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ABSTRACT

Keypoint extraction and description are crucial issues in robot vision. In recent
years, deep learning based keypoint extraction have exhibited robustness to vari-
ations in lighting and viewpoint. However, due to the lack of rotational invari-
ance in traditional convolutional networks, performance of deep learning-based
keypoint significantly deteriorates under large rotations. Group-equivariant neu-
ral networks based Keypoint address the issue of rotational equivariance, but
their overall performance also suffers. This paper addresses the problem from
the perspective of keypoint description and proposes a fusion of locally rotation-
equivariant descriptions with globally encoded positional information and a direc-
tional uncertainty weighted descriptor loss. This effectively enhances the perfor-
mance of keypoint extraction and description. Validation is conducted on rotated-
HPatches, rotated-MegaDepth and rotated-YFCC100M datasets.

1 INTRODUCTION

A keypoint extractor is a critical component in the field of computer vision, designed to identify and
describe significant local image features within an image. Ma et al. (2021). It comprises two pri-
mary components: keypoint detection and keypoint description. Keypoint detection is responsible
for locating prominent local regions in the image, typically characterized by unique textures, cor-
ners, or edges. These detected keypoints possess the following characteristics: they are conspicuous
within the image, exhibit stability across different scales and lighting conditions, and can be accu-
rately matched across different images Lowe (1999; 2004); Tang et al. (2019). The task of keypoint
description is to encode the local surroundings of each detected keypoint into numerical descriptors.
These keypoint extractor can be employed in various computer vision tasks such as image matching,
3D reconstruction, and object tracking Jiang et al. (2021).

In most application scenarios, rotational invariance is indeed not as important, such as visual odome-
ters for low speed autonomous driving, visual position recognition, and object tracking. However,
when these problems are solved, there is an urgent need for algorithms with higher robustness for
visual keypoint detection and description in extreme scenarios such as high-speed scenes, unmanned
aerial vehicle scenes, and foot robots with large motion amplitudes.

Traditional convolutional neural networks possess translational invariance Kauderer-Abrams (2017),
a characteristic that proves to be highly valuable in tasks such as image classification and object
detection. However, in certain scenarios, such as keypoint detection, pose estimation, and image
segmentation, this translational invariance might restrict the model’s performance. To address these
tasks, researchers have begun to explore the introduction of invariances to transformations like rota-
tion, scale, and viewpoint, aiming to better adapt to the diversity of the real world Zheng et al. (2022).
These innovative network architectures and techniques are capable of delivering more accurate and
robust results when large rotation transform exists.

The performance improvement brought about by the introduction of positional information is evi-
dent in works such as AWDesc Wang et al. (2023), SuperGlue Sarlin et al. (2020), LoFTR Sun et al.
(2021). However, positional information contains contextual details that might pertain to various
spatially scattered and distinct objects with unknown poses. If we were to combine local rotation-
equivariant descriptors with positional information, it wouldn’t necessarily achieve complete rota-
tional equivariance in theory. Moreover, in keypoint tasks, thousands of keypoints are often extracted
from an image. Therefore, modeling the relationship between the unknown poses of several objects
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Figure 1: The preview of our method.

in space and the transformations in the image would significantly increase computational complexity
and training difficulty for keypoint tasks.

By combining the advantages of rotation-equivariant networks Cohen & Welling (2016) and posi-
tional information, we aim to retain the local rotational equivariance of keypoint descriptors while
introducing robust positional information. This approach strives to enhance the performance of key-
points in challenging scenarios. It leverages the benefits of both techniques, allowing keypoints to
perform as effectively as possible in demanding environments.

In this work, we present an end-to-end framework to simultaneously detect and describe robust key-
points. As shown in Fig. 1, on the left is the commonly used multi-scale feature pyramid for tradi-
tional feature extraction. In the middle is the multi-scale feature pyramid with rotation equivariance,
while on the right is the multi-scale feature pyramid with rotation equivariance that we have explored
and enriched with global positional information. We utilize group-equivariant neural networks for
rotation-equivariant local feature extraction. We have efficiently implemented a multi-level fusion of
rotation-equivariant features. Taking inspiration from the concept of capturing one-eighth scale local
features as introduced in LoFTR Sun et al. (2021), we integrate rotation-equivariant feature maps at
that resolution level. Then we carefully design the fusion module of rotation-equivariant feature and
positional information. Finally, we proposed the directional uncertainty weighted descriptor loss to
train our model. The proposed method is evaluated on several datasets and their rotated version.
The experimental results show that our model performs better than many state-of-the-art (SoTA)
approaches.

