtβ̄t−1

β̄t
,

(14)

In Eq. 14, Kt = βtᾱt−1 − β̄t−1αt. The detailed derivation is provided in Appendix A.2. Following
DDPM (Ho et al., 2020), we set Σθ(xt,y, t) = β̃tI to untrained time dependent constants since β̃t

is unrelated to xt and y. With pθ(xt−1|xt, y) = N (xt−1;µθ(xt,y, t), β̃tI), we can simplify the
loss function in Eq. 12 through reparameterization, which is:

L(θ) =
∑
t>0

1

2β̃tβ̄2
t

∥γt[fθ(xt,y, t)− x0]− λt[ln(fθ(xt,y, t) +E)− ln(x0 +E)]∥22 (15)

where fθ is a network whose parameter is θ, γt and λt are time-dependent hyper-parameters. The
detailed derivation is provided in Appendix A.3. Fig 2(a) shows the whole forward and reverse
process of our diffusion model.

3.2 EXPONENTIAL SCHEDULE

In Eq. 10, the coefficient ᾱt and β̄t control the diffusion speed of degradation and noise, respectively.
Inspired by (Liu et al., 2023), we employ two independent coefficient schedules to ᾱt and β̄t in the
R2Diff, which allows us to explore the schedules of ᾱt and β̄t more flexibly. During the reverse
process of diffusion, denoising is accompanied by the removal of degradation. To effectively address
various degradation, it is essential to use different coefficient sets for ᾱt and β̄t that can adapt to
specific degradation characteristics, instead of using a fixed set.

In our work, we focus on ᾱt, since it controls the diffusion speed of degradation in the forward pro-
cess, and regulates the speed of degradation removal in the reverse process. Many works (Rissanen
et al., 2022; Choi et al., 2022) have proven that diffusion models perform a coarse-to-fine manner in
the reverse process, which means they first recover the global contents of images when the time-step
t is large, and learn fine-grained details when t is small. As the noise is progressively removed, the
diffusion’s focus gradually shifts from the restoration of global contents to the enhancement of fine-
grained details. Intuitively, for those degradation that severely damages the global contents, the ᾱt

should have a higher changing rate when t is large (see Fig. 6), which allows the diffusion model to
fully perceive the degradation when t is large. In the reverse process, it will effectively eliminate the
degradation when recovering global contents. Conversely, for those degradation that mainly ruins
the fine-grained details of images, the ᾱt should have a higher changing rate when t is small.

Based on the aforementioned analysis, we design an exponential schedule for ᾱt. By adjusting
ᾱt, we can flexibly control the diffusion speed for different degradation, thereby facilitating the
degradation removal in the reverse process. Specifically, we design our schedule for ᾱt as:
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ᾱt =
1

e− 1
∗
[
exp[(

t

T
)p]− 1

]
, t = 1, 2, 3, ..., T (16)

where p controls changing rate of ᾱt. Through adjusting p, we can flexibly control the diffusion
speed for different degradation, as shown in Fig. 2(b). The selection of p for different degradation
will be described in Sec. 5.

As for β̄t, we explore different schedules and find that the commonly-used cosine schedule in
DDPM (Ho et al., 2020) works well for different degradation in our experiments.

4 RELATED WORK

4.1 IMAGE RESTORATION

Image restoration aims to recover the latent clear images from their degraded version. With the de-
velopment of the deep learning, convolution neural network (CNN)-based methods have dominated
the image restoration tasks, and shows outstanding performance in dehazing (Chen et al., 2019; Liu
et al., 2019; Li et al., 2020; Yu et al., 2022), deraining (Ren et al., 2019; Qian et al., 2018), de-
blurring (Gao et al., 2019; Ren et al., 2021; Cho et al., 2021), denoising (Abdelhamed et al., 2019;
Chang et al., 2020) and many other tasks. Transformer-based methods (Liang et al., 2021; Zamir
et al., 2022) have also shown impressive performance in image restoration.

