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ABSTRACT

Unsupervised multi-domain adaptation plays a key role in transfer learning by
leveraging acquired rich source information from multiple source domains to
solve target task from an unlabeled target domain. However, multiple source do-
mains often contain much redundant or unrelated information which can harm
transfer performance, especially when in massive-source domain settings. It is
urgent to develop effective strategies for identifying and selecting the most trans-
ferable knowledge from massive source domains to address the target task. In this
paper, we propose a multi-domain adaptation method named Autonomous Source
Knowledge Selection (AutoS) to autonomosly select source training samples and
models, enabling the prediction of target task using more relevant and transfer-
able source information. The proposed method employs a density-driven selec-
tion strategy to choose source samples during training and to determine which
source models should contribute to target prediction. Simulteneously, a pseudo-
label enhancement module built on a pre-trained multimodal modal is employed
to mitigate target label noise and improve self-supervision. Experiments on real-
world datasets indicate the superiority of the proposed method.

1 INTRODUCTION

Domain adaptation has achieved significant progress in transfer learning by addressing data scarcity
in the target domain through the utilization of knowledge from source domain(s). Typical domain
adaptation methods involve various techniques to overcome distribution shifts and modal gaps, in-
cluding approaches based on feature alignment (Bai et al., 2024) and those relying on model fine-
tuning (Zhang et al., 2023b). Feature alignment–based methods focus on matching source and target
data in a latent feature space to bridge their gaps, commonly employing techniques such as maxi-
mum mean discrepancy (MMD) (Ning et al., 2025), Kullback–Leibler (KL) divergence (Schlachter
et al., 2025), Wasserstein distance (He et al., 2024), and adversarial learning (Fang et al., 2024). In
contrast, model fine-tuning methods (Zhang et al., 2023c; Li et al., 2024) primarily rely on pseudo-
label estimation and self-training strategies to adapt the model, making label denoising techniques a
critical component for ensuring performance (Litrico et al., 2023).

To enhance the generality of domain adaptation in handling complex scenarios, category shifts have
been considered, leading to the development of partial (Kong et al., 2022), open-set (Wan et al.,
2024), and universal (Qu et al., 2024) domain adaptation, where out-of-distribution detection tech-
niques serve as an effective solution. Simultaneously, extracting transferable knowledge from mul-
tiple source domains (Ma et al., 2024) and modalities (Zhang et al., 2023a; 2025) has emerged as
a prominent approach for leveraging richer information to enhance transfer performance. To inte-
grate knowledge, linear combination is a widely used approach for fusing features or predictions
from multiple source domains or modalities, including both simple averaging (Zhao et al., 2020),
weighted averaging (Dong et al., 2021) and federated learning (Huang et al., 2023) strategies.

However, knowledge from different sources also introduce challenges, particularly when dealing
with massive numbers of samples or domains, as shown in Figure 1. Previous multi-domain adapta-
tion methods typically combine information from all source domains, but seldom focus on selecting
one or more relevant domains. Limited research has explored reducing the number of transferred
source domains, and such distillation processes often involve manual operations. One represent
work is sample and source distillation, (Li et al., 2023). It selects source samples and domains
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that are more similar to the target domain to enhance transfer performance. However, this method
requires training source models twice, once for selection and once for adaptation, which is imprac-
tical when dealing with massive source domains due to the high computational cost. Automatically
and effectively selecting source knowledge from massive domains remains an urgent challenge in
multi-domain adaptation.

Combine all domains

Or

Cost long time Require large storageAND

Train independent models

Remove irrelavant source

Remove irrelavant source

Labeled source Unlabeled target Predicted target

Figure 1: Illustration of multi-domain adaptation. The left figure exemplifies that training inde-
pendent models by matching each source-target pair or by combining all domains can cause high
computational and storage costs, while overlooking the fact that irrelevant sources can degrade trans-
fer performance. The right figure depicts an ideal solution in which irrelevant source domains are
removed while relevant ones are retained.

Considering the mentioned gaps, in this paper, we propose an autonomous source knowledge se-
lection method to achieve target-oriented domain adaptation, which reduces the number of source
domains involved in transfer without degrading performance. The proposed method introduces a
density-controlled sample collection strategy to construct an intermediate domain composed of high-
confidence source and target samples. Simultaneously, guided by the proportion of confident target
samples and the target data density relative to each source domain, source domains with low simi-
larity are removed during training and subsequent adaptation. In this way, multi-domain adaptation
can be achieved by automatically identifying useful source domains while progressively discard-
ing irrelevant domains during training, thereby avoiding the introduction of noisy knowledge and
facilitating learning, particularly when dealing with massive source domains.