2 RELATED WORK

2.1 MANUALLY DESIGNED ROTATION-EQUIVARIANT FEATURES

Manually designed features are often crafted to encode feature information based on the pixels sur-
rounding a given pixel. These features are conceived with rotational invariance in mind during their
design, taking into account the surrounding pixels, which allows them to be invariant to rotations.

Traditional algorithms Lowe (1999); Mur-Artal et al. (2015); Leutenegger et al. (2011); Alcantarilla
et al. (2012); Alcantarilla & Solutions (2011) have distinct advantages in different scenarios, but
they all achieve rotation resistance through scale-space analysis, principal orientation assignment,
and descriptor computation. This enables them to excel in tasks such as image matching and ob-
ject recognition under rotation transformations. The choice of the appropriate algorithm depends
on specific application requirements, including computational resources, robustness, and real-time
performance.

2.2 LEARNING-BASED ROTATION-EQUIVARIANT FEATURES

Compared to traditional algorithms, learning-based local feature extraction has demonstrated signif-
icant robustness in recent years, particularly in terms of its ability to handle challenges like changes
in lighting conditions and varying viewpoints DeTone et al. (2018).
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Figure 2: Overview of our pipeline. An image is forwarded to the rotation-equivariant feature
extraction backbone. Then these multi-scale feature maps are fed into different weighted fusion
module to obtain the keypoint detection map. The deepest feature maps are fed into Transformer
Encoder. Then its output and fused multi-scale feature maps are fed into Dilated Feature extraction
module to obtain the final descriptor map. At the bottom left of the diagram are a pair of images
with rotational relationships. After passing through the aforementioned pipeline, the descriptors
obtained from these images undergo PCA (Principal Component Analysis) to compute the principal
direction. Subsequently, they undergo circular shifts along the channel dimensions, and the loss
function is computed during this process.

Group-equivariant Convolutional Neural Networks Cohen & Welling (2016); Cohen et al. (2018)
(G-CNNs) introduce symmetry into convolutional neural networks. The pivotal advantage of G-
CNNs lies in their capacity to handle symmetrical data, encompassing operations such as rotations,
translations, mirroring, and other symmetries commonly encountered in images. This signifies that
the network’s architecture and operations take these symmetrical transformations into careful con-
sideration, imparting greater robustness and the ability to capture and harness the inherent symmetry
information present in the data.

G-CNNs exhibit remarkable performance in terms of rotation equivariance. Specifically, when the
data undergoes a rotational operation,G-CNNs produce output changes that exhibit similar equivari-
ant characteristics. This proves particularly pivotal in numerous computer vision tasks, including but
not limited to object detection, image recognition, and image generation. In these tasks, an object’s
orientation may change, while its essential features should remain invariant.

Additionally, the parameter-sharing capability of group-equivariant networks often translates into
reduced data requirements for training. This arises from their ability to glean more generalized
features from a smaller set of labeled samples. ReF Peri et al. (2022) utilized the group pooling
operation to obtain rotation-invariant feature map from rotation-equivariant feature map. RELF Lee
et al. (2023) proposed the group aligning to shift a group-equivariant descriptor refer to its dominant
orientation to get a rotation-invariant descriptor.

3 METHOD

There are successful cases of positional encoding, which SuperGlue uses for learning based image
matching. In Vision Transformer, positional encoding assigns global positional information to each
patch of the image, and then calculates the correlation between each patch and all other patches
based on self attention. However, local rotation-equivariance and global position information are
often incompatible. Because in real-world applications, some objects in an image rotate to varying
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Figure 3: Schematic diagram of the Multi-scale Rotation-Equivariant Feature Fusion module. On
the far left is the original multi-level rotation equivariant feature map, and the example in the figure is
a schematic feature map of rotation equivariant group convolution with a group size of four. Firstly,
feature maps belonging to the same rotation angle on the group are grouped together, and then
the multi-level feature maps of each group are interpolated and concatenated together. Finally, the
feature maps of each group are concatenated together in the original order, maintaining the rotation
invariance of local features during the multi-level feature fusion process.

degrees independently, it is not possible to confuse the rotation of the entire image with the rotation
of local features.