4.2 DIFFUSION-BASED IMAGE RESTORATION

As diffusion models (Ho et al., 2020; Song et al., 2020a;b) have achieved unprecedented success
in image generation (Dhariwal & Nichol, 2021) and various downstream tasks, such as image edi-
tion (Hertz et al., 2022; Brooks et al., 2023) and personalization (Ruiz et al., 2023; Gal et al., 2022),
many works have explored its potential in image restoration tasks, which can be divided into two
categories. The first one is to retrain diffusion models that are conditioned on the degraded im-
ages (Jiang et al., 2023; Yi et al., 2023; Saharia et al., 2022; Whang et al., 2022; Wei et al., 2023).
Specifically, these methods diffuse the clear image into a pure Gaussian white noise in the forward
process, and then recover the clear image by using the degraded image as the condition in the reverse
process, which often lack interpretability. The second one is to adopt pre-trained diffusion models
as prior to restore degraded images (Wang et al., 2023a; Feng et al., 2023; Mardani et al., 2023;
Wang et al., 2023a; Fei et al., 2023; Wang et al., 2022). These methods do not require retraining the
diffusion model, leading to relatively low computational overhead. Despite this, their performance
is often limited. In this paper, we aim to propose a universal diffusion model for image restoration
that can cover various degradation.

5 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of the proposed R2Diff across multiple image
restoration tasks, which encompass scenarios where A ̸= E, such as low-light image enhancement,
and those where A ≈ E, such as deraining and denoising.

5.1 IMPLEMENTATION DETAILS

Training Details. Following the settings in (Ho et al., 2020), we use a U-Net as the denoising
network for all experiments. The Adam optimizer is adopted to train the R2Diff with default settings.
The learning rate is initialized to 1×10−4, and decreases with a factor 0.5 every 200K iterations. The
total iteration is set to 800K. The number of diffusion steps T is set to 100 for all image restoration
tasks. The mini-batch and the training patch size are set to 4, 256× 256, respectively. We train our
model on 2×4090Ti GPUs with PyTorch.

Evaluation Metrics. To evaluate the quality of the restored images, the commonly used Peak Signal
to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are adopted. Moreover, we
use the Learned Perceptual Image Patch Similarity (LPIPS) and Fréchet inception distance (FID) to
measure the perceptual difference.
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Table 1: Quantitative comparison of different low-light image enhancement methods on LOL-v1 and
LOL-v2 Real dataset. The best results and the second best ones are marked as bold and underline.

Method LOLv1 LOLv2-Real
PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

RetinexNet 16.77 0.462 0.417 126.27 17.72 0.652 0.436 133.91
Zero-DCE 14.86 0.562 0.372 87.24 18.06 0.580 0.352 80.45

URetinex-Net 19.97 0.828 0.267 62.38 21.13 0.827 0.208 49.84
MPRNet 20.46 0.772 0.293 75.62 22.37 0.832 0.296 63.23

Restormer 20.61 0.792 0.288 73.00 23.31 0.851 0.285 57.43
WeatherDiff 16.30 0.786 0.277 65.61 15.87 0.801 0.272 65.82

ResShift 19.23 0.735 0.225 61.21 20.41 0.704 0.218 60.72
IR-SDE 12.90 0.557 0.486 175.33 15.22 0.570 0.467 169.82

GDP 13.93 0.630 0.445 95.16 15.33 0.589 0.476 98.17
R2Diff 23.17 0.848 0.178 52.19 24.70 0.851 0.162 46.68

Low-light Restormer WeatherDiff IR-SDE ResShift R2Diff Ground Truth

Figure 3: Qualitative results of different low-light image enhancement methods on LOL datasets.

Table 2: Performance comparison of R2Diff on low-light image enhancement and deraining under
different settings of a and p. The best results are marked in bold.

Coefficient LOLv1
a p PNSR ↑ SSIM ↑ LPIPS ↓

0.8

0.1 21.32 0.796 0.387
0.3 21.56 0.805 0.262
0.7 22.13 0.825 0.214
3.0 23.17 0.848 0.178
5.0 22.60 0.836 0.193

0.0

3.0

20.11 0.763 0.387
0.2 20.67 0.786 0.326
0.4 21.46 0.814 0.255
0.6 22.34 0.827 0.241
0.8 23.17 0.848 0.178
1.0 23.01 0.841 0.183

(a) Low-light image enhancement

Coefficient Rain100L
a p PNSR ↑ SSIM ↑ LPIPS ↓

0.0

0.1 36.78 0.963 0.015
0.3 36.89 0.971 0.017
0.7 37.33 0.979 0.013
3.0 37.11 0.968 0.013
5.0 37.07 0.971 0.019

0.0

0.7

37.33 0.979 0.013
0.2 36.73 0.965 0.021
0.4 36.08 0.948 0.027
0.6 34.59 0.927 0.041
0.8 33.12 0.905 0.053
1.0 30.41 0.897 0.062