Our contributions can be summarized as: (1) An autonomous source knowledge selection method
for multi-domain adaptation. This benefits the target domain by pruning redundant or dissimilar
source domains and suppressing noisy information. (2) A target-oriented multi-domain adapta-
tion approach for enhancing downstream task performance through prompt tuning across different
modalities. This enables domain adaptation without data matching, making it flexible for transfer
learning with or without access to source data. (3) A density-controlled sample collection strat-
egy for gathering high-confident source and target samples. This benefits domain adaptation by
constructing an intermediate domain and introducing self-supervision for the target task.

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 details
the proposed autonomous source knowledge selection method; Section 4 presents experiments and
analysis on real-world datasets; and Section 5 concludes with directions for future research.

2 RELATED WORK

2.1 MULTI-DOMAIN ADAPTATION

Multi-domain adaptation achieve great progress in recent. Contrastive adversarial learning (Wil-
son et al., 2023) deals with multi-source time series domain adaptation by aligning cross-source
label information. In this framework, adversarial learning guides a domain classifier to distinguish
whether a sample is from the source or target domain, while contrastive learning enforces intra-class
closer together and inter-class separation. Prototype-based mean teacher (Belal et al., 2024) employs
class prototypes to encode specific information from multiple domains, where the contrastive loss is
used to align intra-class knowledge while separating inter-class knowledge across domains. Multi-
ple adaptation network (Lu et al., 2025) addresses multi-source and multi-target domain adaptation,
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which uses multiple alignment strategies to align both features and classifiers that are relevant. Style
information transfer is also considered to fully leverage knowledge from multiple target domains.

2.2 FEDERATED LEARNING

Federated learning is a widely used strategy that avoids training on independent source domains
while leveraging the benefits of multiple sources. Universal federated domain adaptation (Liu et al.,
2024) defines a hot-learning strategy with contrastive label disambiguation, which solves category
shifts through one-hot outputs of source models and detects unknown categories using a cluster-level
strategy built based on the consensus knowledge across source and target domains. Heterogeneous
fuzzy domain adaptation (Li et al., 2025) integrates federated training and fuzzy logic to enable
domain adaptation without requiring access to source data or models. A transformation module
is introduced to address heterogeneity, while self-knowledge distillation is employed to federally
construct the target model by simulating the predictions of source models.

2.3 MULTIMODAL DOMAIN ADAPTATION

Distilling multimodal foundation model (Tang et al., 2024b) achieves source-free domain adaptation
through a two-step process, including customizing the vision–language model via prompt learning
to minimize mutual information and distilling knowledge based on the target domain. Text-image
alignment network (Kondapaneni et al., 2024) extends stable diffusion to leverage perceptual knowl-
edge for predicting visual tasks from text-based generative prompts. It employs model personaliza-
tion and caption modification to adapt the pre-trained model to the target domain, achieving im-
provements over unaligned baselines. Text-free graph foundation model (Yu et al., 2025) introduces
a novel structure alignment framework to learn multi-domain knowledge from graphs originating
in multiple source domains. It adapts to unseen target domains by incorporating a set of structure
tokens and dual prompts, thereby unifying domain-specific information with structural knowledge.

3 THE PROPOSED AUTONOMOUS SOURCE KNOWLEDGE SELECTION
METHOD

3.1 OVERVIEW

The whole proposed method is displayed in Figure 2. The framework consists of two stages. The
first stage, illustrated in the upper figure, focuses on source model training with target-driven au-
tonomous source knowledge selection. In this phase, both source and target data are transformed
into a shared latent feature space, where the similarity between each source and the target domain
is evaluated based on data density. High-confidence samples are retained while irrelevant or low-
similarity samples are discarded, and source domains identified as irrelevant are progressively re-
moved during further training. The proposed density-controlled selection is designed not only to
reduce redundancy but also to suppress noisy knowledge, thereby ensuring that the training process
exploits the most transferable information. Notably, all source models are initialized from a sin-
gle shared model and updated in a federated manner, rather than being trained independently. This
design avoids maintaining independent models for each source domain, thereby reducing memory
requirements and computational costs. The federated model is then employed as the target model
for adaptation. The second stage, illustrated in the lower figure, involves target model training with
cross-modality transfer. In this phase, knowledge selected from the previous stage is combined with
a pseudo-label enhancement module and cross-modal prompts to mitigate label noise, enabling the
target model to adapt without direct reliance on the full set of source data or models.

3.2 SOURCE MODEL TRAINING

Denote multiple source domains as {Ds
k = {xs

ki,y
s
ki}

nk
i=1}Kk=1, and the target domain as Dt =

{xt
i}ni=1 To handle multiple domains without training independent source models, we first initialize

a global model composed of a feature extraction module Φ and a decision layer P . For each source
domain, source samples are fed into Φ to extract features in space Rd, which are then passed to
P to obtain predictions in RC . By minimizing the errors between the ground truth labels and the
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Figure 2: Whole framework of the proposed autonomous source knowledge selection. The upper
figure indicates source model training with target-driven autonomous source knowledge selection,
the lower figure displays target model training with cross-modality transfer.

predictions, the model is updated by:

Φk, Pk = argmin
Φ,P

(xs
k
,ỹs

k
)∈Ds

k

L(P (Φ(xs
k)),LS(ys

k)),

L = − 1

nk

nk∑
i=1

LS(ys
ki) log(P (Φ(xs

ki))),

LS(ys
k) = (1− µ)ys

k +
µ

|C|
, ỹs

k,y
s
k ∈ RC .