3.1 MULTI-SCALE ROTATION-EQUIVARIANT FEATURE FUSION

3.1.1 EQUIVARIANCE AND INVARIANCE

Given a transformation group G, T is a linear representation of G, and T ′ is not required to be
identical to T . That is to say, T and T ′ may represent the same transform but acts on different
space (e.g., spatial coordinate space and group space) Cohen & Welling (2016); Weiler et al. (2018).
A group-equivariant function Fe : X −→ Y should observe that

Fe(T (x)) = T ′(Fe(x)), (1)

where x ∈ X , T ∈ G. While the group-invariant operation Fi satisfies

Fi(T (x)) = Fi(x). (2)

3.1.2 MULTI-SCALE ROTATION-EQUIVARIANT FEATURE FUSION

In contrast to the single-scale feature extraction approach, FPN Lin et al. (2017) necessitates the
construction of the feature pyramid only once, following which these feature maps can be seamlessly
transmitted to various task-specific networks. This not only mitigates computational overhead but
also augments overall model efficiency.

To make feature extractor to be scaling-invariant, we design the backbone feature extractor with
multi-scale feature fusion using FPN. First, the input image is lifted into regular representation
space. Then, the rotation-equivariant convolution filters are acting on the regular representation. In
this work, four distinct resolution feature maps are combined into a single resolution through inter-
polation. Inspired by LoFTR, the concept of capturing one-eighth scale local features is important
for local feature extraction. Thus, we integrate rotation-equivariant feature maps at that resolution
level.

As shown in Fig. 3, to ensure that rotational equivariance is preserved during the process of feature
map fusion, we isolate the rotational group dimensions of the feature maps. Subsequently, we
concatenate the feature maps together.

3.2 ROTATION-EQUIVARIANT FEATURE AND POSITIONAL INFORMATION FUSION

The multi-head attention mechanism constitutes a pivotal component in deep learning models such
as Vision Transformer Dosovitskiy et al. (2020). By amalgamating the outputs of multiple heads,
ViT can synthesize information from different locations, enriching the understanding of global rela-
tionships. Some learning-based matchers Sarlin et al. (2020); Sun et al. (2021); Wang et al. (2022),
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Figure 4: Directional Uncertainty Weighted Descriptor Loss.

benefit the global positional information to enhance the local descriptor in the end2end matching
pipeline. Therefore, we also aim to incorporate the powerful global positional information into the
framework for local rotation-equivariant keypoint extraction. As shown in Fig. 2, to enhance com-
putational efficiency, the deepest layer of rotation-equivariant features is passed through pooling and
then fed into a Transformer Encoder. Additionally, it is weighted by the output of another convo-
lutional pathway. Next, we add the multi-scale fused rotation-equivariant feature maps to it and
feed them into a dilated feature extraction module. This is done to compensate for the rotational
equivariance loss caused by partially non-rotation-equivariant architectures. Then, the output from
the dilated feature module is again added to the multi-scale fused rotation-equivariant feature maps,
resulting in the final descriptor map.

3.3 DIRECTIONAL UNCERTAINTY WEIGHTED DESCRIPTOR LOSS

In the above description, the feature maps we produce are approximately rotation-equivariant. For
keypoints, we expect them to possess (1) robust rotation-equivariant properties, implying that fea-
ture descriptors should exhibit high similarity after circular shifts, and (2) good principal direction
discriminability, indicating that feature descriptors can perform precise circular shifts to leverage the
characteristics of rotation-equivariant features, facilitating keypoint extraction under significant ran-
dom rotations. We employ Principal Component Analysis (PCA) to estimate the principal direction
of rotation-equivariant features.

G-CNNs perform discrete sampling in group space, whereas for rotation-equivariant feature ex-
traction networks, only discrete sampling of 2D rotations is required, with a total of K samples.
We believe that the principal direction of a keypoint should be distinct and clear, aligning with the
traditional concept of corner points. We select the accumulated maximum value of channels corre-
sponding to angles in the rotation group space as the confidence measure for the principal direction
of a keypoint. We expect a higher response value for the principal direction, and thus, we define the
confidence of the principal direction for the rotation-equivariant keypoint descriptor as follows:

β =

∑
C−1
c=0 D(c,argmax

k
∑

C−1
c=0 D(k,c))

∑
K−1
k=0 ∑

C−1
c=0 D(k,c)

, (3)

where D is the rotation-equivariant descriptor, k ∈ K is the index of discrete rotation group, c ∈C is
the index of dimensions independent of group channels. Then, similarly, we define a loss function
for directional ambiguity as follows:

LDC =−(1−β )
C−1

∑
c=0

log

D(c,argmax
k

D(k,c))

∑
K−1
k=0 D(k,c)

 , (4)

and we set the upper limit of the loss function to 20. Due to the discrete nature of the group space,
there exists a bias in aligning the principal directions between the feature descriptors to be matched.
To minimize the impact of this bias during model training, we take into account a descriptor loss
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based on the uncertainty of the principal direction. As shown in Fig. 4, two rotation-equivariant
keypoint descriptors for matches from different images, after PCA processing, are transformed into
descriptors that are approximately rotation-invariant. Because the rotation group is discrete, even
when the ground truth rotations can be obtained during training, there is still an error in the descrip-
tor’s orientation after circular shifts along the channels of the discrete rotation group. Therefore, we
take into account both the clarity of the descriptor’s orientation and the similarity between matched
descriptors when designing the following loss function:

LDUWD = βAβBLCVtri(DA,DB,wA,wB)+LDC(DA)+LDC(DB)+CE(Shi f t(DA,Ogt ,DB)) (5)

where A and B are the indexes of the image pairs to be matched, we employed the consistent attention
weighted triplet loss LCVtri from AWDesc Wang et al. (2023), wA and wB are the attention map of the
image pairs to be matched, CE is the cross entropy loss, and Shi f t can circularly shift descriptors
along the dimensions of the rotation-equivariant group based on the ground truth relative rotation
Ogt between images.

4 EXPERIMENT

4.1 IMPLEMENTATION

We use E2CNN Weiler & Cesa (2019) to build the rotation-equivariant feature extractor. The group
size of SO(2)-equivariant representation we use is 8. Following Wang et al. (2023), the detection
ground truth is generated by an off-the-shelf trained SuperPoint DeTone et al. (2018), the loss func-
tion we used for detection is weighted binary cross-entropy. The training dataset we used is seleted
118 scenes from MegaDepth Li & Snavely (2018) following D2-Net Dusmanu et al. (2019), and the
image are cropped to 400×400 for training.

We use a computer with an Intel I9-13900K CPU and an NVIDIA GeForce RTX 4090 GPU for
training and inference. The learning rate is set to 0.001, the weight decay is set to 0.05, and the
batchsize is 12. The training is finished after 28 epochs.

Table 1: Experimental results on the rotated-HPatches dataset.
Methods MMA@3 MMA@6 MMA@10

ORB Rublee et al. (2011) 0.5758 0.6554 0.6715
BRISK Leutenegger et al. (2011) 0.7451 0.8256 0.8412

AKAZE Alcantarilla & Solutions (2011) 0.7443 0.8221 0.8413
KAZE Alcantarilla et al. (2012) 0.7526 0.8366 0.8578

ReF Peri et al. (2022) 0.3531 0.4115 0.4281
RELF Lee et al. (2023) 0.5110 0.5929 0.6442

AWDesc Wang et al. (2023) 0.4554 0.5299 0.5537
ours 0.6671 0.7973 0.8339

4.2 FEATURE MATCHING EVALUATION

The HPatches Balntas et al. (2017) dataset includes numerous pairs of images that come from dif-
ferent settings, angles, lighting conditions, and types of changes like rotations, translations, scaling,
and changes in brightness. This multifaceted composition renders it a challenging dataset, serving
as a robust platform for evaluating the performance of algorithms across a spectrum of complex
scenarios. It has gained widespread recognition and utilization as a benchmark for assessing and
benchmarking image matching algorithms. The rotated-hpatches dataset is generated by randomly
rotate the query image of HPatches dataset. Compared to the original HPatches dataset, the rotated-
hpatches dataset, which has undergone rotation augmentation, is more challenging. The MMA
metric for algorithms with poor rotational robustness experiences a significant decrease in perfor-
mance on this dataset. We compared ORB, BRISK, AKAZE, KAZE, ReF, RELF, AWDesc, and
our method on the rotated-HPatches dataset, as shown in Table. 1. Benefiting from the integra-
tion of local rotation-equivariant features, our method exhibits a substantial advantage over other
learning-based approaches on the rotated-hpatches dataset. However, we also observe that tradition-
ally handcrafted keypoints with explicitly defined rotational equivariance perform slightly better on
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the rotated-hpatches dataset. We believe this is due to the dataset being limited to planar scenes,
making it challenging for learning-based algorithms to gain a significant advantage. Therefore, we
are considering conducting experiments on real datasets with depth information for camera relative
pose estimation.