(b) Deraining

5.2 EVALUATION ON LOW-LIGHT IMAGE ENHANCEMENT

Comparison with state-of-the-art methods. We first evaluate the R2Diff on low-light image
enhancement, where A deviates from E. We choose the commonly-used LOL-v1 (Wei et al.)
and LOL-v2 Real (Yang et al., 2021) as the evaluation datasets, which will be detailed in Ap-
pendix B.1. We compare the R2Diff with state-of-the-art CNN/Transformer-based methods, such
as RetinexNet (Wei et al., 2018), Zero-DCE (Guo et al., 2020), URetinex-Net (Wu et al., 2022),
MPRNet (Zamir et al., 2021), and Restormer (Zamir et al., 2022). We also compare with diffusion-
based methods, such as GDP (Fei et al., 2023), WeatherDiff (Özdenizci & Legenstein, 2023),
ResShift (Yue et al., 2023), and IR-SDE (Luo et al., 2023). As shown in Tab. 1, R2Diff surpasses all
compared methods in all metrics. The higher PSNR and SSIM highlights the capability of R2Diff to
yield image with better fidelity. And the lower scores in perceptual metric prove that the enhanced
images by R2Diff can better serve for human visual system. Fig. 3 shows the qualitative results.

Choice of a and p for low-light image enhancement. The hyper-parameter a in Eq. 8 governs the
balance between ratio and residual, and p in Eq. 16 controls the diffusion speed. It is crucial to make
appropriate choices for a and p when handling different degradation. For low-light enhancement,
the degradation operator A plays an important role in the degradation process (Wang et al., 2023b),
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Table 3: Quantitative comparison of different image restoration methods on three image restoration
methods, including deraining, deblurring, and denoising. The best results and the second best ones
are marked as bold and underline. We mark N/A for those not applicable.

Method Deraining Deblurring Denoising

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PReNet 32.44 0.950 0.075 N/A N/A N/A N/A N/A N/A
MSPFN 32.40 0.933 0.071 N/A N/A N/A N/A N/A N/A
DeepDeblur N/A N/A N/A 29.08 0.914 0.135 N/A N/A N/A
DeblurGAN N/A N/A N/A 28.70 0.884 0.178 N/A N/A N/A
DnCNN N/A N/A N/A N/A N/A N/A 29.54 0.845 0.125
BRDNet N/A N/A N/A N/A N/A N/A 29.67 0.851 0.118
MPRNet 36.40 0.965 0.027 29.63 0.881 0.126 30.13 0.863 0.104
AirNet 34.90 0.966 0.058 N/A N/A N/A 30.02 0.855 0.113
RainDiffusion 36.85 0.972 0.036 N/A N/A N/A N/A N/A N/A
WeatherDiff 35.27 0.968 0.021 N/A N/A N/A N/A N/A N/A
ResShift 25.26 0.730 0.158 28.47 0.879 0.113 29.23 0.829 0.086
IR-SDE 36.51 0.979 0.016 30.21 0.892 0.107 29.41 0.836 0.071
R2Diff 37.33 0.979 0.013 30.44 0.896 0.068 29.46 0.839 0.068

Rainy ResShift IR-SDE R2Diff GT Blur ResShift IR-SDE R2Diff GT

(a) Deraining (b) Deblurring

Figure 4: Qualitative results on different diffusion-based image restoration methods.

thus, the value of a should be larger. On the other hand, dark areas typically occupy the whole low-
light image, which means low-light significantly ruins the global content and color of images. Based
on the analysis in Sec. 3.2, p should be set larger, so that the diffusion can focus on enhancement
when time-step t is large. The comparison results in Tab. 2a provide supporting evidence for our
statement. In our experiments, a is set to 0.8, and p is set to 3.0. As we can see, larger a and p tend
to yield better restoration results. Note that a = 1 is not the best choice, since the noise term n also
exists in the degradation process (Xu et al., 2022).

5.3 EVALUATION ON DERAINING

Comparison with state-of-the-art methods. We further test our method on deraining, where A ≈
E (Fu et al., 2021). The Rain100L (Yang et al., 2017) are utilized to evaluate different methods.
We compare the R2Diff with PRENet (Ren et al., 2019), MSPFN (Jiang et al., 2020), MPRNet,
AirNet (Li et al., 2022), RainDiffusion (Wei et al., 2023), WeatherDiff, and IR-SDE. As shown
in Tab. 3, our method achieves the best performance in all three metrics compared with chosen
baselines, which means that our method can recover clear image with higher fidelity (i.e., higher
PSNR) and better perceptual quality (i.e., lower LPIPS). Fig. 4(a) shows the quanlitative results.