(1)

LS is the label smoothing operation to accelerate training speed.

3.3 AUTONOMOUS SOURCE KNOWLEDGE SELECTION

To select more relevant information, we define a density-controlled selection strategy to au-
tonomously collects highly similar source and target samples. Following previous findings (Wang
et al., 2022) that cluster centers are close to the mean values of normalized classifier weight vectors,
we first collect cluster centers as:

fs
kc = Norm(Pk)c, c = 1, · · · , C; k = 1, · · · ,K. (2)

The target clustering label is:

yt
k = argmin

c
(Dis(Φxt,fs

kc)), c = 1, · · · , C; k = 1, · · · ,K. (3)

The radius of each source cluster and the radius and density of target data corresponding to source
cluster centers are then calculated as:

rskc = Rd(Dis(Φ(xs
k),f

s
kc)Iys

k
=c
), rtkc = Rd(Dis(Φ(xt),fs

kc)Iyt
k
=c
), (4)

Dis denotes the operation of computing the distance between source samples in the same cluster and
their cluster center. Rd means the operation for calculating cluster radius using different distance
metrics, such as average distance, root mean square distance and maximum radius. Unless other-
wise specified, this work employs the average radius computed using cosine distance. Furthermore,
thresholds for selecting highly confident source and target samples are defined as:

dskc = αrskc + sadj , d
t
kc = αrskc − tadj , c = 1, · · · , C; k = 1, · · · ,K. (5)
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α, sadj and tadj are the parameters that control the radius used to assign values separating sim-
ilar and dissimilar samples under different distance metrics. For any source and target sam-
ple, if Dis(Φ(xs

k),f
s
kc)Iys

k
=c

< dskc, we define the source sample as a confident sample, if
Dis(Φ(xt),fs

kc)argmin
xt

(Dis(xt,fs
kc))

< dtkc, we define the target sample as a confident sample. Denote

the selected source samples as Us = {xs
ki,y

s
ki}

ns
k

i=1 and target samples as U t = {xt
i,y

t
ki}

nt
k

i=1, the
selected high-confidence samples are grouped together to update the original source domain, retain-
ing confident source samples, incorporating confident target samples, and discarding low-confidence
source samples.

To further define if a source domain can be removed during further training, target data density can
be expressed as:

ρtkc =
nt
kc

πRd/2

Γ(Rd/2+1)
rtkc

, c = 1, · · · , C; k = 1, · · · ,K. (6)

Then, two weights are defined as:

ωk1 =
nt
k

n
, ωk2 =

1

C

C∑
c=1

(1− 1

1 + eρ
t
kc

),

ωk = λωk1 + (1− λ)ωk2, c = 1, · · · , C; k = 1, · · · ,K.

(7)

The rules for removing irrelevant source domains are defined as:

Keep(Ds
k) =

{
TRUE, if ωk >= 1

K − σ;
FALSE, if ωk < 1

K − σ;

c = 1, · · · , C; k = 1, · · · ,K.

(8)

Then we can get renewed source domains {D′s
k = {xs

ki,x
t
j ,y

s
ki,y

t
kj}

ns
k,n

t
k

i,j=1 }K
′

k=1, {xs
k,y

s
k} ∈

Us, {xt,yt
k} ∈ U t,K ′ ∈ [1,K] for further training.

3.4 TARGET MODEL ADAPTATION

To adapt target model, based on the autonomously selected source domains, target model is first
defined as the linear combination of models learned in equation equation 1:

Φ =

K′∑
k=1

ωk · Φk, P =

K′∑
k=1

ωk · Pk,K
′ ∈ [1,K]. (9)

Then the possibility of target label is predicted as:
Pt = P (Φ(xt)). (10)

At this stage, gaps remain between the pre-trained models P and Φ. To bridge these gaps, we
employ pseudo-labels generated by a frozen foundation model (e.g., CLIP) to self-supervise the
adaptation of the target model, where only prompts are fine-tuned to take the benefits of cross-
modality knowledge. Denote foundation model as Ψ, and original text prompts as {Tc}Cc=1, the
prediction on target domain can be expressed as:

PFM = Ψ(xt)vis · (Ψ(Tc)txt)T . (11)
Following previous findings in (Tang et al., 2024a; Li et al., 2025) which maintain prediction con-
sistency under a structural causal model, the external structural causal factor is defined by maxi-
mizing the correlation between the representations of random variables and the predictions of the
target model, while the refinement of the desired latent factor is conditionally equivalent to a self-
supervised information bottleneck. Denote latent random variables of {Tc}Cc=1 as PV following
distribution of PFM , and the bridging values connecting text prompts and PFM as P ′

V , the loss
function of fine-tuning prompts with a Gaussian distribution is defined as following by minimizing
the errors between target model prediction Pt and foundation model prediction PFM :

Lex =
1

n

n∑
i=1

β[(
(Pi

FM − Pti)2

diag(Pi
FM )

+ log |diag(Pi
FM )|) + γKL(g(P ′

V )∥PV )],

g(P ′
V ) =

1

diag(PV )
⊙ PV .

(12)
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g(·) is a learnable function providing a probability distribution with no information loss.

The cross-entropy loss for self-supervising target model is then defined as:

Lin = − 1

n

n∑
i=1

θPFM logPt + δ
∑
P̄t log P̄t +

C∑
c=1

KL( 1
n

n∑
i=1

(Pti)c∥
1

C
), P̄t =

1

n

n∑
i=1

Pti.

(13)

Target label is finally predicted as:

yt = argmax SoftMax(P (Φ(xt))). (14)

4 EXPERIMENTS AND ANALYSIS

Datasets: The proposed method is evaluated on four real-world visual classification datasets: Of-
fice31, OfficeHome, DomainNet126 and DomainNet. Office31 contains three domains with 31
shared categories, denoted as A (Amazon), D (DSLR), and W (Webcam). OfficeHome consists of
four domains with 65 shared categories, denoted as A (Art), C (Clipart), P (Product) and R (Real-
World). DomainNet126 includes four domains with 126 shared categories, including C (Clipart),
P (Painting), R (Real), and S (Sketch). DomainNet has six domains with 345 shared categories,
denoted as C (Clipart), I (Infograph), P (Painting), Q (Quickdraw), R (Real), and S (Sketch).

Parameters: For a fair comparison, the target model adopts ResNet50 as its backbone, while CLIP
with a vision transformer backbone is used as a frozen foundation model to generate target predic-
tions that guide model adaptation under self-supervision. SGD optimizer with momentum 0.9 is
used to update the parameters. The initial learning rate η = 0.001, it changes linearly with training
epochs as η = η0

(1+10p)0.75 for all datasets. The batchsize is 64. The trade-off parameters are set as
β = 0.003, λ = 0.5, γ = 0.5, θ = 0.4, δ = 1.0 and σ = 1

2p . For average radius, α = 1. sadj
is defined as the median distance between source samples and their corresponding cluster centers
within the same class, tadj is set to one-third of the source radius for each cluster.

All experiments are carried out using Pytorch 1.12.1+cu113 on a NVIDIA RTX-A5500 GPU.

Baselines: Baselines used in this work include methods based on ResNet: CAiDA (Dong et al.,
2021)(NeurIPS), FixBi (Na et al., 2021)(CVPR), SSD (Li et al., 2023)(TCYB), Co-MDA (Liu
et al., 2023)(TCSVT), DCL (Tian et al., 2023)(TCSVT), GSDE (Westfechtel et al., 2024)(WACV),
SEAL (Xia et al., 2024)(AAAI), MPA (Chen et al., 2024)(NeurIPS), KGCDE (Wong et al.,
2024)(PR), DSACDIC (Zhao et al., 2024)(WACV) LCFD (Tang et al., 2024a)(ArXiv), DAMP (Du
et al., 2024)(CVPR), Ucon-SFDA (Xu et al., 2025)(ICLR), FuzHDA (Li et al., 2025)(TFS) ProDe
(Tang et al., 2025)(ICLR) TIGM (Zhu et al., 2025)(CVPR); and methods based on vision trans-
former: DeiT (Touvron et al., 2021)(ICML), CDTrans (Xu et al., 2021)(ICLR), SSRT (Sun et al.,
2022)(CVPR), DSiT (Sanyal et al., 2023)(ICCV).

In the proposed method AutoS, when ResNet is used as the backbone, it is fully fine-tuned, whereas
when a Vision transformer is used, the backbone is frozen. “AutoS/sf” denotes AutoS under the
source-free setting, while “AutoS*” denotes AutoS based on a frozen Vision Transformer backbone.

Results: Tables 1 and 2 show the transfer performance on four datasets. The proposed AutoS consis-
tently outperforms most baselines. On Office31 and DomainNet126, AutoS trained with source data
surpasses its source-free model AutoS/sf, whereas on OfficeHome the source-free setting performs
better. Compared with multi-domain feature-alignment methods such as SSD and MPA, AutoS
achieves higher accuracy while using fewer source knowledge. Against self-supervision approaches,
such as CAiDA, Ucon-SFDA and methods that leverage large language models, like SEAL and
LCFD, AutoS benefits from a target-confident sample selection strategy that effectively separates
high- and low-confidence target samples for adaptation. Relative to federated-learning baselines
Co-MDA and FuzHDA, AutoS still delivers superior performance on most tasks while relying only
on selected source knowledge.