Table 2: Experimental results on the Megadepth-series datasets.
Methods AUC@5 AUC@10 AUC@20 Prec

MegaDepth

ORB 0.26 0.96 3.06 53.75
BRISK 8.75 16.83 27.56 73.59
AKAZE 8.91 17.79 29.55 77.89
KAZE 15.85 27.96 42.1 77.48
ReF 27.69 46.20 64.22 86.43

RELF 19.03 35.06 52.45 72.10
AWDesc 27.69 46.20 64.22 86.43

ours 30.42 49.46 67.23 90.09

MegaDepth-Rot90

ORB 0.26 0.96 3.06 53.75
BRISK 8.75 16.83 27.56 73.59
AKAZE 8.91 17.79 29.55 77.89
KAZE 17.48 29.60 43.96 77.93
ReF 17.61 30.98 45.98 66.51

RELF 12.63 25.59 42.17 65.96
AWDesc 10.47 19.84 31.33 49.49

ours 20.46 37.70 56.37 78.53

MegaDepth-Rot-Rand

ORB 0.26 0.88 2.8 53.47
BRISK 5.11 11.1 20.42 71.52
AKAZE 5.54 11.81 21.53 76.24
KAZE 15.77 28.64 43.29 78.87
ReF 6.9 12.32 18.37 37.73

RELF 14.76 28 43.43 65.93
AWDesc 10.54 19.85 28.97 49.17

ours 16.76 31.79 49.18 74.27

4.3 POSE ESTIMATION EVALUATION

The MegaDepth Li & Snavely (2018) dataset stands out as an ideal choice for evaluating the perfor-
mance of image matching and camera relative pose estimation due to several key attributes. It sets
itself apart by including depth information, drawing from real-world scenarios, applicability across
diverse use cases, and the provision of standardized performance metrics. The dataset not only en-
compasses depth information but also showcases imagery captured from authentic environments,
spanning various applications. Moreover, MegaDepth provides established performance metrics,
such as reprojection error and pose error, specifically tailored for assessing the precision of algo-
rithms in estimating camera motion. These metrics serve to quantitatively measure the accuracy of
algorithms in the context of camera relative pose estimation.

The estimated pose is determined from the matches by calculating the essential matrix. Subse-
quently, we follow the same methodology as described in the reference to compute the Area Under
the Curve (AUC) of pose error at specific thresholds (5 degrees, 10 degrees, 20 degrees). In this con-
text, pose error is defined as the greater of the angular errors in rotation and translation. Since the
AUC of pose error incorporates RANSAC for pose estimation, it can yield accurate pose estimates
by filtering out numerous mismatches. However, it’s worth noting that the AUC of pose error may
not provide a comprehensive assessment of the matching method due to its reliance on RANSAC.
To overcome this limitation, match precision takes into account all matches, including mismatches,
offering a more holistic evaluation of the method’s performance. Therefore, we also employ the
approach outlined in SuperGlue to calculate matching precision and utilize it as an additional metric
for assessing the quality of correspondence matching.

We further augmented the MegaDepth dataset in two different ways: by applying random rota-
tions in multiples of 90 degrees and by applying random rotations at arbitrary angles. These aug-
mented datasets are referred to as MegaDepth-Rot90 and MegaDepth-Rot-Rand, respectively. We
conducted experiments on MegaDepth, MegaDepth-Rot90, and MegaDepth-Rot-Rand, as indicated
in the table. Our approach exhibited the best performance on the MegaDepth, MegaDepth-Rot90,
and MegaDepth-Rot-Rand datasets. The experimental results are shown in Table. 4. It is evident that
our approach demonstrates superior performance in all three modes of the dataset and significantly
outperforms traditional algorithms. Furthermore, due to the introduction of global positional infor-
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Figure 5: Visualization of matches on the MegaDepth-Rot-Rand dataset.

mation in our method, perfect rotational equivariance cannot be achieved. Therefore, as the rotation
difficulty of the dataset increases, the algorithm’s performance decreases. Traditional algorithms
like KAZE, designed to be sufficiently robust, although not outperforming our method overall, ex-
hibit resilience to rotations. We present visualizations of the matching results on MegaDepth for
AWDesc, ReF, RELF, and our method in Fig. 5, where green lines represent correct matches, and
red lines represent incorrect matches. From the visual results, it is evident that our method exhibits
richer matches and higher accuracy.