Choice of a and p for deraining. As illustrated in Fig 1(a), the degradation of rain can be directly
represented through the residuals between clear and rainy images. So, for deraining, a is set to 0.0.
In fact, in this case, the R2Diff degenerates into a residual-based diffusion model. This highlights
that we build a larger envelope space, which covers two specific modeling approaches: ratio-based
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and residual-based. By adjusting a flexibly, we can model various degradation processes effectively.
As for p, we find that 0.7 is the best choice, as shown in Tab. 2b.

5.4 EVALUATION ON DEBLURRING, DENOISING, AND DEHAZING

We also evaluate the R2Diff on image deblurring and image denoising. For image deblurring, we
choose GoPro (Nah et al., 2017) dataset for evaluation. For comparison, we compare the R2Diff
with DeepDeblur (Nah et al., 2017), DeblurGAN (Kupyn et al., 2018), MPRNet, ResShift, and IR-
SDE. In the experiments, a is set to 0.1, and p is set to 0.3, which will be discussed in Appendix B.2.
As described in Tab. 3, the R2Diff outperforms all compared methods in terms of PSNR/SSIM.
Furthermore, the R2Diff achieves the best LPIPS, which indicates that it can yield sharp images that
look more realistic. We also provide qualitative results in Fig. 4.

For image denoising, we collect 3,950 clear images from Flickr2K (Timofte et al., 2017),
DIV2K (Agustsson & Timofte, 2017), and BSD400 (Martin et al., 2001) for training. After that,
we test our model on McMaster (Zhang et al., 2011) with noise level σ = 50. We compare our
method with DnCNN (Zhang et al., 2017), BRDNet (Tian et al., 2020), AirNet, MPRNet, ResShift,
and IR-SDE. a is set to 0.0, and p is set to 0.7, which will be detailed in Appendix B.2. As we
can see from Tab. 3, the R2Diff can restore image with better perceptual quality (i.e., lower LPIPS),
however, it falls shorts in terms of fidelity (i.e., lower PSNR and SSIM) compared with CNN-based
methods. We further test our method on image dehazing, which is presented in Appendix B.3.

5.5 ABLATION STUDY

In this section, we perform comprehensive ablation studies to demonstrate the effectiveness of two
components in the R2Diff.

Effectiveness of Ratio and Residual Modeling. A comprehensive analysis of the balance between
ratio and residual for different degradation has been elaborately presented in Tab. 2. Taking low-light
image enhancement as an example, as shown in Tab. 2a, it is evident that neither a diffusion model
solely based on ratio (a = 1.0) nor one solely based on residual (a = 0.0) can accurately capture the
intricacies of the low-light degradation. This is because low-light degradation includes not only the
variation in illustration but also the presence of noise (Xu et al., 2022; Zheng et al., 2023). Hence,
it is necessary to incorporate both ratio and residual in the diffusion process for effective low-light
image enhancement.
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Figure 5: PSNR learning curves of
different schedule.

Effectiveness of the Exponential Schedule. To flexibly
control the diffusion speed for different degradation, we
propose an exponential schedule for ᾱt as formulated in
Eq. 16, which is determined by a hyper-parameter p. To ver-
ify the effectiveness of our exponential schedule, we com-
pare it with commonly-used linear and cosine schedules in
existing diffusion probabilistic models (Ho et al., 2020) in
low-light image enhancement on LOL-v1. Fig. 5 plot the
PSNR learning curves of different schedules. As we can
see, our schedule outperforms other schedules.

6 CONCLUSION AND LIMITATION

In this paper, we propose a universal diffusion model for image restoration, called R2Diff. It consists
of a Markov chain that transfer a high-quality image to its low-quality counterpart, whose transition
kernel is constructed through the ratio and residual between them. An exponential schedule is further
introduced to flexibly control the diffusion speed for different degradation. Extensive experiments
on various image restoration tasks have demonstrated the superiority of our method.