Ablation Study: Table 3 shows the performance of AutoS on OfficeHome using an ablation strat-
egy. “FedAvg” refers to a model trained without source-knowledge selection, combining domains
through simple federated averaging. “w/o TarCof” indicates training without adding target samples
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Table 1: Results of AutoS on datasets Office31 and OfficeHome.
Method D W A Avg Method R P C A Avg

CAiDA 99.8 98.9 75.8 91.5 CAiDA 84.2 84.7 60.5 75.2 76.2
SSD 99.8 99.1 76.0 91.6 SSD 83.2 81.2 64.5 72.5 75.4

Co-MDA 96.3 95.3 75.3 89.0 Co-MDA 83.9 85.3 64.0 74.4 76.9
GSDE 97.8 97.8 78.8 91.7 GSDE 82.1 81.6 59.2 71.6 73.6
FixBi 97.5 97.7 79.1 91.4 MPA 85.7 86.2 54.9 74.8 75.4
SEAL 97.2 92.2 77.1 88.8 SEAL 84.3 82.7 57.8 73.4 74.6

KGCDE 99.8 99.2 79.4 92.8 KGCDE 85.4 83.7 68.3 75.6 78.3
DCL 97.3 95.3 77.2 89.9 DAMP 86.9 89.1 60.1 76.6 78.2

DSACDIC 95.9 96.8 75.9 89.5 TIGM 82.5 82.6 60.7 70.7 74.1
LCFD 93.4 92.5 82.8 89.7 LCFD 89.7 90.2 72.2 80.7 83.2

Ucon-SFDA 97.4 97.1 77.1 90.5 Ucon-SFDA 80.9 82.3 61.9 69.5 73.6
FuzHDA 99.2 97.0 83.5 93.2 FuzHDA 87.9 89.9 71.4 81.2 82.6

ProDe 96.5 93.9 79.4 89.9 ProDe 89.0 89.7 64.9 80.6 81.1

AutoS 97.0 97.0 83.7 92.6 AutoS 88.7 90.0 72.2 80.7 82.9
AutoS/sf 96.6 94.6 82.8 91.3 AutoS/sf 89.7 89.7 72.4 80.8 83.2

Table 2: Results of AutoS on datasets DomainNet126 and DomainNet.
Method C P R S Avg Method C I P Q R S Avg

GSDE 83.4 77.8 91.0 79.9 83.1 CAiDA 63.6 20.7 54.3 19.3 71.2 51.6 46.8
DAMP 74.5 76.2 88.4 71.0 77.5 SSD 67.2 21.7 52.4 20.8 67.8 55.3 47.5
LCFD 79.3 77.5 88.1 75.3 80.1 DSiT* 55.3 23.4 47.1 17.6 63.5 45.5 42.1

Ucon-SFDA 72.2 69.6 81.0 65.4 72.1 DeiT* 41.4 39.9 38.9 19.6 39.0 41.5 36.7
FuzHDA 82.4 80.0 88.7 76.9 82.0 SSRT* 49.8 46.3 45.0 29.3 48.8 52.1 45.2

TIGM 74.7 72.1 86.2 67.7 75.2 CDTrans* 48.7 48.4 46.4 30.7 45.6 51.5 45.2

AutoS 83.7 81.0 90.0 78.1 83.2 AutoS 64.1 22.5 50.2 8.2 61.1 47.5 42.3
AutoS/sf 82.1 79.7 89.2 75.0 81.5 AutoS* 64.6 32.7 58.1 6.2 69.4 56.5 47.9

Table 3: Ablation study of AutoS on OfficeHome.
Method R P C A Avg

Fedavg 88.6 89.4 71.8 80.4 82.6
w/o TarCof 88.9 89.6 72.1 80.5 82.8

w/o L 88.1 89.4 70.1 79.1 81.7
w/o Lin 76.5 73.5 51.9 64.6 66.6
w/o Lex 88.2 89.3 70.1 80.2 82.0
AutoS 88.7 90.0 72.2 80.7 82.9

(a) Size of selected source data (b) Size of selected target data

Figure 3: Transfer performance with different size of selected source and target data.
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to the selected source domains. AutoS achieves the best performance. The model with no source-
target interaction (Lin) gives the lowest accuracy, indicating the need to bridge domain gaps. The
next most critical factor is source supervision (L), showing the value of supervision from source la-
bels. Target pseudo-labels, enhanced by the frozen foundation model and fine-tuned prompts (Lex),
provide the third-highest gain.