Table 3: Experimental results on the YFCC100M-series datasets.
Methods AUC@5 AUC@10 AUC@20 Prec

YFCC100M

ORB 0.05 0.23 0.87 24.22
BRISK 3.38 7.12 12.69 53.35
AKAZE 1.44 3.4 6.86 51.04
KAZE 4.55 9.61 17.64 59.45

AWDesc 26.07 44.87 63.15 72.66
ReF 8.75 18.25 31.44 24.88

RELF 9.19 18.93 31.9 35.81
ours 26.25 44.9 62.87 74.44

YFCC100M-Rot90

ORB 0.07 0.19 0.77 24.66
BRISK 2.97 6.62 12.3 53.2
AKAZE 1.44 3.4 6.96 50.6
KAZE 4.61 9.36 17 59.19

AWDesc 8.49 16.02 25.2 34.58
ReF 8.6 18.09 31.04 24.88

RELF 7.71 16.1 28.13 32.72
ours 11.95 23.89 38.18 50.58

YFCC100M-Rot-Rand

ORB 0.07 0.22 0.92 25.05
BRISK 3.56 7.15 12.7 53.7
AKAZE 1.35 3.15 6.58 50.87
KAZE 4.2 9.47 17.59 59.34

AWDesc 8.45 15.95 24.86 33.4
ReF 2.24 5.32 10.57 12.8

RELF 4.46 11.25 21.59 29.52
ours 11.86 24.1 39.58 52.29

The evaluation approach applied to the YFCC100M Thomee et al. (2016) dataset closely mirrors
that of MegaDepth. In line with SuperGlue’s methodology Sarlin et al. (2020), we carefully choose
identical pairs from the YFCC100M dataset for testing, ensuring an equitable basis for comparison.
Subsequently, we employ the same evaluation methodology to calculate the Area Under the Curve
(AUC) of pose error at specified thresholds (5 degrees, 10 degrees, 20 degrees). Furthermore, we
can derive the precision of the matches as an additional evaluation metric. Our approach exhibited
the best performance on the YFCC100M, YFCC100M-Rot90, and YFCC100M-Rot-Rand datasets.
Across the three modes of the YFCC100M dataset, learning-based methods further widen the gap
between them and traditional algorithms. Our approach significantly outperforms other algorithms.
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Table 4: Results of ablation study on the Megadepth-series datasets.
Methods AUC@5 AUC@10 AUC@20 Prec

MegaDepth
ours 30.42 49.46 67.23 90.09

ablation1 25.15 42.14 58.87 83.68
ablation2 27.64 45.28 61.42 72.91

MegaDepth-Rot90
ours 20.46 37.70 56.37 78.53

ablation1 13.18 24.55 39.03 43.32
ablation2 10.56 19.60 31.69 38.45

MegaDepth-Rot-Rand
ours 16.76 31.79 49.18 74.27

ablation1 9.97 19.85 33.27 39.38
ablation2 9.29 18.91 31.66 37.11

4.4 ABLATION STUDY

We explored the effectiveness of the proposed method in the ablation experiment. Our feature fusion
process is:

DFE(F +(T E(C4)∗Conv(C4)))+F, (6)

ablation1 represents the following feature fusion process:

DFE(F +(T E(C4)∗Conv(C4)))+F +(T E(C4)∗Conv(C4)), (7)

where DFE is the dilated feature extraction, F is the fused feature map of multi-scale rotation-
equivariant feature fusion, T E is the Transformer encoder, C4 is the last feature map of feature
backbone, Conv is the convolution operation, ∗ is the element-wise multiply operation in channel
dimension. Ablation2 represents the following feature fusion process:

F +DFE(T E(C4)∗Conv(C4)). (8)

Ablation1, to some extent, increases the proportion of global position information, which is not
conducive to expressing local rotation and other variable information. Ablation2 does not incorpo-
rate the fused multi-level rotation-equivariant features into the dilated feature extraction. Instead,
it fuses the global position information processed by multi-scale hole convolution with the multi-
level rotation-equivariant features, resulting in a lack of a good connection between the multi-level
rotation-equivariant features and the global position information.

From the experimental results, it can be seen that ablation1 performs weaker than other fusion
methods on the dataset without rotation augmentation. However, due to its multi-level rotation-
equivariant features and the higher number of connections between global position information fu-
sion, it performs better than ablation2 on the dataset with 90-degree augmentation.