On the other hand, there is still room for further improvement and refinement in our method. In our
experiments, the hyper-parameters a and p for different degradation are manually tuned. In future
research, we aim to explore an adaptive approach for adjusting the value of these hyper-parameters,
which will eliminate the need for manual tuning, enhance efficiency, and potentially improve the
performance of our method.
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A DETAILED DERIVATION

A.1 PROOF

In Eq. 8, we have r0. When t = T , we have:

x0 + r0 = x0 + a [ln(y +E)− ln(x0 +E)] + b(y − x0)

= x0 + [a ln(y +E) + (1− a)y]− [a ln(x0 +E) + (1− a)x0]
(17)

According to Taylor expansion, we have ln(x+ I) = x− x2

2 +o(x2). Through removing the higher
order terms, we can further get:

x0 + r0 = x0 +

[
a(y − y2

2
+ o(y2)) + (1− a)y

]
−
[
a(x0 −

x2
0

2
+ o(x2

0)) + (1− a)x0

]
≈ x0 + (y − x0)

= y

(18)

A.2 DERIVATION OF EQ. 14

In the reverse process, we aim to recover xt−1 from xt. According to the Bayes’s theorem, we can
get:

q(xt−1|xt,x0, y) ∝ q(xt|xt−1, y)q(xt−1|x0, y) (19)

where q(xt|xt−1, y) = N (xt;xt−1 + αtr0, βtI) from Eq. 9, and q(xt−1|x0, y) = N (xt−1;x0 +
ᾱt−1r0, β̄t−1I) from Eq. 10. Then, we focus on the exponential term,

q(xt−1|xt,x0,y) ∝ exp{− (xt − xt−1 − αtr0)
2

2βt
− (xt−1 − x0 − ᾱt−1r0)

2β̄t−1
}

= exp{− β̄t

2βtβ̄t−1
x2
t−1 + (

xt − αtr0
βt

+
x0 + ᾱt−1r0

β̄t−1
)xt−1 + const.}

= exp{ (xt−1 − µt(xt,x0,y))
2

2σ2
t

+ const.}

(20)

where the const. is not related to xt−1, and

µt(xt,x0,y) =
β̄t−1

β̄t
xt +

Kt

β̄t
[a ln(y+E) + by] +

1

β̄t
(βtx0 −Kt [a ln(x0 +E) + bx0]) ,

σ2
t =

βtβ̄t−1

β̄t
,

(21)

In Eq. 21, we denote Kt = βtᾱt−1− β̄t−1αt for simplicity. Then, we can get the mean and variance
of q(xt−1|xt,x0,y) as represented in Eq. 13 and Eq. 14.

A.3 DERIVATION OF EQ. 24

For the mean µ̃t(xt,x0,y) in Eq. 14, we can get µθ(xt,y, t) through reparameterization:

µθ(xt,y, t) =
β̄t−1

β̄t
xt +

Kt

β̄t
[a ln(y +E) + by]

+
1

β̄t
(βtfθ(xt,y, t)−Kt [a ln(fθ(xt,y, t) +E) + bfθ(xt,y, t)])

(22)
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According to the loss function in Eq. 12, we obtain the simplified training objective:

L(θ) =
∑
t>0

1

2β̃t

∥µ̃t(xt,x0,y)− µθ(xt,y, t)∥22 (23)

Since we have µ̃t(xt,x0,y) in Eq. 14 and µθ(xt,y, t) in Eq. 23, we can further get:

L(θ) =
∑
t>0

1

2β̃tβ̄2
t

∥γt[fθ(xt,y, t)− x0]− λt[ln(fθ(xt,y, t) +E)− ln(x0 +E)]∥22 (24)

where γt = βt − Ktb and λt = Kta, which are dependent on time-step t and hyper-parameter a
and b.

A.4 FURTHER EXPLANATION OF EXPONENTIAL SCHEDULE
forward Process

Reverse Process

t=0 t=T

... ...

𝛼 𝑡 

𝑥0 y 𝑥𝑇/2 

Higher changing rate 

when t is large

Figure 6: Choice of ᾱt.

As mentioned in Sec. 3.2, for those degradation that primar-
ily damages the global content of images (e.g., low-light),
the ᾱt should have a higher changing rate when time-step t
is large, as indicated by the green line in Fig. 6. Since the
diffusion focuses on recovering the global content when t
is large, through setting ᾱt with higher changing rate dur-
ing that period, the diffusion model can fully perceive the
degradation when t is large. Consequently, the diffusion
can effectively remove the degradation while recovering the
global contents of images in the corresponding reverse pro-
cess.

B EXPERIMENT

B.1 DETAILS OF TRAINING DATASETS.