Figure 3 shows the influence of the size of selected source and target confident samples on Of-
ficeHome. “Rd” denotes the average radius of the source clusters. For the source data, removing
samples whose distance to their cluster centers exceeds the mean radius does not affect transfer per-
formance, indicating that the source domains contain redundant knowledge. For the target data, the
best transfer performance is achieved when using confident target samples whose distance to the
mean source radius is less than one third of that radius.

Table 4: Performance of AutoS with different radius metric.
ACCURACY TIME

Method R P C A Avg R P C A Avg

RMS 88.7 90.1 69.9 78.0 81.7 7718.3 9205.8 7033.1 4867.5 7206.2
MAX 88.8 89.7 72.0 79.8 82.6 8314.4 8289.1 8299.8 5141.1 7511.1

MEAN 88.7 90.0 72.2 80.7 82.9 9130.3 6998.4 6492.5 4351.5 6743.2

(a) Average radius (b) Root mean square ra-
dius

(c) Maxium radius

Figure 4: Transfer performance with different distance metrics for defining radius of clusters, taking
OfficeHome as example.

(a) Sected by ResNet (b) Selected by ViT

Figure 5: Autonomously select source domains in DomainNet.

Table 4 reports the transfer performance and computational time of AutoS with different radius
metrics. “RMS” is the root mean square distance, “MAX” is the maximum radius, and “MEAN”
is the average radius. The results show that the average radius obtains the best performance while
requiring the least running time. Figures 4 and 5 show the autonomously selected source domains
using density-controlled strategy. For most tasks, the proposed AutoS achieves better performance
than multi-domain adaptation baselines that use all sources, while requiring only one or two source
domains.

Table 5 reports the running time and GPU memory usage of the proposed AutoS compared with two
multi-domain baselines, SSD and FuzHDA. The reported running time includes both source and
target model training. It shows that AutoS requires less time and lower memory than the baselines.
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Table 5: Running time and GPU memory usage.
Method R P C A Avg GPU

SSD 62476.2 41824.8 42081.2 42190.0 47143.0 12415.0
FuzHDA 7314.0 7243.1 7323.8 7467.3 7337.0 8195.0

AutoS 9130.3 6998.4 6492.5 4351.5 6743.2 8157.0

Visualization: Figure 6 illustrates the distributions of the selected source and target samples, along
with the adaptation of the complete source and target domains using task R from OfficeHome as an
example. It shows that the three source domains align well with the target domain. The reason is
that AutoS autonomously selects source domains during training, the target model initially learns
from all sources but later removes those defined as dissimilar. This autonomous selection strategy
allows the method to emphasize the most relevant source domains at the appropriate time while still
preserving transferable knowledge from all sources.

(a) Selected A and R (b) Selected C and R (c) Selected P and R

(d) Adapted A and R (e) Adapted C and R (f) Adapted P and R

Figure 6: T-SNE of adapted source and target data on task R from OfficeHome.

5 CONCLUSION AND FUTURE WORK

This work introduces an autonomous source knowledge selection method that dynamically identifies
relevant and irrelevant source domains with respect to the target domain during training. First,
the method applies a federated learning strategy to leverage transferable knowledge from multiple
sources and designs a density-controlled selection strategy to determine relevant domains while
assigning combination weights for federated aggregation of source models in adapting to the target.
Furthermore, rather than relying on data matching, the method adapts the target domain through
self-supervision using pseudo-labels enhanced by a frozen foundation model, while fine-tuning only
the prompts. This design makes the approach flexible for domain adaptation both with and without
access to source data.

In futuer study, we will extend the proposed method to deal with more complex settings such as
label shifts and modality shifts

LLMS USAGE

The authors used ChatGPT for grammar and spelling checks only, with prompt ”Proofread the sen-
tences”.
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A APPENDIX

A.1 PROOF OF THE OBJECTIVE FUNCTION FOR STRUCTURAL CAUSAL MODEL

Given target predictions provided by source federal model and frozen foundation model as Pt and
PFM respectively, latent values of text prompts {Tc}Cc=1 as V , latent random values following dis-
tribution of Pt and PFM as PY and PV , the intermediate bottleneck values connecting latent text
prompts V and PFM as P ′

V . To ensure the relationship between target model and text prompts, we
following previous works (Tang et al., 2024a; Li et al., 2025) to maximize the correlation between
the latent random values of text prompts V and target model predictions PY , which is:

max I(PY , V ) = max I(PY ,PV ),PV = Ψ(V )txt.

Based on the statement about information loss under dimensional compression, for random values

Z, X and Y , there is a function h(·) satisfies that X ∈ Rm h(·)→ Y ∈ RC , if C < m, then:

(1). There is X ′ ̸= X satisfying h(X ′) = h(X);

(2) If Z → X → Y a Markov chain, then I(Z, Y ) ≤ I(Z,X).