4.5 RUNTIME ANALYSIS

We compared the running speed of our method with other methods on the rotated patches dataset,
which involved keypoint extraction and matching of a pair of images. The AWDesc runtime is
0.3106 seconds, while ours is 0.4785 seconds. The results show that our method significantly en-
hances anti-rotation performance while maintaining acceptable computational complexity.

5 CONCLUSIONS

In this article, we have addressed and researched the problem of image feature extraction, lead-
ing to the design of a more robust feature extractor architecture that surpasses existing methods on
multiple datasets. Specifically, we utilized a rotation-equivariant feature pyramid to provide locally
rotation-equivariant feature information, along with a multi-head attention mechanism for adaptively
fusing positional information in the features. Furthermore, we introduced the directional uncertainty
weighted descriptor loss to enhance the model’s robustness. Looking ahead, we plan to explore tech-
niques such as model quantization and knowledge distillation to accelerate image feature extraction
while maintaining model performance.
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Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
point detection and description. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pp. 224–236, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and
Torsten Sattler. D2-net: A trainable cnn for joint description and detection of local features. In
Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, pp. 8092–
8101, 2019.

Xingyu Jiang, Jiayi Ma, Guobao Xiao, Zhenfeng Shao, and Xiaojie Guo. A review of multimodal
image matching: Methods and applications. Information Fusion, 73:22–71, 2021.

Eric Kauderer-Abrams. Quantifying translation-invariance in convolutional neural networks. arXiv
preprint arXiv:1801.01450, 2017.

Jongmin Lee, Byungjin Kim, Seungwook Kim, and Minsu Cho. Learning rotation-equivariant fea-
tures for visual correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21887–21897, 2023.

Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust invariant scalable
keypoints. In 2011 International conference on computer vision, pp. 2548–2555. Ieee, 2011.

Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2041–2050, 2018.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh
IEEE international conference on computer vision, volume 2, pp. 1150–1157. Ieee, 1999.

David G Lowe. Distinctive image features from scale-invariant keypoints. International journal of
computer vision, 60(2):91–110, 2004.

Jiayi Ma, Xingyu Jiang, Aoxiang Fan, Junjun Jiang, and Junchi Yan. Image matching from hand-
crafted to deep features: A survey. International Journal of Computer Vision, 129:23–79, 2021.

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accu-
rate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163, 2015.

10



Under review as a conference paper at ICLR 2024

Abhishek Peri, Kinal Mehta, Avneesh Mishra, Michael Milford, Sourav Garg, and K Mad-
hava Krishna. Ref–rotation equivariant features for local feature matching. arXiv preprint
arXiv:2203.05206, 2022.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to
sift or surf. In 2011 International conference on computer vision, pp. 2564–2571. Ieee, 2011.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 4938–4947, 2020.

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local
feature matching with transformers. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8922–8931, 2021.

Guoliang Tang, Zhijing Liu, and Jing Xiong. Distinctive image features from illumination and scale
invariant keypoints. Multimedia Tools and Applications, 78:23415–23442, 2019.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Changwei Wang, Rongtao Xu, Ke Lv, Shibiao Xu, Weiliang Meng, Yuyang Zhang, Bin Fan, and
Xiaopeng Zhang. Attention weighted local descriptors. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

Qing Wang, Jiaming Zhang, Kailun Yang, Kunyu Peng, and Rainer Stiefelhagen. Matchformer:
Interleaving attention in transformers for feature matching. arXiv preprint arXiv:2203.09645,
2022.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Advances in Neural
Information Processing Systems, 32, 2019.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation equiv-
ariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 849–858, 2018.

Qi Zheng, Mingming Gong, Xinge You, and Dacheng Tao. A unified b-spline framework for scale-
invariant keypoint detection. International Journal of Computer Vision, 130(3):777–799, 2022.

11


	INTRODUCTION
	Related Work
	Manually designed rotation-equivariant features
	Learning-based rotation-equivariant features

	Method
	Multi-scale Rotation-Equivariant Feature Fusion
	Equivariance and Invariance
	Multi-scale Rotation-Equivariant Feature Fusion

	Rotation-Equivariant Feature and Positional Information Fusion
	Directional Uncertainty Weighted Descriptor Loss

	Experiment
	Implementation
	Feature Matching Evaluation
	Pose Estimation Evaluation
	Ablation Study
	Runtime Analysis

	CONCLUSIONS