Datasets for low-light image enhancement. We evaluate our method for low-light image enhance-
ment on LOL-v1 (Wei et al.) and LOL-v2-Real (Yang et al., 2021) dataset. The LOL-v1 contains
485 low-/normal-light image pairs for training, and 15 pairs for testing. The LOL-v2-Real includes
689 low-/normal-light image pairs for training, and 100 pairs for testing.

Datasets for Deraining. We evaluate our method for deraining on Rain100L (Yang et al., 2017),
which consists of 200 rainy-clean image pairs for training, and 100 pairs for testing.

Datasets for Deblurring. We evaluate our method for deblurring on GoPro (Nah et al., 2017),
which has 2,103 blurry-sharp image pairs for training, and 1,111 image pairs for testing. The blurry
images in GoPro are generated by averaging the sharp images captured by a high-speed camera.

Datasets for Denoising. We use the combination of Flickr2K (Timofte et al., 2017),
DIV2K (Agustsson & Timofte, 2017), and BSD400 (Martin et al., 2001) as training set for im-
age denoising. Flickr2K includes 2,650 images, DIV2K has 1,000 images, and BSD400 contains
400 images.

B.2 CHOICE OF a AND p

Choice of a and p for image deblurring. For deblurring, we set a and p as 0.1 and 0.3, respectively.
Tab. 4a shows the performance of R2Diff in image deblurring on GoPro under different settings of a
and p. As we can see, p = 0.3 is a better choice. Since deblurring requires recovering high-quality
detailed textures from blurry images, p should be set smaller, which encourages the diffusion model
to restore detailed textures when t is small. However, it may bring trade-off between fidelity and
realism. As for a, we can see that a = 0.1 is slightly better than a = 0.0. Although the diffusion
model based on residual only has proven its effectiveness in deblurring, the degradation operator A
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Table 4: Performance comparison of R2Diff on deblurring and denoising under different settings of
a and p. The best results are marked in bold.

Coefficient GoPro
a p PNSR ↑ SSIM ↑ LPIPS ↓

0.1

0.1 30.18 0.882 0.065
0.3 30.44 0.896 0.068
0.7 30.30 0.887 0.053
3.0 30.28 0.891 0.082
5.0 30.15 0.885 0.073

0.0

0.3

30.29 0.886 0.072
0.1 30.44 0.896 0.068
0.4 30.05 0.879 0.075
0.6 29.83 0.863 0.089
0.8 29.15 0.846 0.093
1.0 28.34 0.827 0.115

(a) Deblurring

Coefficient McMaster
a p PNSR ↑ SSIM ↑ LPIPS ↓

0.0

0.1 28.63 0.814 0.086
0.3 28.58 0.826 0.073
0.7 29.46 0.839 0.068
3.0 29.23 0.832 0.078
5.0 28.97 0.828 0.075

0.0

0.7

29.46 0.839 0.068
0.2 28.45 0.805 0.123
0.4 26.13 0.763 0.288
0.6 22.28 0.816 0.463
0.8 20.75 0.688 0.572
1.0 18.33 0.561 0.661

(b) Denoising

plays an important role in deblurring (Fu et al., 2021; Nah et al., 2017), and should be modeled into
the diffusion process.

Choice of a and p for image denoising. For image denoising, we set a and p as 0.0 and 0.7,
respectively. Similar to image deraining, A = E for image denoising. So we set a = 0.0, which
means the R2Diff degenerates into a residual-based diffusion model. As we can see from Tab. 4b,
increasing the value of a will result in a decline in the denoising performance. As for p, we observe
that p = 0.7 is the best choice.

B.3 EVALUATION ON DEHAZING

We further test the R2Diff on image dehazing. We evaluate our method on NH-HAZE (Ancuti et al.,
2020a;b), which contains 55 hazy-clean image pairs. In our experiments, a and p is set to 0.6 and
2.0. The qualitative results are provided in Fig. 7. As we can see, the R2Diff can remove the haze
and recover contents of images.
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Figure 7: Qualitative results of dehazing on NH-HAZE dataset.
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B.4 MORE QUALITATIVE RESULTS

Low-Light URetinex-Net MPRNet Restormer GDP

WeatherDiff ResShift IR-SDE GTR2Diff

Figure 8: Qualitative results of low-light image enhancement on LOL-v1 dataset.

Rainy MPRNet ResShift IR-SDE R2Diff GT

Figure 9: Qualitative results of deraining on Rain100L dataset.
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