Let Z = PY , Y = PV and X = V , then we have
I(PY ,PV ) ≤ I(PY , V ). (15)

Simultaneously, for random values Z, X and Y , there are intermediate value Z ′ and intermediate

value Y ′ satisfying Z ′ g(·)→ Y ′, and Z → Z ′ → (Y, Y ′) while g(·) is reversible and uncompressed,
then:

(1). I(Z, Y ′) = I(Z, g(Z ′)) = I(Z,Z ′)

(2). If Z ′ → Y ′ → Y a Markov chain, then I(Y ′, Y ) ≤ I(Z ′, Y ).

Then we have:
I(Z, Y ) = I(Z,Z ′)− I(Z ′, Y ) ≤ I(Z,Z ′)− I(Y ′, Y ), Y ′ = g(Z ′). (16)

Let Z ′ = P ′
v , Y ′ = P ′

Y = g(P ′
V ), we have:

I(PY ,PV ) = I(PY ,P ′
V )− I(P ′

V ,PV )

≤ I(PY ,P ′
V )− I(P ′

Y ,PV )

= I(PY ,P ′
V )− I(g(P ′

V ),PV ).

(17)

The upper bound of I(PY ,P ′
V ) is calculated as:

I(PY ,P ′
V ) ≡ H(P ′

V )−H(P ′
V |PY ) ≡ H(PY )−H(PY |P ′

V )

= −
∑

P(PY ) logP(PY )−
∑

P(P ′
V ,PY ) log

P(P ′
V ,PY )

P(P ′
V )

= E[logP(PY )] + E[log
P(P ′

V ,PY )

P(P ′
V )

]

= E[logP(P ′
V )] + E[log

P(PY ,P ′
V )

P(PY )
]

≥ const + E[logP(P ′
V |PY ))],

(18)

Calculation of I(g(P ′
V ),PV ) is expressed as:

I(g(P ′
V ),PV ) = KL(g(P ′

V )∥PV ),

g(P ′
V ) =

1

diag(PV )
⊙ PV .

(19)

Then we can get Equation 12 by modeling P(P ′
V |PY ) as Gaussian distribution N(PY , diag(PY ))

and updating the random values with Pt and PFM during training.
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A.2 ALGORITHM OF THE PROPOSED AUTOS

The whole algorithm of the proposed AutoS is summarized as in Algorithm 1:

Algorithm 1 AutoS: Autonomous source knowledge selection.
1: Input: Source domains {Ds

k = {xs
ki,y

s
ki}

nk
i=1}Kk=1, target domain Dt = {xt

i}ni=1;
2: Initialization: Feature extraction module Φ, classifier P , text prompts {Tc}Cc=1;
3: for ϵ = 1, ϵ < I, ϵ++, do
4: Φk, Pk ← Φ, P : Train source independent models Φk, Pk as in equation 1;
5: {fs

kc}Cc=1← Pk: Collect the kth source cluster centers equation 2;
6: yt

k ← xt, fs
kc: Collect target clustering label as in equation 3;

7: rskc ← xs
k,fs

kc, rtkc ← xt, fs
kc: Calculate cluster radius of source and target data as in equa-

tion 4;
8: ds

kc, dt
kc ← rskc: Define thresholds to identify confident source and target samples as in

equation 5;
9: ρtkc← rtkc: Define thresholds to identify confident source and target samples as in equation 6;

10: Renew source domains by adding selected target samples while removing irrelevant source
samples;

11: ωk: Calculate weights to select relevant source domains as in equation 7;
12: Keep(Ds

k): Select relevant source domains as in equation 8;
13: Φ, P ← Φk, Pk, k ∈ K ′: Get target model as in equation 9;
14: Pt← xt: Collect target prediction as in equation 10;
15: PFM ← xt, Tc: Collect frozen foundation model prediction as in equation 11;
16: T ← PFM , Pt, PV , P ′V : Update text prompts as in equation 12;
17: Φ, P ←PFM , Pt: Update target model as in equation 13;
18: end for
19: Output: Target label yt via equation 14

A.3 SELECTION STATUS OF SOURCE DOMAINS WITH TRAINING PROGRESS

This work employs cosine distance to computing the distance between source/target samples and
their cluster centers, which is expressed as:

Dis =
x∗
(·) · f

s
kc

∥x∗
(·)∥ · ∥f

s
kc∥

, ∗ ∈ s, t, (·) = k if ∗ = s

Average radius is expressed as:

Rd =
1

nkc

nkc∑
i=1

x∗
(·) · f

s
kc

∥x∗
(·)∥ · ∥f

s
kc∥

, ∗ ∈ s, t, (·) = k if ∗ = s

nkc is the number of kth source samples belonging to cth class.

Root mean square radius is expressed as:

Rd =

√√√√ 1

nkc

nkc∑
i=1

(
x∗
(·) · f

s
kc

∥x∗
(·)∥ · ∥f

s
kc∥

)2, ∗ ∈ s, t, (·) = k if ∗ = s

If employing root mean square radius, α = 1.5.

Maximum radius is expressed as:

Rd = max
i∈[1,nkc]

x∗i
(·) · f

s
kc

∥x∗i
(·)∥ · ∥f

s
kc∥

, ∗ ∈ s, t, (·) = k if ∗ = s

Autonomous source selection status is displayed as Figures 7, 8 and 9.
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(a) Target R (b) Target P

(c) Target C (d) Target A

Figure 7: Source domain selection status using average radius of OfficeHome.

(a) Target R (b) Target P

(c) Target C (d) Target A

Figure 8: Source domain selection status using root mean square radius of OfficeHome.

(a) Target R (b) Target P

(c) Target C (d) Target A

Figure 9: Source domain selection status using maximum radius of OfficeHome.
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The results show that different cluster radius metrics play a key role in autonomously selecting
source domains. The mean radius is more likely to select relevant domains because the proportion
of target samples falling within the cluster radius contributes to the computation of selection weights.
The root mean square radius and the maximum radius generally provide larger radius values, result-
ing in more target samples being added to the updated source domains and thereby increasing label
noise when training the federated model.

A.4 DESCRIPTION OF COMPARED BASELINES

Settings and core techniques of the baselines are described in Table 6:

Table 6: The baselines. “SF” means source-free, “MS” means multi-source, “BB” means backbone
structure, while “FFM” indicates frozen foundation model.

Baseline Venue SF MS BB FFM

CAiDA Dong et al. (2021) NeurIPS’21 ✓ ✓ RN ×
FixBi Na et al. (2021) CVPR’21 ✓ × RN ×

DeiT Touvron et al. (2021) ICML’21 ✓ × ViT ×
CDTrans Xu et al. (2021) ICLR’21 ✓ × ViT ×
SSRT Sun et al. (2022) CVPR’22 ✓ × ViT ×

DSiT Sanyal et al. (2023) ICCV’23 ✓ × ViT ×
SSD Li et al. (2023) TCYB’23 × ✓ RN ×

Co-MDA Liu et al. (2023) TCSVT’23 ✓ ✓ RN ×
DCL Tian et al. (2023) TCSVT’23 ✓ × RN ×

GSDE Westfechtel et al. (2024) WACV’24 ✓ × RN ×
MPA Chen et al. (2024) NeurIPS’23 × ✓ RN ✓
SEAL Xia et al. (2024) AAAI’24 ✓ ✓ RN ×

KGCDE Wong et al. (2024) PR’24 × ✓ RN ×
DSACDIC Zhao et al. (2024) WACV’24 × × RN ×

LCFD Tang et al. (2024a) ArXiv’24 ✓ × RN ✓
DAMP Du et al. (2024) CVPR’24 ✓ × RN ✓

Ucon-SFDA Xu et al. (2025) ICLR’24 ✓ × RN ×
FuzHDA Li et al. (2025) TFS’25 ✓ ✓ RN ✓
ProDe Tang et al. (2025) ICLR’25 ✓ × RN ×
TIGM Zhu et al. (2025) CVPR’25 ✓ × RN ×

A.5 VISUALIZATION OF TASKS FROM OFFICEHOME WITH AND WITHOUT SOURCE DATA

T-SNE visualization of all tasks from OfficeHome is displayed as following Figures.
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(a) Selected C and A (b) Selected P and A (c) Selected R and A

(d) Adapted C and A (e) Adapted P and A (f) Adapted R and A

Figure 10: T-SNE of adapted source and target data on task A from OfficeHome.

(a) Selected A and C (b) Selected P and C (c) Selected R and C

(d) Adapted A and C (e) Adapted P and C (f) Adapted R and C

Figure 11: T-SNE of adapted source and target data on task C from OfficeHome.
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(a) Selected A and P (b) Selected C and P (c) Selected R and P

(d) Adapted A and P (e) Adapted C and P (f) Adapted R and P

Figure 12: T-SNE of adapted source and target data on task P from OfficeHome.

(a) Adapted A (b) Adapted C

(c) Adapted P (d) Adapted R

Figure 13: T-SNE of target data under source-free setting from OfficeHome.

18


	Introduction
	Related Work
	Multi-Domain Adaptation
	Federated Learning
	Multimodal Domain Adaptation

	The Proposed Autonomous Source Knowledge Selection Method
	Overview
	Source Model Training
	Autonomous Source Knowledge Selection
	Target Model Adaptation

	Experiments and Analysis
	Conclusion and Future Work
	Appendix
	Proof of the objective function for structural causal model
	Algorithm of the proposed Autos
	Selection status of source domains with training progress
	Description of compared baselines
	Visualization of tasks from OfficeHome with and without source data


